Class Notes for Math 918: Homological Conjectures, Instructor Tom Marley

Laura Lynch
University of Nebraska-Lincoln, llynch@ccga.edu

Follow this and additional works at: https://digitalcommons.unl.edu/mathclass
Part of the Science and Mathematics Education Commons

[^0]This Article is brought to you for free and open access by the Mathematics, Department of at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Math Department: Class Notes and Learning Materials by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Class Notes for Math 918: Homological Conjectures, Instructor Tom Marley

This course was an overview of what are known as the "Homological Conjectures," in particular, the Zero Divisor Conjecture, the Rigidity Conjecture, the Intersection Conjectures, Bass' Conjecture, the Superheight Conjecture, the Direct Summand Conjecture, the Monomial Conjecture, the Syzygy Conjecture, and the big and small Cohen Macaulay Conjectures. Many of these are shown to imply others.

Prepared by Laura Lynch, University of Nebraska-Lincoln

August 2010

Math 918: The Homological Conjectures

 Spring Semester 2009This document contains notes for a course taught by Tom Marley during the 2009 spring semester at the University of Nebraska-Lincoln. The notes loosely follow the treatment given in Chapters 8 and 9 of Cohen-Macaulay Rings, by W. Bruns and J. Herzog, although many other sources, including articles and monographs by Peskine, Szpiro, Hochster, Huneke, Griffith, Evans, Lyubeznik, and Roberts (to name a few), were used. Special thanks to Laura Lynch for putting these notes into LaTeX. ${ }^{1}$

[^1]
Introduction

Hochster has written "The existence of non-trivial modules of finite projective dimension is almost entirely due to the present of regular sequences in the ring."

As evidence of this, consider the following results:

- Koszul Complex: Let (R, m) be local and $x_{1}, \ldots, x_{n} \in m$. Then $K .\left(x_{1}, \ldots, x_{n} ; R\right)$ is a finite free resolution of $R /\left(x_{1}, \ldots, x_{n}\right)$ if and only if x_{1}, \ldots, x_{n} is an R-sequence.
- Auslander-Buchsbaum: Let (R, m) be local, M a finitely generated R-module with $\operatorname{pd}_{R} M<\infty$. Then depth $M+\operatorname{pd}_{R} M=\operatorname{depth} R$. In particular, $\operatorname{pd}_{R} M \leq \operatorname{depth} R$.
- Buchsbaum-Eisenbud: Let R be Noetherian and suppose F. : $0 \rightarrow F_{s} \xrightarrow{\phi_{s}} F_{s-1} \xrightarrow{\phi_{s-1}} \cdots \rightarrow F_{0}$ is a complex of finitely generated free R-modules. For $i=1, \ldots, s$, set $r_{i}:=\sum_{j=i}^{s}(-1)^{j-i} \operatorname{rank} F_{i}$. Then F. is acyclic if and only if grade $I_{r_{i}}\left(\phi_{i}\right) \geq i$ for $i=1, \ldots, s$ where if $F \xrightarrow{\phi} G$ is a map of free modules then $I_{r}(\phi)$ is the ideal in R generated by all $r \times r$ minors of any matrix representation of ϕ.

Theorem 1 (Zero Divisor Conjecture (ZDC), Auslander 1961). Let (R,m) be local and suppose M is a module of finite projective dimension. Any non-zero-divisor on M is a non-zero-divisor on R.

Definition. Let (R, m) be local, M a finitely generated R-module. Say M is rigid if whenever $\operatorname{Tor}_{i}^{R}(M, N)=0$ for some finitely generated R-module N, then $\operatorname{Tor}_{j}^{R}(M, N)=0$ for all $j \geq i$.

Theorem 2 (Rigidity Theorem). Let (R, m) be a regular local ring. Then any finitely generated R-module M is rigid.

The Rigidity Theorem was proved by Auslander in the unramified case (and in particular for regular local rings containing a field) in 1961. Lichtenbaum proved the theorem for arbitrary regular local rings in 1966.

Conjecture (Rigidity Conjecture (RC), Auslander). Let (R, m) be local, M a finitely generated R-module with finite projective dimension. Then M is rigid.

Auslander proved that RC implies ZDC. Unfortunately the RC was shown to be false by an example of R. Heitmann in 1993 of a non-rigid module of projective dimension 3. However, if one modifies the definition of rigid to force N to have finite projective dimension as well, the conjecture is still open.

Intersection Theorems

If U, V are subspaces of a finite dimensional vector space W, then $\operatorname{dim} U \cap V \geq \operatorname{dim} U+\operatorname{dim} V-\operatorname{dim} W$. Similarly, if X, Y are algebraic varieties in $\mathbb{A}_{k}^{n}($ for $k=\bar{k})$, then $\operatorname{dim} X \cap Y \geq \operatorname{dim} X+\operatorname{dim} Y-n$. In fact this holds when $X \cap Y$ is replaced by any irreducible component of $X \cap Y$, Let $X=Z(P)$ and $Y=Z(Q)$ where P, Q are primes in $R=k\left[x_{1}, \ldots, x_{n}\right]$. Then an irreducible component of $X \cap Y$ is of the form $W=Z(J)$ where J is a prime minimal over $P+Q$. Translating this, since $\operatorname{dim} W=\operatorname{dim} R / J=\operatorname{dim} R-\operatorname{ht} J, \operatorname{dim} X=\operatorname{dim} R-\mathrm{ht} P$ and $\operatorname{dim} Y=\operatorname{dim} R-\operatorname{ht} Q$, we have ht $J \leq$ ht $P+$ ht Q. Thus in $k\left[x_{1}, \ldots, x_{n}\right]$, we see $\operatorname{ht}(P+Q) \leq \mathrm{ht} P+\mathrm{ht} Q$ for all primes P, Q. This formula does not hold for arbitrary rings, however. For example, take $R=k[x, y, u, v] /(x u-y v)$ with $p=(x, y) R$ and $q=(u, v) R$. Here ht $p=\operatorname{ht} q=1$ but $\operatorname{ht}(p+q)=3$.

Theorem 3 (Serre's Intersection Theorem, 1961). Let (R, m) be a regular local ring, $p, q \in \operatorname{Spec} R$. Then $\mathrm{ht}(p+q) \leq \mathrm{ht} p+\mathrm{ht} q$.

Corollary 4. Let (R, m) be a regular local ring, M, N finitely generated R-modules such that $\lambda\left(M \otimes_{R} N\right)<\infty$. Then $\operatorname{dim} M+\operatorname{dim} N \leq \operatorname{dim} R$.

Proof. Recall $\sqrt{\operatorname{Ann}_{R} M \otimes_{R} N}=\sqrt{\operatorname{Ann}_{R} M+\operatorname{Ann}_{R} N}$ and $\lambda\left(M \otimes_{R} N\right)<\infty$ if and only if $\operatorname{Ann}_{R} M \otimes_{R} N$ is m-primary. Thus $\lambda\left(M \otimes_{R} N\right)<\infty$ if and only if $\sqrt{\operatorname{Ann} M+\operatorname{Ann} N}=m$ which is if and only if $\lambda(R /$ Ann $M \otimes$
$R / \operatorname{Ann} N)<\infty$. By taking primes minimal over Ann M and Ann N we can assume $M=R / p$ and $N=R / q$ for some $p, q \in \operatorname{Spec} R$. As $p+q$ is $m-$ primary, $\operatorname{dim} R=\operatorname{ht}(p+q) \leq \operatorname{ht} p+\operatorname{ht} q=2 \operatorname{dim} R-\operatorname{dim} M-\operatorname{dim} N$.

One might try to generalize the corollary by removing the regular local ring assumption. In this case, one could conjecture that for (R, m) local with $\operatorname{pd} M<\infty$ and $\lambda\left(M \otimes_{R} N\right)<\infty$ that $\operatorname{dim} M+\operatorname{dim} N \leq \operatorname{dim} R$. (This was conjectured by Peskine and Szpiro and is still open.) From here, we can slightly tweak the conjecture to just having $\operatorname{dim} N \leq \operatorname{depth} R-\operatorname{depth} M=\operatorname{pd}_{R} M$.

Theorem 5 (Intersection Conjecture (IC), Peskine-Szpiro 1974, Roberts 1987). Let (R, m) be local, pd $_{R} M<\infty$ and $\lambda\left(M \otimes_{R} N\right)<\infty$. Then $\operatorname{dim} N \leq \operatorname{pd}_{R} M$.

By the above arguments, IC is true for regular local rings. Peskine and Szpiro proved it for local rings of characteristic p and for a large class of rings of equicharacteristic zero. IC was proved for arbitrary local rings by Paul Roberts in 1987.

Proposition 6. IC implies $Z D C$.
Proof. Suppose IC holds. We wish to show that if $\operatorname{pd}_{R} M<\infty$ and $p \in \operatorname{Ass}_{R} R$, then $p \subseteq q$ for some $q \in \operatorname{Ass}_{R} M$. (Then if x is a zerodivisor on R it is also on M). If $\operatorname{dim} M=0$, done. So assume $\operatorname{dim} M>0$ and induct on $\operatorname{dim} M$. Let $p \in$ Ass R.

Case 1. There exists $q \in \operatorname{Supp} M$ with $q \neq m$ such that $q \supseteq p$. Then $\operatorname{dim} M_{q}<\operatorname{dim} M$ and $\operatorname{pd}_{R_{q}} M_{q}<$ ∞. By induction, there exists $q^{\prime} \in \operatorname{Ass}_{R} M$ such that $q^{\prime} R_{q} \supseteq p R_{q}$, which implies $q^{\prime} \supseteq p$.
Case 2. $p+$ Ann M is m-primary. Then $\lambda\left(R / p \otimes_{R} M\right)<\infty\left(\right.$ since $\left.\sqrt{\operatorname{Ann}_{R}(R / p \otimes M)}=\sqrt{\left(p+\operatorname{Ann}_{R} M\right.}\right)$ and so $\operatorname{dim} R / p \leq \operatorname{pd}_{R} M=\operatorname{depth} R-\operatorname{depth} M$. Then $\operatorname{depth} M \leq \operatorname{depth} R-\operatorname{dim} R / p \leq 0$ since $\operatorname{depth} R \leq \operatorname{dim} R / p$ for all $p \in \operatorname{Ass}_{R} R$ (see [BH] Proposition 1.2.13). Thus $m \in \operatorname{Ass} M$ and clearly $p \subseteq m$.

Definition. Let M be a finitely generated $R-$ module. Define grade $M:=\inf \left\{i \geq 0 \mid \operatorname{Ext}_{R}^{i}(M, R) \neq 0\right\}$.
Note that grade $M=\operatorname{depth}_{\operatorname{Ann}_{R} M} R$ (see [Mats] Theorem 16.6) and grade $M \leq \operatorname{pd}_{R} M$.
Conjecture (Strong Intersection Conjecture (SIC)). Let (R,m) be local, $\lambda\left(M \otimes_{R} N\right)<\infty, \operatorname{pd}_{R} M<\infty$. Then $\operatorname{dim} N \leq \operatorname{grade} M$.

One consequence of SIC would be that if $\lambda\left(M \otimes_{R} N\right)<\infty$ and $\operatorname{pd}_{R} M<\infty$, then $\operatorname{dim} M+\operatorname{dim} N \leq \operatorname{dim} R$. This holds as $\operatorname{dim} N \leq \operatorname{grade} M=\operatorname{depth} \operatorname{Ann}_{R} M R \leq \operatorname{ht} \operatorname{Ann}_{R} M \leq \operatorname{dim} R-\operatorname{dim} R / \operatorname{Ann}_{R} M=\operatorname{dim} R-\operatorname{dim} M$.

Theorem 7 (Bass' Conjecture (BC), 1961). Let (R, m) be local and suppose there exists a finitely generated R-module of finite injective dimension. Then R is Cohen Macaulay.

Proof. In 1972, Peskine and Szpiro showed IC implies BC. We will prove this later in the course.
Definition. Let R be Noetherian, I an ideal of R. Let

$$
\operatorname{superht}(I)=\sup \{\operatorname{ht}(I S) \mid R \rightarrow S \text { is a ring homomorphism, } S \text { is Noetherian, } I S \neq S\}
$$

Example. Let $R=k[x, y] /(x y), I=(x)$. Then ht $I=0$ as I is minimal. For $S=R /(y) \cong k[x]$, we see ht $(I S)=1$. By Krull's PIT, $\operatorname{ht}\left(I S^{\prime}\right) \leq 1$ for all S Noetherian. Thus superht $(I)=1$. In general, $\operatorname{superht}(I) \leq \mu_{R}(I)$ by Krull's PIT.

Theorem 8 (Superheight Conjecture (SC), Hochster 1970s). Let (R,m) be local, M a finitely generated R-module such that $\operatorname{pd}_{R} M<\infty$. Then superht $\left(\operatorname{Ann}_{R} M\right) \leq \operatorname{pd}_{R} M$.

Proof. We will see below that this is a consequence of the New Intersection Theorem.

Remark. SC implies KPIT

Proof. Let $I=\left(x_{1}, \ldots, x_{n}\right)$ in S and $R=\mathbb{Z}\left[T_{1}, \ldots, T_{n}\right]$ for T_{i} variables. For $J=\left(T_{1}, \ldots, T_{n}\right)$, we see $\operatorname{pd}_{R} R / J=n$. Then SC gives superht $(J) \leq n$. Map $\phi: R \rightarrow S$ by $T_{i} \mapsto x_{i}$. Then $J S=I$ and so ht $I \leq \operatorname{superht} J \leq n$.

Proposition 9. $S C$ implies $I C$
Proof. Let $\lambda\left(M \otimes_{R} N\right)<\infty$ and $\operatorname{pd}_{R} M<\infty$. Want to show $\operatorname{dim} N=\operatorname{pd}_{R} M$. Let $I=\operatorname{Ann}_{R} N$. So $\operatorname{dim} N=\operatorname{dim} R / I$. Then $\lambda\left(M \otimes_{R} N\right) M \infty$ if and only if $\sqrt{\operatorname{Ann} M+\operatorname{Ann} N}=m$ which is if and only if $\lambda\left(M \otimes_{R} R / I\right)<\infty$ as $I=$ Ann N. Without loss of generality, we may assume $N=R / I$. By SC, $\operatorname{superht}\left(\operatorname{Ann}_{R} M\right) \leq \operatorname{pd}_{R} M$. Consider the map $R \rightarrow R / I$. We have $\operatorname{ht}\left(\operatorname{Ann}_{R} M\right) R / I=\operatorname{dim} R / I \leq \operatorname{superht}\left(\operatorname{Ann}_{R} M\right) \leq \operatorname{pd}_{R} M$.

Theorem 10 (New Intersection Conjecture (NIC), Roberts 1975). Let (R,m) be local and F.:0 $\rightarrow F_{s} \rightarrow$ $F_{s-1} \rightarrow \cdots \rightarrow F_{0} \rightarrow 0$ a complex of finitely generated free R-modules. Suppose F. is not exact and $\lambda\left(H_{i}(F).\right)<\infty$ for all i (that is, F. becomes exact when localizing at any prime $\neq m$). Then $s \geq \operatorname{dim} R$.

Proposition 11. NIC implies SC
Proof. Let (R, m) be local, $\operatorname{pd}_{R} M<\infty$. Let $R \rightarrow S$ be a ring homomorphism, S Noetherian. Let Q be a minimal prime over $\left(\operatorname{Ann}_{R} M\right) S$ such that ht $Q=\operatorname{ht}\left(\operatorname{Ann}_{R} M\right) S=\operatorname{ht}\left(\left(\operatorname{Ann}_{R} M\right) S\right)_{Q}$. Let $q=\phi^{-1}(Q)$. Then we have a homomorphism $R_{q} \rightarrow S_{Q}$. Note $\left(\left(\operatorname{Ann}_{R} M\right) S\right)_{Q}=\left(\operatorname{Ann}_{R_{q}} M_{q}\right) S_{Q}$. Thus ht $\left(\operatorname{Ann}_{R_{q}} M_{q}\right) S_{Q}=\operatorname{ht}\left(\operatorname{Ann}_{R} M\right) S$. Also $\operatorname{pd}_{R_{q}} M_{q} \leq \operatorname{pd}_{R} M$. Hence we may assume $\phi:(R, m) \rightarrow(S, n)$ is a homomorphism of local rings and $\sqrt{\left(\operatorname{Ann}_{R} M\right) S}=$ n. I n particular, $\operatorname{ht}\left(\operatorname{Ann}_{R} M\right) S=\operatorname{dim} S$.

Let F. be a minimal free resolution of M as an R-module. Say $F=0 \rightarrow F_{r} \rightarrow F_{r-1} \rightarrow \cdots \rightarrow F_{0} \rightarrow 0$ where $r=\operatorname{pd}_{R} M$. Let $Q \in \operatorname{Spec} S$ with $Q \neq n$ and set $q=\phi^{-1}(q)$. Since $Q \not \supset\left(\operatorname{Ann}_{R} M\right) S, q \nsupseteq \operatorname{Ann}_{R} M$ and thus $M_{q}=0$. Hence $F . \otimes_{R} R_{q}$ is exact. Since F. is free, $F . \otimes R_{q}$ is in fact split exact. Thus $\left(F . \otimes_{R} R_{q}\right) \otimes_{R_{q}} S_{Q}=F . \otimes_{R} S_{Q}$ is split exact. Consider $F . \otimes_{R} S$, a complex of free S-modules. Note $H_{0}\left(F . \otimes_{R} S\right)=M \otimes_{R} S \neq 0$ as $M \neq 0$ and the map $R \rightarrow S$ is local. So $F . \otimes_{R} S$ is not exact. Since F. $\otimes_{R} S_{Q}$ is exact for all $Q \neq n, \lambda\left(H_{i}\left(F . \otimes_{R} S\right)\right)<\infty$ for all i. By NIC, $r \geq \operatorname{dim} S=\operatorname{ht}\left(\operatorname{Ann}_{R} M\right) S$.

Conjecture (Direct Summand Conjecture (DSC), Hochster 1971). Let (R, m) be a regular local ring and S a module finite ring extension of R. Then R is a direct summand of S as an R-module; that is, there exists an R-module map $\phi: S \rightarrow R$ such that $\phi(r)=r$ for all $r \in R$.

Conjecture (Monomial Conjecture (MC), Hochster 1970s). Let (R, m) be local and x_{1}, \ldots, x_{d} a system of parameters for R. Then for all $t \geq 1, x_{1}^{t} \cdots x_{d}^{t} \notin\left(x_{1}^{t+1}, \ldots, x_{d}^{t+1}\right)$.

Exercise. Prove MC holds for all Cohen Macaulay rings.
In 1983, Hochster proved DSC was equivalent to MC and that DSC implies NIC. He also proved DSC and MC hold for Noetherian local rings containing a field. Hochster also proved DSC for arbitrary local rings of dimension at most two. In 2002, DSC was proved for arbitrary local rings of dimension three by R. Heitmann.

Definition. Let R be a ring, Q the total quotient ring (that is, $Q=R_{W}$ for $W=\{$ non-zerodivisors of R). An R-module M has a rank if $M \otimes_{R} Q$ is a free module. If so, we set the rank M to be $\operatorname{rank}_{Q} M \otimes_{R} Q$.

The rank is not always defined, but if for example M has a finite free resolution then it is.
Definition. Let (R, m) be local, M a finitely generated R-module. Let $\cdots \rightarrow F_{i} \xrightarrow{\phi_{i}} F_{i-1} \rightarrow \xrightarrow{\phi_{1}} F_{0} \xrightarrow{\phi_{0}} M \rightarrow 0$ be a minimal free resolution of M. The $i^{\text {th }}$ syzygy of M is defined to be $\operatorname{ker} \phi_{i-1}=\operatorname{im} \phi_{i}$. This is unique up to isomorphism and we denote the $i^{\text {th }}$ syzygy of M by $\operatorname{syz}_{i}^{R}(M)$. If L is an $R-$ module such that $L \cong \operatorname{syz}_{i}^{R}(M)$ for some M, then we say L is an $i^{\text {th }}$ syzygy.

Conjecture (Syzygy Conjecture, Evans-Griffiths 1981). Let (R, m) be local, L a non-free finitely generated $i^{\text {th }}$ syzygy of finite projective dimension. Then $\operatorname{rank} L \geq i$.

This was proved for rings containing fields by Evans and Griffiths in 1981. In 1983, Hochster showed DSC implies the Syzygy Conjecture.

Definition. Let (R, m) be local, $\underline{x}=x_{1}, \ldots, x_{d}$ a system of parameters for R. An R-module M (not necessarily finitely generated) is called a (Big) Cohen Macaulay Module for \underline{x} if $\left(x_{1}, . ., x_{d}\right) M \neq M$ and x_{1}, \ldots, x_{d} is M-regular.

Conjecture (Big CM Conjecture). Every system of parameters in any local ring has a big CM module.
Hochster proved this result for rings containing a field in 1974 and proved it implies DSC in 1983. In 1992, Hochster and Huneke proved if R is an excellent local ring of characteristic p, then R has a Big CM algebra. [For R a domain and R^{+}the integral closure of R in an algebraic closure of the quotient field of R, R^{+}is a big Cohen Macaulay algebra.] In 2003, Hochster showed R has a big Cohen Macaulay algebra for $\operatorname{dim} R \leq 3$ using Heitmann's proof of DSC in dimension 3.

Conjecture (Small CM Conjecture). If (R, m) is a complete local ring, then R has a finitely generated maximal Cohen Macaulay module.

It is clear that the Small CM Conjecture implies the Big CM Conjecture: If M is a finitely generated maximal Cohen Macaulay module for \widehat{R} then it is a Big Cohen Macaulay module for R.

In summary, we have the following conjectures/theorems and implications thus far.

Furthermore, we have proved all of the implications with an asterisk. Our goal now is to prove the other implications, and to give a proof in characteristic p of the Big CM Conjecture. To do that, we first need to build up some necessary machinery.

Let R be Noetherian, Q the total quotient ring $\left(Q=R_{W}\right.$ for $W=R \backslash\left\{P_{1} \cup \cdots \cup P_{n}\right\}$ where P_{i} are the maximal associated primes of R). Note the maximal ideals of Q are $P_{i} Q$ and so Q is semilocal.

Exercise. (From [BH]) If R is semilocal and M is a finitely generated R-module then M is free if and only if M_{m} is a free R_{m}-module for all maximal ideals m and $\operatorname{rank} M_{m_{i}}=\operatorname{rank} M_{m_{j}}$ for all maximal ideals m_{i}, m_{j}.

Definition. If $\phi: M \rightarrow N$ is an R-linear map, define $\operatorname{rank} \phi:=\operatorname{rank} \operatorname{im} \phi$ (if $\operatorname{im} \phi$ has a rank).

Proposition 12. Let R be Noetherian and $F_{1} \xrightarrow{\phi} F_{0} \rightarrow M \rightarrow 0$ exact where F_{0}, F_{1} are finitely generated free R-modules. The following statements are equivalent:
(1) $\operatorname{rank} M=r$.
(2) There exists an exact sequence $0 \rightarrow R^{r} \rightarrow M \rightarrow T \rightarrow 0$. where T is torsion
(3) For all $p \in \operatorname{Ass}_{R} R, M_{p} \cong R_{p}^{r}$.
(4) $\operatorname{rank} \phi=\operatorname{rank} F_{0}-r$.

Proof. (1) $\Rightarrow(2)$: Suppose $Q^{r}=M \otimes_{R} Q=M_{W}=\left(R_{W}\right)^{r}$. Choose $x_{1}, \ldots, x_{r} \in M$ such that $\frac{x_{1}}{1}, \ldots, \frac{x_{r}}{1}$ is an R_{W}-basis. Then x_{1}, \ldots, x_{r} are R-linearly independent. So we have $0 \rightarrow R^{r} \rightarrow M \rightarrow M / R^{r} \rightarrow 0$ where the first map is defined by $r_{i} \mapsto x_{i}$. Localizing at W gives us $\left(M / R^{r}\right)_{W}=0$. Thus M / R^{r} is torsion.
$(2) \Rightarrow(1)$: Localize at W to get $0 \rightarrow R_{W}^{r} \rightarrow M_{W} \rightarrow 0$. Thus M_{W} is a free R_{W}-module of rank r.
(1) $\Rightarrow(3)$: Let $M_{W} \cong R_{W}^{r}$. Now $M_{p}=\left(M_{W}\right)_{p R_{W}} \cong\left(R_{W}\right)_{p R_{W}}^{r} \cong R_{p}^{r}$ for all $p \in \operatorname{Ass}_{R} R$.
$(3) \Rightarrow(1)$: The maximal ideals of R_{W} are $p R_{W}$ for $p \in \operatorname{Ass}_{R} R$ maximal. So M_{m} is free of rank r for all maximal ideals of R_{W}. Now apply the exercise.
$(3) \Rightarrow(4)$: We have $0 \rightarrow \operatorname{im} \phi \rightarrow F_{0} \rightarrow M \rightarrow 0$ is exact. Localize to get $0 \rightarrow(\operatorname{im} \phi)_{p} \rightarrow\left(F_{0}\right)_{p} \rightarrow M_{p} \rightarrow$ 0 . Since M_{p} is free of rank r, the sequence splits. Thus $(\operatorname{im} \phi)_{p}$ is free of rank equal to rank $F_{0}-r$. By $(3) \Rightarrow(1)$, this says rank $\operatorname{im} \phi=\operatorname{rank} F_{0}-r$.
$(4) \Rightarrow(3)$ We first need to prove the following fact.
Fact. Let (R, m) be local. If depth $R=0$ and $\operatorname{pd}_{R} M<\infty$, then M is free.
Proof. Take a minimal free resolution of $M: 0 \rightarrow R^{t_{r}} \xrightarrow{\left(a_{i j}\right)} R^{t_{r-1}} \rightarrow \cdots \rightarrow R^{t_{0}} \rightarrow$ $M \rightarrow 0$. Then $a_{i j} \in m=\left(0:_{R} x\right)$ for some $x \in m$ as $m \in$ Ass R. Let \mathbf{x} denote a column vector with x in every row. Then $\left(a_{i j}\right) \mathbf{X}=0$ and thus $a_{i j}$ is not injective. This is a contradiction unless $r=0$ and $M \cong R^{t_{0}}$.

Now $\operatorname{rank} \phi=\operatorname{rank} F_{0}-r$. We have $0 \rightarrow(\operatorname{im} \phi)_{p} \rightarrow\left(F_{0}\right)_{p} \rightarrow M_{0} \rightarrow 0$ where $(\operatorname{im} \phi)_{p}$ is a free $R_{p}-$ module. Thus $\operatorname{pd}_{R_{p}} M_{p}<\infty$ but $p \in \operatorname{Ass}_{R} R$. So depth $R_{p}=0$. By the fact, M_{p} is free of rank $F_{0}-\operatorname{rank} \phi$ for all $p \in$ Ass R.

Proposition 13. Let R be Noetherian, $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ an exact sequence of finitely generated modules. If any two of A, B, and C have a rank, then so does the third and $\operatorname{rank} B=\operatorname{rank} A+\operatorname{rank} C$.

Proof. Without loss of generality, we may assume (R, m) is local and depth $R=0$. If C is free, the sequence splits and we are done. If A, B are free, then $\operatorname{pd}_{R} C<\infty$. Then C is free as depth $R=0$ and again the sequence splits.

Corollary 14. Suppose $0 \rightarrow F_{r} \xrightarrow{\phi_{r}} F_{r-1} \xrightarrow{\phi_{r-1}} \cdots \xrightarrow{\phi_{1}} F_{0}$ is an acyclic sequence of finitely generated free R-modules. Then $\operatorname{rank} \phi_{i}=\sum_{j=i}^{r}(-1)^{j-i} \operatorname{rank} F_{j}$.

Proof. Recall rank $\phi_{i}=\operatorname{rank} \operatorname{im} \phi_{i}$. Use the sequence $0 \rightarrow F_{r} \rightarrow \cdots \rightarrow F_{i} \rightarrow \operatorname{im} \phi_{i} \rightarrow 0$ along with the proposition and induction to show that im ϕ_{i} has a rank and it is equal to $\sum_{j=i}^{r}(-1)^{j-i} \operatorname{rank} F_{j}$.
Question. When does a finitely generated R-module M have a rank? If:

- R is a domain.
- M has a finite free resolution (that is, M has a free resolution of finite length consisting of finitely generated free R-modules).
- (R, m) is local and $\operatorname{pd}_{R} M<\infty$
- M is a finitely generated projective module and R has no nontrivial idempotents.
- M is projective and $\operatorname{rank} M_{q}=\operatorname{rank} M_{p}$ for all minimal primes p, q.

Definition. Let A be an $m \times n$ matrix with coefficients in some ring R. For $1 \leq r \leq \min \{m, n\}$, let $I_{r}(A)$ be the ideal generated by the r-sized minors of A. [For $r \leq 0$ we let $I_{r}(A)=R$ and for $r>\min \{m, n\}$ we let $I_{r}(A)=0$.]

Facts.

- $I_{r}(A) \subseteq I_{r-1}(A)$ for all r (since an r-sized minor can be written as a linear combination of $r-1$-sized minors).
- $I_{r}(A B) \subseteq I_{r}(A) \cap I_{r}(B)$
- Suppose $\phi: F \rightarrow G$ is a homomorphism of finitely generated free R-modules and A, B are two matrices representing ϕ with respect to bases of F and G. Then $A=U B V$ where U, V are invertible. Thus $I_{r}(A)=$ $I_{r}(B)$ for all r (by the preceding fact). Thus, we may define $I_{r}(\phi)$ to be $I_{r}(A)$ where A is any matrix representing ϕ.
- If R is a field and $\operatorname{rank} A=r$, then $I_{r}(A)=R$ and $I_{r+1}(A)=0$.
- If S is an R-algebra, $\phi \otimes 1: F \otimes_{R} S \rightarrow G \otimes_{R} S$, then $I_{r}(\phi \otimes 1)=I_{r}(\phi) S$ for all r.

Proposition 15. Let R be a ring, $F_{1} \xrightarrow{\phi} F_{0} \rightarrow M \rightarrow 0$ a finite presentation (so F_{1}, F_{0} are finitely generated free modules). Let $p \in \operatorname{Spec} R, t \in \mathbb{Z}$. The following are equivalent.

- $I_{t}(\phi) \not \subset p$.
- $(\operatorname{im} \phi)_{p}$ contains a free direct summand of $\left(F_{0}\right)_{p}$ of rank t.
- $\mu\left(M_{p}\right) \leq \operatorname{rank} F_{0}-t$.

Proof. Without loss of generality, we may assume R is local and $p=m$. Let the bar notation represent passage to R / m. Then

- $I_{t}(\phi)=R$ if and only if $I_{t}(\bar{\phi})=R / m$.
- $\mu(M)=\mu(M / m M)=\operatorname{dim}_{R / m} M / m M$ and $\operatorname{rank}_{R} F_{0}=\operatorname{rank}_{R / m} F_{0} / m F_{0}$.
- im ϕ contains a free summand of F_{0} of rank t if and only if im $\bar{\phi}$ contains a free summand of $\overline{F_{0}}$ of rank t.

Proof. One direction is clear. Suppose $\operatorname{im} \bar{\phi}=\left(\operatorname{im} \phi+m F_{0}\right) / m F_{0}$ contains a free summand of $F_{0} / m F_{0}$ of rank t. Then there exists $u_{1}, \ldots, u_{t} \in \operatorname{im} \phi$ such that $\overline{u_{1}}, \ldots, \overline{u_{t}} \in F_{0} / m F_{0}$ are part of a basis for $F_{0} / m F_{0}$. By Nakayama's Lemma, u_{1}, \ldots, u_{t} form part of a basis for F_{0}. Thus $U=R u_{1}+\ldots+R u_{t} \subseteq \operatorname{im} \phi$ is a direct summand of F_{0} of rank t.

Hence the proposition holds if and only if it does over a field, which is clear.
Proposition 16. Let R be a ring, $F_{1} \xrightarrow{\phi} F_{0} \rightarrow M \rightarrow 0$ a presentation. The following are equivalent
(1) $I_{t}(\phi) \not \subset p, I_{t+1}(\phi)_{p}=0$.
(2) $(\operatorname{im} \phi)_{p}$ is a direct summand of $\left(F_{0}\right)_{p}$ of rank t.
(3) M_{p} is free of rank $F_{0}-t$.

Proof. Assume (R, m) is local, $p=m$. Note that $(2) \Leftrightarrow(3)$ follows from the sequence $0 \rightarrow \operatorname{im} \phi \rightarrow F \rightarrow M \rightarrow 0$. For $(2) \Rightarrow(1)$, choose a basis so ϕ has the identity matrix in the upper left corner and zeros everywhere else. For $(1) \Rightarrow(2)$, the previous proposition says $\operatorname{im} \phi$ contains a free direct summand of rank t. Thus $\phi=\left(\begin{array}{c}I_{t \times t} \\ 0 \\ 0\end{array}\right)$. If $B \neq 0$, there exists a nonzero $(t+1)$-sized minor, a contradiction. So $B=0$ and $\operatorname{im} \phi$ is a direct summand of rank t.

Corollary 17. Let R be a ring, $F_{1} \xrightarrow{\phi} F_{0} \rightarrow M \rightarrow 0$ a presentation. The following are equivalent
(1) M is projective of rank equal to rank $F_{0}-t$
(2) $I_{t}(\phi)=R, I_{t+1}(\phi)=0$.

Proof. For (1) $\Rightarrow(2)$, since $r:=\operatorname{rank} M=\operatorname{rank} F_{0}-t=r$, we have $M_{p} \cong R_{p}^{r}$ for all $p \in \operatorname{Min}_{R} R$. As M is projective, $M_{q} \cong R_{q}^{r}$ for all $q \in \operatorname{Spec} R$ (as each q contains a minimal prime). By the proposition, $I_{t}(\phi) \not \subset q$ for all $q \in \operatorname{Spec} R$ and $I_{t+1}(\phi)_{q}=0$ for all $q \in \operatorname{Spec} R$. Thus $I_{t}(\phi)=R$ and $I_{t+1}(\phi)=0$.

For $(2) \Rightarrow(1)$, we have $I_{t}(\phi) \not \subset q$ and $I_{t+1}(\phi)_{q}=0$ for all $q \in \operatorname{Spec} R$. Thus M_{q} is free of rank equal to rank $F_{0}-t$ by the proposition. Therefore, M is projective. Additionally, if R is Noetherian, then M has a rank.

Corollary 18. Let R be Noetherian, $\phi: F \rightarrow G$ a map of finitely generated free R-modules. The following are equivalent
(1) $\operatorname{rank} \phi=r$.
(2) grade $I_{r}(\phi) \geq 1$ and $I_{r+1}(\phi)=0$.

Proof. For $(1) \Rightarrow(2),(\operatorname{im} \phi)_{p}$ is a free $R_{p}-$ module for all $p \in \operatorname{Ass}_{R} R$. Therefore $0 \rightarrow(\operatorname{im} \phi)_{p} \rightarrow G_{p} \rightarrow \operatorname{coker} \phi_{p} \rightarrow 0$. Now $\operatorname{pd}\left(\operatorname{coker} \phi_{p}\right)<\infty$ and depth $R_{p}=0$ imply coker ϕ_{p} is free. Thus $(\operatorname{im} \phi)_{p}$ is a direct summand of G_{p} of rank r. Hence $I_{r}(\phi) \not \subset p$ for all $p \in$ Ass R and $I_{r+1}(\phi)_{p}=0$ for all $p \in$ Ass R. Therefore, $I_{r}(\phi)$ contains a non-zerodivisor and $I_{r+1}(\phi)=0$.

Note $(2) \Rightarrow(1)$ follows directly from the second proposition.
Definition. Let R be a ring and $G .: 0 \rightarrow G_{s} \xrightarrow{\phi_{s}} G_{s-1} \rightarrow \cdots \xrightarrow{\phi_{1}} G_{0} \rightarrow 0$ be a complex of $R-$ modules. Say G. is split acyclic if it is acyclic and $\phi_{i}\left(G_{i}\right)$ is a direct summand of G_{i-1} for all $i \geq 1$. Equivalently, G is split acyclic if $0 \rightarrow \operatorname{im} \phi_{i} \rightarrow G_{i-1} \rightarrow \operatorname{im} \phi_{i-1} \rightarrow 0$ is split exact for all $i \geq 2$ and $0 \rightarrow \operatorname{im} \phi \rightarrow G_{0} \rightarrow H_{0}(G.) \rightarrow 0$ is split exact.

Remark. If G. is split acyclic, so is G. $\otimes_{R} M$ for any R-module M.
Definition. Let R be a ring, M an R-module, and $p \in \operatorname{Spec} R$. Say $p \in \operatorname{Ass}_{R} M$ if $p=\left(0:_{R} x\right)$ for $x \in M$. Equivalently, if there exists a injective map $R / p \rightarrow M$.

Note. If R is Noetherian and M arbitrary, then $\operatorname{Ass}_{R} M=\emptyset$ if and only if $M=0$.
Lemma 19. Let (R, m) be quasi-local, M and R-modules, and suppose $m \in \operatorname{Ass}_{R} M$. Let $\phi: F \rightarrow G$ be a map of finitely generated free R-modules. The following are equivalent:
(1) ϕ is a split injection.
(2) $\phi \otimes_{R} 1_{M}: F \otimes_{R} M \rightarrow G \otimes_{R} M$ is injective.
(3) $\bar{\phi}: F / m F \rightarrow G / m G$ is injective.

Proof. Note that $(1) \Rightarrow(2)$ is clear and we leave $(3) \Rightarrow(1)$ as an exercise. For $(2) \Rightarrow(3)$, note that there exists a map $0 \rightarrow R / m \rightarrow M$ as $m \in \operatorname{Ass}_{R} M$. So we have the commutative diagram

where the down arrows are injective as F, G are flat. Thus the top horizontal arrow is injective by commutativity of the diagram.

Proposition 20. Let R be a ring, M an R-module, $p \in \operatorname{Ass}_{R} M$. Let $F .=0 \rightarrow F_{s} \xrightarrow{\phi_{s}} F_{s-1} \rightarrow \cdots \xrightarrow{\phi_{1}} F_{0} \rightarrow 0$ be a complex of finitely generated free modules. The following are equivalent:
(1) $F . \otimes_{R} M_{p}$ is acyclic.
(2) $(F .)_{p}$ is split acyclic.
(3) For all $i=1, \ldots, s, I_{r_{i}}\left(\phi_{i}\right) \not \subset p$ where $r_{i}=\sum_{j=i}^{s}(-1)^{j-i} \operatorname{rank} F_{j}$.

Furthermore, if (1), (2), or (3) is satisfied, then for all i we have $I_{t}\left(\phi_{i}\right)_{p}=0$ for $t>r_{i}$.
Proof. Without loss of generality, we may assume (R, m) is quasilocal and $p=m \in \operatorname{Ass}_{R} M$.
$(1) \Rightarrow(2)$: For $s=1$, we have $0 \rightarrow F_{1} \xrightarrow{\phi_{1}} F_{0} \rightarrow 0$. By assumption, $0 \rightarrow F_{1} \otimes_{R} M \rightarrow F_{0} \otimes_{R} M$ is injective. By the lemma, ϕ is a split injection. Suppose $s \geq 2$. Let $F_{.}^{\prime}: 0 \rightarrow F_{s} \rightarrow \cdots \rightarrow F_{1} \rightarrow 0$. Then $F^{\prime} \otimes M$ is acyclic. By induction, F^{\prime} is split acyclic. Therefore $\phi_{i}\left(F_{i}\right)$ is a direct summand of F_{i-1} for all $i \geq 2$ and $0 \rightarrow \operatorname{im} \phi_{2} \rightarrow F_{1} \rightarrow \operatorname{coker} \phi_{2} \rightarrow 0$ is split exact. Thus coker ϕ_{2} is free. We have
$F_{2} \otimes_{R} M \xrightarrow{\phi_{2} \otimes 1} F_{1} \otimes_{R} M \rightarrow F_{0} \otimes_{R} M$ is exact. Now $\left(\operatorname{coker} \phi_{2}\right) \otimes_{R} M \cong F_{1} \otimes_{R} M / \operatorname{im}\left(\phi_{2} \otimes 1\right)=$ $F_{1} \otimes_{R} M / \operatorname{ker}\left(\phi_{1} \otimes 1\right) \hookrightarrow F_{0} \otimes_{R} M$. Consider the following commutative diagram:

where again recall that coker ϕ_{2} is free. By the argument above, tensoring the top arrow with M yields an injection. By the lemma, we have that coker $\phi_{2} \rightarrow F_{0}$ is a split injection. Thus, the natural surjection coker $\phi_{2}=F_{1} / \operatorname{im} \phi_{2} \rightarrow F_{1} / \operatorname{ker} \phi_{1}$ is injective as well, which implies $\operatorname{im} \phi_{2}=\operatorname{ker} \phi_{1}$ and $\phi_{1}\left(F_{1}\right)$ is a direct summand of F_{0}.
$(2) \Rightarrow(1)$: Clear by the remark
$(2) \Rightarrow(3):$ As F. is split acyclic, $\bar{F}:=F . \otimes_{R} R / m$ is split acyclic. Now $0 \rightarrow \overline{F_{s}} \rightarrow \overline{F_{s-1}} \rightarrow \cdots \rightarrow \overline{F_{i}} \rightarrow$ $\operatorname{im} \overline{\phi_{i}} \rightarrow 0$ is exact with $\operatorname{rank} \overline{\phi_{i}}=\operatorname{dim} \overline{\phi_{i}}=r_{i}$. Thus $I_{r_{i}}\left(\overline{\phi_{i}}\right) \neq 0$, which implies $I_{r_{i}}\left(\phi_{i}\right) \not \subset m$ for all i. $(3) \Rightarrow(2)$: We use induction on s. For $s=1$, we have $0 \rightarrow F_{1} \xrightarrow{\phi_{1}} F_{0} \rightarrow 0$. Now $r_{1}=\operatorname{rank} F_{1}$. By assumption $I_{r_{1}}\left(\phi_{1}\right) \not \subset m$ and so $I_{r_{1}}\left(\phi_{1}\right)=R$. Of course, $I_{r_{1}+1}\left(\phi_{1}\right)=0$ as $r_{1}=\operatorname{rank} F_{1}$. Thus im ϕ_{1} is a direct summand of F_{0} of rank r_{1}, which implies ϕ_{1} is injective (as F_{1} and $\phi\left(F_{1}\right)$ have the same rank) and ϕ_{1} splits.

Let $s>1$ and $F^{\prime}:=0 \rightarrow F_{s} \rightarrow \cdots \rightarrow F_{1} \rightarrow 0$. By induction, F^{\prime} is split acyclic. Thus it is enough to show $\operatorname{im} \phi_{2}=\operatorname{ker} \phi_{1}$ and $\phi_{1}\left(F_{1}\right)$ is a direct summand of F_{0}. Now coker $\phi_{2}=F_{1} / \operatorname{im} \phi_{2}$ is free of rank r_{1} (since F^{\prime} is split acyclic). By assumption, $I_{r_{1}}\left(\phi_{1}\right) \not \subset m$. By a previous proposition, im ϕ_{1} contains a direct summand U of F_{0} of rank r_{1}. Let ψ be the composition of the following maps:

$$
\text { coker } \phi_{2}=F_{1} / \operatorname{im} \phi_{2} \rightarrow F_{1} / \operatorname{ker} \phi_{2} \rightarrow \operatorname{im} \phi_{1} \rightarrow U
$$

Since ψ is a surjective homomorphism of free modules of the same rank, ψ is an isomorphism. Thus, $\operatorname{im} \phi_{2}=\operatorname{ker} \phi_{1}$ and $\operatorname{im} \phi_{1}=U$, a direct summand of F_{0}. Thus F. is split acyclic.

For the last statement, note that since $0 \rightarrow F_{s} \rightarrow \cdots \rightarrow F_{i} \rightarrow \operatorname{im} \phi_{i} \rightarrow 0$ is split exact for all i, $\operatorname{im} \phi_{i}$ is free of rank r_{i}. By one of the previous propositions, $I_{t}\left(\phi_{i}\right)=0$ for all $t>r_{i}$.

Remark. Let R be Noetherian and suppose $F: 0 \rightarrow F_{s} \xrightarrow{\phi_{s}} F_{s-1} \rightarrow \cdots \xrightarrow{\phi_{1}} F_{0} \xrightarrow{\phi_{0}} M \rightarrow 0$ is exact with F_{i} finitely generated free. Then $\operatorname{rank} \phi_{i}=\sum_{j=i}^{s}(-1)^{j-i} \operatorname{rank} F_{j}$.

Proof. By truncating, it is enough to show the $i=0$ case. Let $p \in \operatorname{Ass}_{R} R$ and localize to get $(F .)_{p}$ is exact. Since $\operatorname{depth} R_{p}=0,\left(\operatorname{im} \phi_{0}\right)_{p}=M_{p}$ is a free $R_{p}-$ module. Thus the sequence $(F .)_{p}$ splits.

Corollary 21. Let R be a ring, $F .: 0 \rightarrow F_{s} \xrightarrow{\phi_{s}} F_{s-1} \rightarrow \cdots \xrightarrow{\phi_{1}} F_{0} \xrightarrow{\phi_{0}} M \rightarrow 0$ is exact. Then $r_{i}=$ $\sum_{j=i}^{s}(-1)^{j-i} \operatorname{rank} F_{j} \geq 0$ for all i.

Proof. Fix bases for all the F_{i} and let A_{i} be the matrix representation of ϕ_{i}. Let S be the subring of R generated by the prime subring of R together with all entries from the A_{i} 's. Then S is Noetherian. Let G_{i} denote the free S-module of rank equal to rank F_{i} and let $\psi_{i}: G_{i} \rightarrow G_{i+1}$ be defined by multiplication by A_{i}. Certainly $A_{i-1} A_{i}=0$ (in R and thus in S). So G. is a complex of finitely generated free S-modules and G. $\otimes_{S} R=F$. is acyclic. Let $p \in \operatorname{Ass}_{S} R$. Then $G . \otimes_{S} R_{p}$ is acyclic, which implies by the proposition that $(G .)_{p}$ is split acyclic. By the Noetherian case, we have $0 \leq \operatorname{rank} \psi_{i}=\sum_{j=i}^{s}(-1)^{j-i} \operatorname{rank} G_{j}=r_{i}$ for all i.

Let R be a ring, M an R-module and $\underline{x}=x_{1}, \ldots, x_{n}$ elements of R. The Čech complex $C(\underline{x} ; R)$ of R with respect to \underline{x} is defined to be the cochain complex

$$
\bigotimes_{i=1}^{n}\left(0 \rightarrow R \xrightarrow{x_{i}} R \rightarrow 0\right)
$$

The Čech complex $C \cdot(\underline{x} ; M)$ is defined to be $C \cdot(\underline{x} ; R) \otimes_{R} M$. It is easily seen (by induction) that

$$
C^{\cdot}(\underline{x} ; M)^{i}=\bigoplus_{1 \leq j_{1}<j_{2}<\cdots<j_{i} \leq n} M_{x_{j_{1}} \cdots x_{j_{i}}} .
$$

The i th cohomology of $C \cdot(\underline{x} ; M)$ is called the i th Čech cohomology of M with respect to \underline{x} and is denoted $H_{(\underline{x})}^{i}(M)$. If R is Noetherian then $H_{(\underline{x})}^{i}(M)$ is isomorphic to the i th local cohomology of M with support in the ideal (\underline{x}). This is not the case in general. However, one can still show that Cech cohomology with respect to \underline{x} and \underline{y} are isomorphic if $(\underline{x})=(\underline{y})$, or in fact even if $\sqrt{(\underline{x})}=\sqrt{(\underline{y})}$.

Proposition 22. Let $\underline{x}=x_{1}, \ldots, x_{n} \in R$ and M an R-module. Then for all i and for all $u \in H_{(\underline{x})}^{i}(M)$ there exists ℓ such that $(\underline{x})^{\ell} u=0$ (that is, $H_{(\underline{x})}^{i}(M)$ is (\underline{x})-torsion).

Proof. It is enough to show there exists ℓ_{j} such that $x_{j}^{\ell_{j}} u=0$. Equivalently, $H_{(\underline{x})}^{i}(M)_{x_{j}}=0$. Since localization is flat, $H_{(\underline{x})}^{i}(M)_{x_{j}} \cong H_{(\underline{x}) R}^{i}\left(M_{x_{j}}\right) \cong H_{(\underline{x}) R_{x_{j}}}^{i}\left(M_{x_{j}}\right) \cong H_{R_{x_{j}}}^{i}\left(M_{x_{j}}\right)=0$ for all i.

Proposition 23. Let $\underline{x}=x_{1}, \ldots, x_{n} \in R$ and M an R-module. Suppose $(\underline{x}) M \neq M$. Then there exists i such that $H_{(\underline{x})}^{i}(M) \neq 0$.

Proof. Suppose $H_{(\underline{x})}^{i}(M)=0$ for all i. Then $0 \rightarrow M \xrightarrow{\phi_{0}} \oplus M_{x_{i}} \xrightarrow{\phi_{1}} \cdots \xrightarrow{\phi_{n-1}} M_{x_{1} \cdots x_{n}} \xrightarrow{\phi_{n}} 0$ is exact. Let $K_{i}=\operatorname{ker} \phi_{i}$. We will show by induction that $\operatorname{Tor}_{j}^{R}\left(R /(\underline{x}), K_{n-i}\right)=0$ for all j and $i \geq 0$. [Note that $M=K_{0}$. If the claim holds, then $M / \underline{x} M=\operatorname{Tor}_{0}^{R}\left(R /(\underline{x}), K_{0}\right)=0$ implies $M=(\underline{x}) M$.] For $i=0$, we see $K_{n}=M_{x_{1} \cdots x_{n}}$. So $\operatorname{Tor}_{j}^{R}\left(R /(\underline{x}), M_{x_{1} \cdots x_{n}}\right)=\operatorname{Tor}_{j}^{R}(R /(\underline{x}), M)_{x_{1} \cdots x_{n}}=\operatorname{Tor}_{j}^{R}\left(0, M_{x_{1} \cdots x_{n}}\right)=0$ (where the first equality holds as $R_{x_{1} \cdots x_{n}}$ is flat). For $i>0$, let $C^{i-1}=C^{i-1}(\underline{x} ; R)$. Then we have $0 \rightarrow K_{i-1} \rightarrow C^{i-1} \otimes_{R} M \rightarrow K_{i} \rightarrow 0$. Now $\operatorname{Tor}_{j}^{R}\left(R /(\underline{x}), C^{i-1} \otimes_{R}\right.$ $M) \cong \operatorname{Tor}_{j}^{R}(R /(\underline{x}) ; M) \otimes_{R} C^{i-1} \cong 0$ for all j as the Tor is annihilated by (\underline{x}) and C^{i-1} is a direct sum of localizations at subproducts of $x_{1} \cdots x_{n}$. By induction and the long exact sequence on Tor, we have $\operatorname{Tor}_{j}^{R}\left(R /(\underline{x}), K_{i-1}\right)=0$ for all j.

Definition. Let $I=(\underline{x})$ be a finitely generated ideal and M an R-module. Define grade $(I, M)=\sup \left\{k \mid H_{I}^{i}(M)=\right.$ 0 for all $i<k\}$.

Note that by the Proposition, if I is a finitely generated ideal and $I M \neq M$ then grade $(I, M)<\infty$. Also $\operatorname{grade}(I, M)>0$ if and only if $H_{I}^{0}(M)=0$ if and only if $\left(0:_{M} I\right)=0$ which is if and only if $\operatorname{Hom}_{R}(R / I, M)=0$. If R is Noetherian and M is finitely generated, we know (by primary decomposition) that grade $(I, M)>0$ if and only if I contains a non-zero-divisor on M. However, this does not hold if R is not Noetherian or M is not finitely generated, as the following examples show:
Example. Let $R=k[x, y]_{(x, y)}, m=(x, y) R$, and $M=\oplus\{R / p$ where the sum is over all height one primes p of R. Note every element of m is a zero-divisor on M (for $f \in m \backslash\{0\}$, we have $f \in p$ for some height 1 prime p and so $f\left(u_{q}\right)=0$ where $u_{q}=0$ if $q \neq p$ and $u_{q}=1$ if $q=p$). However, grade $(m, M)=0$, that is $\left(0:_{M} m\right)=0$. Let $\left(u_{q}\right) \in\left(0:_{M} m\right)$ so $m u_{q}=\overline{0}$ in R / q for all q. As $m \not \subset q$, we have $u_{q}=\overline{0}$.
Example. Let R and M be as above and set $S=R \times M=\{(r, m) \mid r \in R, m \in M\}$ with $\left(r_{1}, m_{1}\right) \cdot\left(r_{2}, m_{2}\right)=$ $\left(r_{1} r_{2}, r_{1} m_{2}+r_{2} m_{1}\right)$, the idealization of M. Then S is a commutative quasi-local ring with maximal ideal $m \times M$. Then $n=m S$ consists of zerodivisors on S, yet grade $(n, S)>0$.

Lemma 24. Suppose $I \subseteq J$ are finitely generated ideals, M any R-module. Then $\operatorname{grade}(I, M) \leq \operatorname{grade}(J, M)$.

Proof. By induction, it is enough to show the case $J=(I, x)$. Then we have the long exact sequence

$$
\cdots \rightarrow H_{I}^{i-1}(M)_{x} \rightarrow H_{J}^{i}(M) \rightarrow H_{I}^{i}(M) \rightarrow H_{I}^{i}(M)_{x} \rightarrow \cdots
$$

If $i<\operatorname{grade}(I, M)$ then $H_{J}^{i}(M)=0$ which implies $i<\operatorname{grade}(J, M)$.
By virtue of this lemma, we can make the following definition:
Definition. Let I be an ideal of a ring R and M an R-module. We set

$$
\operatorname{grade}(I, M):=\sup \{\operatorname{grade}(J, M) \mid J \subseteq I, J \text { f.g. }\}
$$

If (R, m) is quasilocal, we define depth $M:=\operatorname{grade}(m, M)$.
Proposition 25. Let R be a ring, I an ideal and M an R-module.
(1) $\operatorname{grade}(I, M)=\operatorname{grade}(\sqrt{I}, M)$
(2) If $R \rightarrow S$ is flat, $\operatorname{grade}(I, M) \leq \operatorname{grade}\left(I S, M \otimes_{R} S\right)$
(3) If $R \rightarrow S$ is faithfully flat, grade $(I, M)=\operatorname{grade}\left(I S, M \otimes_{R} S\right)$
(4) For any ring homomorphism $R \rightarrow S$ and S-module M, $\operatorname{grade}_{R}(I, M)=\operatorname{grade}_{S}(I S, M)$.
(5) Suppose $0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ is exact. Then

$$
\begin{aligned}
\operatorname{grade}(I, B) & \leq \min \{\operatorname{grade}(I, A), \operatorname{grade}(I, C)\} \\
\operatorname{grade}(I, A) & \leq \min \{\operatorname{grade}(I, B), \operatorname{grade}(I, C)+1\} \\
\operatorname{grade}(I, C) & \leq \min \{\operatorname{grade}(I, C), \operatorname{grade}(I, A)-1\}
\end{aligned}
$$

(6) If $x \in I$ is a non-zerodivisor on M, then $\operatorname{grade}_{R /(x)}(I /(x), M / x M)=\operatorname{grade}_{R}(I, M / x M)=\operatorname{grade}_{R}(I, M)-1$.
(7) If I is finitely generated, then there exists $p \in \operatorname{Spec} R$ with $p \supseteq I$ such that $\operatorname{grade}(I, M)=\operatorname{grade}\left(p R_{p}, M_{p}\right)=$ $\operatorname{depth} M_{p}$.

Definition. Let M be an R-module and $x_{1}, \ldots, x_{n} \in R$. We say x_{1}, \ldots, x_{n} is a weak M-sequence (or weakly M-regular) if x_{i} is a non-zerodivisor on $M /\left(x_{1}, \ldots, x_{n}\right) M$ for all i.

Note that any M-sequence is a weak M-sequence. Furthermore, if $M=0$ then any sequence is a weak M sequence. Now let

$$
\operatorname{Grade}(I, M)=\sup \{n \mid \text { there exists a weak } M-\text { sequence of length } n \text { in } I\}
$$

Note that $\operatorname{Grade}(I, 0)=\infty=\operatorname{Grade}(R, M)$ for any ideal I and R-module M. Furthermore, by part (6) of the Proposition on grade, $\operatorname{Grade}(I, M) \leq \operatorname{grade}(I, M)$. If $R \rightarrow S$ is faithfully flat, $\operatorname{Grade}(I, M) \leq \operatorname{Grade}\left(I S, M \otimes_{R} S\right)$ and $\operatorname{grade}(I, M)=\operatorname{grade}\left(I S, M \otimes_{R} S\right)$.

Notice that if $x \in I$ is a non-zero-divisor on M and $x M=M$, then $\operatorname{Grade}(I, M)=\infty=\operatorname{grade}(I, M)$. Perhaps because of this, Bruns and Herzog adopt the convention that grade $(I, M)=\operatorname{Grade}(I, M)=\infty$ if $I M=M$. However, this differs from our conventions, as shown by the following example:
Example. Let $R=\mathbb{Z}_{(2)}, m=(2) R$, and $M=\mathbb{Q} / \mathbb{Z}_{(2)}$. Then every element of m is a zero-divisor on $M, m M=M$ and $\operatorname{grade}(m, M)=0=\operatorname{Grade}(m, M)$.

Lemma 26. Let R be a ring, $I \subset R, M$ an R-module. Let T be an indeterminate over R. If $\operatorname{grade}(I, M)>0$ then $\operatorname{Grade}(I R[T], M[T])>0$ where $M[T]=M \otimes_{R} R[T]$.

Proof. Note that $\operatorname{grade}(I, M)>0$ implies $\operatorname{grade}(J, M)>0$ for some finitely generated ideal J contained in I. Thus, $\left(0:_{M} J\right)=0$. Let $J=\left(a_{1}, \ldots, a_{t}\right)$.

Claim. $a_{1} t+\ldots+a_{n} t^{n}$ is a non-zero-divisor on $M[T]$.
Proof. If $a_{1} t+\ldots+a_{n} t^{n}$ is a zero-divisor on $M[T]$ then Nick's exercise (Homework set 1) says there exists $m \in M \backslash\{0\}$ such that $\left(a_{1} t+\ldots+a_{n} t^{n}\right) m=0$. Then $J m=0$, a contradiction.

Thus $\operatorname{Grade}(I R[T], M[T])>0$ as $a_{1} t+\ldots+a_{n} t^{n} \in I R[T]$.

Proposition 27. If $\operatorname{grade}(I, M) \geq s$, then $\operatorname{Grade}\left(I R\left[T_{1}, \ldots, T_{s}\right], M\left[T_{1}, \ldots, T_{s}\right]\right) \geq s$.

Proof. The $s=1$ case was proved in the lemma. So suppose $s>1$. By the $s-1$ case, there exists $f_{1}, \ldots, f_{s-1} \in \tilde{I}:=$ $I R\left[T_{1}, \ldots, T_{s-1}\right]$ which is a weak $\tilde{M}=M\left[T_{1}, \ldots, T_{s-1}\right]$-sequence. Then $\operatorname{grade}\left(\tilde{I}, \tilde{M} /\left(f_{1}, \ldots, f_{s-1}\right) \tilde{M}\right)=\operatorname{grade}(\tilde{I}, \tilde{M})-$ $s-1=\operatorname{grade}(I, M)-s-1 \geq 1$ since $R \rightarrow R\left[T_{1}, \ldots, T_{s-1}\right]$ is a faithfully flat extension. By the lemma, $\operatorname{Grade}\left(\tilde{I} R\left[T_{s}\right], \tilde{M} /\left(f_{1}, \ldots, f_{s-1}\right)\left[T_{s}\right]\right) \geq 1$. As $\tilde{M} /\left(f_{1}, \ldots, f_{s-1}\right)\left[T_{s}\right]=M\left[T_{1}, \ldots, T_{s}\right] /\left(f_{1}, \ldots, f_{s-1}\right) M\left[T_{1}, \ldots, T_{s}\right]$, we see that $\operatorname{Grade}\left(I R\left[T_{1}, \ldots, T_{s}\right], M\left[T_{1}, \ldots, T_{s}\right]\right) \geq s$.

Corollary 28. With I, M as above, we have

$$
\begin{aligned}
\operatorname{grade}(I, M) & =\lim _{n \rightarrow \infty} \operatorname{Grade}\left(I R\left[T_{1}, \ldots, T_{n}\right], M\left[T_{1}, \ldots, T_{n}\right]\right) \\
& =\sup \left\{\operatorname{Grade}\left(I S, M \otimes_{R} S\right) \mid R \rightarrow S \text { faithfully flat }\right\}
\end{aligned}
$$

Remark.

(1) Let R be a ring, I finitely generated ideal, M an R-module. Let S be the subring of R generated over the prime subring by a generating set for x_{1}, \ldots, x_{n} for I. Let $J=\left(x_{1}, \ldots, x_{n}\right) S$. Then S is Noetherian and $\operatorname{grade}_{R}(I, M)=\operatorname{grade}_{S}(J, N)$.
(2) Suppose R is Noetherian of dimension d. Then for every ideal I of R and R-module M such that $I M \neq M$, we have $\operatorname{grade}(I, M) \leq d$. In particular, if R is local and $m M \neq M$, then $\operatorname{depth} M \leq \operatorname{dim} R$.

Proof. Without loss of generality, we may assume R is local. Then $H_{I}^{i}(M)=0$ for all $i>d$ and for all R-modules M. Hence, $\operatorname{grade}(I, M) \leq d$.
(3) Suppose R is Noetherian, $I \subset R$ and M an R-module. Then grade $(I, M)>0$ if and only if $I \nsubseteq p$ for all $p \in \operatorname{Ass}_{R} M$.

Proof. $\operatorname{grade}(I, M)>0$ if and only if $\left(0:_{M} I\right)=0$. If $\left(0:_{M} I\right)=0$ then $I \not \subset p$ for all $p \in \operatorname{Ass}_{R} M$. Conversely, suppose $\left(0:_{M} I\right) \neq 0$. Then $I z=0$ for some $z \in M \backslash\{0\}$. Consider $N=R z \subseteq M$. As N is finitely generated, $I \subseteq p$ for some $p \in \operatorname{Ass}_{R} N \subseteq \operatorname{Ass}_{R} M$.

Definition. Let R be a ring and M an R-module and $\phi: F \rightarrow G$ where F, G are finitely generated free. Then $\operatorname{rank}(\phi, M)=r$ if and only if $\operatorname{grade}\left(I_{r}(\phi), M\right) \geq 1$ and $I_{r+1}(\phi) M=0$. If $M=0$, set $\operatorname{rank}(\phi, M)=0$.

Note by a previous result we have $\operatorname{rank} \phi=\operatorname{rank}(\phi, R)$ if R is Noetherian.

Lemma 29. Let R be a ring, M an R-module, $\phi: F \rightarrow G$ a map of finitely generated free R-modules and $r=\operatorname{rank} F$. Then $F . \otimes_{R} M \rightarrow G . \otimes_{R} M$ is injective if and only if $\operatorname{grade}\left(I_{r}(\phi), M\right) \geq 1$.

Proof. Let S be the Noetherian subring generated by the entries of a matrix representing ϕ. Let F^{\prime}, G^{\prime} be free S-modules of the same rank as F, G respectively and let $\psi: F^{\prime} \rightarrow G^{\prime}$ be given by the same matrix as the one representing ϕ. Clearly, the following diagram commutes:

Thus $I_{r}(\psi) R=I_{r}(\phi)$ which implies $\operatorname{grade}\left(I_{r}(\psi), M\right)=\operatorname{grade}\left(I_{r}(\phi), M\right)$. Now, consider the commutative squares

Hence $F \otimes_{R} M \rightarrow G \otimes_{R} M$ is injective if and only if $F^{\prime} \otimes_{S} M \rightarrow G^{\prime} \otimes_{S} M$ is injective. Thus we may assume R is Noetherian.

Let K be the kernel of the map $F \otimes_{R} M \xrightarrow{\phi \otimes 1} G \otimes_{R} M$. Then $\operatorname{Ass}_{R} K \subseteq \operatorname{Ass}_{R} M$. So

$$
\begin{aligned}
\phi \otimes_{R} 1 \text { is injective } & \Leftrightarrow K=0 \\
& \Leftrightarrow K_{p}=0 \text { for all } p \in \operatorname{Ass}_{R} M \\
& \Leftrightarrow(\phi \otimes 1)_{p}: F \otimes_{R} M_{p} \rightarrow G \otimes_{R} M_{p} \text { is injective for all } p \in \operatorname{Ass}_{R} M \\
& \Leftrightarrow I_{r}(\phi) \not \subset p \text { for all } p \in \operatorname{Ass}_{R} M \quad \text { (by Prop 20) } \\
& \Leftrightarrow \operatorname{grade}\left(I_{r}(\phi), M\right) \geq 1 .
\end{aligned}
$$

Proposition 30. Let R be a ring, $M \neq 0$ an R-module, F. the complex $0 \rightarrow F_{s} \xrightarrow{\phi_{s}} F_{s-1} \rightarrow \cdots \xrightarrow{\phi_{1}} F_{0} \rightarrow 0$. Suppose $F . \otimes_{R} M$ is acyclic. Then $\operatorname{rank}\left(\phi_{i}, M\right)=r_{i}$ for $i=1, \ldots, s$.

Proof. As above, we reduce to the case where R is Noetherian. Let $p \in \operatorname{Ass}_{R} M$. Then $F . \otimes_{R} M_{p}$ is acyclic, which implies $I_{r_{i}}\left(\phi_{i}\right) \not \subset p$ and $I_{r_{i}+1}\left(\phi_{i}\right)_{p}=0$ for all i by Proposition 20. Thus grade $\left(I_{r_{i}}\left(\phi_{i}\right), M\right) \geq 1$. Fix i and let $I=I_{r_{i}+1}\left(\phi_{i}\right)$. We want to show $I M=0$. If $I M \neq 0$, choose $z \in M$ such that $I z \neq 0$. Let $p \in \operatorname{Ass}_{R} I z \subseteq \operatorname{Ass}_{R} M$. Then $(I z)_{p} \neq 0$ implies $I_{p} \neq 0$, a contradiction. Thus $\operatorname{rank}\left(\phi_{i}, M\right)=r_{i}$.
Exercise. Let R be a ring, I, J ideals, and M an $R-\operatorname{module}$. Then $\operatorname{grade}(I \cap J, M)=\min \{\operatorname{grade}(I, M), \operatorname{grade}(J, M)\}$.
Exercise. Suppose $N .: \cdots \rightarrow N_{i} \rightarrow N_{i-1} \rightarrow \cdots \rightarrow N_{1} \rightarrow N_{0} \rightarrow 0$ is an exact sequence of $R-$ modules. Let $x \in R$ be weakly N_{i}-regular for all i. Then $N . \otimes R /(x)$ is exact.

Lemma 31. Let (R, m) be a quasi-local ring, $\phi: F \rightarrow G$ a map of finitely generated free R-modules, and M an R-module. Let $C=\operatorname{coker}\left(F \otimes_{R} M \rightarrow G \otimes_{R} M\right)$. Suppose that $I_{r}(\phi)=R$ and $I_{r+1}(\phi) M=0$ for some r. Then C is isomorphic to a direct sum of finitely many copies of M.

Proof. As $I_{r}(\phi)=R, \operatorname{im} \phi$ contains a direct summand of G of rank r. By choosing an appropriate basis, ϕ has the form $\left(\begin{array}{cc}1_{r} & 0 \\ 0 & B\end{array}\right)$, where 1_{r} denotes the $r \times r$ identity matrix. With respect to this basis, let $\psi: F \rightarrow G$ be the map given by $\left(\begin{array}{cc}1_{r} & 0 \\ 0 & 0\end{array}\right)$. The result follows if we show $\operatorname{im}\left(\phi \otimes 1_{M}\right)=\operatorname{im}\left(\psi \otimes 1_{M}\right)$. Let $B=\left(b_{i j}\right)$. Its enough to show $b_{i j} M=0$ for all i, j. But note that, with respect to this basis, each $b_{i j}$ is an $r+1$-sized minor of ϕ. Hence, $b_{i j} M=0$ by hypothesis.

Theorem 32 (Buchsbaum-Eisenbud, Northcott). Let R be a ring, M an R-module. Let F. denote the complex $0 \rightarrow F_{s} \xrightarrow{\phi_{s}} \cdots \rightarrow F_{1} \xrightarrow{\phi_{1}} F_{0} \rightarrow 0$. Then $F . \otimes_{R} M$ is acyclic if and only if $\operatorname{grade}\left(I_{r_{i}}\left(\phi_{i}\right), M\right) \geq i$ for $i=1, \ldots, s$ where r_{i} are the expected ranks.

Proof. As usual, we may assume R is Noetherian (by adjoining the entries of the matrices to the prime subring of $R)$. First, we assume that $F . \otimes_{R} M$ is acyclic and use induction on s. The case when $s=1$ is done by Lemma 29. So suppose $s>1$. We want to show $\operatorname{grade}\left(I_{r_{i}}\left(\phi_{i}\right), M\right) \geq i$ for $i=1, \ldots, s$. By Proposition $30, \operatorname{rank}\left(\phi_{i}, M\right)=r_{i}$. Hence $\operatorname{grade}\left(I_{r_{i}}\left(\phi_{i}\right), M\right) \geq 1$ for all i. By an exercise, $\operatorname{grade}\left(\cap_{i=1}^{s} I_{r_{i}}\left(\phi_{i}\right), M\right) \geq 1$. By passing to a faithfully flat extension S
of R we can assume that there exists $x \in \cap_{i=1}^{s} I_{r_{i}}\left(\phi_{i}\right)$ which is weakly M-regular. (Note that the hypotheses and the conclusion are stable under passage to faithfully flat extensions.) Consider $0 \rightarrow F_{s} \otimes_{R} M \rightarrow \cdots \xrightarrow{\phi_{2} \otimes 1} F_{1} \otimes_{R} M \rightarrow$ $\operatorname{coker} \phi_{2} \otimes 1 \rightarrow 0$, which is exact. Also $0 \rightarrow \operatorname{coker}\left(\phi_{2} \otimes I\right) \rightarrow F_{0} \otimes_{R} M$ is exact. As x is weakly M-regular, x is weakly regular on $F_{i} \otimes_{R} M$ for all i and is weakly regular on $\operatorname{coker}\left(\phi_{2} \otimes 1\right)$. By the second exercise above, $0 \rightarrow F_{s} \otimes_{R} M / x M \xrightarrow{\phi_{s} \otimes 1} \cdots \xrightarrow{\phi_{2} \otimes 1} F_{1} \otimes M / x M \rightarrow 0$ is acyclic. By induction on s, grade $\left(I_{r_{i}}\left(\phi_{i}\right), M / x M\right) \geq i-1$ for $i=2, \ldots, s$. Thus grade $\left(I_{r_{i}}\left(\phi_{i}\right), M\right) \geq i$ for $i=2, . ., s$. Since we already have grade $\left(I_{r_{1}}\left(\phi_{1}\right), M\right) \geq 1$, we are done.

Conversely, assume that grade $\left(I_{r_{i}}\left(\phi_{i}\right), M\right) \geq i$ for all $i=1, \ldots, s$. We will use induction on the length s of the complex. The case when $s=1$ is again done by Lemma 29, so we assume $s>1$. Let F^{\prime} denote the complex $0 \rightarrow F_{s} \xrightarrow{\phi_{s}} F_{s-1} \rightarrow \cdots \xrightarrow{\phi_{2}} F_{1} \rightarrow 0$. By induction, $F^{\prime} \otimes_{R} M$ is acyclic. For each $i=1, . ., s$, let $M_{i}=\operatorname{coker}\left(\phi_{i+1} \otimes 1_{M}\right)$. We need to show $F_{2} \otimes_{R} M \rightarrow F_{1} \otimes_{R} M \rightarrow F_{0} \otimes_{R} M$ is exact at $F_{1} \otimes_{R} M$. Its enough to show the induced map $M_{1} \rightarrow F_{0} \otimes_{R} M$ is injective. Note by exactness of F^{\prime}, that $0 \rightarrow M_{i+1} \rightarrow F_{i} \otimes_{R} M \rightarrow M_{i} \rightarrow 0$ is exact for all $i \geq 1$.

Claim. For all $p \in \operatorname{Spec} R$ and for all $i \geq 1, \operatorname{depth}\left(M_{i}\right)_{p} \geq \min \left\{\operatorname{depth} M_{p}, i\right\}$.
Proof. We use induction on $s-i$. Note that $M_{s}=F_{s} \otimes_{R} M$, and hence $\operatorname{depth}\left(M_{s}\right)_{p}=\operatorname{depth} M_{p}$ for all primes p. Now suppose $i<s$ and assume that the claim holds for M_{i+1}. By localizing, we may assume (R, m) is local and $p=m$. (Note that if $M=0$ we are done.) By the short exact sequence above,

$$
\operatorname{depth} M_{i} \geq \min \left\{\operatorname{depth}\left(F_{i} \otimes_{R} M\right), \operatorname{depth} M_{i+1}-1\right\}=\min \left\{\operatorname{depth} M, \operatorname{depth} M_{i+1}-1\right\}
$$

Suppose first that depth $M \geq i+1$. Then, as depth $M_{i+1} \geq \min \{\operatorname{depth} M, i+1\}$, we have depth $M_{i} \geq$ i. Suppose now that depth $M \leq i$. Since grade $\left(I_{r_{i+1}}\left(\phi_{i+1}\right), M\right) \geq i+1$ (by assumption), $I_{r_{i+1}}\left(\phi_{i+1}\right)=$ R. Since $i+1 \geq 2$ and $F_{.}^{\prime} \otimes_{R} M$ is exact, $\operatorname{rank}\left(\phi_{i+1}, M\right)=r_{i+1}$ by Proposition 30 and so $I_{t}\left(\phi_{i+1}\right) M=$ 0 for all $t>r_{i+1}$. By Lemma 31, M_{i} is isomorphic to a direct sum of finitely many copies of M, and hence depth $M_{i}=\operatorname{depth} M$.
Let $N=\operatorname{ker}\left(M_{1} \rightarrow F_{0} \otimes_{R} M\right)=H_{1}\left(F . \otimes_{R} M\right)$. We want to show $N=0$. Its enough to show $N_{p}=0$ for all $p \in \operatorname{Ass}_{R} M_{1}$. Let $p \in \operatorname{Ass}_{R} M_{1}$. Then $0=\operatorname{depth}\left(M_{1}\right)_{p} \geq \min \left\{\operatorname{depth} M_{p}, 1\right\}$ which implies depth $M_{p}=0$. Then $p \in \operatorname{Ass}_{R} M$. Since grade $\left(I_{r_{i}}\left(\phi_{i}\right), M\right) \geq i$ for all $i \geq 1, I_{r_{i}}\left(\phi_{i}\right) \not \subset p$ for all i. By Proposition $20,\left(F . \otimes_{R} M\right)_{p}$ is (split) acyclic which implies $N_{p}=H_{1}\left(F . \otimes_{R} M\right)_{p}=0$ for all $p \in \operatorname{Ass}_{R} M_{1}$. Thus $N=0$.

Corollary 33. Let $0 \rightarrow F_{s} \xrightarrow{\phi_{s}} F_{s-1} \rightarrow \cdots \xrightarrow{\phi_{1}} F_{0} \xrightarrow{\phi_{0}} N \rightarrow 0$ be exact where F_{i} are finitely generated free R-modules. Let $K_{i}=\operatorname{ker} \phi_{i-1}$. Then for all $p \in \operatorname{Spec} R$ and all $i \geq 1$, $\operatorname{depth}\left(K_{i}\right)_{p} \geq \min \left\{\operatorname{depth} R_{p}, i\right\}$.

Proof. In the Claim in the proof of Buchsbaum-Eisenbud, $M_{i}=K_{i}$ for all i.
Theorem 34 (Hilbert-Burch). Let (R, m) be a Noetherian, local ring and $I \subset R$ an ideal such that $\operatorname{pd}_{R} R / I=2$. Then the minimal resolution of R / I has the form $0 \rightarrow R^{n} \xrightarrow{\phi} R^{n+1} \rightarrow R \rightarrow R / I \rightarrow 0$ where $n+1=\mu_{R}(I)$. Moreover, $I=x I_{n}(\phi)$ for some non-zero-divisor x. Conversely, let A be an $(n+1) \times n$ matrix with entries in m and suppose grade $I_{n}(A) \geq 2$. Let $\psi: R^{n+1} \rightarrow R$ be the map which sends the ith standard basis element e_{i} to $(-1)^{i} \Delta_{i}$, where Δ_{i} is the $n \times n$ minors of A obtained by deleting the $i^{\text {th }}$ row. Then the sequence $0 \rightarrow R^{n} \xrightarrow{A} R^{n+1} \xrightarrow{\psi} R \rightarrow R / I_{n}(A) \rightarrow 0$ is exact.

Proof. We prove the 'converse' first, so suppose A is as above with grade $I_{n}(A) \geq 2$. Using cofactor expansion, one can show that $\left[(-1) \Delta_{1}, \ldots,(-1)^{n} \Delta_{n}\right] A=0$. (This is left as an exercise.) Thus $0 \rightarrow R^{n} \xrightarrow{A} R^{n+1} \xrightarrow{\psi} R$ is a complex. But $I_{1}(\psi)=I_{n}(A)$ and so grade $I_{1}(\psi) \geq 1$. By Buchsbaum Eisenbud, the complex is acyclic.

Now suppose I is an ideal and $\operatorname{pd} R / I=2$. A minimal resolution of R / I has the form $(\#) 0 \rightarrow R^{m} \xrightarrow{\phi} R^{n+1} \xrightarrow{\delta}$ $R \xrightarrow{\pi} R / I \rightarrow 0$. Since this sequence is exact, we must have $1-(n+1)+m \geq 0$, or $m \geq n$. Also $n+1-m \geq 0$, so $n \leq m \leq n+1$. If $m=n+1$ then $\operatorname{rank} \pi=0$, which implies $I_{p}=0$ for all $p \in \operatorname{Ass}_{R} R$. This means $I=0$, a contradiction. Hence we must have $m=n$. By Buchsbaum-Eisenbud, we have grade $I_{n}(\phi) \geq 2$. Now, fix bases for
R^{n} and R^{n+1} and let A be the matrix which represents ϕ. Let $\psi: R^{n+1} \rightarrow R$ be the map defined above. Consider the following commutative diagram:

The top row is exact (by hypothesis) and the bottom row is exact by the 'converse' part (note $I_{n}(\phi)=I_{n}(A)$). By the five-lemma, there exists an isomorphism $\tau: I_{n}(\phi) \rightarrow I \hookrightarrow R$. We claim that every map $I_{n}(\phi) \rightarrow R$ is multiplication by some element of R. If so, then $I=x I_{n}(\phi)$ for some non-zero-divisor x, since τ is an isomorphism. Since grade $I_{n}(\phi) \geq 2$, we have that $\operatorname{Ext}_{R}^{i}\left(R / I_{n}(\phi), R\right)=0$ for $i=0$, 1 . Applying $\operatorname{Hom}_{R}(-, R)$ to $0 \rightarrow I_{n}(\phi) \rightarrow R \rightarrow$ $R / I_{n}(\phi) \rightarrow 0$, we have

$$
\cdots \rightarrow \underbrace{\operatorname{Hom}_{R}\left(R / I_{n}(\phi), R\right)}_{=0} \rightarrow \operatorname{Hom}_{R}(R, R) \xrightarrow{\alpha} \operatorname{Hom}_{R}\left(I_{n}(\phi), R\right) \rightarrow \underbrace{\operatorname{Ext}_{R}^{1}\left(R / I_{n}(\phi), R\right)}_{=0}
$$

This says α is an isomorphism, but of course $\alpha:\left.\mu_{r} \mapsto \mu_{r}\right|_{I_{n}(\phi)}$.
Note. By Buchsbaum-Eisenbud, grade $I_{n}(\phi) \geq 2$. But we always have grade $I_{n}(\phi) \leq \operatorname{pd}_{R} R / I_{n}(\phi)$. Thus grade $I_{n}(\phi)=$ $\operatorname{pd} R / I_{n}(\phi)=2$; that is, $I_{n}(\phi)$ is a perfect ideal.

Definition. Let (R, m) be Noetherian, local. Let $\underline{x}=x_{1}, \ldots, x_{d}$ be a system of parameters for R. An $R-m o d u l e ~ M$ is called a big Cohen Macaulay module (for \underline{x}) if \underline{x} is M-regular. An R-module M is called a balanced big Cohen Macaulay module if \underline{x} is M-regular for all system of parameters \underline{x} of R.

Note. If M is a big Cohen-Macaulay R-module then $\operatorname{depth} M=\operatorname{dim} R$. For clearly, $\operatorname{depth} M \geq \operatorname{dim} R$. Let \underline{x} be an M-regular sequence. Then $(\underline{x}) M \neq M$. Since (\underline{x}) is m-primary, we have $m M \neq M$. Hence, $\operatorname{depth} M \leq \operatorname{dim} R$.

A brief review of completions

Let R be a ring, M an R-module. Let $\left\{M_{i}\right\}_{i=1}^{\infty}$ be a filtration of M by submodules: $M_{1} \supseteq M_{2} \supseteq \cdots$. Any such filtration defines a linear topology on M by letting the cosets $\left\{x+M_{i}\right\}_{i=1}$ be a fundamental system of open neighborhoods for all $x \in M$. The topology on M is separated (or Hausdorff) if $\cap M_{i}=(0)$. Given a submodule N of M there exists an induced linear topology on N given by the filtration $\left\{N \cap M_{i}\right\}$ and an induced topology on M / N by $\left\{M_{i}+N / N\right\}$. Given an ideal I of R, the I-adic topology on M is the one given by the filtration $\left\{I^{n} M\right\}$. The module M is said to be complete if every Cauchy sequence in M has a limit in M.

Definition. Let M be an R-module with a linear topology. The completion of M is a linearly topologized R-module \widehat{M} which is separated and complete, together with a continuous homomorphism $\phi: M \rightarrow \widehat{M}$ with the following universal property: If $f: M \rightarrow M^{\prime}$ is a continuous map and M^{\prime} is complete and separated, then there exists a unique continuous map $g: \widehat{M} \rightarrow M^{\prime}$ such that the following diagram commutes

Fact. Completions exist and are unique.
Note that the map $\phi: M \rightarrow \widehat{M}$ is injective if and only if M is separated. Clearly, if M has the discrete topology then M is separated and complete (and hence, isomorphic to its completion).

If $\left\{M_{i}\right\}$ and $\left\{M_{i}^{\prime}\right\}$ are two filtrations on M and are cofinal, the resulting induced topologies on M are the same. In particular, if I and J are finitely generated ideals and $\sqrt{I}=\sqrt{J}$, the I-adic and J-adic topologies on any module
are the same. Let M be a module with a topology defined by $\left\{M_{i}\right\}_{i \geq 1}$. We have an inverse system $M / M_{i} \rightarrow M / M_{j}$ for all $i \geq j$. Then $\widehat{M}=\underset{\rightleftarrows}{\lim } M / M_{i}$.

Alternatively, let $T=\left\{\left\{x_{i}\right\} \mid\left\{x_{i}\right\}\right.$ is a Cauchy sequence in $\left.M\right\}$. Then T has a natural R-module structure with a naturally induced linear topology from M. Let $T_{0}=\left\{\left\{x_{i}\right\} \in T \mid \lim x_{i}=0\right\}$ and $\widehat{M}=T / T_{0}$. Let $\phi: M \rightarrow \widehat{M}$ be given by $x \mapsto \overline{\{x\}}$, where $\{x\}$ is the constant sequence and ${ }^{-}$denotes modulo T_{0}. Then ker $\phi=\cap_{i} M_{i}$. For each i, let $\widehat{M}_{i}=\left\{\overline{\left\{x_{j}\right\}} \in \widehat{M} \mid x_{j} \in M_{j}\right.$ for all $\left.j\right\}$. We get a filtration $\widehat{M_{1}} \supseteq \widehat{M}_{2} \supseteq \cdots$. One can show \widehat{M} is complete and separated with respect to the topology induced by this filtration and that $\phi: M \rightarrow \widehat{M}$ is continuous and has the required universal property.

Proposition 35. Let $A \subseteq B$ be modules where B has a linear topology and A has the induced topology from B. Then $0 \rightarrow \widehat{A} \rightarrow \widehat{B} \rightarrow \widehat{B / A} \rightarrow 0$ is exact.

Exercise. Suppose M has the I-adic topology. Then $\widehat{I^{n} M}=I^{n} \widehat{M}$ for all n. Furthermore, \widehat{M} also has the I-adic topology.
Remark. Suppose M has the I-adic topology. Then $I^{n} \widehat{M} / I^{n+1} \widehat{M}=\widehat{I^{n} M} / \widehat{I^{n+1} M} \cong I^{n} \widehat{M / I^{n+1} M} \cong I^{n} M / I^{n+1} M$. This is because the topology induced by the I-adic topology on the last module is discrete. Thus $\operatorname{gr}_{I}(M) \cong \operatorname{gr}_{I}(\widehat{M})$.

Definition. Let R be a ring, M an R-module, $x_{1}, \ldots, x_{n} \in R$. Let $I=\left(x_{1}, \ldots, x_{n}\right)$. There is a natural graded homomorphism $\psi: M / I M\left[T_{1}, \ldots, T_{n}\right] \rightarrow \operatorname{gr}_{I}(M)$ defined by $T_{i} \mapsto x_{i}+I^{2} M \in I M / I^{2} M$. Since $\left\{x_{1}+I^{2} M, \ldots, x_{n}+I^{2} M\right\}$ generates $\operatorname{gr}_{I}(M)\left(\right.$ as $a \operatorname{gr}_{I}(R)$-module $), \psi$ is surjective. We say x_{1}, \ldots, x_{n} is M-quasiregular if ψ is an isomorphism and $I M \neq M$.

Facts.

(1) If x_{1}, \ldots, x_{n} is M-quasiregular, so is any permutation.
(2) If \underline{x} is M-regular then \underline{x} is M-quasiregular.
(3) If (R, m) is quasilocal, $\underline{x} \in m$, and M is finite, then the converse of (2) is true.

Theorem 36. Let R be a ring, $\underline{x}=x_{1}, \ldots, x_{n} \in R, I=\left(x_{1}, \ldots, x_{n}\right), M$ an R-module. Let \widehat{M} denote the I-adic completion of M. The following are equivalent:
(1) \underline{x} is M-quasiregular.
(2) \underline{x} is \widehat{M}-quasiregular.
(3) \underline{x} is $\widehat{M}-$ regular.

Proof. Note that $(1) \Leftrightarrow(2)$ follows from the fact that $\operatorname{gr}_{I}(M) \cong \operatorname{gr}_{I}(\widehat{M})$ and (3) $\Rightarrow(2)$ is true by one of the facts above. So we need only prove $(2) \Rightarrow(3)$. We assume M is I-adically complete and proceed by induction on n. For $n=1$, suppose x_{1} is M-quasiregular and $x_{1} y=0$. For a given $j, x_{1} y \in I^{j} M$. Note $\widehat{x_{1}}:=x_{1}+I^{2} M$ is a non-zero-divisor on $\operatorname{gr}_{I}(M)$. Suppose $y \in I^{k} M$ for some k and let $\widehat{y}=y+I^{k+1} M$. Then $\widehat{x} \widehat{y} \in I^{k+1} M / I^{k+2} M$. Of course $\widehat{x_{1}} \widehat{y}=0$ by assumption, so $\widehat{y}=0$. Thus, $y \in I^{k+1} M$. Hence $y \in \cap I^{j} M=0$. The same argument shows that $\left(I^{k+1} M:_{M} x_{1}\right)=I^{k} M$ for all k.

Now suppose $n>1$. We know x_{1} is M-regular and x_{2}, \ldots, x_{n} is $M / x_{1} M$-quasiregular. We are done by induction provided $M / x_{1} M$ is I-adically complete. Consider $0 \rightarrow x_{1} M \rightarrow M \rightarrow M / x_{1} M \rightarrow 0$ and complete: $0 \rightarrow \widehat{x_{1} M} \rightarrow$ $M \rightarrow \widehat{M / x_{1} M} \rightarrow 0$. Here $\widehat{x_{1} M}$ is the completion of $x_{1} M$ with respect to the filtration $\left\{I^{n} M \cap x_{1} M\right\}_{n \geq 1}$. By the above, $I^{n} M \cap x_{1} M=x_{1}\left(I^{n} M:_{M} x_{1}\right)=x_{1} I^{n-1} M$. Therefore the topologies on $x_{1} M$ given by $\left\{I^{n} M \cap x_{1} M\right\}$ and $\left\{I^{n} x_{1} M\right\}$ are the same, the latter being the I-adic topology on $x_{1} M$. Now, as x_{1} is M-regular, $M \cong x_{1} M$ as R-modules. Since M is I-adically complete, so is $x_{1} M$. Thus we must have $M / x_{1} M=\widehat{M / x_{1} M}$. By induction, x_{2}, \ldots, x_{n} is $M / x_{1} M$-regular, which implies x_{1}, \ldots, x_{n} is M-regular.

Theorem 37. Let (R, m) be local Noetherian and M a big Cohen-Macaulay module for $\underline{x}=x_{1}, \ldots, x_{d}$. Let \widehat{M} denote the m-adic completion of M. Then \widehat{M} is a balanced big Cohen-Macaulay module.

Proof. Let y_{1}, \ldots, y_{d} be any system of parameters for R. We need to show y_{1}, \ldots, y_{d} is $\widehat{M}-$ regular. Since $m=$ $\sqrt{\left(y_{1}, \ldots, y_{d}\right)}$, the m-adic and (\underline{y})-adic topologies on M are the same. So \widehat{M} is also the (\underline{y})-adic completion of M. Now x_{1}, \ldots, x_{d} is M-regular, which implies x_{1}, \ldots, x_{d} is \widehat{M}-regular. We use induction on d to show y_{1}, \ldots, y_{d} is \widehat{M}-regular. If $d=1$, then $\sqrt{\left(x_{1}\right)}=\sqrt{\left(y_{1}\right)}$. Since x_{1} is a non-zero-divisor on \widehat{M}, so is y_{1} (as $x_{1}^{n} \in\left(y_{1}\right)$ for some n). So suppose $d>1$. By prime avoidance, choose w not in any minimal prime over $\left(x_{1}, \ldots, x_{d-1}\right)$ or $\left(y_{1}, \ldots, y_{d-1}\right)$. Then $\left(x_{1}, \ldots, x_{d-1}, w\right)$ and $\left(y_{1}, \ldots, y_{d-1}, w\right)$ are systems of parameters for R. In $R /\left(x_{1}, \ldots, x_{d-1}\right), \overline{x_{d}}$ and \bar{w} are both systems of parameters. Since $\overline{x_{d}}$ is $\widehat{M} /\left(x_{1}, \ldots, x_{d}\right) \widehat{M}$-regular, so is \bar{w} (by the same argument as $d=1$ case). Thus $x_{1}, \ldots, x_{d-1}, w$ is \widehat{M}-regular which implies $w, x_{1}, \ldots, x_{d-1}$ is \widehat{M}-quasiregular (and thus \widehat{M}-regular by lemma). Thus $\overline{x_{2}}, \ldots, \overline{x_{d}}$ is $\widehat{M} / w \widehat{M}$-regular. Both $\overline{x_{1}}, \ldots, \overline{x_{d-1}}$ and $\overline{y_{1}}, \ldots, \overline{y_{d-1}}$ are systems of parameters for $R /(w)$. By induction, $\overline{y_{1}}, \ldots, \overline{y_{d-1}}$ is $\widehat{M} / w \widehat{M}$-regular. Lift to get $w, y_{1}, \ldots, y_{d-1}$ is \widehat{M}-regular, which implies $y_{1}, \ldots, y_{d-1}, w$ is \widehat{M}-quasiregular. In $R /\left(y_{1}, \ldots, y_{d-1}\right), \sqrt{\bar{w}}=\sqrt{\overline{y_{d}}}$ which implies $\overline{y_{d}}$ is $\widehat{M} /\left(y_{1}, \ldots, y_{d-1}\right) \widehat{M}$-regular.

Example. Let $R=k[[x, y]]$ where k is a field. Let $M=R \oplus Q$ where Q is the quotient field of $R /(y)$. Then x, y is M-regular but y, x is not. So M is a big Cohen-Macaulay module, but not a balanced one.

Definition. Let R be a ring, I an ideal. Set $\operatorname{codim} I:=\operatorname{dim} R-\operatorname{dim} R / I$.
Remarks. Suppose R is Noetherian.
(1) ht $I \leq \operatorname{codim} I$ (since ht $I+\operatorname{dim} R / I \leq \operatorname{dim} R$ for all ideals I) with equality if R is equidimensional, catenary, and all maximal ideals have the same height (e.g., $R=k\left[x_{1}, \ldots, x_{d}\right]$).
(2) If R is a Cohen-Macaulay local ring then ht $I=\operatorname{grade} I=\operatorname{codim} I$.

Exercise. Suppose R is Noetherian local and I is an ideal. Then codim $I \geq i$ if and only if I contains x_{1}, \ldots, x_{i} which form part of a system of parameters for R.

Definition. Let $F: 0 \rightarrow F_{s} \xrightarrow{\phi_{s}} F_{s-1} \rightarrow \cdots \xrightarrow{\phi_{1}} F_{0}$ be a complex of finitely generated free R-modules. Define $\operatorname{codim} F:=\inf \left\{\operatorname{codim} I_{r_{i}}\left(\phi_{i}\right)-i \mid i=1, \ldots, s\right\}$, where the r_{i} are the expected ranks.

Remarks.

(1) If F. is acyclic, then $\operatorname{codim} F . \geq 0$ (by Buchsbaum-Eisenbud, grade $I_{r_{i}}\left(\phi_{i}\right)-i \geq 0$ for all i).
(2) If R is Cohen-Macaulay and local and $\operatorname{codim} F$. ≥ 0 then F. is acyclic (again by Buchsbaum-Eisenbud and the remarks above).
(3) Cohen-Macaulay is crucial in (2). For example, let $R=k[[x, y]] /\left(x^{2}, x y\right)$ and F. : $0 \rightarrow R \xrightarrow{y} R$. Then $I_{1}\left(\phi_{1}\right)=y, \operatorname{codim} y=1$, but F. is not acyclic.

Proposition 38. Let (R, m) be local, F. a complex as above. Suppose codim $F . \geq 0$. Then $F . \otimes_{R} M$ is acyclic for every balanced big Cohen-Macaulay module M.

Proof. For each i, we have codim $I_{r_{i}}\left(\phi_{i}\right) \geq i$. By the exercise, $I_{r_{i}}\left(\phi_{i}\right)$ contains part of a system of parameters x_{1}, \ldots, x_{i}. Then x_{1}, \ldots, x_{i} is M-regular (as M is balanced) and so grade $\left(I_{r_{i}}\left(\phi_{i}\right), M\right) \geq i$. By Buchsbaum Eisenbud, we have $F . \otimes_{R} M$ is acyclic.

Theorem 39. Let (R, m) be a Noetherian local ring possessing a big Cohen-Macaulay module. Let $F .: 0 \rightarrow F_{s} \xrightarrow{\phi_{s}}$ $F_{s-1} \rightarrow \cdots \xrightarrow{\phi_{1}} F_{0} \rightarrow 0$ with $\operatorname{codim} F . \geq 0$. Let $C=\operatorname{coker} \phi_{1}$ and assume $C \neq 0$. Then for every $e \in C \backslash m C$, we have $\operatorname{codim}\left(\operatorname{Ann}_{R} e\right) \leq s$.

Proof. By Theorem 37, we may assume R has a balanced big Cohen-Macaulay module M. We use induction on $\operatorname{dim} R / \operatorname{Ann}_{R} e$. Suppose $\operatorname{dim} R / \operatorname{Ann}_{R} e=0$ and let M be a balanced Cohen-Macaulay module. Then $F . \otimes_{R} M$ is acyclic. As before, let $M_{i}=\operatorname{coker}\left(\phi_{i+1} \otimes 1_{M}\right)$ for $i=0, \ldots, s$. (Note $M_{s}=F_{s} \otimes_{R} M$ and $M_{0}=C \otimes_{R} M$). We have $0 \rightarrow M_{i} \rightarrow F_{i-1} \otimes_{R} M \rightarrow M_{i-1} \rightarrow 0$ is exact for $i=1, \ldots, s$ as F. $\otimes_{R} M$ is acyclic. Note depth $F_{i-1} \otimes_{R} M=$ depth M and so depth $M_{i-1} \geq \min \left\{\operatorname{depth} M\right.$, depth $\left.M_{i}-1\right\}$. Thus for all $i=0, \ldots, s$, depth $M_{s-i} \geq \operatorname{depth} M-i$. So
depth $M \otimes_{R} C=\operatorname{depth} M_{0} \geq \operatorname{depth} M-s=\operatorname{dim} R-s$ as M is a balanced big Cohen-Macaulay module. It suffices to show depth $M \otimes_{R} C=0$ as then $s \geq \operatorname{dim} R=\operatorname{codim}\left(\operatorname{Ann}_{R} e\right)$. Let $M \otimes e$ denote the submodule of $M \otimes_{R} C$ consisting of those elements of the form $u \otimes e$ for some $u \in M$. Let $w \in M, w \notin m M$. Then the image of $w \otimes e$ in $M / m M \otimes_{R} C / m C$ is nonzero. Hence, $M \otimes e \neq 0$. As $\operatorname{dim} R /$ Ann $e=0$, we have $m^{\ell} e=0$ for some ℓ, and so $m^{\ell}(M \otimes e)=0$. Thus $m \in \operatorname{Ass}_{R} M \otimes e \subseteq \operatorname{Ass}_{R} M \otimes C$ and hence depth $M \otimes C=0$.

Now suppose $\operatorname{dim} R / \operatorname{Ann}_{R} e>0$. Since codim $\operatorname{Ann}_{R} e \leq \operatorname{dim} R$, we can assume $s<\operatorname{dim} R$. Let $\Lambda_{0}=\{p \in \operatorname{Spec} R \mid$ $\operatorname{dim} R / p=\operatorname{dim} R\}$ and $\Lambda_{1}=\left\{p \in \operatorname{Spec} R \mid \operatorname{Ann} e \subseteq p, \operatorname{dim} R / p=\operatorname{dim} R / \operatorname{Ann}{ }_{R} e\right\}$. As all the primes in Λ_{1} are minimal over $\operatorname{Ann}_{R} e, \Lambda_{1}$ is finite. Further, since $\operatorname{dim} R / \operatorname{Ann}_{R} e>0$ we see $m \notin \Lambda_{1}$. Let $\Lambda_{2}=\{p \in \operatorname{Spec} R \mid p \supseteq$ $I_{r_{i}}\left(\phi_{i}\right), \operatorname{codim} p=i$ for some $\left.i\right\}$. By assumption on $\operatorname{codim} F$., Λ_{2} is a finite set. Also as $s<\operatorname{dim} R, m \notin \Lambda_{2}$. By prime avoidance, choose an element $x \notin p$ for all $p \in \Lambda_{1} \cup \Lambda_{2} \cup \Lambda_{0}$. Let $\overline{(\quad)}$ denote modulo (x), so $\bar{F} .=F . \otimes R /(x)$.

$$
\text { Claim. } \operatorname{codim}_{\bar{R}} \bar{F} . \geq 0
$$

Proof. There are two cases. First suppose $\operatorname{codim} I_{r_{i}}\left(\phi_{i}\right) \geq i+1$. Then $\operatorname{dim} R / I_{r_{i}}\left(\phi_{i}\right) \leq \operatorname{dim} R-$ $i-1$ and so $\operatorname{dim} R /\left(I_{r_{i}}\left(\phi_{i}\right), x\right) \leq \operatorname{dim} R-i-1 \leq \operatorname{dim} R /(x)-i$. Thus codim $I_{r_{i}}\left(\overline{\phi_{i}}\right) \geq i$. Next suppose codim $I_{r_{i}}\left(\phi_{i}\right)=i$. Then $\operatorname{dim} R / I_{r_{i}}\left(\phi_{i}\right)=\operatorname{dim} R-i$. As $x \notin p$ for all $p \in \Lambda_{2}$, we see $\operatorname{dim} R /\left(I_{r_{i}}\left(\phi_{i}\right), x\right)=\operatorname{dim} R-i-1 \leq \operatorname{dim} R /(x)-i$.
Since $e \notin m C$, we have $\bar{e} \notin \bar{m} \bar{C}$. Now $\operatorname{Ann}_{\bar{R}} \bar{e} \supseteq\left(\operatorname{Ann}_{R} e+(x)\right) /(x)$. Therefore, $\operatorname{dim} \bar{R} / \operatorname{Ann} \bar{R} \bar{e} \leq \operatorname{dim} R /\left(\operatorname{Ann}_{R} e+\right.$ $(x))=\operatorname{dim}\left(R / \operatorname{Ann}_{R} e\right)-1$ since $x \notin p$ for any $p \in \Lambda_{1}$. As $x \notin p$ for any $p \in \Lambda_{0}$, we have that x is part of a system of parameters for R. Hence, $R /(x)$ has a big Cohen-Macaulay module (namely $M / x M$). By induction, $s \geq \operatorname{codim}_{\bar{R}}\left(\operatorname{Ann}_{\bar{R}} \bar{e}\right)=\operatorname{dim} \bar{R}-\operatorname{dim} R / \operatorname{Ann} \bar{R} \bar{e} \geq \operatorname{dim} R-1-\left(\operatorname{dim} R / \operatorname{Ann}_{R} e-1\right)=\operatorname{codim} \operatorname{Ann}_{R} e$.

Corollary 40 (Improved New Intersection Theorem, Evans-Griffith '81). Let (R, m) is a local ring possessing a big Cohen-Macaulay module. Let F. be as in Theorem 39 and $C=\operatorname{coker} \phi_{1} \neq 0$. Choose $e \in C \backslash m C$. Suppose $(F \text {. })_{p}$ is acyclic for all $p \neq m$ and $\lambda(R e)<\infty$. Then $s \geq \operatorname{dim} R$.

Proof. Suppose $s<\operatorname{dim} R$. We claim ht $I_{r_{i}}\left(\phi_{i}\right) \geq i$ for all i. If not, then there exists $j \in\{1, \ldots, s\}$ and a prime $p \supseteq I_{r_{j}}\left(\phi_{j}\right)$ such that $\operatorname{ht}(p)<j \leq s<\operatorname{dim} R$. Clearly $p \neq m$, so $(F .)_{p}$ is acyclic and thus grade $I_{r_{j}}\left(\phi_{j}\right)_{p} \geq j$. But this is a contradiction, since grade $I_{r_{j}}\left(\phi_{j}\right)_{p} \leq \operatorname{ht} p R_{p}<j$. Thus codim $F . \geq 0$. By Theorem 39, codim $(\operatorname{Ann} e) \leq s$. Since $\lambda(R e)<\infty$, we have $\operatorname{codim}\left(\operatorname{Ann}_{R} e\right)=\operatorname{dim} R$, a contradiction.

Corollary 41 (New Intersection Theorem). Let (R, m) be a local ring possessing a big Cohen-Macaulay module. Let F. be as in Theorem 39 and suppose $H_{i}(F$.$) has finite length for all i$. If $s<\operatorname{dim} R$, then F. is exact.

Proof. If $s=0$, we have $\lambda\left(F_{0}\right)=\lambda\left(H_{0}(F)\right)<\infty$. If $F_{0} \neq$ then $\lambda(R)<\infty$ and thus $\operatorname{dim} R=0$, a contradiction since $s<\operatorname{dim} R$. Thus $F_{0}=0$ and F. is exact.

Now assume $s>0$. Suppose first that $H_{0}(F)=$.0 , that is, $F_{1} \xrightarrow{\phi_{1}} F_{0} \rightarrow 0$ is exact. Then ϕ_{1} splits and ker ϕ_{1} is a (free) direct summand of F_{1}. Let $F_{.}^{\prime}: 0 \rightarrow F_{s} \rightarrow \cdots \rightarrow F_{2} \rightarrow \operatorname{ker} \phi_{1} \rightarrow 0$. Then $H_{0}\left(F_{.}^{\prime}\right)=H_{1}(F$.), which has finite length. By induction on $s, F_{\text {. }}$ is exact and thus F. is exact.

Now suppose $H_{0}(F) \neq$.0 . Let $e \in H_{0}(F) \backslash m H_{0}(F$. $)$. Certainly $\lambda(R e)<\infty$ and $(F .)_{p}$ is exact for all $p \neq m$. By the Improved New Intersection Theorem, $s \geq \operatorname{dim} R$, a contradiction. Hence, F. is exact.

Exercise. (cf. Matsumura, p. 129) Let R be a ring, M an R-module, $x_{1}, \ldots, x_{n} \in R$. Let $I=\left(x_{1}, \ldots, x_{n}\right)$ and assume $I M \neq M$. Then x_{1}, \ldots, x_{n} is M-quasiregular if and only if for every homogenous polynomial $F\left(T_{1}, \ldots, T_{n}\right) \in$ $M\left[T_{1}, \ldots, T_{n}\right]$ of degree v such that $F\left(x_{1}, \ldots, x_{n}\right) \in I^{v+t} M$ for some t, all the coefficients of F has lie in $I^{t} M$.

Theorem 42 (Monomial Conjecture). Let (R, m) be a local ring possessing a big Cohen Macaulay module and x_{1}, \ldots, x_{d} a system of parameters for R. Then for all $n \geq 1$ we have $x_{1}^{n} \cdots x_{d}^{n} \notin\left(x_{1}^{n+1}, \ldots, x_{d}^{n+1}\right)$.

Proof. Let M be a balanced big Cohen Macaulay module. Then x_{1}, \ldots, x_{d} is M-quasiregular. Suppose $x_{1}^{n} \cdots x_{d}^{n} \in$ $\left(x_{1}^{n+1}, \ldots, x_{d}^{n+1}\right)$ for some n. Then $x_{1}^{n} \cdots x_{d}^{n} M \subseteq\left(x_{1}^{n+1}, \ldots, x_{d}^{n+1}\right) M$.

Claim. For all $t \geq 0,\left(x_{1}^{n} \cdots x_{d}^{n}\right) I^{t} M \subseteq\left(x_{1}^{n+1}, \ldots, x_{d}^{n+1}\right) I^{n d-n-1+t} M$.
Proof. By multiplication by I^{t} it is enough to show for $t=0$. Let $u \in M$. We know $u\left(x_{1}^{n} \cdots x_{d}^{n}\right)=$ $m_{1} x_{1}^{n+1}+\ldots+m_{d} x_{d}^{n+1}$ for some $m_{1}, \ldots, m_{d} \in M$. Let $F\left(T_{1}, \ldots, T_{d}\right)=m_{1} T_{1}^{n+1}+\ldots+m_{d} T_{d}^{n+1}$. Then $F(I)$ is homogenous of degree $n+1$. Now $F\left(x_{1}, \ldots, x_{d}\right)=\left(x_{1} \cdots x_{d}\right)^{n} u \in I^{n d} M$. By the exercise, $m_{i} \in I^{n d-n-1} M$ for all i.

Give $\operatorname{gr}_{I}(M)$ the natural $R / I\left[T_{1}, \ldots, T_{d}\right]-$ module structure where $T_{i} f=x_{i}^{*} f$ for all $f \in \operatorname{gr}_{I}(M)$ where $x_{i}^{*}=x_{i}+I^{2} \in$ $I / I^{2} \subseteq \operatorname{gr}_{I}(R)$. By claim, $(*)\left(T_{1}^{n} \cdots T_{d}^{n}\right) \operatorname{gr}_{I}(M) \subseteq\left(T_{1}^{n+1}, \ldots, T_{d}^{n+1}\right) \operatorname{gr}_{I}(M)$ (the degree t piece of the right hand side is $\left[\left(x_{1}^{n+1}, \ldots, x_{d}^{n+1}\right) I^{n-t-1} M+I^{n-t} M\right] / I^{n-t} M$ and of the left hand side is $\left.\left[\left(x_{1}^{n} \cdots x_{d}^{n}\right) I^{t-n d} M+I^{t-n d+1} M\right] / I^{t-n d+1} M.\right)$ As x_{1}, \ldots, x_{d} is M-quasiregular, $\operatorname{gr}_{I}(M) \cong M / I M\left[T_{1}, \ldots, T_{d}\right]$ as an $R / I\left[T_{1}, \ldots, T_{d}\right]$-module. Thus (*) implies $\left(T_{1} \cdots T_{d}\right)^{n} M / I M\left[T_{1}, \ldots, T_{d}\right] \subseteq\left(T_{1}^{n+1}, \ldots, T_{d}^{n+1}\right) M / I M\left[T_{1}, \ldots, T_{d}\right]$, a contradiction to polynomial division.

Theorem 43 (Acyclicity Lemma, Peskine-Szpiro '74). Let R be a ring of characteristic $p>0$ and G. : $0 \rightarrow$ $G_{s} \xrightarrow{\phi_{s}} \cdots \rightarrow G_{0}$ be a complex of finitely generated free R-modules. Then G. is acyclic if and only if $F(G$.$) is$ acyclic.

Proof. For any $\phi: R^{m} \rightarrow R^{n}$ and any $r \geq 0$ we see $I_{r}\left(\phi^{[p]}\right)=I_{r}(\phi)^{[p]}$ (where $\phi^{[p]}=F(\phi)$). In particular, $\sqrt{I_{r}(\phi)}=\sqrt{I_{r}\left(\phi^{[p]}\right)}$ and so grade $I_{r}(\phi)=\operatorname{grade} I_{r}\left(\phi^{[p]}\right)$. By Buchsbaum Eisenbud, G. is acyclic if and only if grade $I_{r_{i}}\left(\phi_{i}\right) \geq i$, which is if and only if grade $I_{r_{i}}\left(\phi_{i}^{[p]}\right) \geq i$ which is if and only if $F(G$.) is acyclic.

Corollary 44. (R, m) local, M a finitely generated $R-$ module and $\operatorname{pd}_{R} M<\infty$. Then $\operatorname{Tor}_{i}^{R}\left(R^{F}, M\right)=0$ for all $i \geq 1$.

Proof. Let G. be a finite free resolution of M. By the acyclicity lemma, $F(G)=.R^{F} \otimes G$. is a free resolution of $F(M)$. In particular $\operatorname{Tor}_{i}^{R}\left(R^{F}, M\right)=H_{i}\left(R^{F} \otimes G.\right)=0$ for all $i \geq 1$.

Corollary 45 (Kunz, '68). Let (R, m) be a regular local ring. Then R^{F} is a flat R-module (that is, F is an exact functor).

Note that the converse is also true (but harder).
Suppose we have a complex F. $0 \rightarrow F_{s} \rightarrow \cdots \rightarrow F_{0}$ with codimension F. ≥ 0. If R is Cohen Macaulay, then F. is acyclic by Buchsbaum-Eisenbud. If R is the homomorphic image of a Cohen Macaulay ring, then there exists $c \in R$ (not contained in any minimal prime) such that R_{c} is Cohen Macaulay. Then $(F .)_{c}$ is acyclic and there exists n such that $C^{n} H_{i}(F)=$.0 for all $i>0$.

Q: Does there exist a non nilpotent element c such that $c H_{i}(F)=$.0 for all $i>0$ for any complex F. such that $\operatorname{codim} F \geq 0$?

The answer is yes in the case that R is the homomorphic image of a Gorenstein ring. The proof of this fact uses Spectral Sequences, which are discussed in the appendix.

Theorem 46. Let (R, m) be a local ring and F. : $0 \rightarrow F_{s} \rightarrow F_{s-1} \rightarrow \cdots \rightarrow F_{0} \rightarrow 0$ a complex of finitely generated free R-modules such that $\lambda\left(H_{i}(F)\right)<\infty$ for all i. Let $I_{i}=\operatorname{Ann}_{R} H_{m}^{i}(R)$ for $i \geq 0$. Then for $0 \leq i \leq s$, $I_{0} I_{1} \cdots I_{s-i} H_{i}(F)=0.$.

Proof. Let $\underline{x}=\left(x_{1}, \ldots, x_{d}\right)$ be a system of parameters and K the Čech complex of R with respect to \underline{x}. Then $H^{i}\left(K^{\cdot}\right)=H_{(\underline{x})}^{i}(R)=H_{m}^{i}(R)$. Reindex F. as $F^{\cdot}: 0 \rightarrow F^{0} \rightarrow F^{1} \rightarrow \cdots \rightarrow F^{s} \rightarrow 0$ (so $F^{i}=F_{s-i}$). Then $H^{i}\left(F^{\cdot}\right)=H_{s-i}(F$.$) . We want to prove I_{0} \cdots I_{j} H^{j}\left(F^{\cdot}\right)=0$ for all $j \geq 0$.

Let C be the first quadrant double complex $K^{\cdot} \otimes F^{\cdot}$. First filter by the columns:

$$
\begin{aligned}
{ }^{I} E_{1}^{p q} & =H_{v}^{q}\left(K^{p} \otimes F^{\cdot}\right) \\
& =K^{p} \otimes H_{v}^{q}\left(F^{\cdot}\right) \text { as } K^{p} \text { is flat for all } p \\
& =\left\{\begin{array}{ll}
H^{q}\left(F^{\cdot}\right) & \text { if } p=0 \\
0 & \text { if } p>0
\end{array} \text { as } R_{x_{i}} \otimes H^{i}\left(F^{\cdot}\right)=0 \text { for all } i\right.
\end{aligned}
$$

Thus the sequence ${ }^{I} E_{1}^{p q}$ collapses and we get $H^{p+q}\left(F^{\cdot}\right)={ }^{I} E_{\infty}^{p q}=H^{p+q}(\operatorname{Tot}(C))$. Now filter by the rows:

$$
\begin{aligned}
{ }^{I I} E_{1}^{p q} & =H_{h}^{q}\left(K^{\cdot} \otimes F^{p}\right) \\
& =H^{q}\left(K^{\cdot}\right) \otimes F^{p} \text { as } F^{p} \text { is free, hence flat } \\
& =H_{m}^{q}(R)^{n_{p}}, \text { for } n_{p}=\operatorname{rank} F_{p}
\end{aligned}
$$

By definition of I_{q}, we see $I_{q}{ }^{I I} E_{1}^{p q}=0$ and so $I_{q}{ }^{I I} E_{\infty}^{p q}=0$ for all p, q as ${ }^{I I} E_{\infty}^{p q}$ is a subquotient of ${ }^{I I} E_{1}^{p q}$.
By the main convergence theorem of spectral sequences, ${ }^{I I} E_{1}^{p q} \Rightarrow H^{p+q}(\operatorname{Tot}(C)) \cong H^{p+q}\left(F^{\cdot}\right)$. Thus for any $n \in \mathbb{Z}$, there exists a filtration $\left\{F^{p} H^{n}\right\}_{p \in \mathbb{Z}}$ where $H^{n}=H^{n}\left(F^{\cdot}\right)$ such that $F^{p} H^{n} / F^{p+1} H^{n} \cong{ }^{I I} E_{\infty}^{p, n-p}$ for all p. As ${ }^{I I} E_{1}^{p q}$ is a first quadrant spectral sequence, ${ }^{I I} E_{1}^{p, n-p}=0$ if $p<0$ or $p>m$. Hence the filtration of H^{n} has the form $0=F^{n+1} H^{n} \subseteq F^{n} H^{n} \subseteq \cdots \subseteq F^{1} H^{n} \subseteq F^{0} H^{n}=H^{n}$. Since $I_{n-p}{ }^{I I} E_{\infty}^{p, n-p}=0$, we have $I_{n-p} F^{p} H^{n} \subseteq F^{p+1} H^{n}$ and hence $I_{n} I_{n-1} \cdots I_{0} H^{n}=0$.

Recall for a ring R and $\underline{x}=x_{1}, \ldots, x_{n} \in R$ that the Koszul Complex is defined by $K .(\underline{x})=\otimes_{i=1}^{n}\left(0 \rightarrow R \xrightarrow{x_{i}} R \rightarrow 0\right)$. The $i^{\text {th }}$ Koszul homology is written $H_{i}(\underline{x})=H_{i}(K .(\underline{x}))$ for all i, where $H_{i}(\underline{x})=0$ for $i<0$ and $i>n$. Also recall the following basic facts of Koszul Homology:
(1) $H_{0}(\underline{x})=R /(\underline{x})$
(2) $H_{n}(\underline{x})=\left(0:_{R}(\underline{x})\right)$
(3) $(\underline{x}) H_{i}(\underline{x})=0$ for all i. In particular, if (R, m) is local and $\sqrt{(\underline{x})}=m$, then $\lambda\left(H_{i}(\underline{x})\right)<\infty$ for all i.
(4) Let $\underline{x}^{\prime}=x_{1}, \ldots, x_{n-1}$. Then there is a long exact sequence

$$
\cdots H_{i}\left(\underline{x}^{\prime} \xrightarrow{ \pm x_{n}}\right) H_{i}\left(\underline{x}^{\prime}\right) \rightarrow H_{i}(\underline{x}) \rightarrow H_{i-1}\left(\underline{x}^{\prime}\right) \xrightarrow{\mp x_{n}} \cdots .
$$

(5) If (R, m) is local and $\underline{x} \in m$, then \underline{x} is a regular sequence if and only if $H_{i}(\underline{x})=0$ for all $i \geq 1$.

Corollary 47. Let (R, m) be a local Noetherian ring of dimension d and x_{1}, \ldots, x_{n} part of a system of parameters for R. Let $I_{i}=\operatorname{Ann}_{R} H_{m}^{i}(R)$. Then
(1) $I_{0} \cdots I_{d-i} H_{i}(\underline{x})=0$
(2) $I_{0} \cdots I_{d-1} \cdot\left[\left(\left(x_{1} \cdots x_{n-1}\right): x\right) /\left(x_{1}, \ldots, x_{n-1}\right)\right]=0$.

Proof. (1) Extend x_{1}, \ldots, x_{n} to a full system of parameters x_{1}, \ldots, x_{d} and induct on $d-n$. For $n=d, \lambda\left(H_{i}(\underline{x})\right)<\infty$ for all i (by fact 3 above). Let $K^{\cdot}=F^{*}$ in the previous theorem to get the result.

Suppose $n<d$. For a given $t \geq 1$, let $\underline{x}(t)=x_{1}, \ldots, x_{n}, x_{n+1}^{t}$. This is part of a system of parameters. By induction, $I_{0} \cdots I_{d-i} H_{i}(\underline{x}(t))=0$. From the long exact sequence in fact 4 above, we have

where $K \cong H_{i}(\underline{x}) / x_{n+1}^{t} H_{i}(\underline{x}) \subseteq H_{i}(\underline{x}(t))$. Since $H_{i}(\underline{x}(t))$ is annihilated by $I_{0} \cdots I_{d-i}$, we have $I_{0} \cdots I_{d-i} H_{i}(\underline{x}) \subseteq$ $x_{n+1}^{t} H_{i}(\underline{x})$ for all t. Thus by Krull's Intersection Theorem, $I_{0} \cdots I_{d-i} H_{i}(\underline{x})=0$.
(2) Induct on n. For $n=1$, we have $\left(0: x_{1}\right) \cong H_{1}\left(x_{1}\right)$. By part $1, I_{0} \cdots I_{d-1} H_{1}\left(x_{1}\right)=0$. So suppose $n>1$. From the long exact sequence

we know $K=\left(\underline{x}^{\prime}: x_{n}\right) /\left(\underline{x}^{\prime}\right)$. Of course by part 1 , we have $I_{0} \cdots I_{d-1} H_{n}(\underline{x})=0$ and so $I_{0} \cdots I_{d-1} K=0$.
Lemma 48. Let (S, n) be Gorenstein of dimension d and M a finitely generated S-module. Then $\operatorname{dim} \operatorname{Ext}_{s}^{i}(M, S) \leq$ $d-i$.

Proof. Let $p \in \operatorname{Supp}_{R} \operatorname{Ext}_{S}^{i}(M, S)$. So $\operatorname{Ext}_{S}^{i}(M, S)_{p} \cong \operatorname{Ext}_{S_{p}}^{i}\left(M_{p}, S_{p}\right) \neq 0$. Then $\operatorname{Ext}_{S_{p}}^{i}\left(M_{p}, S_{p}\right)^{\vee} \neq 0$, which implies $H_{p R_{p}}^{\operatorname{dim} S_{p}-i}\left(M_{p}\right) \neq 0$ by Local Duality. Then $\operatorname{dim} S_{p}-i \geq 0$, which implies $\operatorname{dim} S-\operatorname{dim} S / p \geq i$. Thus $\operatorname{dim} S / p \leq$ $d-i$.

Theorem 49. Let (R, m) be the homomorphism image of a Gorenstein ring, $d=\operatorname{dim} R$. Let $I_{i}=\operatorname{Ann}_{R} H_{m}^{i}(R)$. Then $\operatorname{dim} R / I_{i} \leq i$ for all i. In particular, $\operatorname{dim} R / I_{0} \cdots I_{d-1}<R$ (so $I_{0} \cdots I_{d-1}$ contain no nilpotent elements).

Proof. Let $R=S / J$ where (S, n) is a local Gorenstein ring of dimension t. By local duality, $I_{i}=\operatorname{Ann}_{R} H_{m}^{i}(R)=$ $\operatorname{Ann}_{R} H_{m}^{i}(R)^{\vee}=\operatorname{Ann}_{R} \operatorname{Ext}_{S}^{t-i}(R, S)$. By the lemma, $\operatorname{dim} S / \operatorname{Ann}_{R} \operatorname{Ext}_{S}^{t-i}(R, S) \leq t-(t-i)=i$.

Exercise. Let (R, m) be the homomorphic image of a Gorenstein ring with $\operatorname{dim} R>0$. Then there exists $c \in m$ such that $\operatorname{dim} R /(c)<\operatorname{dim} R$ and $c \cdot\left[\left(x_{1}, \ldots, x_{n-1}\right): x_{n} /\left(x_{1}, \ldots, x_{n-1}\right)\right]=0$ for all partial system of parameters x_{1}, \ldots, x_{n}.

Theorem 50 (New Intersection Theorem). Suppose (R, m) is a local ring of characteristic $p>0$. Let F.: $0 \rightarrow$ $F_{s} \xrightarrow{\phi_{s}} \cdots F_{1} \xrightarrow{\phi_{1}} F_{0} \rightarrow 0$ be a complex of finitely generated free $R-$ modules such that $\lambda\left(H_{i}(F).\right)<\infty$. If $s<\operatorname{dim} R$, then F. is exact.

Proof. Use induction on s. If $s=0$, we have $0 \rightarrow F_{0} \rightarrow 0$. Since $\lambda\left(H_{0}(F).\right) \leq \infty$, we have $\lambda\left(F_{0}\right)<\infty$. Since F_{0} is a free module, $F_{0}=0$ or $\lambda(R)<\infty$. If $\lambda(R)<\infty$, then $\operatorname{dim} R=0$, a contradiction as $s<\operatorname{dim} R$. Thus $F_{0}=0$ and F. is exact. So suppose $s>0$. Note that we can complete R as F. is exact if and only if \hat{F}. is exact. Thus we may assume R is the homomorphic image of a Gorenstein ring.

Case 1. $H_{0}(F)=$.0 . Then ϕ_{1} splits and we can form the complex $F_{.}^{\prime}: 0 \rightarrow F_{s} \rightarrow \cdots \rightarrow F_{2} \rightarrow$ $\operatorname{ker} \phi_{1} \rightarrow 0$ where $\operatorname{ker} \phi_{1}$ is free. So $\lambda\left(H_{i}\left(F_{.}^{\prime}\right)\right)<\infty$ for all i. By induction, F^{\prime}. is exact and thus F. is exact.
Case 2. $H_{0}(F) \neq$.0 . Suppose $\phi_{1}\left(F_{1}\right) \not \subset m F_{0}$. Then $I_{1}\left(\phi_{1}\right) \not \subset m$, which implies im ϕ_{1} contains a free direct summand of rank 1 . Then we can define ϕ_{1}^{\prime} as $F_{1}=F_{1}^{\prime} \oplus R \xrightarrow{A} F_{0}=F_{0}^{\prime} \oplus R$ with $A=\left(\begin{array}{cc}\phi_{1}^{\prime} & 0 \\ 0 & 1\end{array}\right)$. Now replace $F_{1} \xrightarrow{\phi_{1}} F_{0}$ with $F_{1}^{\prime} \xrightarrow{\phi_{1}^{\prime}} F_{0}^{\prime}$ and repeat this process until $\phi_{1}\left(F_{1}\right) \subseteq m F_{0}$. Then apply the Frobenius functor to F. Note that $H_{i}(F(F)$.$) has finite length for all i$ as

$$
\begin{aligned}
\lambda\left(H_{i}(F(F .))\right)<\infty \text { for all } i & \Leftrightarrow\left(F_{R}(F .)\right)_{p} \text { is exact for all } p \neq m \\
& \Leftrightarrow F_{R_{p}}\left((F .)_{p}\right) \text { is exact for all } p \neq m \\
& \Leftrightarrow(F .)_{p} \text { is exact for all } p \neq m \\
& \Leftrightarrow \lambda\left(H_{i}(F .)\right)<\infty \text { for all } i .
\end{aligned}
$$

Let F^{e} denote the Frobenius functor applied e times. Then $\lambda\left(H_{i}\left(F^{e}(F).\right)\right)<\infty$ for all i. Also $F^{e}\left(\phi_{1}\right)\left(F_{1}\right) \subseteq m^{\left[p^{e}\right]} F_{0}$ for all e as $\phi_{1}\left(F_{1}\right) \subseteq m F_{0}$. Now $H_{0}(F.) \cong F_{0} / \operatorname{im} \phi_{1} \rightarrow F_{0} / m F_{0}$ and
$H_{0}\left(F^{e}(F).\right) \cong F_{0} / \operatorname{im} F^{e}\left(\phi_{1}\right) \rightarrow F_{0} / m^{\left[p^{e}\right]} F_{0}$. Thus $\operatorname{Ann}_{R} H_{0}\left(F^{e}(F).\right) \subseteq \operatorname{Ann}_{R} F_{0} / m^{\left[p^{e}\right]} F_{0}=m^{\left[p^{e}\right]}$. By the theorem, $I_{0} \cdots I_{s} H_{0}\left(F^{e}(F).\right)=0$ for all e and thus by Krull's Intersection Theorem, $I_{0} \cdots I_{s}=$ (0).

Lemma 51. For a local ring (R, m) of dimension d and a system of parameters $\underline{x}=x_{1}, \ldots, x_{d}$, there exists k such that for all $t>k$ and all $n\left(x_{1} \cdots x_{d}\right)^{n} \notin\left(x_{1}^{n+t}, \ldots, x_{d}^{n+t}\right)$.

Proof. Recall $H_{m}^{d}(R)=R_{x_{1} \cdots x_{d}} / \sum_{i=1}^{d} R_{x_{1} \cdots \hat{x}_{i} \cdots x_{d}}$ is generated by $\left\{\left.\frac{1}{\left(x_{1} \cdots x_{d}\right)^{t}} \right\rvert\, t \geq 1\right\}$. Now

$$
\left.\begin{array}{rl}
\frac{1}{\left(x_{1} \cdots x_{d}\right)^{t}} & \overline{0}
\end{array}\right) \quad \Leftrightarrow \frac{1}{\left(x_{1} \cdots x_{d}\right)^{t}}=\sum \frac{r_{i}}{\left(x_{1} \cdots x_{i} \cdots x_{d}\right)^{s}} \text { for } r_{i} \in R, s \in \mathbb{Z} \text { in } R_{x_{1} \cdots x_{d}} .
$$

Now suppose $\left(x_{1} \cdots x_{d}\right)^{n} \in\left(x_{1}^{n+t}, \ldots, x_{d}^{n+t}\right)$. Then $\left(x_{1} \cdots x_{d}\right)^{n}=r_{1} x_{1}^{n+1}+\cdots+r_{d} x_{d}^{n+t}$. In $R_{x_{1} \cdots x_{d}}$, we have $\frac{1}{\left(x_{1} \cdots x_{d}\right)^{t}}=$ $\sum \frac{r_{i}}{\left(x_{1} \cdots \hat{x}_{i} \cdots x_{d}\right)^{n+t}} \in \sum R_{x_{1} \cdots \hat{x_{i}} \cdots x_{d}}$. Thus in $H_{m}^{d}(R), \frac{1}{\frac{1}{\left(x_{1} \cdots x_{d}\right)^{t}}}=0$. Thus

$$
\overline{\frac{1}{\left(x_{1} \cdots x_{d}\right)^{t}}}=0 \text { in } H_{m}^{d}(R) \Leftrightarrow \text { there exists } n \text { such that }\left(x_{1} \cdots x_{d}\right)^{n} \in\left(x_{1}^{n+t}, \ldots, x_{d}^{n+t}\right)
$$

Since $H_{m}^{d}(R) \neq 0, \overline{\frac{1}{\left(x_{1} \cdots x_{d}\right)^{t}}} \neq \overline{0}$ for some t (and thus for all $t>k$ for some k by multiplication). Thus there exists k such that for all $t>k$ and for all $n\left(x_{1} \cdots x_{d}\right)^{n} \notin\left(x_{1}^{n+t}, \ldots, x_{d}^{n+t}\right)$.

Theorem 52 (Monomial Conjecture). Let (R, m) be local of characteristic p and $\underline{x}=x_{1}, \ldots, x_{d}$ a system of parameters for r. Then for all n we have $\left(x_{1} \cdots x_{d}\right)^{n} \notin\left(x_{1}^{n+1}, \ldots, x_{d}^{n+1}\right)$.

Proof. Suppose for some n that $\left(x_{1} \cdots x_{d}\right)^{n}=r_{1} x_{1}^{n+1}+\cdots+r_{d} x_{d}^{n+1}$. Take p^{e}-th powers to get $\left(x_{1} \cdots x_{d}\right)^{n p^{e}}=$ $r_{1}^{p^{e}} x_{1}^{p^{e}(n+1)}+\cdots+r_{d}^{p^{e}} x_{d}^{p^{e}(n+1)} \in\left(x_{1}^{p^{e} n+p^{e}}, \ldots, x_{d}^{p^{e} n+p^{e}}\right)$. This contradicts the lemma as we can choose e so p^{e} is as large as necessary.

Definition. Let R be a ring, $x_{1}, \ldots, x_{n} \in R$ and M an R-module. Suppose there exists $y \in M \backslash\left(x_{1}, \ldots, x_{s}\right) M$ for some $s \leq n$ such that $x_{s+1} y \in\left(x_{1}, \ldots, x_{s}\right) M$. Let $M^{\prime}=M \oplus R^{s} / R w$ where $w=y-\left(x_{1} e_{1}+\ldots+x_{s} e_{s}\right)$ (here e_{1}, \ldots, e_{s} is a basis for R^{s} and identify M and R^{s} with their images in $\left.M \oplus R^{s}\right)$. There is an obvious map $M \rightarrow M^{\prime}$ defined by $m \mapsto \overline{(m, 0)}$. Given $f \in M$, let f^{\prime} be the image of f under $M \rightarrow M^{\prime}$. We say $(M, f) \rightarrow\left(M^{\prime}, f^{\prime}\right)$ is an \underline{x}-modification of type s.

More generally, a sequence of \underline{x}-modifications $(M, f)=\left(M_{0}, f_{0}\right) \rightarrow\left(M_{1}, f_{1}\right) \rightarrow \cdots \rightarrow\left(M_{r}, f_{r}\right)=(N, g)$ where $\left(M_{i+1}, f_{i+1}\right)$ is an \underline{x}-modification of $\left(M, f_{i}\right)$ of type s_{i+1} is called an \underline{x}-modification of (M, f) of type $\left(s_{1}, \ldots, s_{r}\right)$. We say this modification is non-degenerate if $g \notin(\underline{x}) N$.

Lemma 53. Let $(N, f) \rightarrow\left(N^{\prime}, f^{\prime}\right)$ be an \underline{x}-modification. Suppose there exists an \underline{x}-regular modification m. Then for any R-module homomorphism $\phi: N \rightarrow M$ there exists a map $\phi^{\prime}: N^{\prime} \rightarrow M$ such that the diagram below commutes.

Proof. By definition, there exists $y \in N \backslash\left(x_{1}, \ldots, x_{s}\right) N$ such that $x_{s+1} y \in\left(x_{1}, \ldots, x_{s}\right) N$ and $N^{\prime}=N \oplus R^{s} / R w$ where $w=y-\left(x_{1} e_{1}+\ldots+x_{s} e_{s}\right)$. Then $x_{s+1} \phi(y) \in\left(x_{1}, \ldots, x_{s}\right) M$. As M is $\underline{x}-$ regular, $\phi(y)=x_{1} m_{1}+\ldots+x_{s} m_{s}$ for $m_{i} \in M$. Define $\psi: N \oplus R^{s} \rightarrow M$ by $\left(n, \sum r_{i} e_{i}\right) \mapsto \phi(n)+\sum r_{i} m_{i}$. Then $\psi(w)=\psi\left(y-\sum x_{i} e_{i}\right)=\phi(y)-\sum r_{i} m_{i}=0$. Then $\bar{\psi}: N^{\prime} \rightarrow M$ clearly extends to ϕ. Define $\bar{\psi}=\phi^{\prime}$.

Proposition 54. Suppose there exists an \underline{x}-regular R-module M. Then every \underline{x}-modification of type $\left(s_{1}, \ldots, s_{r}\right)$ of $(R, 1)$ is non-degenerate.

Proof. Consider the following diagram obtained by the lemma

where ϕ_{0} is defined by by $1 \mapsto g$ for some $g \in M \backslash \underline{x} M$. As the diagram commutes, $\phi_{r}\left(f_{r}\right)=\phi_{0}(1)=g \notin(\underline{x}) M$. So $f_{r} \notin(\underline{x}) M_{r}$. So the modification is non-degenerate.

Theorem 55. Suppose R is Noetherian, $\underline{x}=x_{1}, \ldots, x_{n} \in R$, and every \underline{x}-modification of $(R, 1)$ is non-degenerate. Then there exists an R-module M such that M is \underline{x}-regular.

Proof. First define a direct system $\left\{M_{j}, \phi_{i j}\right\}_{i, j \in \mathbb{N}}$ where $\phi_{i j}: M_{i} \rightarrow M_{j}$ for $i \leq j$ is defined with $M_{0}=R$ and $\phi_{00}=i d$. Suppose M_{1}, \ldots, M_{j} and $\phi_{j k}$ for $i \leq k \leq j$ have been defined.

Case 1. \underline{x} is weakly M_{j}-regular. Then stop.
Case 2. \underline{x} is not weakly M_{j}-regular. Choose i least and then s least such that there exists $y \in M_{i}$ with $\phi_{i j}(y) \notin\left(x_{1}, \ldots, x_{s}\right) M_{j}$ but $x_{s+1} \phi_{i j}(y) \in\left(x_{1}, \ldots, x_{s}\right) M_{j}$. Let $M_{j+1}=M_{j} \oplus R^{s} / R w$ where $w=$ $\phi_{i j} y-\left(\sum_{1}^{r} x_{i} e_{i}\right)$. Then M_{j+1} is an \underline{x}-modification of M_{j} of type s. We say step $j+1\left(M_{j} \rightarrow M_{j+1}\right)$ has index (i, s).

Note that, by construction, every $\left(M_{j}, \phi_{0 j}(1)\right)$ is an \underline{x}-modification of $(R, 1)$. Now if case 1 occurs, we have \underline{x} is weakly M_{j}-regular and (by hypothesis) $\phi_{0 j}(1) \notin(\underline{x}) M_{j}$. So $M_{j} \neq(\underline{x}) M_{j}$ which implies \underline{x} is M_{j}-regular and we are done. Thus we are in the case that the process iterated indefinitely, gives us a direct system. Note for all $i \leq j$ that $\left(M_{i}, f\right) \rightarrow\left(M_{j}, \phi_{i j}(f)\right)$ is a (multistep) \underline{x}-modification. In particular, $\left(M_{j}, \phi_{0 j}(1)\right)$ is an \underline{x}-modification of $(R, 1)$ and is thus non-degenerate. Also, each M_{j} is finitely generated and therefore Noetherian. Let $M=\underset{\longrightarrow}{\lim } M_{i}$ and $\psi: M_{i} \rightarrow M$ the direct limit maps. So for all $i \leq j$ we have $\psi_{i}=\psi_{j} \phi_{i j}$. Recall that every element in M has the form $\psi_{i}\left(m_{i}\right)$ for some $m_{i} \in M_{i}$ and $\psi_{i}\left(m_{i}\right)=0$ if and only if there exists $j \geq i$ such that $\phi_{i j}\left(M_{i}\right)=0$.

Claim 1. $M \neq(\underline{x}) M$
Proof. We will show $\psi_{0}(1) \notin(\underline{x}) M$. Suppose $\psi_{0}(1)=x_{1} m_{1}+\ldots+x_{n} m_{n}$. Now there exists j and $u_{1}, \ldots, u_{n} \in M_{j}$ such that $\psi_{j}\left(\phi_{0 j}(1)\right)=\psi_{0}(1)=x_{1} \psi_{j}\left(u_{1}\right)+\ldots+x_{n} \psi_{j}\left(u_{n}\right)=\psi_{j}\left(x_{1} u_{1}+\ldots+x_{n} u_{n}\right)$. Thus $\psi_{j}\left(\phi_{0 j}(1)-\left(x_{1} u_{1}+\ldots+x_{n} u_{n}\right)\right)=0$. Therefore there exists $k \geq j$ such that $\phi_{j k}\left(\phi_{0 j}(1)-\right.$ $\left.\sum x_{i} u_{i}\right)=0$ and so $\phi_{0 k}(1)=\phi_{j k}\left(\sum x_{i} u_{i}\right) \in(\underline{x}) M_{k}$. This contradicts the fact that $\left(M_{k}, \phi_{0 k}(1)\right)$ is a non-degenerate x-modification of $(R, 1)$.
Claim 2. For each (i, s) there are only finitely many steps of index (i, s).
Proof. Suppose steps $j_{1}<j_{2}<\cdots$ have index (i, s). Consider the maps $M_{i} \xrightarrow{\phi_{i j_{1}}} M_{j_{1}} \rightarrow M_{j_{2}} \rightarrow \cdots$. For all $k \geq 1$ there exist elements $y_{k} \in M_{i}$ with $\phi_{i j_{k}-1}\left(y_{k}\right) \notin\left(x_{1}, \ldots, x_{s}\right) M_{j_{k}-1}$ but $\phi_{i j_{k}}\left(y_{k}\right) \in$ $\left(x_{1}, \ldots, x_{s}\right) M_{j k}$. Consider the chain of submodules in M_{i} :

$$
\left(x_{1}, \ldots, x_{s}\right) M_{i} \subsetneq \phi_{i j_{1}}\left(\left(x_{1}, \ldots, x_{s}\right) M_{j_{1}}\right) \subsetneq \phi_{i j_{2}}\left(\left(x_{1}, \ldots, x_{s}\right) M_{j_{2}}\right) \subsetneq \cdots
$$

The containments are proper as $y_{j} \in \phi_{i j_{k}}\left(\left(x_{1}, \ldots, x_{s}\right) M_{j k}\right) \backslash \phi_{i j_{k-1}}\left(\left(x_{1}, \ldots, x_{s}\right) M_{j_{k-1}}\right)$.
Claim 3. Fix i, s. Suppose there exists $b \in M_{i}$ such that $x_{s+1} b$
$i n\left(x_{1}, \ldots, x_{s}\right) M_{i}$. Then $\phi_{i j}(b) \in\left(x_{1}, \ldots, x_{s}\right) M_{j}$ for $j \gg 0$.
Proof. Its easy to see that if it is true for some j, then it is true for all $j^{\prime} \geq j$. So suppose $\phi_{i j}(b) \notin$ $\left(x_{1}, \ldots, x_{s}\right) M_{j}$ for all $j \geq i$. This would mean infinitely many steps of index (i, s), contrary to claim 2.

We will show M is \underline{x}-regular. Suppose $x_{s+1} m=x_{1} m_{1}+\ldots+x_{s} m_{s}$ for $m, m_{1}, \ldots, m_{s} \in M$. As before, we get $b, b_{1}, \ldots, b_{s} \in M_{j}$ such that $x_{s+1} \underbrace{\psi_{j}(b)}_{=m}=x_{1} \underbrace{\psi_{j}\left(b_{1}\right)}_{=m_{1}}+\ldots+x_{s} \underbrace{\psi_{j}\left(b_{s}\right)}_{=m_{s}}$. Then $x_{s+1} \phi_{j k}(b)=x_{1} \phi_{j k}\left(b_{1}\right)+\ldots+x_{s} \phi_{j k}\left(b_{s}\right)$ for $k \geq j$. By claim $3, \phi_{j \ell} \in\left(x_{1}, \ldots, x_{s}\right) M_{\ell}$ for $\ell \gg 0$ and so applying ψ_{ℓ} gives $m \in\left(x_{1}, \ldots, x_{s}\right) M$.

Theorem 56. Suppose R is Noetherian and $\underline{x}=x_{1}, \ldots, x_{n} \in R$. TFAE
(1) There exists an R-module M such that \underline{x} is M-regular (that is, M is \underline{x}-regular)
(2) Every (\underline{x})-modification of $(R, 1)$ is non-degenerate.

Definition. Let $x_{1}, \ldots, x_{n} \in R$ and M and R-module. Suppose $x_{s+1} y \in\left(x_{1}, \ldots, x_{s}\right) M$ for some $y \in M$. Let $M^{\prime}=\left(M+R^{s}\right) / R w$ where $w=y-\left(x_{1} e_{1}+\ldots+x_{s} e_{s}\right)$. Then M^{\prime} is called a quasi-x-modification of M.

Note. This is a weaker condition than for an \underline{x}-modification as we do not require $y \notin\left(x_{1}, \ldots, x_{s}\right) M$. As we will see, this weaker definition is necessary when using the Frobenius map.

Proposition 57. Let (R, m) be a homomorphic image of a Gorenstein ring. Then there exists $c \in m$ such that $\operatorname{dim} R /(c)<\operatorname{dim} R$ and for all system of parameters \underline{x} of R and every sequence $(R, 1)=\left(M_{0}, f_{0}\right) \rightarrow \cdots \rightarrow\left(M_{r}, f_{r}\right)$ of quasi- $\underline{\underline{x}}$-modifications, one has a commutative diagram

By commutativity, $\phi_{i}\left(f_{i}\right)=c^{i}$ for all i.
Proof. Let $d=\operatorname{dim} R$ (assume $d>0$). Let $I_{i}=\operatorname{Ann}_{R} H_{m}^{i}(R)$. By a previous result, $\operatorname{dim} R / I_{0} \cdots I_{d-1}<\operatorname{dim} R$. Choose $c \in\left(I_{0} \cdots I_{d-1} \cap m\right) \backslash \cup_{\operatorname{dim} R / p=d} p$. By another result, for all system of parameters $\underline{x}=x_{1}, \ldots, x_{d}$ of R, we have $c\left(\left(x_{1}, \ldots, x_{s}\right): x_{s+1}\right) \subset\left(x_{1}, \ldots, x_{s}\right)$ for all $1 \leq s \leq d-1$. Construct ϕ_{i} inductively. Let $\phi_{0}=1_{R}$. Suppose $\phi_{0}, \ldots, \phi_{i}$ have been chosen. We have $M_{i+1}=M_{i} \oplus R^{s} / R w$ for some s where $x_{s+1} y \in\left(x_{1}, \ldots, x_{s}\right) M$ and $w=y-\left(x_{1} e_{1}+\ldots+x_{s} e_{s}\right)$. Then $p h i_{i}: M_{i} \rightarrow R_{i}$ has $x_{s+1} \phi_{i}(y) \in\left(x_{1}, \ldots, x_{s}\right) \phi_{i}\left(M_{i}\right) \subseteq\left(x_{1}, \ldots, x_{s}\right)$. This implies $\phi_{i}(y) \in\left(x_{1}, \ldots, x_{s}: R x_{s+1}\right)$ and so $c \phi_{i}(y) \in\left(x_{1}, \ldots, x_{s}\right)$. Thus $c \phi_{i}(y)=x_{1} u_{1}+\ldots+x_{s} u_{s}$ for some $u_{i} \in R$. Define $\widetilde{\phi}_{i+1}: M_{i} \oplus R^{s}$ by $m+\sum r_{i} e_{i} \mapsto$ $c \phi_{i}(m)+\sum r_{i} u_{i}$. Note $\left.\widetilde{\phi}_{i+1}(w)=\widetilde{\phi}_{i+1}\left(y-\sum x_{i} e_{i}\right)=c \phi_{i} y\right)-\sum x_{i} u_{i}=0$. Therefore, we get an induced map $\phi_{i+1}: M_{i} \oplus R^{2} / R w \rightarrow R$. Note for $m \in M_{i}$ that $\phi_{i+1}(m)=c \phi_{i}(m)$. This makes the square commute.

Notation. Let R be a ring of characteristic $p>0$. Given an $R-$ module M, let $F(M):=R^{F} \otimes_{R} M$, viewed as a left R-module. Given $f \in M$, let $F(f)$ denote $1 \otimes f \in F(M)$. If $M=R^{n}$, say $f=\sum r_{i} e_{i}$. Then $F(f)=1 \otimes f=$ $1 \otimes\left(\sum r_{i} e_{i}\right)=\sum r_{i}^{p}\left(1 \otimes e_{i}\right)=\sum r_{i}^{p} e_{i} \in R^{n}=F\left(R^{n}\right)$. For this reason, denote $F(f)$ by f^{p} and similarly $F^{e}(f)$ by $f^{p^{e}}$.

Note that if $f=r_{1} u_{1}+\ldots+r_{n} u_{n}$ for $f, u_{i} \in M$ and $r_{i} \in R$, then $f^{p}=1 \otimes f=1 \otimes\left(\sum r_{i} u_{i}\right)=\sum r_{i}^{p}\left(1 \otimes u_{i}\right)=\sum r_{i}^{p} u_{i}^{p}$.
Lemma 58. Let char $R=p>0$. Suppose $(M, f) \rightarrow\left(M^{\prime}, f^{\prime}\right)$ is a quasi- \underline{x}-modification for $\underline{x}=x_{1}, \ldots, x_{n} \in R$. Then $\left(F(M), f^{p}\right) \rightarrow\left(F\left(M^{\prime}\right),\left(f^{\prime}\right)^{p}\right)$ is a quasi- \underline{x}^{p}-modification.

Proof. Let $M^{\prime}=M \oplus R^{s} / R w$ where $x_{s+1} y=x_{1} z_{1}+\ldots+x_{s} z_{s}$ for $y, z_{i} \in M$ and $q=y-\left(x_{1} e_{1}+\ldots+x_{s} e_{s}\right)$. We have a short exact sequence $0 \rightarrow R w \rightarrow M \oplus R^{s} \rightarrow M^{\prime} \rightarrow 0$. Apply F we have

$$
\underbrace{F(R w)}_{=R F(w)} \stackrel{\psi}{\rightarrow} \underbrace{F(M) \oplus F\left(R^{s}\right)}_{=F(M) \oplus R^{s}} \rightarrow F\left(M^{\prime}\right) \rightarrow 0
$$

Now $\operatorname{im} \psi=R F(w)=R w^{p}$. Thus $F\left(M^{\prime}\right) \cong F(M) \oplus R^{s} / R w^{p}$ where $w^{p}=y^{p}-\sum x_{i}^{p} e_{i}^{p}=y^{p}-\sum x_{i}^{p} e_{i}$ (since we identified $F\left(R^{s}\right)$ with R^{s}, we must identify the basis elements e_{i}^{p} with $\left.e_{i}\right)$ and $x_{s+1}^{p} y^{p}=x_{1}^{p} z_{1}^{p}+\ldots+x_{s}^{p} z_{s}^{p}$.

Theorem 59 (Hochster, '70s). Let (R, m) be a local Noetherian ring of characteristic $p>0$. Then R has a balanced big Cohen Macaulay module.

Proof. It is enough to show R has a big Cohen Macaulay module. Since any system of paramters for \hat{R} is a system of parameters for R, we may assume R is complete and therefore the homomorphic image of a Gorenstein ring. Fix a system of parameters $\underline{x}=x_{1}, \ldots, x_{d} \in R$. It is enough to show every \underline{x}-modification for $(R, 1)$ is nondegenerate. Suppose not. Then there exists a sequence of \underline{x}-modifications $(R, 1)=\left(M_{0}, f_{0}\right) \rightarrow \cdots \rightarrow\left(M_{r}, f_{r}\right)$ where $f_{r} \in\left(x_{1}, \ldots, x_{d}\right) M_{r}$. For any $e \geq 1,(R, 1)=\left(F^{e}\left(M_{0}\right), f_{0}^{p^{e}}\right) \rightarrow \cdots \rightarrow\left(F^{e}\left(M_{r}\right), f_{r}^{p^{e}}\right)$ is a quasi- $\underline{x}^{p^{e}}$-modification of $(R, 1)$ and $f_{r}^{p^{e}} \in\left(x_{1}^{p^{e}}, \ldots, x_{d}^{p^{e}}\right) F^{p}\left(M_{r}\right)$. By the proposition, there exists $c \in R$ such that $\operatorname{dim} R /(c)<\operatorname{dim} R$ and for all $e \geq 1$ there exists a diagram

By commutativity of the diagram, $\phi_{r e}\left(f_{r}^{p^{e}}\right)=c^{r}$. On the other hand, $c^{r}=\phi_{r e}\left(f_{r}^{p^{e}}\right) \in\left(x_{1}^{p^{e}}, \ldots, x_{d}^{p^{e}}\right) \phi_{r e}\left(F^{e}\left(M_{r}\right)\right) \subseteq R$, which implies $c^{r} \in \cap_{e}\left(x_{1}^{p^{e}}, \ldots, x_{d}^{p^{e}}\right)=(0)$, a contradiction as c is not nilpotent.

Definition. Let R be a domain. The absolute integral closure of R, denoted R^{+}, is the integral closure of R in a fixed algebraic closure of $Q(R)$, the quotient field of R.

Except in trivial cases, R^{+}is non-Noetherian.
Theorem 60 (Hochster-Huneke, '92). If (R, m) is a local excellent Noetherian domain of characteristic $p>0$, then R^{+}is a balanced big Cohen Macaulay module (in fact, algebra) for R.

Examples of excellent rings include finitely generated algebras over a field and complete rings. Most rings that we encounter are excellent.

Theorem 61 (Huneke-Lyubeznik, '06). Let (R, m) be a local domain which is the homomorphic image of a Gorenstein ring with characteristic $p>0$. Then R^{+}is a balanced big Cohen Macaulay algebra.

We will prove this latter result, but first we must prove some preliminary results.

Remarks.

(1) The two theorems above give the existence of balanced big Cohen Macaulay algebras for arbitrary local rings of characteristic $p>0$.

Proof. Let $p \in \operatorname{Spec} \hat{R}$. Then $\operatorname{dim} \hat{R} / p=\operatorname{dim} \hat{R}=\operatorname{dim} R$. Now \hat{R} / p meets the requirements of one of the above theorems and thus $(\hat{R} / p)^{+}$is a balanced big Cohen Macaulay algebra for \hat{R} / p and therefore R (as any system of parameters for R is one for $\hat{R} / p)$.
(2) For a domain R, we have $\left(R^{+}\right)_{p}=\left(R_{p}\right)^{+}$for all $p \in \operatorname{Spec} R$ (as $Q(R)=Q\left(R_{p}\right)$ and localization commutes with integral closures)
(3) For (R, m) a domain, $I \subseteq m$, we have $I R^{+} \neq R^{+}$.

Proof. Suppose $I R^{+}=R^{+}$. Since R^{+}is a ring, this says $1=i_{1} s_{1}+\ldots+i_{k} s_{k}$ for $s_{i} \in R^{+}$. Let $S=R\left[s_{1}, \ldots, s_{k}\right]$. Then S is a finitely generated R-module and $I S=S$, a contradiction to NAK.

Proposition 62. Let Λ be a class of catenary Noetherian local domains which is closed under localization. (e.g. $\Lambda=$ $\{$ excellent local rings of characteristic $p\}$ or $\Lambda=\{$ local rings which are homomorphic images of Gorenstein rings $\}$. TFAE
(1) For all local rings $(R, m) \in \Lambda, H_{m}^{i}\left(R^{+}\right)=0$ for all $i<\operatorname{dim} R$.
(2) For all $(R, m) \in \Lambda, R^{+}$is a balanced big Cohen Macaulay algebra.

Proof. For $(2) \Rightarrow(1)$, let $(R, m) \in \Lambda$ and \underline{x} a system of parameters for R. So $H_{m}^{i}\left(R^{+}\right)=\check{H}_{(\underline{x})}^{i}\left(R^{+}\right)$. By $(2), \underline{x}$ is regular on R^{+}and so $\operatorname{grade}\left(\underline{x}, R^{+}\right) \geq \operatorname{Grade}\left(\underline{x}, R^{+}\right) \geq d$. By definition of grade, $H_{\underline{x}}^{i}\left(R^{+}\right)=0$ for all $i<d$.

For $(1) \Rightarrow(2)$, let $(R, m) \in \Lambda$.
Claim 1. Let $x_{1}, \ldots, x_{j} \in m$ be R^{+}-regular. Then $H_{m}^{i}\left(R^{+} /\left(x_{1}, \ldots, x_{j}\right) R^{+}\right)=0$ for all $i<\operatorname{dim} R-j$.
Proof. Induct on j. For $j=0$, done by (1). For $j \geq 1$, use the short exact sequence

$$
0 \rightarrow R^{+} /\left(x_{1}, \ldots, x_{j-1}\right) R^{+} \xrightarrow{x_{j}} R^{+} /\left(x_{1}, \ldots, x_{j-1}\right) R^{+} \rightarrow R^{+} /\left(x_{1}, \ldots, x_{j}\right) R^{+} \rightarrow 0 .
$$

Using (1), the long exact sequence on homology and the induction hypothesis
$H_{m}^{i}\left(R^{+} /\left(x_{1}, \ldots, x_{j-1}\right) R^{+}\right) \xrightarrow{x_{j}} \underbrace{H_{m}^{i}\left(R^{+} /\left(x_{1}, \ldots, x_{j-1}\right) R^{+}\right)}_{=0 \text { for } i<\operatorname{dim} R-j+1} \rightarrow H_{m}^{i}\left(R^{+} /\left(x_{1}, \ldots, x_{j}\right) R^{+}\right) \rightarrow \underbrace{H_{m}^{i+1}\left(R^{+} /\left(x_{1}, \ldots, x_{j-1}\right) R^{+}\right)}_{=0 \text { for } i<\operatorname{dim} R-j} \xrightarrow{x_{j}} \cdots$
Thus $H_{m}^{i}\left(R^{+} /\left(x_{1}, \ldots, x_{j}\right) R^{+}\right)=0$ for $i<\operatorname{dim} R-j$.
Consequently, we have the following claim.
Claim 2. If x_{1}, \ldots, x_{j} is $R^{+}-$regular and $j<\operatorname{dim} R$, then $H_{m}^{0}\left(R^{+} /\left(x_{1}, \ldots, x_{j}\right) R^{+}\right)=0$.
Let $x_{1}, \ldots, x_{d} \in m$ be a system of parameters for R. Induct on j to show x_{1}, \ldots, x_{j} is R^{+}-regular. As R^{+}is a domain, the $j=1$ case is done. So suppose $j \geq 1$. Assume x_{1}, \ldots, x_{j} is R^{+}-regular and suppose x_{j+1} is a zerodivisor on $R^{+} /\left(x_{1}, \ldots, x_{j}\right) R^{+}$. Then there exists $p \in \operatorname{Ass}_{R} R^{+} /\left(x_{1}, \ldots, x_{j}\right) R^{+}$with $x_{j+1} \in p$. Then $\frac{x_{j+1}}{1} \in p R_{p} \in$ $\operatorname{Ass}_{R_{p}}\left(R^{+}\right)_{p} /\left(x_{1}, \ldots, x_{j}\right)\left(R^{+}\right)_{p}$. So $(*) H_{p R_{p}}^{0}\left(\left(R_{p}\right)^{+} /\left(x_{1}, \ldots, x_{j}\right)\left(R_{p}\right)^{+}\right) \neq 0$.

Claim 3. $j<\operatorname{dim} R_{p}$.
Proof. Since x_{1}, \ldots, x_{d} is a system of parameters for R, x_{j+1} is not in any minimal prime of $\left(x_{1}, \ldots, x_{j}\right)$ of dimension $\operatorname{dim} R-j$. Suppose $\operatorname{dim} R_{p} \leq j$. Since R is a catenary local domain, $\operatorname{dim} R_{p}+\operatorname{dim} R / p=$ $\operatorname{dim} R=\operatorname{dim} R / p \geq \operatorname{dim} R-j$. So $x_{j+1} \in p$ and $\operatorname{dim} R / p-\operatorname{dim} R-j$, a contradiction.

Now $(*)$ contradicts claim 2 applied to $R_{p} \in \Lambda$.

We will show for $R \in \Lambda=\{$ local domains of char p which are homomorphic images of Gorenstein rings $\}$ that $H_{m}^{i}\left(R^{+}\right)=0$ for all $i<\operatorname{dim} R$.

Notation. Let R be a ring, $\underline{x}=x_{1}, \ldots, x_{n}$ and $C^{\cdot}(\underline{x} ; R)$ the Čech complex. So $C^{i}(\underline{x} ; R)=\bigoplus_{1 \leq j_{1} \leq \cdots \leq j_{i} \leq n} R_{x_{j_{1}} \cdots x_{j_{i}}}$. Fix k with $1 \leq k \leq n$ and let $\Lambda_{k}=\left\{\left(j_{1}, \ldots, j_{k}\right) \mid 1 \leq j_{1} \leq \cdots \leq j_{k} \leq n\right\}$. For $J=\left(j_{1}, \ldots, j_{k}\right) \in \Lambda_{k}$, set $x_{J}:=x_{j_{1}} \cdots x_{j_{k}}, x_{J}^{e}=$
 $\phi: R \rightarrow S$ is a ring homomorphism. Then ϕ induces a chain map

Tensoring gives a natural chain map $\hat{\phi}(\alpha)=\left(\frac{\phi\left(r_{J}\right)}{\phi\left(x_{J}\right)^{e}}\right)$. As $\hat{\phi}$ is a chain map, it induces a map on cohomology $\bar{\phi}: H_{(\underline{x})}^{i}(R) \rightarrow H_{\phi(\underline{x})}^{i}(S)$ defined by $\bar{\alpha} \mapsto \overline{\phi(\alpha)}$.

Let $\phi: R \rightarrow R$ defined by $r \mapsto r^{p}$ be the Frobenius map. This gives a natural map on local cohomology: $\bar{\phi}: H_{I}^{i}(R) \rightarrow H_{I}^{i}(R)$ defined by $\alpha=\left(\frac{r_{J}}{x_{J}^{e}}\right) \mapsto \overline{\alpha^{p}}=\left(\frac{r_{j}^{p}}{\left(x_{J}^{e}\right)^{p}}\right)$.

If $R \hookrightarrow S$ (that is, R is a subring of S), then we can consider $C^{\cdot}(\underline{x} ; R)$ as a subcomplex of $C^{\cdot}(\underline{x} ; S)$. This gives rise to natural maps $H_{(\underline{x})}^{i}(R) \rightarrow H_{(\underline{x})}^{i}(S)$ for all i.

Remark. Let R be a domain, $\underline{x}=x_{1}, \ldots, x_{n} \in R$ and $\underline{y}=y_{1}, \ldots, y_{n} \in R$. Suppose $y_{i} \mid x_{i}$ for all i. Then there are natural chain maps

where the diagram commutes. Tensoring gives a natural chain map $C^{\cdot}(\underline{y} ; R) \rightarrow C^{\cdot}(\underline{x} ; R)$. Since R is a domain, $R_{y_{J}} \rightarrow R_{x_{J}}$ is injective for all J. Thus $C^{\cdot}(\underline{y} ; R) \rightarrow C^{\cdot}(\underline{x} ; R)$ is injective, that is $C^{\cdot}(\underline{y} ; R)$ is a subcomplex of $C^{\cdot}(\underline{x} ; R)$.

- Special Case: Let $y_{i}=1$ for all i. Then $C^{\cdot}(\underline{1} ; R)$ is a subcomplex of $C^{\cdot}(\underline{x} ; R)$ for all \underline{x} But the $i^{\text {th }}$ cohomology of $C^{\cdot}(\underline{1} ; R)$ is $H_{(1) R}^{i}(R)=0$ for all i. Thus $C^{\cdot}(\underline{1} ; R)$ is an exact complex.
Hence if $\alpha \in C^{i}(\underline{x} ; R)$ has the form $\left(\frac{r_{J}}{1}\right)_{J \in \Lambda_{i}}$ and is a cycle, then α is a boundary.
Proposition 63. Let R be a Noetherian domain of characteristic p. Let $K=Q(R)$ and \bar{K} a fixed algebraic closure. Let $I=\left(x_{1}, . ., x_{n}\right)$ be an ideal of R. Let $w=H_{I}^{i}(R)$ and suppose the submodule $\sum_{i=0}^{\infty} R w^{p^{i}}$ is finitely generated. Then there exists $R \subseteq S \subseteq \bar{K}$ where S is a finite R-module such that w goes to zero under the natural map $H_{I}^{i}(R) \rightarrow H_{I}^{i}(S)$.
Proof. Since $\sum R w^{p^{i}}$ is finitely generated (and hence Noetherian), there exists an equation of the form $w^{p^{s}}=$ $r_{s-1} w^{p^{s-1}}+\ldots+r_{1} w$ for $r_{i} \in R$, that is, $w^{p^{s}}-\left(r_{s-1} w^{p^{s-1}}+\ldots+r_{1} w\right)=0$. Let α be a cycle in $C^{i}(\underline{x}, R)$ which lifts w. Then $\alpha^{p^{s}}-\left(r_{s-1} \alpha^{p^{s-1}}+\ldots+r_{1} \alpha\right)=\partial(\beta)$ for some $\beta=\left(\frac{r_{J}}{x_{J}^{e_{J}}}\right) \in C^{i-1}(\underline{x} ; R)$.

We need to find a finite extension S or R such that the image of α in $C(\underline{x} ; S)$ is a boundary. Let $g(T)=$ $T^{p^{s}}-\left(r_{s-1} T^{p^{s-1}}+\ldots+r_{1} T\right) \in R[T]$. So $g(\alpha)-\partial\left(\frac{r_{J}}{x_{J}^{E}}\right)=0$. For each $J \in \Lambda_{i-1}$, let z_{J} be an indeterminate over R. Consider the equation $\left(x_{J}^{e}\right)^{p^{s}}\left(g\left(\frac{z_{J}}{x_{J}}\right)-\frac{r_{J}}{x_{J}^{J}}\right)=0$, a monic polynomial in $R\left[z_{J}\right]$. Let $u_{J} \in \bar{K}$ be a root of this polynomial. Then u_{J} is integral over R. Thus $g\left(\frac{u_{J}}{x_{J}}\right)=\frac{r_{J}}{x_{J}}$ for all J. Let $\beta^{\prime}=\left(\frac{u_{J}}{x_{J}}\right) \in C^{i-1}\left(\underline{x} ; R^{\prime}\right)$ for $R^{\prime}=R\left[u_{J} \mid J \in \lambda_{i-1}\right]$. Therefore $g\left(\beta^{\prime}\right)=\left(\frac{r_{j}}{x_{J}}\right)=\beta$.

Let $\alpha^{\prime}=\alpha-\partial\left(\beta^{\prime}\right) \in C^{i}\left(\underline{x} ; R^{\prime}\right)$. It remains to find a finite extension S of R^{\prime} such that α^{\prime} is a boundary in $C^{\cdot}(\underline{x} ; S)$ as then α is a boundary. Since taking $p^{t h}$ powers induces a chain map on $C^{\cdot}(\underline{x} ; R) \rightarrow C \cdot(\underline{x} ; R)$, we see that $g \partial(y)=\partial g(y)$ for all $y \in C^{\cdot}(\underline{x} ; R)$. Then

$$
g\left(\alpha^{\prime}\right)=g(\alpha)-g \partial\left(\beta^{\prime}\right)=g(\alpha)-\partial g\left(\beta^{\prime}\right)=g(\alpha)-\partial(\beta)=0 .
$$

Let $\alpha^{\prime}=\left(c_{J}\right)_{J \in \Lambda_{i}}$ for $c_{J} \in R_{x_{J}}^{\prime}$. Now $g\left(c_{J}\right)=0$ for all J and thus c_{J} are integral over R^{\prime}. Let $S=R^{\prime}\left[c_{J} \mid J \in \Lambda_{i}\right]$. This is a finite extension over R^{\prime} and hence over R. Now $\alpha^{\prime}=\left(c_{J}\right) \in C^{i}\left(\underline{x}^{\prime} S\right)$ is a cycle. As all components of α^{\prime} are in S, we see α^{\prime} is also a boundary in $C^{\cdot}(\underline{x} ; S)$. Thus the image of w in $H_{J}^{i}(S)$ is zero.

Let $\phi: R \rightarrow S$ be a ring homomorphism and $\underline{x}=x_{1}, \ldots, x_{n} \in R$. Then one has a natural map of chain complexes $\tilde{\phi}: C^{\cdot}(\underline{x} ; R) \rightarrow C^{\cdot}(\phi(\underline{x}) ; S)$. Let $f_{R}: R \rightarrow R$ and $f_{S}: S \rightarrow S$ be the Frobenius maps. Then we have a commutative diagram

This yields a commutative square of cochain complexes and taking homology, we have for all i

Let R be a ring. An R-algebra S which is finitely generated as an R-module will be called finite R-algebra. Let R be a domain, $K=Q(R)$, and \bar{K} a fixed algebraic closure of K. Let

$$
\Lambda(R)=\{S \text { a finite } R \text {-algebra, } R \subset S \subset \bar{K}\}
$$

If $S \in \Lambda(R)$, then S is integral over R. Thus $Q(S)$ is algebraic over K which implies $\overline{Q(S)}=\bar{K}$. Therefore, $\Lambda(S) \subseteq \Lambda(R)$. Recall R^{+}is the integral closure of R in \bar{K}, that is, $R^{+}=\cup_{S \in \Lambda(R)} S=\underline{\lim }_{\longrightarrow} \in \Lambda(R) S$. So

$$
C^{\cdot}\left(\underline{x} ; R^{+}\right)=C^{\cdot}(\underline{x} ; R) \otimes R^{+}=C^{\cdot}(\underline{x} ; R) \otimes_{R}\left(\underline{\lim }_{\longrightarrow} S \in \Lambda(R) S\right)=\underline{\lim }_{\longrightarrow}\left(C^{\cdot}(\underline{x} ; R) \otimes_{R} S\right)=\underline{\lim }_{\longrightarrow} S \in \Lambda(R) H_{(\underline{x})}^{i}(S) .
$$

Thus $H_{(\underline{x})}^{i}\left(R^{+}\right)=H^{i}\left(\underset{\longrightarrow}{\lim _{\longrightarrow}}(\underline{x} ; S)\right)=\lim _{S \in \Lambda(R)} H_{(\underline{x})}^{i}(S)$. In particular, $H_{(\underline{x})}^{i}\left(R^{+}\right)=0$ if and only if for all $\alpha \in H_{(\underline{x})}^{i}(S)$ for $S \in \Lambda(R)$ there exists $T \in \Lambda(S) \subset \Lambda(R)$ such that α maps to zero in the map $H_{(\underline{x})}^{i}(S) \rightarrow H_{(\underline{x})}^{i}(T)$.

Theorem 64 (Huneke, Lyubeznik). Let (R, m) be a Noetherian local domain of characteristic $p>0$, which is the homomorphic image of a Gorenstein local ring (A, n). Let $d=\operatorname{dim} R$. For each $i<d$ and $S \in \Lambda(R)$, there exists $T \in \Lambda(S)$ such that the natural map $H_{m}^{i}(S) \rightarrow H_{n}^{i}(T)$ is zero.

Proof. Without loss of generality, we may assume $\operatorname{dim} A=d$. Induct on d. Since R is a domain, the $d=0$ and $d=1$ cases are trivial. So assume $d>1$ and that the theorem holds for all R with $\operatorname{dim} R<d$ and the above hypotheses. Fix $i<d$ and $S \in \Lambda(R)$.

Claim. For all $p \in \operatorname{Spec} A \backslash\{n\}$, there exists $S(p) \in \Lambda(S)$ such that for all $T \in \Lambda(S(p))$, the natural map $\operatorname{Ext}_{A}^{d-i}(T, A)_{p} \rightarrow \operatorname{Ext}_{A}^{d-i}(S, A)_{r}$ is zero, where the map is induced by the inclusion $S \hookrightarrow T$.
Proof. Fix $p \in \operatorname{Spec} A \backslash\{n\}$ and let $t=\operatorname{dim} A / p>0$. Then $\operatorname{dim} R_{p}=\operatorname{dim} A_{p}=\operatorname{dim} A-\operatorname{dim} A / p=$ $d-t<d$. Note $S_{p} \in \Lambda\left(R_{p}\right)$ and $i-t<d-t=\operatorname{dim} R_{p}$. By the induction hypothesis, there exists $\tilde{S}_{p} \in \Lambda\left(S_{p}\right)$ such that $H_{p R_{p}}^{i-t}\left(S_{p}\right) \rightarrow H_{p R_{p}}^{i-t}(\tilde{S})$ is zero $(*)$. Write $\tilde{S}_{p}=S_{p}\left[z_{1}, \ldots, z_{\ell}\right]$ where z_{i} are integral over S_{p} and thus over R_{p}. We can multiply each z_{i} be any element in $R \backslash p$ and thus assume each z_{i} is integral over R. Let $S(p)=S\left[z_{1}, \ldots, z_{\ell}\right] \in \Lambda(S)$. Note $S(p)_{p}=\tilde{S}_{p}$. We'll show $S(p)$ works. Let $T \in \Lambda(S(p))$. The inclusions $S \rightarrow S(p) \rightarrow T$ induce natural maps

$$
\operatorname{Ext}_{A}^{d-i}(T, A) \rightarrow \operatorname{Ext}_{A}^{d-i}(S(p), A) \xrightarrow{\psi} \operatorname{Ext}_{A}^{d-i}(S, A)
$$

Now localize and note it is enough to show $\psi_{p}=0$, that is, show the map $\psi_{p}: \operatorname{Ext}_{A_{p}}^{d-i}\left(\tilde{S}_{p}, A_{p}\right) \rightarrow$ $\operatorname{Ext}_{A_{p}}^{d-i}\left(S_{p}, A_{p}\right)$ is zero. Let $(-)^{\vee}=\operatorname{Hom}_{A_{p}}\left(-, E_{A_{p}}\left(A_{p}, p A_{p}\right)\right)$. Then it is enough to show $\psi_{p}^{\vee}=0$, that is, $H_{p A_{p}}^{(d-t)-(d-i)}\left(S_{p}\right) \rightarrow H_{p A_{p}}^{(d-t)-(d-i)}\left(\tilde{S}_{p}\right)$ is zero. This is true by $(*)$ and thus the claim holds.

Now $\operatorname{Ext}^{d-i}(S, A)$ is a finitely generated A-module. Let $\Gamma=\left\{P_{1}, \ldots, P_{\ell}\right\}=\operatorname{Ass}_{A} \operatorname{Ext}_{A}^{d-i}(S, A) \backslash\{n\}$. If $\Gamma=\emptyset$, then $\operatorname{Ext}_{A}^{d-i}(S, A)$ has finite length. Otherwise, let $B=S\left[S\left(P_{1}\right), \ldots, S\left(P_{\ell}\right)\right] \subseteq \bar{K}$. As each $S\left(P_{i}\right)$ is a finite integral extension, B is and thus $B \in \Lambda(S)$. In fact, $B \in \Lambda\left(S\left(P_{j}\right)\right)$ for all j. Thus the natural maps $\operatorname{Ext}_{A}^{d-i}(B, A)_{P_{j}} \rightarrow \operatorname{Ext}_{A}^{d-i}(S, A)_{P_{j}}$ are zero for all j by the claim.

Let $\phi: \operatorname{Ext}_{A}^{d-i}(B, A) \rightarrow \operatorname{Ext}_{A}^{d-i}(S, A)$ be the natural map induced by $S \hookrightarrow B$ and let $U:=\operatorname{im} \phi$. Since Ass $A \backslash$ $\{n\} \subseteq \Gamma$ and $U_{p}=0$ for all $P \in \Lambda$, we have $\operatorname{Ass}_{A} U \subseteq\{n\}$. Therefore $\lambda_{A}(U)<\infty$. Let $(-)^{\vee}=\operatorname{Hom}_{A}\left(-, E_{A}(A / n)\right)$ and note $\lambda_{A}\left(U^{\vee}\right)<\infty$. We have

and applying $(-)^{\vee}$ we get

which implies im $\psi \cong U^{\vee}$ and thus $\lambda(\operatorname{im} \psi)<\infty$. Recall ψ commutes with the Frobenius maps $f_{S}: H_{m}^{i}(S) \rightarrow H_{m}^{i}(S)$ defined by $\alpha \mapsto \alpha^{p}$. Therefore, for all $\alpha \in H_{m}^{i}(S)$, we see $\psi(\alpha)^{p}=f_{T}(\psi(\alpha))=\psi\left(f_{T}(\alpha)\right) \in \operatorname{im} \psi$. Thus for all $\beta \in \operatorname{im} \psi$, we have $\beta^{p^{e}} \in \operatorname{im} \psi$ for all e. As $\lambda(\operatorname{im} \psi) M \infty$, we know $\operatorname{im} \psi$ is Noetherian and thus $\sum_{e \geq 0} R \beta^{p^{e}}$ is finitely generated for all β. By the proposition, for all $\beta \in \operatorname{im} \psi$, there exists $T_{\beta} \in \Lambda(\beta)$ such that $\beta \mapsto 0$ under the map $H_{m}^{i}(B) \rightarrow H_{m}^{i}\left(T_{\beta}\right)$. Let $\operatorname{im} \psi=R \beta_{1}+\ldots+R \beta_{t}$ and $T=B\left[T_{\beta_{1}}, \ldots, T_{\beta_{t}}\right] \subset \Lambda(B) \subseteq \Lambda(S)$. Thus im ψ goes to zero under the map $H_{m}^{i}(B) \rightarrow H_{m}^{i}(T)$. Therefore, $H_{m}^{i}(B) \rightarrow H_{m}^{i}(T)$ is zero and thus $H_{m}^{i}(S) \xrightarrow{\psi} H_{m}^{i}(B) \rightarrow H_{m}^{i}(T)$ is zero.

Corollary 65. With R as above, $H_{m}^{i}\left(R^{+}\right)=0$ for all $i<d$ and thus R^{+}is a big Cohen Macaulay algebra.
Let $\underline{x}=x_{1}, \ldots, x_{n}$ and $\underline{y}=y_{1}, \ldots, y_{m}$ be indeterminants over \mathbb{Z}. Let $S \subseteq \mathbb{Z}[\underline{x}, \underline{y}]$. We say S has a solution of height n in a Noetherian ring R if there exists $\underline{a}=a_{1}, \ldots, a_{n} \in R$ and $\underline{b}=b_{1}, \ldots, b_{m} \in R$ such that
(1) $f(\underline{a}, \underline{b})=0$ for all $f \in S$
(2) $\mathrm{ht}(\underline{a} R=n$.

Theorem 66 (Hochster's Finiteness Theorem). Suppose a set $S \subseteq \mathbb{Z}[\underline{x}, \underline{y}]$ has a solution of height n in some Noetherian ring containing a field. Then S has a solution of height n in an affine domain R over a finite field (so $R=k\left[T_{1}, \ldots, T_{\ell}\right] / p$ for some finite k). In particular, S has a solution (\bar{a}, \bar{b}) in a Noetherian local domain R of characteristic $p>0$ where \underline{a} is a system of parameters for R.

Proof. Uses Artin approximation and Henselization.
For the following, we will make use of Proposition 54 and Theorem 56 where we replace \underline{x}-modification with quasi- \underline{x}-modification.

Proposition 67. Fix $r, n \geq 1$ and integers s_{1}, \ldots, s_{r} such that $1 \leq s_{i} \leq n-1$ for all i. Then there exists a set $S \subseteq \mathbb{Z}\left[x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{m}\right]$ (where S and m depend on s_{1}, \ldots, s_{r}) such that given any ring R and elements $\underline{a}=a_{1}, \ldots, a_{n} \in R$, TFAE
(1) There exists a degenerate quasi- \underline{a}-modification of $(R, 1)$ of type $\left(s_{1}, \ldots, s_{r}\right)$
(2) There exists $\underline{b}=b_{1}, \ldots, b_{m} \in R$ such that $f(\underline{a}, \underline{b})=0$ for all $f \in S$.

Sketch of proof. Suppose $(R, 1)=\left(M_{0}, f_{0}\right) \rightarrow \cdots \rightarrow\left(M_{r}, f_{r}\right)$ is a degenerate quasi- $\underline{a}-$ modification (that is, $f_{r} \in$ (a) M) of type $\left(s_{1}, \ldots, s_{r}\right)$. Then $M_{i-1} \rightarrow M_{i}$ is an $\underline{a}-$ modification of type s_{i}, that is, $M_{i}=M_{i-1} \oplus F_{i} / R w_{i}$ where F_{i} is free with basis $\left\{e_{1}^{i}, ., e_{s_{i}}^{i}\right\}$ and $w_{i}=y_{i} \backslash \sum_{j=1}^{s_{i}} a_{j} e_{j}^{i}$ for $y_{i} \in M_{i-1}$ with $a_{s_{i}+1} y_{i} \in\left(a_{1}, \ldots, a_{s_{i}}\right) M_{i-1}$. Now $M_{i}=\oplus_{1}^{i} F_{j} / \sum_{1}^{i} R w_{j}$ where $F_{0}=R$. Each y_{i} can be written in terms of the basis elements of $\oplus_{0}^{r} F_{j}$. Then each w_{i} can be expressed similarly. The condition $a_{s_{i}+1} y_{i} \in\left(a_{1}, \ldots, a_{s_{i}}\right) M_{i-1}$ can be expressed in terms of the basis elements. Degeneracy means $1=e_{1}^{0} \in\left(a_{1}, \ldots, a_{n}\right) M_{r}$ which gives another equation in terms of the basis elements. Each equation among the basis elements gives one equation in the ring R for each basis element. Replace all coefficients by variables (replace $a_{i}^{\prime} \mathrm{s}$ with $x_{i}^{\prime} \mathrm{s}$ and all other coefficients with $y_{i}^{\prime} \mathrm{s}$). This gives a set of equations in $\mathbb{Z}[\underline{x}, \underline{y}]$.

Corollary 68. If (R, m) is a Noetherian local ring contain a field, then R has a balanced big Cohen Macaulay module.

Proof. Let $\underline{x}=x_{1}, \ldots, x_{n}$ be a system of parameters for R. It is enough to show every quasi- $\underline{x}-$ modification of $(R, 1)$ is non-degenerate. Suppose not. Then there exists a degenerate \underline{x}-modification of $(R, 1)$ of type s_{1}, \ldots, s_{r}. Then the set S described in the proposition has a solution in R of height n. By Hochster's Finiteness Theorem, S has a solution of height n in some local ring of characteristic p of $\operatorname{dim} n$. This contradicts Proposition 54.

Theorem 69 (Bass' Conjecture). Let (R, m) be a Noetherian local ring. Suppose R has a nonzero finitely generated module of finite injective dimension. Then R is Cohen Macaulay.

To prove Bass' Conjecture, we need first need several lemmas and a proposition that will allow us to use the New Intersection Theorem. First, recall the following facts.
Facts.
(1) (R, m) Noetherian. If M is finitely generated and $\operatorname{id}_{R} M<\infty$, then $\operatorname{id}_{R} M=\operatorname{depth} R$.
(2) R Noetherian, M finitely generated, $q \subseteq p$ primes with $\operatorname{ht}(q / p)=n$. If $\mu_{i}(q, M) \neq 0$, then $\mu_{i+n}(p, M) \neq 0$ where $\mu_{i}(p, M):=\operatorname{dim}_{k(p)} \operatorname{Ext}_{R_{p}}^{i}\left(k(p), M_{p}\right)$ for $k(p)=R_{p} / p R_{p}$.

Lemma 70. Let (R, m) be Noetherian and M a finitely generated R-modules such that $\operatorname{id}_{R} M<\infty$. Then for all $p \in \operatorname{Supp} M, \operatorname{dim} R / p+\operatorname{depth} R_{p}=\operatorname{depth} R$.

Proof. Next time.
Lemma 71. Let R be Noetherian and M a finitely generated $R-\operatorname{module}$. Then $\operatorname{Supp}_{R} M=\cup_{i} \operatorname{Supp}_{R} \operatorname{Ext}_{R}^{i}(M, R)$.
Proof. Recall Grade $M:=\inf \left\{i \mid \operatorname{Ext}_{R}^{i}(M, R) \neq 0\right\}$ and Grade $M=\operatorname{Grade} R / \operatorname{Ann}_{R} M=\operatorname{depth}_{\operatorname{Ann}_{R} M} R<\infty$ if Ann $M \neq R$, that is, if $M \neq 0$. Thus $M \neq 0$ if and only if $\operatorname{Ext}_{R}^{i}(M, R) \neq 0$ for some i. Therefore, $M_{p} \neq 0$ if and only if $\operatorname{Ext}_{R_{p}}^{i}\left(M_{p}, R_{p}\right) \neq 0$.

Lemma 72. Let (R, m) be a complete Noetherian ring and $M, N R$-modules. Suppose N is finitely generated or Artinian. Then for all i there exist natural isomorphisms $\operatorname{Ext}_{R}^{i}(M, N) \cong \operatorname{Tor}_{i}^{R}\left(M, N^{\vee}\right)^{\vee}$ where $(-)^{\vee}=\operatorname{Hom}_{R}\left(-, E_{R}(R / m)\right)$.

Proof. Let F. be a projective resolution of M. Then as $N^{\vee \vee} \cong N$, we have

$$
\begin{aligned}
\operatorname{Tor}_{i}^{R}\left(M, N^{\vee}\right)^{\vee} & \cong H_{i}\left(F . \otimes_{R} N^{\vee}\right)^{\vee} \cong H^{i}\left(\left(F . \otimes_{R} N^{\vee}\right)^{\vee}\right) \cong H^{i}\left(\operatorname{Hom}_{R}\left(F . \otimes N^{\vee}, E\right)\right) \\
& \cong H^{i}\left(\operatorname{Hom}_{R}\left(F ., \operatorname{Hom}_{R}\left(N^{\vee}, E\right)\right)\right) \cong H^{i}\left(\operatorname{Hom}_{R}(F ., N)\right) \cong \operatorname{Ext}_{R}^{i}(M, N)
\end{aligned}
$$

Lemma 73. Let (R, m) be a complete Noetherian local ring. Then for all finitely generated or Artinian R-modules C, there exists a natural isomorphism $\operatorname{Hom}_{R}(E, C)=\operatorname{Hom}_{R}\left(\operatorname{Hom}_{R}(C, E), R\right) \cong\left(C^{\vee}\right)^{*}$.

Proof.

$$
\begin{aligned}
\operatorname{Hom}_{R}(E, C) & \cong \operatorname{Hom}_{R}\left(E, C^{\vee \vee}\right) \cong \operatorname{Hom}_{R}\left(E, \operatorname{Hom}_{R}\left(C^{\vee}, E\right)\right) \cong \operatorname{Hom}_{R}\left(E \otimes C^{\vee}, E\right) \cong \operatorname{Hom}_{R}\left(C^{\vee} \otimes E, E\right) \\
& =\operatorname{Hom}_{R}\left(C^{\vee}, \operatorname{Hom}_{R}(E, E)\right) \cong \operatorname{Hom}_{R}\left(C^{\vee}, R\right)
\end{aligned}
$$

Proposition 74. Let (R, m) be a complete Noetherian local ring and T a finitely generated R-module of finite injective dimension. Let $M=\operatorname{Ext}_{R}^{r}(E, T)$ where $r=\operatorname{depth} R$. Then M is finitely generated, $\operatorname{pd} M=r-\operatorname{depth} T$, and $\operatorname{Supp} M=\operatorname{Supp} T$.

Proof. Let $I: 0 \rightarrow I^{0} \rightarrow \cdots \rightarrow I^{r} \rightarrow 0$ be a minimal injective resolution of T (since $\left.r=\operatorname{depth} R=\operatorname{id}_{R} T\right)$. Recall each $I^{i}=\oplus_{p \in \operatorname{Spec} R} E_{R}(R / p)^{\mu_{i}(p, T)}$. Let $E=E_{R}(R / m)$ and note $\operatorname{Hom}_{R}(E, E(R / p))=\left\{\begin{array}{ll}R, & \text { if } p=m \\ 0, & \text { if } p \neq m\end{array}\right.$. Apply $\operatorname{Hom}_{R}(E,-)$ to $I^{\prime}:$

$$
0 \rightarrow \underbrace{\operatorname{Hom}_{R}\left(E, I^{0}\right)}_{=R^{\mu_{0}(m, T)}} \rightarrow \cdots \rightarrow \underbrace{\operatorname{Hom}_{R}\left(E, I^{r}\right)}_{=R^{\mu_{r}(m, T)}} \rightarrow 0
$$

This gives a free resolution (1)F$=\operatorname{Hom}_{R}\left(E, I^{\cdot}\right)$ where $F^{i}=R^{\mu_{i}(m, T)}$. Now F^{\cdot} is a complex of finitely generated R-modules. Recall $H_{m}^{0}(E(R / p))=\left\{\begin{array}{ll}E, & \text { if } p=m \\ 0, & \text { if } p \neq m\end{array}\right.$. Thus $H_{m}^{\cdot}\left(I^{i}\right)=E^{\mu_{i}(m, T)}$ and so $(2) F^{\cdot}=\operatorname{Hom}_{R}\left(E, H_{m}^{0}\left(I^{\cdot}\right)\right)$. Note that from (1), $\operatorname{Ext}_{R}^{i}(E, T)=H^{i}\left(F^{\cdot}\right)$.

Claim 1. $\operatorname{Ext}_{R}^{i}(E, T)=0$ for all $i<r$.
Proof. By Lemma $72, \operatorname{Ext}_{R}^{i}(E, T) \cong \operatorname{Tor}\left(E, T^{\vee}\right)^{\vee}$. Now T^{\vee} is Artinian and thus

$$
T^{\vee}=\cup_{n \geq 1}\left(0:_{T^{\vee}} m^{n}\right)=\underline{\lim _{\longrightarrow}} \operatorname{Hom}_{R}\left(R / m^{n}, T^{\vee}\right)=\varliminf_{\longrightarrow}^{\lim } \underbrace{\operatorname{Hom}_{R}\left(R / m^{n}, \operatorname{Hom}_{R}(T, E)\right)}_{=T_{n}}
$$

Note $\lambda\left(T_{n}\right)<\infty$ as $\lambda\left(T / m^{n} T\right) \infty$. Thus we have $\operatorname{Tor}_{i}^{R}\left(E, T^{\vee}\right)^{\vee}=\operatorname{Tor}_{i}\left(E, \underline{\longrightarrow} \lim _{n}\right)^{\vee}=\left(\underset{\longrightarrow}{\lim } \operatorname{Tor}_{i}^{R}\left(E, T_{n}\right)\right)^{\vee}=$ $\underset{\rightleftarrows}{\rightleftarrows} \operatorname{Tor}_{i}^{R}\left(E, T_{n}\right)^{\vee}=\lim \operatorname{Tor}_{i}^{R}\left(T_{n}, E\right)^{\vee} \cong \operatorname{Ext}_{R}^{i}\left(T_{n}, R\right)$ by Lemma 72. As $\lambda\left(T_{n}\right)<\infty$, we see $\operatorname{Ext}_{R}^{i}\left(T_{n}, R\right)=0$ for all $i<r$.
Thus F^{*} is a finite free resolution of $M=\operatorname{Ext}_{R}^{r}(E, T)$ and also M is finitely generated.
Claim 2. $\operatorname{Ext}_{R}^{i}(M, R) \cong H_{m}^{r-i}(T)^{\vee}$
Proof. From (2) and Lemma 73, we see $F^{\cdot}=\operatorname{Hom}_{R}\left(E, H_{m}^{0}\left(I^{\cdot}\right)\right)=\operatorname{Hom}_{R}\left(H^{0}\left(I^{\cdot}\right)^{\vee}, R\right)$ as $H_{m}^{0}\left(I^{\cdot}\right)$ is a complex of Artinian modules. Thus

$$
\operatorname{Hom}_{R}\left(F^{\cdot}, R\right) \cong \operatorname{Hom}_{R}\left(\operatorname{Hom}_{R}\left(H_{m}^{0}\left(I^{\cdot}\right)^{\vee}, R\right), R\right) \cong\left[H_{m}^{0}\left(I^{\cdot}\right)^{\vee}\right]^{* *} \cong H_{m}^{0}\left(I^{\cdot}\right)^{\vee}
$$

as $H_{m}^{0}\left(I^{*}\right)^{\vee}$ is a bounded complex of finitely generated free R-modules. Since F^{*} is a free resolution of M,

$$
\operatorname{Ext}_{R}^{i}(M, R) \cong H_{r-i}\left(\operatorname{Hom}_{R}\left(F^{\cdot}, R\right)\right) \cong H_{r-i}\left(H_{m}^{0}\left(I^{\cdot}\right)^{\vee}\right) \cong H^{r-i}\left(H_{m}^{0}\left(I^{\cdot}\right)\right)^{\vee} \cong H_{m}^{r-i}(T)^{\vee}
$$

Thus if $i>r-\operatorname{depth} T$, then $r-i<\operatorname{depth} T$ and so $\operatorname{Ext}_{R}^{i}(M, R) \cong H_{m}^{r-i}(T)^{\vee}=0$. Since $H_{m}^{\text {depth } T}(T) \neq 0$, we see $\operatorname{Ext}_{0}^{r-\operatorname{depth} T}(M, R) \neq 0$. Thus $\operatorname{pd}_{R} M=r-\operatorname{depth} T$ since $\operatorname{pd}_{R} M<\infty$.

By Lemma 71 and Claim 2, we see Supp $M=\cup_{i} \operatorname{Supp}_{\operatorname{Ext}}^{R}{ }_{R}^{i}(M, R)=\cup_{i} \operatorname{Supp} H_{m}^{r-i}(T)^{\vee}$.
Claim 3. $\operatorname{Supp}_{R} T=\cup_{i} \operatorname{Supp}_{R} H_{m}^{i}(T)^{\vee}$ 。
Proof. Let $R=S / J$ where (S, n) is Gorenstein of dimension d. By local duality, $H_{m}^{i}(T)^{\vee} \cong H_{n}^{i}(T)^{\vee} \cong$
$\operatorname{Ext}_{S}^{d-i}(T, S)$. Let $\overline{(-)}$ denote mod $J . \operatorname{So~Supp}{ }_{R} T=\overline{\operatorname{Supp}_{S} T}=\cup_{i} \overline{\operatorname{Supp}_{S} \operatorname{Ext}_{S}^{i}(T, S)}=\cup_{i} \overline{\operatorname{Supp} H_{n}^{i}(T)^{\vee}}=$ $\cup_{i} \operatorname{Supp}_{R} H_{m}^{i}(T)^{\vee}$.
Thus Supp $M=\operatorname{Supp} T$.
Recall for (R, m) local $T \neq 0$ a finite generated $R-\operatorname{module}$ with $\operatorname{id}_{R} T<\infty$ that $\operatorname{id}_{R} T=\operatorname{depth} R=\sup \left\{i \mid \operatorname{Ext}_{R}^{i}(R / m, T) \neq\right.$ $0\}$.

Lemma 75. Let (R, m) be Noetherian and T a finitely generated R-modules such that $\operatorname{id}_{R} T<\infty$. Then for all $p \in \operatorname{Supp}_{R} T$ with $\operatorname{dim} R / p=1$, depth $R \geq \operatorname{depth} R_{p}+1$.

Proof. Choose $x \in m \backslash p$. Consider the short exact sequence $(*) 0 \rightarrow R / p \underset{\rightarrow}{x} R / p \rightarrow R /(p, x) \rightarrow 0$. Note $\lambda(R /(p, x))<\infty$ and $\operatorname{dim} R / p=1$. Since $p \in \operatorname{Supp}_{R} T$ we see $T_{p} \neq 0$ and $s:=\operatorname{id}_{R_{p}} T_{p}=\operatorname{depth} R_{p}=\sup \left\{i \mid \operatorname{Ext}_{R}^{i}(R / p, T)_{p} \neq 0\right\}$ by above. In particular, $\operatorname{Ext}_{R}^{s}(R / p, T) \neq 0$. Applying $\operatorname{Hom}_{R}(-, T)$ to $(*)$ gives

$$
\underbrace{\operatorname{Ext}_{R}^{s}(R / p, T)}_{=0} \stackrel{x}{\rightarrow} \operatorname{Ext}_{R}^{s}(R / p, T) \rightarrow \operatorname{Ext}_{R}^{s+1}(R /(p, x), T) \rightarrow \cdots
$$

By Nakayama's Lemma, multiplication by x is not surjective. Thus $\operatorname{Ext}_{R}^{s+1}(R /(p, x), T) \neq 0$. By induction on the length, we have $\operatorname{Ext}_{R}^{s+1}(R / m, T) \neq 0$. Thus depth $R=\operatorname{id}_{R} T \geq s+1=\operatorname{depth} R_{p}+1$.
Theorem 76. Let (R, m) be Noetherian and $T \neq 0$ a finitely generated $R-$ module such $\operatorname{id}_{R} T<\infty$. Then R is Cohen Macaulay.

Proof. WLOG, assume R is complete. We will induct on the dimension of T. If $\operatorname{dim} T=0$, then there exists a finitely generated R-module M such that $\operatorname{pd}_{R} M<\infty$ and $\operatorname{dim} M=0$ by the Proposition. Let F. be a minimal free resolution of M. Say F. $0 \rightarrow F_{s} \rightarrow \cdots \rightarrow F_{0} \rightarrow 0$. Then $\lambda\left(H_{i}(F).\right)=\lambda(M)$ if $i=0$ and is zero for $i>0$. As $M \neq 0, F$. is not exact. So $\operatorname{pd}_{R} M=s \geq \operatorname{dim} R$. By the Auslander Buchsbaum formula, $\operatorname{pd}_{R} M \leq \operatorname{depth} R$ and thus $\operatorname{dim} R=\operatorname{depth} R$.

Assume $\operatorname{dim} T>0$. Let M be a finitely generated R-module such that $\operatorname{pd} M<\infty$ and $\operatorname{Supp} M=\operatorname{Supp} T$ and let $q \in \operatorname{Spec} R$ such that $\operatorname{dim} R / q=\operatorname{dim} R$.

Case 1. $\operatorname{dim} M / q M>0$. Choose $p \in \operatorname{Supp}_{R} M / q M$ such that $\operatorname{dim} R / p=1$. Clearly $p \supseteq q$. As R is catenary, $\operatorname{dim} R / p+\operatorname{ht}(p / q)=\operatorname{dim} R / q=\operatorname{dim} R$. Then $\operatorname{dim} R_{p} \geq \operatorname{ht}(p / q)=\operatorname{dim} R-1$. Since $\operatorname{dim} R_{p} \neq \operatorname{dim} R$, we have $\operatorname{dim} R_{p}=\operatorname{dim} R-1$. Since $p \in \operatorname{Supp} M=\operatorname{Supp} T$, the lemma implies $\operatorname{depth} R \geq \operatorname{depth} R_{p}+1$. Since $\operatorname{dim} T_{p}<\operatorname{dim} T$, induction gives that R_{p} is Cohen Macaulay. So $\operatorname{dim} R=\operatorname{dim} R_{p}+1=\operatorname{depth} R_{p}+1 \leq \operatorname{depth} R$. Thus R is Cohen Macaulay.
Case 2. $\operatorname{dim} M / q M=0$. Let F. be a minimal free resolution of M. Say $F: 0 \rightarrow F_{s} \rightarrow \cdots \rightarrow F_{0} \rightarrow 0$. Apply $-\otimes R / q: 0 \rightarrow F_{s} / q F_{s} \rightarrow \cdots \rightarrow F_{0} / q F_{0} \rightarrow 0$. Then $H_{i}(F . \otimes R / q)=\operatorname{Tor}_{i}^{R}(M, R / q)$, which implies $\operatorname{Supp} H_{i}(F . \otimes R / q)=m$ and thus $\lambda\left(H_{i}(F . \otimes R / q)\right)<\infty$. Also, $H_{0}(F . \otimes R / q)=M / q M \neq 0$. So $F . \otimes R / q$ is not exact. By New Intersection Theorem, $s=\operatorname{pd}_{R} M \geq \operatorname{dim} R / q=\operatorname{dim} R$. Then $\operatorname{depth} R \geq \operatorname{pd}_{R} M \geq \operatorname{dim} R$. Thus R is Cohen Macaulay.

Conjecture (Direct Summand Conjecture). Let R be a regular local ring and suppose $R \subseteq S$ where S is a finite R-algebra. Then R is a direct summand of S as an R-module (that is, the inclusion map $i: R \hookrightarrow S$ splits).

We say "DSC holds for R " when the direct summand conjecture is true for all $S \supseteq R$.
Proposition 77. Let R be a regular local ring containing a field of characteristic 0 . Then DSC holds for R.
Proof. Let $R \subseteq S$ where S is a finite R-algebra.
Claim. It suffices to prove DSC holds in the case S is a domain.
Proof. Since S is integral over $R, \operatorname{dim} R=\operatorname{dim} S=d$. Let $p \in \operatorname{Spec} S$ such that $\operatorname{dim} R / p=d$. Then S / p is integral and finite over $R / p \cap R$. So $d=\operatorname{dim} S / p=\operatorname{dim} R / p \cap R=\operatorname{dim} R$. As R is a regular local ring, R is a domain. So $p \cap R=(0)$. We have $i^{\prime}: R \xrightarrow{i} S \rightarrow S / p$ and so we may consider $R \subseteq S / p$ for S / p finite R-algebra. If DSC held for domains, then there would exist $\ell^{\prime}: S / p \rightarrow R$ such that $\ell^{\prime} i^{\prime}=1_{R}$. Let $\ell: S \xrightarrow{\pi} S / p \xrightarrow{\ell^{\prime}} R$. Then $\ell i=1_{R}$.

Now assume S is a domain. Let $K=Q(R), L=Q(S)$. Then $\ell:=[L: K]<\infty$ and L / K is separable (char $K=0$). Let $\sigma_{1}, \ldots, \sigma_{\ell}$ be the distinct k-embeddings (that is, field maps that fix K) of L into \bar{K}. Then $\operatorname{Tr}_{K}^{L}: L \rightarrow K$ is given by $\operatorname{Tr}_{K}^{L}(\alpha)=\sum_{i=1}^{\ell} \sigma_{i}(\alpha)$.

Claim. For all $s \in S, \operatorname{Tr}_{K}^{L}(S) \subseteq R$.
Proof. As S / R is integral, each $s \in S$ satisfies an equation $s^{n}+r_{n-1} \sigma_{i}(s)^{n-1}+\ldots+r_{0}=0$. So each $\sigma_{i}(s)$ is integral over R and thus $\operatorname{Tr}_{K}^{L}(s)$ is integral over R. But regular local rings are integrally closed in their quotient fields. Since $\operatorname{Tr}_{K}^{L}(S) \subset K$, we get $\operatorname{Tr}_{K}^{L}(S) \subseteq R$.
For $r \in R, \operatorname{Tr}_{K}^{L}(r)=\ell r$. Let $\rho=\frac{1}{\ell} \operatorname{Tr}_{K}^{L}: S \rightarrow R$. Then ρ is R-linear and $\rho(r)=r$ for all $r \in R$, that is, $\rho i=1_{R}$ for $i: R \hookrightarrow S$.

Remark. Let $R \hookrightarrow S$ be rings and suppose this inclusion splits (as R-modules). Then for all ideals $I \subset R$, we have $I S \cap R=I$.

Proof. Let $\rho: S \rightarrow R$ be the splitting map. Let $a \in I S \cap R$. Then $a=i_{1} s_{1}+\ldots+i_{k} s_{k}$ for $i_{j} \in I, s_{j} \in S$. Then $a=\rho(a)=i_{1} \rho\left(s_{1}\right)+\ldots+i_{k} \rho\left(s_{k}\right) \in I$ as $\rho\left(s_{i}\right) \in R$. Thus $I S \cap R \subset I$. As the other containment is clear, done.

Corollary 78. The monomial conjecture holds for all local rings containing a field of characteristic zero.

Proof. Let (S, m) be a local ring of dimension d and x_{1}, \ldots, x_{d} a system of parameters. We want to show $\left(x_{1}, \ldots, x_{d}^{n}\right) \notin$ $\left(x_{1}^{n+1}, \ldots, x_{d}^{n+1}\right)$ for all $n \geq 1$. It suffices to show $\left(x_{1}, \ldots, x_{d}\right)^{n} \notin\left(x_{1}^{n+1}, \ldots, x_{d}^{n+1}\right) \hat{S}$ where \hat{S} is the m-adic completion. Since x_{1}, \ldots, x_{d} form a system of parameters in hatS, we may assume S is complete. Let K be a coefficient field for S (char $K=0$). By a corollary to the Cohen Structure theorem, S over $K \llbracket x_{1}, \ldots, x_{d} \rrbracket=: R$ is a finite extension as x_{1}, \ldots, x_{d} is a system of parameters. Since $\operatorname{dim} R=\operatorname{dim} S=d$, we see R is a regular local ring. Suppose $\left(x_{1}, \ldots, x_{d}\right)^{n} \in\left(x_{1}^{n+1}, \ldots, x_{d}^{n+1}\right) S$ for some n. As DSC holds for R, the remark implies $\left(x_{1}, \ldots, x_{d}\right)^{n} \in\left(x_{1}^{n+1}, \ldots, x_{d}^{n+1}\right) R$, a contradiction to \#1 on Homework Set 1 as R is Cohen Macaulay.

Theorem 79. Let (R, m) be a regular local ring of dimension d and let x_{1}, \ldots, x_{d} form a regular system of parameters (so $m=\left(x_{1}, \ldots, x_{d}\right)$). Suppose $R \subseteq S$ for a finite R-algebra S. Then R is a direct summand of S if and only if $\left(x_{1}, \ldots, x_{d}\right)^{n} \notin\left(x_{1}^{n+1}, \ldots, x_{d}^{n+1}\right) S$ for all n.

Corollary 80. Suppose the monomial conjecture holds for all local rings. Then DSC holds for all regular local rings.
Proof. Let (R, m) be a regular local ring and $m=\left(x_{1}, \ldots, x_{d}\right)$ where $d=\operatorname{dim} R$. Let $R \subseteq S$ for a finite R-algebra S. By the theorem, $R \hookrightarrow S$ splits if and only if $\left(x_{1}, \ldots, x_{d}\right)^{n} \notin\left(x_{1}^{n+1}, \ldots, x_{d}^{n+1}\right) S$ for all n. As before, we may assume S is a domain. Let $p \in \operatorname{Spec} S$ such that p is minimal over $\left(x_{1}, \ldots, x_{d}\right) S$. Since R is integrally closed in $Q(R)$, the going down theorem holds for S / R (see Mastumura, Theorem 9.4). Thus ht $p=\operatorname{ht} p \cap R=\operatorname{ht} m=d$. So x_{1}, \ldots, x_{d} is a system of parameters for S_{p}. By the monomial conjecture, $\left(x_{1}, \ldots, x_{d}\right)^{n} \notin\left(x_{1}^{n+1}, \ldots, x_{d}^{n+1}\right) S_{p}$ for all n and so $\left(x_{1}, \ldots, x_{d}\right)^{n} \notin\left(x_{1}^{n+1}, \ldots, x_{d}^{n+1}\right) S$. Thus DSC holds for all regular local rings.

Remark. The proof also shows that DSC holds for regular local rings of characteristic $p>0$.
Corollary 81. The existence of big Cohen Macaulay modules implies the Direct Summand Conjecture (via the Monomial Conjecture).

Exercise. Let R be a ring and M an R-module. Let $a_{1}+M \supseteq a_{2}+M_{2} \supseteq \cdots$ be a descending chain of cosets in M (so $a_{i} \in M$ and M_{i} are submodules of M). Then (1) $M_{1} \supseteq M_{2} \supseteq \cdots$ and (2) the chain of cosets stabilizes if and only if the chain of submodules stabilizes. In particular, if M is Artinian, every descending chain of cosets stabilizes. Thus $\cap a_{i}+M_{i}$ is a coset and thus is nonempty.

Proof of Theorem 79. The forward direction has already been shown as if $R \hookrightarrow S$ splits, then $I S \cap R=I$ for all ideals I of R. In particular, take $I=\left(x_{1}^{n+1}, \ldots, x_{d}^{n+1}\right)$.

So we just need to show the backward implication. Recall that R a direct summand of S means there exists $\rho: S \rightarrow R$ such that $\rho \circ i=1_{R}$ where $i: R \hookrightarrow S$ is the inclusio map. This happens if and only if the natural $\operatorname{map} \operatorname{Hom}_{R}(S, R) \rightarrow \operatorname{Hom}_{R}(R, R) \cong R$ defined by $\rho \mapsto \rho \circ i=\left.\rho\right|_{R}$ is surjective. That is, $\operatorname{Hom}_{R}(S, R) \otimes \hat{R} \rightarrow$ $\operatorname{Hom}_{R}(R, R) \otimes \hat{R}$ is surjective. Since \hat{S} is finitely presented and $R \rightarrow \hat{R}$ is faithfully flat, this is if and only if $\operatorname{Hom}_{\hat{R}}(\hat{S}, \hat{R}) \rightarrow \operatorname{Hom}_{\hat{R}}(\hat{R}, \hat{R})$ is surjective, that is, $\hat{i}: \hat{R} \rightarrow \hat{S}$ splits. Also, $m=\left(x_{1}, \ldots, x_{d}\right) R$ implies $\hat{m}=\left(x_{1}, \ldots, x_{d}\right) \hat{R}$. If $\left(x_{1}, \ldots, x_{d}\right)^{n} \in\left(x_{1}^{n+1}, \ldots, x_{d}^{n+1}\right) \hat{S}$ for some n, then $\left(x_{1}, \ldots, x_{d}\right)^{n} \in\left(x_{1}^{n+1}, \ldots, x_{d}^{n+1}\right) \hat{S} \cap S=\left(x_{1}^{n+1}, \ldots, x_{d}^{n+1}\right) S$ (since $S \rightarrow \hat{S}$ is faithfully flat and $I \hat{S} \cap S=I)$, a contradiction. Thus we may assume R is complete.

For $t \geq 1$, define $\left(\underline{x}^{t}\right)=\left(x_{1}^{t}, \ldots, x_{d}^{t}\right), R_{t}=R /\left(\underline{x}^{t}\right), S_{t}=S /\left(\underline{x}^{t}\right) S$, and $i_{t}: R_{t} \rightarrow S_{t}$.
Claim. For every t, i_{t} is a split injection.
Proof. As $\left(\underline{x}^{t}\right)$ is regular, R_{t} is a zero-dimensional Gorenstein ring. Thus soc $R_{t}=\left(\overline{0}:_{R_{t}} m\right)$ is a onedimensional R / m-vector space. Note $\overline{\left(x_{1} \cdots x_{d}\right)^{t-1}} \neq 0$ in R_{t} as the monomial conjecture holds for regular local rings. However $m \overline{\left(x_{1} \cdots x_{d}\right)^{t-1}}=\overline{0}$ in R_{t}. Thus soc $R_{t}=R / m \cdot \overline{\left(x_{1} \cdots x_{d}\right)^{t-1}}$. Suppose ker $i_{t} \neq 0$. Then ker i_{t} contains something in the socle. Since $\operatorname{dim}_{k} \operatorname{soc} R_{t}=1$, ker $i_{t} \supseteq \operatorname{soc} R_{t}$. Thus $i_{t}\left(\left(x_{1} \cdots x_{d}\right)^{t-1}\right)=0$ in $S /\left(\underline{x}^{t}\right) S$ and so $\left(x_{1}, \ldots, x_{d}\right)^{t-1} \in\left(\underline{x}^{t}\right) S$, a contradiction. Thus i_{t} is injective. As R_{t} is zero-dimensional Gorenstein, we see R is injective. Now $R_{t} \xrightarrow{i_{t}} S_{t}$ is exact with R_{t} injective and so it splits.

Note $\left\{\left(\underline{x}^{t}\right)\right\}_{t \geq 1}$ is cofinal with $\left\{m^{n}\right\}_{n \geq 1}$. Thus $R=\hat{R}=\lim _{\rightleftarrows} R_{t}$. Let $\delta_{t-1}: R_{t} \rightarrow R_{t-1}$ defined by $r+\left(\underline{x}^{t}\right) \mapsto r+\left(\underline{x}^{t-1}\right)$ be the natural surjection. Then $\lim _{\rightleftarrows} R_{t}=\left\{\left(r_{t}\right) \in \prod R_{t} \mid \delta_{t-1}\left(r_{t}\right)=r_{t-1}\right.$ for all $\left.t\right\}$. Now $R \xrightarrow{\cong} R_{t}$ where $r \mapsto\left(r_{t}\right)$ for $r_{t}=r+\left(\underline{x}^{t}\right)$. As $\operatorname{Hom}_{R}(S,-)$ commutes with inverse limits, we have

$$
\operatorname{Hom}_{R}(S, R) \cong \operatorname{Hom}_{R}\left(S, \lim _{\leftrightarrows} R_{t}\right)=\lim _{\leftrightarrows}^{\operatorname{Hom}_{R}}\left(S, R_{t}\right)=\underset{\longleftrightarrow}{\lim } \operatorname{Hom}_{R_{t}}\left(S_{t}, R_{t}\right)
$$

As any map $\rho: S_{t} \rightarrow R_{t}$ induces a map $\bar{\rho}: S_{t-1} \rightarrow R_{t-1}$, let $\pi_{t-1}=\operatorname{Hom}_{R_{t}}\left(S_{t}, R_{t}\right) \rightarrow \operatorname{Hom}_{R_{t-1}}\left(S_{t-1}, R_{t-1}\right)$. Now the inverse limit

$$
\underset{\rightleftarrows}{\lim } \operatorname{Hom}_{R_{t}}\left(S_{t}, R_{t}\right)=\left\{\left(\psi_{t}\right) \mid \psi_{t}: S_{t} \rightarrow R_{t}, \pi_{t-1} \psi_{t}=\psi_{t-1} \text { for all } t\right\}
$$

Finally we have an isomorphism $\operatorname{Hom}_{R}(S, R) \rightarrow \lim _{\rightleftarrows} \operatorname{Hom}_{R_{t}}\left(S_{t}, R_{t}\right)$ defined by $\psi \mapsto\left(\psi_{t}\right)$ where the inverse map is defined for $\left(\psi_{t}\right) \in \underset{\rightleftarrows}{\lim }\left(S_{t}, R_{t}\right)$ by $\left(\psi_{t}\right)(r)=\left(\psi_{t}\left(r_{t}\right)\right) \in \lim _{\rightleftarrows} R_{t}=R$ for $r=\left(r_{t}\right) \in \lim _{\rightleftarrows} R_{t}$. To show $i: R \rightarrow S$ splits, it suffices to find R_{t}-homomorphisms $\psi_{t}: S_{t} \rightarrow R_{T}$ such that $\pi_{t-1} \psi_{t}=\psi_{t-1}$ and $\psi_{t} i_{t}=1_{R_{t}}$ for all t. If so, by (1) we have $\left(p s i_{t}\right) \in \underset{\rightleftarrows}{\lim } \operatorname{Hom}_{R_{t}}\left(S_{t}, R_{t}\right)=\operatorname{Hom}_{R}(S, R)$. Let $\psi=\left(\psi_{t}\right): S \rightarrow R$. Then $\psi i=1_{R}$ as for $r=\left(r_{t}\right) \in R$, we see $\psi_{t}(r)=\psi\left(r_{t}\right)=\left(\psi_{t}\left(r_{t}\right)\right)=\left(\psi_{t} i_{t}\left(r_{t}\right)\right)=\left(r_{t}\right)=1$ by (2) of the exercise. Thus we just need to find ψ_{t}.

We know $i_{t}: R_{t} \rightarrow S_{t}$ splits for all t. Let ρ_{t} be a splitting. We know $i_{t}^{*}: \operatorname{Hom}_{R_{t}}\left(S_{t}, R_{t}\right) \rightarrow \operatorname{Hom}_{R_{t}}\left(R_{t}, R_{t}\right)$ defined by $\psi_{t} \mapsto \psi_{t} i_{t}$ is surjective. Now $\psi_{t}: S_{t} \rightarrow R_{t}$ is a splitting map for i_{t} if and only if $\psi_{t} \in\left(i_{t}^{*}\right)^{-1}\left(1_{R_{t}}\right)=\rho_{t}+\operatorname{ker} i_{t}^{*}=: D_{t}$, a coset in $\operatorname{Hom}_{R_{t}}\left(S_{t}, R_{t}\right)$. Certainly, $\pi_{t-1}\left(D_{t}\right) \subseteq D_{t-1}$ for all t. For each t, let $E_{t}:=\cap_{i \geq 0} \pi_{t} \pi_{t+1} \cdots \pi_{t+i}\left(D_{t+i+1}\right)$. Note that we have a descending chain of cosets $D_{t} \supseteq \pi_{t}\left(D_{t+1}\right) \supseteq \pi_{t} \pi_{t+1}\left(D_{t+2}\right) \supseteq \cdots$ in $\operatorname{Hom}_{R_{t}}\left(S_{t}, R_{t}\right)$ which is Artinian (as $\operatorname{dim} R_{t}=0$ and S_{t} is a finitely generated $R_{t}-$ module). Therefore, by the exercise, $E_{t} \neq \emptyset$. Say $(*) E_{t}=\pi_{t} \pi_{t+1} \cdots \pi_{t+i}\left(D_{t+i+1}\right)$ for some i (which depends on t. Note that $\pi_{t-1}\left(E_{t}\right)=E_{t-1}$ for all t (this follows from the definition and from $(*))$. Choose $\psi_{1} \in E_{1}$. So $\psi_{1}: S_{1} \rightarrow R_{1}$ splits i_{1}. By the chain, there exists $\psi_{2} \in E_{2}$ such that $\pi_{2}\left(\psi_{2}\right)=\psi_{1}$. Continue to get the desired maps.

Conjecture (Small Cohen Macaulay Module Conjecture (SCM)). If (R, m) is a complete local ring, then R has a maximal Cohen Macaulay module.

Note that SCM implies the Big Cohen Macaulay module conjecture. The conjecture is easy to see in several cases:

- $\operatorname{dim} R=0$ (then R is Cohen Macaulay)
- $\operatorname{dim} R=1$ (then R / p is a maximal Cohen Macaulay module for $p \in \operatorname{Min} R$)
- $\operatorname{dim} R=2$ Nagata gave an example of a two-dimensional local domain R which is not universally catenary (and thus does not have a maximal Cohen Macaulay module by [BH] 2.1.14).

Proposition 82. Let (R, m) be complete of dimension two. Then R has a maximal Cohen Macaulay module.

Proof. By passing to R / p for $p \in \operatorname{Spec} R$ with $\operatorname{dim} R / p=2$, we may assume R is a complete domain. Let R^{\prime} be the integral closure of R in $Q(R)$. Then R^{\prime} is a finitely generated R-module and hence a Noetherian local domain. So R^{\prime} is normal, which implies it is S_{2} and R_{1}. As $\operatorname{dim} R^{\prime}=2$, it is Cohen Macaulay and thus $\operatorname{depth}_{R} R^{\prime}=2$. Thus R^{\prime} is a maximal Cohen Macaulay algebra.

Proposition 83. Let R be a ring, I a finitely generated ideal. Suppose $n \in \mathbb{N}$ and $H_{I}^{i}(R)=0$ for all $i>n$. Then
(1) $H_{I}^{i}(M)=0$ for all $i>n$ and for all R-modules M
(2) $H_{I}^{n}(M) \cong H_{I}^{n}(R) \otimes M$ for all R-modules M

Proof. (1) Let $c=\inf \left\{\ell \mid H_{I}^{i}(M)=0\right.$ for all $i>\ell, R$-modules $\left.M\right\}$. Since I is finitely generated, $H_{I}^{i}(M)$ for all $i>\mu(I)$. So $c \leq \mu(I)$. It suffices to show $c \leq n$. If not, $c>m$ and there exists an $R-$ module M such that $H_{I}^{c}(M) \neq 0$. Consider the short exact sequence $0 \rightarrow L \rightarrow F \rightarrow M \rightarrow 0$ where F is free. Since $F=\oplus R$, we see $H_{I}^{i}(F)=0$ for all $i>n$. Then the long exact sequence on homology gives $H_{I}^{c+1}(L) \neq 0$, a contradiction to the definition of C. Thus $c \leq n$.
(2) For any $i, H_{I}^{i}(-)$ is covariant, additive and multiplicative. So if $F \xrightarrow{\left(a_{i j}\right)} G$ is a map of free R-modules, then

As $H_{I}^{i}(M)=0$ for all $i>n$ for all R-modules $M, H_{I}^{n}(-)$ is right exact. Let M be an R-modules and $F \rightarrow G \rightarrow M \rightarrow 0$ exact with F, G free. Then we have

Corollary 84. Let R be a ring, I an ideal, and $n \in \mathbb{Z}$. TFAE
(1) $H_{I}^{i}(R)=0$ for all $i>n$
(2) $H_{I}^{i}(R / p)=0$ for all $p \in \operatorname{Spec} R$ and $i>n$
(3) $H_{I}^{i}(R / p)=0$ for all $p \in \operatorname{Min} R$ and $i>n$

Proof. Note that $(1) \Rightarrow(2)$ and $(3) \Rightarrow(2)$ follow from the proposition. For $(2) \Rightarrow(1)$, take a prime filtration of R with factors isomorphic to R / p and take local cohomology.

Definition. Let R be a ring and I an ideal containing a non-zerodivisor in R (that is, I is a regular ideal). Let Q be the total quotient ring of R. We define the ideal transform of I to be $D(I):=\cup_{n \geq 1}\left(R:_{Q} I^{n}\right)=\left\{q \in Q \mid q I^{n} \subseteq\right.$ R for some $n\}$.

Note.

(1) $D(I)$ is a subring of Q containing R.
(2) $D(I)$ is almost never Noetherian, even if R is.
(3) If $I=\left(a_{1}, \ldots, a_{k}\right)$, then $D(I)=\cup_{n}\left(R:_{Q}\left(a_{1}^{n}, \ldots, a_{k}^{n}\right)\right)$

Proposition 85. Let R be a Noetherian ring and I a finitely generated regular ideal. Let $S=D(I)$. Then
(1) $H_{I}^{0}(S)=H_{I}^{1}(S)=0$
(2) $H_{I}^{i}(S) \cong H_{I}^{i}(R)$ for all $i \geq 2$.

Proof. (1) Let $x \in I$ be a non-zerodivisor on R. Then x is a non-zerodivisor on Q and hence on S. So $H_{I}^{0}(S)=0$. Consider the short exact sequence $0 \rightarrow S \xrightarrow{x} S \rightarrow S / x S \rightarrow 0$ and apply local cohomology: $0 \rightarrow H_{I}^{0}(S / x S) \rightarrow$ $H_{I}^{1}(S) \xrightarrow{x} H_{I}^{1}(S)$. If $H_{I}^{0}(S / x S)=0$, then multiplication by x is injective. But $x \in I$ and every element in $H_{I}^{1}(S)$ is annihilated by a power of I and thus by a power of x. Then $H_{I}^{1}(S)=0$. So it is enough to show $H_{I}^{0}(S / x S)=0$. Let $y \in S$ such that $I^{n} y \subseteq x S$ for some n (so $\bar{y} \in H_{I}^{0}(S / x S)$). If we show $y \in x S$ then $H_{I}^{0}(S / x S)=0$. So write $I=\left(a_{1}, \ldots, a_{k}\right)$ where a_{i} is a non-zerodivisor for all i. Then for all i there exists s_{i} such that $a_{i}^{n} y=x s_{i}$. In Q, we see $y=\frac{x s_{i}}{a_{i}^{n}}=x\left(\frac{s_{i}}{a_{i}^{n}}\right)$ for all i. It is enough to show $\frac{s_{i}}{a_{i}^{n}} \in S$. Now $\frac{x s_{i}}{a_{i}^{n}}=\frac{x s_{j}}{a_{j}^{n}}$ for all i, j. As x is a non-zerodivisor, this says $u:=\frac{s_{i}}{a_{i}^{n}}=\frac{s_{j}}{a_{j}^{n}}$ for all i, j. As $s_{i} \in S$, there exists ℓ such that $I^{\ell} s_{i} \subseteq R$ for all i. Then $a_{i}^{n} I^{\ell} u=I^{\ell} s_{i} \subseteq R$ for all i, which implies $\left(a_{1}^{n}, \ldots, a_{k}^{n}\right) I^{\ell} u \subseteq R$ and thus $\left(a_{1}^{n+\ell}, \ldots, a_{k}^{n+\ell}\right) u \subseteq R$. Thus $u \in S$ and $y=x u \in x S$. Therefore $H_{I}^{0}(S / x S)=0$.
(2) Consider the short exact sequence $0 \rightarrow R \rightarrow S \rightarrow S / R \rightarrow 0$. For all $\bar{s} \in S / R$ there exists n such that $I^{n} \bar{s}=\overline{0}$. Thus $H_{I}^{0}(S / R)=S / R$ and $H_{I}^{i}(S / R)=0$ for all $i \geq 1$. Applying $H_{I}^{i}(-)$ to our short exact sequence gives

$$
0 \rightarrow S / R \rightarrow H_{I}^{1}(R) \rightarrow H_{I}^{1}(S) \rightarrow 0 \rightarrow H_{I}^{2}(R) \rightarrow H_{I}^{2}(S) \rightarrow 0 \rightarrow \cdots
$$

Theorem 86 (Hochster '83; Katz, Huneke, Marley '06). Let R be Noetherian and $I=(x, y)$. Then TFAE
(1) $H_{I}^{2}(R)=0$
(2) $(x y)^{n} \in\left(x^{n+1}, y^{n+1}\right)$ for some n.

Proof. First suppose $H_{I}^{2}(R)=0$. As $H_{I}^{2}(R) \cong R_{x y} / R_{x}+R_{y}$, we see $\frac{1}{x y}=0$ in $R_{x y} / R_{x}+R_{y}$. Thus $\frac{1}{x y}=\frac{r}{x^{n}}+\frac{s}{y^{n}}$ for some n and for $r, s \in R$. Then there exists ℓ such that $(x y)^{n+\ell-1}=r x^{\ell} y^{n+\ell}+s x^{n+\ell} y^{\ell} \in\left(x^{n+\ell}, y^{n+\ell}\right)$.

Now suppose (2) holds. Since $H_{I}^{i}(R)=0$ for all $i>2$ (as I is two-generated) and the corollary implies $H_{I}^{2}(R)=0$ if and only if $H_{I}^{2}(R / p)=0$ for all $p \in \operatorname{Spec} R$, we may assume R is a domain and I is a regular ideal. Let $S=D(I)$. Then its enough to show $H_{I}^{2}(S)=0$ as $H_{I}^{2}(S) \cong H_{I}^{2}(R)$. To do so, it is enough to show $I S=S=(1) S$. We have $(x y)^{n}=r x^{n+1}+x y^{n+1}$ for some $r, s \in R$. So $1=\frac{r}{y^{n}} x+\frac{s}{x^{n}} y$ in Q. To get $1 \in I S$, we need only show $\frac{r}{y^{n}}, \frac{s}{x^{n}} \in S$. Now $\frac{r}{y^{n}} x^{n+1}=x^{n}-s y \in R$. So $\frac{r}{y^{n}} \in\left(R:_{Q}\left(x^{n+1}, y^{n+1}\right)\right) \subseteq S$. Similarly for $\frac{s}{x^{n}}$.

Corollary 87. The monomial conjecture and the direct summand conjecture hold in dimension 2.
Proof. For (R, m) local and $I=(x, y)$ a system of parameters, we see $H_{I}^{2}(R) \neq 0$.
Definition. Let (C, d) and $\left(D, d^{\prime}\right)$ be chain complexes. A homotopy sfrom C to D is a set of maps $s_{n}: C_{n} \rightarrow D_{n+1}$ for each n. Two chain maps $f, g: C \rightarrow D$ are called homotopic if there exists a homotopy srom C to D such that for all $n f_{n}-g_{n}=s_{n-1} d_{n}+d_{n+1}^{\prime} s_{n}$.

Theorem 88 (Comparison Theorem). Let C, D be chain complexes such that $C_{i}=D_{i}=0$ for all $i<0$. Let $\epsilon: C_{0} \rightarrow X$ and $\delta: D_{0} \rightarrow Y$ be augmentation maps. Suppose
(1) C_{i} is projective for all i
(2) $C_{0} \xrightarrow{\epsilon} X \rightarrow 0$ is a complex
(3) $D_{0} \xrightarrow{\delta} Y \rightarrow 0$ is exact

Then given any map $f_{-1}: X \rightarrow Y$ there exists a chain map $f: C \rightarrow D$ lifting f_{-1}. Furthermore, any two liftings are homotopic.

Definition (Hochster '83). A local ring $R(, m)$ of dimension d satisfies CE if for every projective resolution P. of $k=R / m$ and for every system of paramters x_{1}, \ldots, x_{n} and every chain map $f: K .(\underline{x}) \rightarrow P$. lifting the canonical surjection $f_{-1}: R /(\underline{x}) \rightarrow R / m$, one has $f_{d} \neq 0$.

Conjecture. Every local ring satisfies CE.
Theorem 89. If a local ring (R, m) has a big Cohen Macaulay module, then R satisfies CE (e.g., every local ring containing a field satisfies CE).

Proof. Fix a system of parameters $\underline{x}=x_{1}, \ldots, x_{d}$ for R and let P. be a projective resolution of k. Let $f: K .(\underline{x}) \rightarrow P$. be a lifting of $f_{-1}: R /(\underline{x}) \rightarrow R / m$ and suppose $f_{d}=0$. Let M be an R-module which is a big Cohen Macaulay module for \underline{x}. Note $K .(\underline{x}, M)=K .(\underline{x}) \otimes M$ is acyclic and $M \neq(\underline{x}) M$. As (\underline{x}) is m-primatry, there exists $y \in M \backslash(\underline{x}) M$ such that $m y \subseteq(\underline{x}) M$ (to find y, take $z \in M \backslash(\underline{x}) M$ so $\lambda(R / z)<\infty$ and choose $y \in \operatorname{soc} z$). Let $g_{-1}: R / m \rightarrow M /(\underline{x}) M$ be defined by $\overline{1} \mapsto \bar{y}$. By the comparison theorem, there exists $g_{0}: P_{0} \rightarrow K_{0}(\underline{x}, M)$ which lifts g_{-1}. Then $\alpha=g \circ f:$ $K .(\underline{x}) \rightarrow K .(\underline{x}, M)$ lifts $\alpha_{-1}=g_{-1} \circ f_{-1}: R /(\underline{x}) \rightarrow M /(\underline{x}) M$. Since $f_{d}=0$, we see $\alpha_{d}=0$. Let $\rho: R \rightarrow M$ be defined by $1 \mapsto y$. Consider the composition of chain maps $\alpha^{\prime}: K .(\underline{x}) \cong K .(\underline{x}) \otimes_{R} R \xrightarrow{1 \otimes \rho} K .(\underline{x}) \otimes_{R} M \xrightarrow{\cong} K .(\underline{x}, M)$. Note $\left(\alpha^{\prime}\right)_{0}: R \rightarrow M$ is defined by $1 \mapsto y$. So α^{\prime} also lifts $g_{-1} f_{-1}$ and so α and α^{\prime} are homotopic, say with homotopy s. Then since $\alpha_{d}=0$ we see $\alpha_{d}^{\prime}=\alpha_{d}^{\prime}-\alpha d=\partial s_{d}+s_{d-1} \partial=s_{d-1} \partial$. Thus $y=\alpha_{d}^{\prime}(1)=s_{d-1} \partial(1)=s_{d-1}\left(\sum_{1}^{d} x_{i} e_{i}\right)=$ $\sum x_{i} s_{d-1}\left(e_{i}\right) \in(\underline{x}) M$, a contradiction as y was chosen to be not in $(\underline{x}) M$. Thus $f_{d} \neq 0$ and CE holds.

Proposition 90. A local ring (R, m, k) of dimension d satisfies $C E$ if and only if for every system of parameters $\underline{x}=x_{1}, \ldots, x_{d}$ and every complex $F .: \cdots \rightarrow F_{i+1} \rightarrow F_{i} \rightarrow \cdots \rightarrow F_{0} \rightarrow 0$ where F_{i} is finitely generated free and for every chain map $f: K .(\underline{x}) \rightarrow F$. such that the induced map $\overline{f_{0}^{*}}: H_{0}(K .(\underline{x})) \otimes R / m \rightarrow H_{0}(F) \otimes R / m$ is not zero, we have $f_{d} \neq 0$.

Proof. For the backward direction, it suffices to show that if CE holds where P. is a minimal resolution of k, then CE holds for every resolution of k. Suppose CE holds for every chain map $f: K .(\underline{x}) \rightarrow F$. which lifts $R /(\underline{x}) \rightarrow R / m$ and where F. is a minimal resolution of k. Let $g: K .(\underline{x}) \rightarrow P$. be a lifting where P. is an arbitrary projective resolution of k. By the comparision theorem, there exists a chain map $h: P \rightarrow F$. which lifts the identity map on R / m. Then $h g: K .(\underline{x}) \rightarrow F$. lifts $R /(\underline{x}) \rightarrow R / m$. As CE holds for F., $h_{d} g_{d} \neq 0$. Therefore $g_{d} \neq 0$ and CE holds for P..

For the forward direction, let $f: K .(\underline{x}) \rightarrow F$. be as in the hypothesis. Let $y=f_{0}(1) \in F_{0}$. Then the image \bar{y} of y in $H_{0}(F) \otimes R / m$ is non-zero. Choose a projective $\pi: H_{0}(F) \otimes R / m \rightarrow R / m$ such that $\pi(\bar{y})=\overline{1} \neq 0$. Let $\epsilon: F_{0} \rightarrow F_{0} / \operatorname{im} \phi_{1} \rightarrow F_{0} / \operatorname{im} \phi_{1} \otimes R / m \xrightarrow{\pi} R / m$. Then $\epsilon(y)=\overline{1}$. Let P. be a projective resolution of k. By the comparison theorem, there exists a chain map $g: F . \rightarrow P$. lifting 1_{k}. Then $g f: K .(\underline{x}) \rightarrow P$. lifts the canonical surjection $R /(\underline{x}) \rightarrow R / m$. Since CE holds, $g_{d} f_{d} \neq 0$ and so $f_{d} \neq 0$.
Corollary 91. Let $\phi:(R, m) \rightarrow(S, n)$ be a local homomorphism such that $\operatorname{dim} R=\operatorname{dim} S$ and $\sqrt{m S}=n$. If CE holds for S, it holds for R.
Proof. If there is a counter example to CE for R, then apply $-\otimes S$ to find a counterexample for S using the propostion.
Corollary 92. To show $C E$ holds for R, it suffices to show $C E$ holds for \hat{R} / p for $p \in \operatorname{Min} \hat{R}$ with $\operatorname{dim} \hat{R} / p=\operatorname{dim} R$.
Conjecture (Improved New Interesection Conjecture (INIC)). Let (R, m) be local of dimension d. Suppose F. $0 \rightarrow F_{s} \xrightarrow{\phi_{s}} \cdots \rightarrow F_{1} \rightarrow F_{0} \rightarrow 0$ is a complex of finitely generated free R-modules such that $\lambda\left(H_{i}(F).\right)<\infty$ for all $i>0, H_{0}(F) \neq$.0 , and $H_{0}(F$.) has a minimal generator z such that $\lambda(R z)<\infty$. Then $s \geq d$.
Theorem 93. Suppose (R, m) satisfies $C E$. Then INIC holds for R.
Proof. Let F. be as in INIC. Let $M=\operatorname{coker} \phi_{1}=H_{0}(F$.$) and d=\operatorname{dim} R$. Let $z \in M \backslash m M$ such that $\lambda(R z) M \infty$. Then there exists t_{0} such that $\left(x_{1}, \ldots, x_{d}\right)^{t_{0}} \subseteq \operatorname{Ann}_{R} R z(*)$. Let $Z_{i}=\operatorname{ker} \phi_{i}$ and $B_{i}=\operatorname{im} \phi_{i+1}$ for $i \geq 1$. As $\lambda\left(Z_{i} / B_{i}\right) M \infty$, there exists c such that $\left(x_{1}, \ldots, x_{d}\right)^{c} Z_{i} \subseteq B_{i}$. By the Artin Rees Lemma, for all $i \geq 1$ there exists t_{i} such that $\left(x_{1}, \ldots, x_{d}\right)^{t_{i}} F_{i} \cap Z_{i} \subseteq\left(x_{1}, \ldots, x_{d}\right)^{c} Z_{i} \subseteq B_{i}$. Let $t=\max \left\{t_{0}, \ldots, t_{s}\right\}$. We will construct a chain map $f .: K .\left(\underline{x}^{t}\right) \rightarrow F$. Let $y \in F_{0}$ such that $\bar{y}=z$ in $H_{0}(F$.$) . Define f_{0}: R=K .\left(\underline{x}^{t}\right)_{0} \rightarrow F_{0}$ by $1 \mapsto y$.

Let $\left\{e_{1}, \ldots, e_{d}\right\}$ be a basis for $K .\left(\underline{x}^{t}\right)_{1}$. Then $f_{0} \partial_{1}\left(e_{i}\right)=f_{0}\left(x_{1}^{t}\right)=x_{1}^{t} y$. Note $(*)$ implies $\left(x_{1}, \ldots, x_{d}\right)^{t} y \subseteq B_{0}=\operatorname{im} \phi_{0}$. Thus $f_{0} \partial\left(e_{i}\right) \in B_{0}$. So there exists $u_{i} \in F_{1}$ such that $\phi_{1}\left(u_{i}\right)=x_{i}^{t} y$. Define $f_{1}: K .\left(\underline{x}^{t}\right) \rightarrow F_{1}$ by $f_{1}\left(e_{i}\right)=u_{i}$. Then the diagram commutes. Now suppose we have defined f_{0}, \ldots, f_{i}.

Let $\left\{w_{1}, \ldots, w_{\ell}\right\}$ be a basis for $K\left(\underline{x}^{t}\right)_{i+1}$. Then $\partial_{i+1}\left(w_{j}\right) \subseteq\left(x_{1}^{t}, \ldots, x_{d}^{t}\right) K .\left(\underline{x}^{t}\right)_{i}$, which together with diagram chasing implies that $f_{i} \partial_{i+1}\left(w_{j}\right) \subseteq\left(x_{1}^{t}, \ldots, x_{d}^{t}\right) F_{i} \cap Z_{i} \subseteq B_{i}$. Thus there exists $v_{j} \in F_{i+1}$ such that $\phi_{i+1}\left(v_{j}\right)=f_{i} \partial_{i+1}\left(w_{j}\right)$ for all j. Define f_{i+1} in the obvious way. This gives the desired chain map.

Note $f_{0}^{*}: H_{0}\left(K .\left(\underline{x}^{t}\right)\right)=R /\left(\underline{x}^{t}\right) \rightarrow H_{0}(F)=$.$M sends \overline{1} \mapsto \bar{y}=z$. So $\overline{f_{0}^{*}}: H_{0}\left(K .\left(\underline{x}^{t}\right)\right) \otimes k \rightarrow M \otimes k$ sends $\overline{1} \otimes 1 \mapsto z \otimes 1 \neq 0$ as $z \in M \backslash m M$. By the above proposition since CE holds for R, we have $f_{d} \neq 0$ and thus $s \geq d$.

Lemma 94. Let (R, m) be local. Then R satisfies $C E$ if and only if for all system of parameters \underline{x} and for all projective resolutions P. of k and for all chain maps $f: K .(\underline{x}) \rightarrow P$. lifting $R /(\underline{x}) \rightarrow k$, we have $f_{d}(1) \notin\left(x_{1}, \ldots, x_{d}\right) P_{d}$.

Proof. The backward direction is clear. For the forward direction, suppose $f_{d}(1)=x_{1} u_{1}+\ldots+x_{d} u_{d}, u_{i} \in P_{d}$. Consider

where $\partial_{d}(1)=\left(x_{1}, \ldots, x_{d}\right)$. Define $s: K .(\underline{x})_{d-1} \rightarrow P_{d}$ by $e_{i} \mapsto u_{i}$. Define a map $\tilde{f}: K .(\underline{x}) \rightarrow F$. by $\tilde{f}_{d}=f_{d}-s \partial_{d}=0$ and $\tilde{f}_{d-1}=f_{d-1}-\phi_{d} s$ and $\tilde{f}_{i}=f_{i}$ for all $i<d-1$. Note

$$
\tilde{f} \partial_{d}=f_{d-1} \partial_{d}-\phi_{d} s \partial_{d}=f_{d-1} \partial_{d}-\phi_{d} f_{d}=0
$$

as the square commutes. Since $\tilde{f}_{d}=0$, the last square commutes. Now $\phi_{d-1} \tilde{f}_{d-1}=\phi_{d-1}\left(f_{d-1}-\phi_{d} s\right)=\phi_{d-1} f_{d-1}=$ $f_{d-2} \partial_{d-1}$. Thus the second to last square commutes. So $\tilde{f}: K .(\underline{x}) \rightarrow F$. is a chain map and lifts $R /(\underline{x}) \rightarrow k$. Thus \tilde{f}_{0}^{*} is the canonical surjection. But $\tilde{f}_{d}=0$, a contradiction as R satifies CE.

Recall if $\underline{x}=x_{1}, \ldots, x_{n} \in R$ and $t, s \geq 1$ then there exists a chain map $\mu(t, s): K .\left(\underline{x}^{t+s}\right) \rightarrow K .\left(\underline{x}^{t}\right)$ such that $\mu(t, s)_{0}=1_{R}$ and $\mu(t, s)_{n}$ is given by multiplication by $\left(x_{1} \ldots x_{n}\right)^{s}$.

Theorem 95. Suppose CE holds for (R, m). Then the monomial conjecture holds for (R, m).
Proof. Let $\underline{x}=x_{1}, \ldots, x_{d}$ be a system of parameters for R and $t \geq 1$. We need to show $\left(x_{1} \cdots x_{d}\right)^{t} \notin\left(x_{1}^{t+1}, \ldots, x_{d}^{t+1}\right)$. Let P be a projective resolution of k and $f: K .(\underline{x}) \rightarrow P$. which lifts $R /(\underline{X}) \rightarrow R / m$. Let $\mu:=\mu(1, t): K .\left(\underline{x}^{t+1}\right) \rightarrow K .(\underline{x})$. Since $\mu_{0}=1_{R}$ we see $f \mu: K .\left(\underline{x}^{t+1}\right) \rightarrow P$. lifts $R /(\underline{x}) \rightarrow R / m$. On the other hand

$$
(f \mu)_{d}(1)=f_{d} \mu_{d}(1)=f_{d}\left(\left(x_{1} \cdots x_{d}\right)^{t}\right)=\left(x_{1} \cdots x_{d}\right)^{t} f_{d}(1) \notin\left(x_{1}^{t+1}, \ldots, x_{d}^{t+1}\right) P_{d}
$$

by the Lemma. Thus $\left(x_{1} \cdots x_{d}\right)^{t} \notin\left(x_{1}^{t+1}, \ldots, x_{d}^{t+1}\right)$.
Remark. Hochster (' 83) proves that if the Direct Summand Conjecture holds for all regular local rings (A, n) of characteristic $p>0$ then CE holds for all local rings (R, m) of characteristic p. Since they are both true in the characteristic zero case, we have

$$
\mathrm{DSC} \Rightarrow \mathrm{CE} \Rightarrow \mathrm{MC} \Rightarrow \mathrm{DSC}
$$

Another Construction of the Koszul Complex. Let R be a ring, $F=R^{n}$. Let $f: F \rightarrow R$ defined by $e_{i} \mapsto x_{i}$ be R-linear. For $i \geq 1$ define $\tilde{\partial}(f)_{i}: F^{t} \rightarrow \bigwedge^{i-1} F$ by $\left(u_{1}, \ldots, u_{i}\right) \mapsto \sum_{j=1}^{i}(-1)^{j+1} f\left(u_{j}\right) u_{1} \wedge \cdots \wedge \hat{u_{j}} \wedge \cdots \wedge u_{i}$. One can check this map is multilinear and alternating. Thus we get an induced map $\partial(f)_{i}: \bigwedge^{i} F \rightarrow \bigwedge^{i-1} F$. The sequence $0 \rightarrow \bigwedge^{n} F \rightarrow \cdots \rightarrow \bigwedge^{0} F \rightarrow 0$ is K. $\underline{x} ; R$. Now suppose $\phi: G \rightarrow F$ is an R-linear map where $G=R^{m}$. By the Functorial property of \bigwedge^{i}, we get induced maps $\phi_{i}=\bigwedge^{i}(\phi): \bigwedge^{i}(G) \rightarrow \bigwedge^{i}(F)$ defined by $u_{1} \wedge \cdots \wedge u_{i} \mapsto \phi\left(u_{1}\right) \wedge \cdots \wedge \phi\left(u_{i}\right)$. Let $g=f \phi: G \rightarrow R$ and $y_{i}=g\left(e_{i}\right)$ where $\left\{e_{1}, \ldots, e_{m}\right\}$ is a basis for S.
Claim. $\phi: K .(\underline{y}) \rightarrow K .(\underline{x})$ is a chain map.
Proof. We need only show $\partial(f)_{i} \phi_{i}=\phi_{i-1} \partial(g)_{i}$ to show that the following diagram commutes:

Chasing elements, we see

$$
\begin{aligned}
\phi_{i-1} \partial(g)_{i}\left(u_{1} \wedge \cdots \wedge u_{i}\right) & =\phi_{i-1}\left(\sum(-1)^{j+1} g\left(u_{j}\right) u_{1} \wedge \cdots \wedge \hat{u_{j}} \wedge \cdots \wedge u_{i}\right) \\
& =\sum(-1)^{j+1} f \phi\left(u_{j}\right) \phi\left(u_{1}\right) \wedge \cdots \wedge \widehat{\phi\left(u_{j}\right)} \wedge \cdots \wedge \phi\left(u_{i}\right) \\
& =\partial(f)_{i}\left(\phi\left(u_{1}\right) \wedge \cdots \wedge \phi\left(u_{i}\right)\right) \\
& =\partial(f)_{i} \phi_{i}\left(u_{1} \wedge \cdots \wedge u_{i}\right)
\end{aligned}
$$

Note that for a domain R, if we have $h: L \xrightarrow{f} M \xrightarrow{g} N$ then rank $h=\operatorname{rank} \operatorname{im} h \leq \min \{\operatorname{rank} f, \operatorname{rank} g\} \leq$ $\min \{\operatorname{rank} M, \operatorname{rank} L\}(*)$. Let $f: F \rightarrow G$ be a map of finitely generated free R-modules. Then rank $f=\min \{r \geq$ $\left.0 \mid I_{r+1}(f)=0\right\}$. Now f induces maps $\bigwedge^{i} f: \bigwedge^{i} F \rightarrow \bigwedge^{i} G$ defined by $u_{1} \wedge \cdots \wedge u_{i} \rightarrow f\left(u_{1}\right) \wedge \cdots \wedge f\left(u_{i}\right)$. If $\left\{e_{1}, \ldots, e_{m}\right\}$ is a basis for F then $\left\{e_{j_{1}} \wedge \cdots \wedge e_{j_{i}} \mid j_{1}<\cdots<j_{i}\right\}$ is a basis for $\bigwedge^{i} F$. So $\bigwedge^{i} F$ is free of rank $\binom{m}{i}$. Fix a basis $\left\{u_{1}, \ldots, u_{n}\right\}$ for G and let $A=\left(a_{i j}\right)$ be the matrix representation for f with respect to the chosen basis.

Exercise. The matrix representing $\bigwedge^{i} f$ with respect to the bases above is given by the $i \times i$ minors of A. Specifically, the coefficient of $u_{k_{1}} \wedge \cdots \wedge u_{k_{i}}$ in the expression of $\left(\bigwedge^{i} f\right)\left(e_{j_{1}} \wedge \cdots \wedge e_{j_{i}}\right)$ is the $i \times i$ minor determined by rows k_{1}, \ldots, k_{i} and columns j_{1}, \ldots, j_{i}. Thus $I_{1}\left(\bigwedge^{i} f\right)=I_{i}(f)$. Thus $I_{i}(F)=0$ if and only if $\bigwedge^{i} f=0$ and so rank $f=$ $\min \left\{r \geq 0 \mid \bigwedge^{r+1} f=0\right\}$.

Definition. Let R be a ring and M and R-module with $x \in M$. The order ideal of x is $\mathcal{O}_{R}(x)=\left\{\phi(x) \mid \phi \in M^{*}=\right.$ $\left.\operatorname{Hom}_{R}(M, R)\right\}$.

Remarks.

(1) $\mathcal{O}_{R}(x)$ is an ideal.
(2) If M is finitely presented, then $\operatorname{Hom}_{R}(M, R)_{S} \cong \operatorname{Hom}_{R_{S}}\left(M_{S}, R_{S}\right)$ for all multiplicatively closed sets S. Thus $\mathcal{O}_{R}(x)_{S} \cong \mathcal{O}_{R_{S}}\left(\frac{x}{1}\right)$.
(3) More generally, let $f: R \rightarrow S$ be a ring homomorphism. Then there exists a natural map $\operatorname{Hom}_{R}(M, R) \otimes_{R} S \rightarrow$ $\operatorname{Hom}_{S}\left(M \otimes_{R} S, S\right)$. Thus for $x \in M, \mathcal{O}_{R}(x) S \subseteq \mathcal{O}_{S}(x \otimes 1)$ (note that when S is flat, this become an equality). In particular, if $I \subset R$, then $\mathcal{O}_{R}(x) \cdot R / I \subseteq \mathcal{O}_{R / I}(\bar{x})$.
(4) Suppose $M=A \oplus B$ and $x=(a, b)$. Then $M^{*}=A^{*} \oplus B^{*}$ and so $\mathcal{O}_{R}(x)=\mathcal{O}_{R}(a)+\mathcal{O}_{R}(b)$.
(5) If $x \in I M$ for an ideal I, then $\mathcal{O}_{R}(x) \subseteq I$. In particular, if $x \in m M$ for some maximal ideal of R then $\mathcal{O}_{R}(x)$ is a proper ideal.
(6) Let $M=R^{n}$ and $x=\left(x_{1}, \ldots, x_{n}\right.$. Then $\mathcal{O}_{R}(x)=\left(x_{1}, \ldots, x_{n}\right)$.
(7) If R is Noetherian, $M=R^{n}$ and $x \in m M$ for some maximal ideal then $\operatorname{ht} \mathcal{O}_{R}(x) \leq n=\operatorname{rank} M$ (by Krulls Principal Ideal Theorem and Remark 6).

Definition. For a Noetherian ring R and finitely generated R-module M, define bigrank $M=\max \left\{\mu_{R_{p}}\left(M_{p}\right) \mid p \in\right.$ $\operatorname{Min} R$.

If R is a domain, then bigrank $M=\operatorname{rank} M$.
Theorem 96 (Eisenbud-Evans, '76). Let (R, m) be a local ring, M a finitely generated R-module and $x \in m M$. Suppose R satisfies $C E$, then ht $\mathcal{O}_{R}(X)=\operatorname{bigrank} M$.

Proof. Let $p \in \operatorname{Min} R$ such that ht $\mathcal{O}_{R}(x)=\operatorname{ht} \mathcal{O}_{R}(x) R / p$. By Remark $3, \mathcal{O}_{R}(x) R / p \subseteq \mathcal{O}_{R / p}(\bar{x})$. Thus ht $\mathcal{O}_{R}(x) \leq$ $\operatorname{ht} \mathcal{O}_{R / p}(\bar{x})$. Note also

$$
\operatorname{bigrank} M \geq \mu_{R_{p}}\left(M_{p}\right)=\mu_{R_{p}}\left(M_{p} / p M_{p}\right)=\mu_{R_{p} / p R_{p}}\left(M_{p} / p M_{p}\right)=\operatorname{rank}_{R / p}(M / p)=\operatorname{bigrank}_{R / p}(M / p M)
$$

Thus we may assume R is a domain. Let $h=\operatorname{ht} \mathcal{O}_{R}(X)$. Then $\operatorname{codim} \mathcal{O}_{R}(x) \geq h$. So there exists a system of parameters x_{1}, \ldots, x_{d} for R such that $x_{1}, \ldots, x_{n} \in \mathcal{O}_{R}(x)$. Let $M^{\prime}=M \oplus R^{d-h}$ and $x^{\prime}=x+\left(x_{h+1}, \ldots, x_{d}\right)$. Then $\mathcal{O}_{R}\left(x^{\prime}\right)=\mathcal{O}_{R}(x)+\mathcal{O}_{R}\left(x_{h+1}, \ldots, x_{d}\right)=\mathcal{O}_{R}(x)+\left(x_{h+1}, \ldots, x_{d}\right)$, which is m-primary. Clearly rank $M^{\prime}=\operatorname{rank} M+d-h$.

So if we prove ht $\mathcal{O}_{R}\left(x^{\prime}\right) \leq \operatorname{rank} M^{\prime}$ then $d \leq \operatorname{rank} M+d-h$, that is, $h \leq \operatorname{rank} M$. So without loss of generality, suppose $\operatorname{ht} \mathcal{O}_{R}(x)=d$. We need to show rank $M \geq d$. Let x_{1}, \ldots, x_{d} be a system of parameters such that $x_{1}, \ldots, x_{d} \subseteq \mathcal{O}_{R}(x)$. Then there exists $\alpha_{i} \in M^{*}$ such that $\alpha_{i}(x)=x_{i}$ for all i. Define $\alpha: M \rightarrow R^{d}=: F$ by $u \mapsto\left(\alpha_{1}(u), \ldots, \alpha_{d}(u)\right)$. Let $m=\left(y_{1}, \ldots, y_{n}\right)$. Since $x \in m M$ there exists $u_{1}, \ldots, u_{n} \in M$ such that $x=\sum y_{i} u_{i}$. Define $\pi: R^{n}=: G \rightarrow M$ by $e_{i} \mapsto u_{i}$. Note $\pi\left(y_{1}, \ldots, y_{n}\right)=x$. Let $f=\alpha \pi: G \rightarrow F$ and note that the following squares commute.

Note $\operatorname{rank} f^{*}=\operatorname{rank} f \leq \operatorname{rank} M$ by $(*)$. By the remarks on the Koszul complex, f induces a chain map $\tilde{f}: K .(\underline{x}) \rightarrow$ $K .(\underline{y})$ given by $\bigwedge^{i}(f): \bigwedge^{i} F^{*} \rightarrow \bigwedge^{i} G^{*}$. Let P. be a projective resolution of $k=R / m$ and $\phi: K .(\underline{y}) \rightarrow P$. lift the identity map $R /(\underline{y}) \rightarrow k$. Then $\phi \tilde{f}: K .(\underline{x}) \rightarrow P$. is a chain map lifting $R /\left(\underline{x} \rightarrow k\right.$. By CE, $\phi_{d} \bigwedge^{d} f=(\phi \tilde{f})_{d} \neq 0$. Thus $\bigwedge^{d} f \neq 0$ and so $\operatorname{rank} f \geq d$. Thus rank $M \geq \operatorname{rank} f \geq d$.

Appendix A. Homework Problems

A.1. Homework Set 1.

(1) (Justin) Prove the monomial conjecture for Cohen-Macaulay local rings.

Proof. Since R is Cohen Macaulay, x_{1}, \ldots, x_{d} is R-regular. Let $I=\left(x_{1}, \ldots, x_{d}\right)$. Recall $\operatorname{gr}_{I}(R)=\oplus_{i=0}^{\infty} I^{i} / I^{i+1}$ is \mathbb{Z}-graded and in degree zero is R / I.

Claim. The map $\phi:(R / I)\left[X_{1}, \ldots, X_{d}\right] \rightarrow \operatorname{gr}_{I}(R)$ defined by $X_{i} \mapsto \overline{x_{i}} \in I / I^{2}$ is an isomorphism.
Proof. This map is homogenous, thus we only need to check the isomorphism for homogenous elements. For surjectivity, note that a homogenous element of $\operatorname{gr}_{I}(R)$ lives in I^{s} / I^{s+1} for some s. The element is an (R / I)-linear combination of s-fold products of x_{1}, \ldots, x_{d}. The same combination in $(R / I)\left[X_{1}, \ldots, X_{d}\right]$ works.
For injectivity, supposed $F \in(R / I)\left[X_{1}, \ldots, X_{d}\right]$ is homogenous of degree s. Say $F=\sum_{n \in \mathbb{Z}^{d}} a_{n_{i}} X^{n_{i}}$. Under ϕ, F maps to $I^{s} /^{s+1}$. If $\phi(F)=0$, then $\phi(F) \in I^{s+1}$ when we life to R. Thus $\sum a_{n_{i}} x^{n_{i}} \in I^{s+1}$. By the following theorem, $a_{i} \in I$ when we lift to R. Thus $a_{i}=0 \in R / I$.
Theorem (Rees). If $I=\left(x_{1}, \ldots, x_{d}\right)$ is an R-regular sequence and $F \in R\left[X_{1}, \ldots, X_{d}\right]$ is homogenous of degree s with $F\left(x_{1}, \ldots, x_{d}\right) \in I^{s+1}$ then F has coefficients in I.
Suppose $x_{1}^{t} \cdots x_{d}^{t} \in\left(x_{1}^{t+1}, \ldots, x_{d}^{t+1}\right)$. Look at $\operatorname{gr}_{I}(R) /\left(x_{1}^{t+1}, \ldots, x_{d}^{t+1}\right) \operatorname{gr}_{I}(R) \cong(R / I)\left[X_{1}, \ldots, X_{d}\right] /\left(X_{1}^{t+1}, \ldots, X_{d}^{t+1}\right)$. By the isomorphism, we know $X_{1}^{t} \cdots X_{d}^{t} \notin\left(X_{1}^{t+1}, \ldots, X_{d}^{t+1}\right)$ as they are variables. Thus $X_{1}^{t} \cdots X_{d}^{t} \in 0$ on the right hand side, yet $x_{1}^{t} \cdots x_{d}^{t}=0$ on the left hand side, a contradiction.
(2) (Hamid) Let (R, m) be a quasi-localr ing. Let M be an R-module and suppose F. and G. are two free resolutions of M consisting of finitely generated free R-modules. Suppose F. is minimal. Prove that there exists an exact complex H. of finitely generated free R-modules such that G. $\cong F H$. as complexes.

Proof. Consider the following diagram

Composing gives us $\beta \circ \alpha$, which is null homotopic to 1 by the comparison theorem. Thus $\beta \circ \alpha$ is an isomorphism which implies α splits.
(3) (Laura) Let M be a finitely presented R-module and $F_{1} \xrightarrow{\phi} F_{0} \rightarrow M \rightarrow 0$ and $G_{1} \xrightarrow{\psi} G_{0} \rightarrow M \rightarrow 0$ two presentations of M. Let $r=\operatorname{rank} F_{0}$ and $s=\operatorname{rank} G_{0}$. Prove that $I_{r-i}(\phi)=I_{s-i}(\psi)$. [Note: This result allows us to call $I_{r-i}(\phi)$ the $i^{\text {th }}$ Fitting Ideal of M.]

Proof. We may assume R is local as $I_{r-i}(\phi)=I_{s-i}(\psi)$ if and only if they are locally equal. Furthermore, since we can compare both of these presentations to a fixed minimal one, we may assume $F_{1} \rightarrow F_{0} \rightarrow M \rightarrow 0$ is minimal. Extend these presentations to free resolutions of M of finitely generated free R-modules F. and G.. By exercise 2, there exists an exact complex H. of finitely generated free R-modules such that $G . \cong F$. $\oplus H$. Say $H .: \cdots \rightarrow H_{1} \xrightarrow{\tau} H_{0} \rightarrow 0$. Note $G_{0} \cong F_{0} \oplus H_{0}$ which implies $p: \operatorname{rank} H_{0}=s-r$. As τ is surjective, choose bases for H_{1} and H_{0} such that τ is represented by the matrix $\left(I_{p} 0\right)$. Note that
$F . \oplus H .: \cdots \rightarrow F_{1} \oplus H_{1} \xrightarrow{A} F_{0} \oplus H_{0} \rightarrow 0$ where $A=\left(\begin{array}{ll}\phi & 0 \\ 0 & \tau\end{array}\right)$ is a free resolution of M as H. is exact. Since $G . \cong F . \oplus H .$, we see $\psi=\left(\begin{array}{ccc}\phi & 0 & 0 \\ 0 & I_{p} & 0\end{array}\right)$.
(4) (Xuan) Let R be a ring and M a finitely presented R-module. Let $F_{1} \xrightarrow{\phi} F_{0} \rightarrow M \rightarrow 0$ be a presentation for M. Prove that M is projective if and only if $I_{j}(\phi)$ is generated by an idempotent for each j.

Proof. For the forward direction, suppose M is projective. Then M_{m} is a free R_{m}-module, hence projective with rank. By Corollary 17, there exists r such that $I_{r}(\phi)_{m}=R_{m}$ and $I_{r+1}(\phi)_{m}=0$. Note $\cdots \underbrace{\subseteq I_{r+2}(\phi)_{m}}_{=0} \subseteq$ $\underbrace{I_{r+1}(\phi)_{m}}_{=0}=\underbrace{I_{r}(\phi)_{m}}_{=0} \subseteq \cdots$ and so $I_{j}(\phi)_{m}=R_{m}$ or 0 for all j and all m.

Claim. J a finitely generated ideal, $J_{m}=0$ or R_{m}. Then J is generated by an idempotent.
Proof. If $J_{m}=0$ then $(0: J) \nsubseteq m$. IF $J_{m}=R_{m}$ then $J \nsubseteq m$. So $(0: J)+J \nsubseteq m$ which implies $(0: J)=R$. Choose $i \in(0: J)$ and $j \in J$ so that $i+j=1$ and $i j=0$. Then $j(1-j)=0$ which implies $j^{2}=j$. For all $x \in J$ we see $(1-j) x=0$ which implies $x=j x$ and so $J=(j)$.
For the backward direction, let $p \in \operatorname{Spec} R$. We claim idempotents in R_{p} are either 0 or 1 . Note $I_{r}(\phi)_{p}=$ $I_{r}(\phi) R_{p}$ where the left side is generated by idempotents by assumption. Now M_{p} is projective R_{p}-module and is thus locally free. So M is finitely generated. Take r equal to the maximum such that $I_{r}(\phi)_{p}=R_{p}$ and $I_{r+1}(\phi)_{p}=0$.
(5) (Brian) Let A be an $n \times m$ matrix with entries from a commutative ring R. Prove that the system $A \mathbf{x}=\mathbf{0}$ has a nontrivial solution if and only if there exists a nonzero element $z \in R$ such that $z I_{m}(A)=0$. (This is a theorem due to McCoy.)

Proof. Recall from last time for F, G finitely generated free and $\phi: F \rightarrow G$ with $r=\operatorname{rank} F$ that $F \otimes_{R} M \rightarrow$ $G \otimes_{R} M$ is injective if and only if grade $\left(I_{r}(\phi), M\right) \geq 1$. Now its enough to show $R^{m} \xrightarrow{A} R^{n}$ is injective if and only if there does not exists $z \in R \backslash\{0\}$ such that $z I_{m}(A)=0$. Replace M with R in our recall statement and note grade $\left(I_{m}(A), R\right) \geq 1$ if and only if $\operatorname{Ann}_{R}\left(I_{m}(A)\right)=0$.
(6) (Katie) Let R be a ring, $F_{1} \xrightarrow{\phi} F_{0} \rightarrow M \rightarrow 0$ a presentation, and $r=\operatorname{rank} F_{0}$. Prove that $I_{r}(\phi) \subseteq \operatorname{Ann}_{R} M$.

Proof. Let $m=\operatorname{rank} F$. If $r>m$, then $I_{r}(\psi)=0$. So assume $r \leq m$. Let ϕ^{\prime} be an $r \times r$ submatrix of ϕ and $M^{\prime}=\operatorname{coker} \phi^{\prime}$. Then $\operatorname{Ann}\left(M^{\prime}\right) \subseteq \operatorname{Ann}(M)$. So it is enough to show $I_{r}(\phi) \subseteq \operatorname{Ann}(M)$ and thus we may assume $m=r$. Note $I_{r}(\psi)=\operatorname{det} \psi$ and so its enough to show $\operatorname{det}(\psi) \subseteq \operatorname{Ann}(M)$. Now $\operatorname{det} \psi\left(I_{r}\right)=\psi \cdot \operatorname{adj}(\psi)$.

By diagram chasing, we see $*$ is zero and thus $* *$ is zero. Thus $\operatorname{det} \phi \in \operatorname{Ann} M$.
(7) (Lori) Let R be a ring, $F_{1} \xrightarrow{\phi} F_{0} \rightarrow M \rightarrow 0$ a presentation, and $r=\operatorname{rank} F_{0}$. Prove that $I_{r}(\phi) \subseteq \operatorname{Ann}_{R} M$.

Proof. Let A be a matrix representation for ϕ. Now $F_{0} \cong R^{r}$ and say $F_{1} \cong R^{m}$. Let A_{j} be a $j \times j$ submatrix of $A, d=\operatorname{det} A_{j}$, and $x \in \operatorname{Ann} M$. We want to show $d x \in I_{j+1}(\phi)$. Let B be the $r \times(m+r)$ matrix $\left(A x I_{r}\right)$. This gives $R^{m+r} \xrightarrow{B} R^{r} \rightarrow$ coker $B \rightarrow 0$ where coker $B=R^{r} / \operatorname{im} B=R^{r} / \operatorname{im} A+x R^{r} \cong \operatorname{coker} A$ and $x R^{r} \in \operatorname{im} A$. By exercise $3, I_{r-i}(\phi)=I_{r-i}(B)$ for all i. Consider $I_{j+1}(B)$ and take the $(j+1) \times(j+1)$ submatrix $\left(\begin{array}{cc}A_{j} & 0 \\ * & x\end{array}\right)$
which has determinant equal to $\left(\operatorname{det} A_{j}\right) x=d x$. Thus $d x \in I_{j+1}(\phi)$. Thus $I_{r}(\phi) \supseteq \operatorname{Ann} M I_{r-1}(\phi) \supseteq \cdots \supseteq$ $(\operatorname{Ann} M)^{r} I_{0}(\phi)=(\operatorname{Ann} M)^{r}$.
(8) (Silvia) Let R be a semi-local ring and P a finitely generated projective R-module. Prove that P is free if and only if for all maximal ideals m and n of $R, \operatorname{rank}_{R_{m}} P_{m}=\operatorname{rank}_{R_{n}} P_{n}$.

Proof. Let R be a semi-local ring and let $\mathfrak{m}_{1}, \ldots, \mathfrak{m}_{t}$ be the maximal ideals of R. Let P be a finitely generated projective R-module.
(\Rightarrow) Suppose P is free, i.e. $P \cong R^{n}$ for some $n>0$. Since localization commutes with direct sums, we have: $P_{\mathfrak{m}_{i}} \cong\left(R^{n}\right)_{\mathfrak{m}_{i}} \cong R_{\mathfrak{m}_{i}}^{n}$ which implies $\operatorname{rank}_{R_{\mathfrak{m}_{i}}} P_{\mathfrak{m}_{i}}=n \quad$ for all $i=1, \ldots, t$.
(\Leftarrow) Conversely, suppose $\operatorname{rank}_{R_{\mathfrak{m}_{i}}} P_{\mathfrak{m}_{i}}=n$ for all $i=1, \ldots, t$. As P is a finitely generated projective R-module, P is locally free, i.e. for each i we have $P_{\mathfrak{m}_{i}} \cong R_{\mathfrak{m}_{i}}^{n}$ for all i. Use Lemma 12.2 in [BH] with $N=P$ to find $u \in P$ such that $\frac{u}{1} \notin \mathfrak{m}_{i} P_{\mathfrak{m}_{i}}$ for all i (note that the condition $P_{\mathfrak{m}_{i}} \nsubseteq \mathfrak{m}_{i} P_{\mathfrak{m}_{i}}$ is satisfied). Thus $\frac{u}{1}$ is in a minimal generating set for $P_{\mathfrak{m}_{i}}$ (by NAK) for all i. Use induction on n.
(i) Assume $n=1$.

Then $P_{\mathfrak{m}_{i}}$ is free of rank 1 for all i, and $\left\{\frac{u}{1}\right\}$ is a basis for $P_{\mathfrak{m}_{i}}$ and we can write $P_{\mathfrak{m}_{i}}=R_{\mathfrak{m}_{i}} \frac{u}{1}$ for all i. Let $\phi: R \rightarrow P$ be the R-module homomorphism given by $\phi(1)=u$, and consider the following exact sequence $0 \rightarrow K \rightarrow R \stackrel{\phi}{\rightarrow} P \rightarrow C \rightarrow 0$. Localize at a maximal ideal \mathfrak{m}_{i} to get:

$$
0 \longrightarrow K_{\mathfrak{m}_{i}} \longrightarrow R_{\mathfrak{m}_{i}} \xrightarrow{\phi_{\mathfrak{m}_{i}}} P_{\mathfrak{m}_{i}} \longrightarrow C_{\mathfrak{m}_{i}} \longrightarrow 0
$$

where $\phi_{\mathfrak{m}_{i}}$ is an isomorphism. Thus $K_{\mathfrak{m}_{i}}=0=C_{\mathfrak{m}_{i}}$ for all maximal ideals \mathfrak{m}_{i} of R and hence $K=0=C$. Thus $P \cong R$, i.e. P is free of rank 1 .
(ii) Assume the claim holds for $n-1$, i.e. if M is a finitely generated projective R-module such that $\operatorname{rank}_{R_{\mathfrak{m}}} P_{\mathfrak{m}}=n-1$ for all maximal ideals \mathfrak{m} of R, then M is free.
Since $P_{\mathfrak{m}_{i}} \cong R_{\mathfrak{m}_{i}}^{n}$ and $\left\{\frac{u}{1}\right\}$ is part of a basis, $(P / R u)_{\mathfrak{m}_{i}}$ is free of rank $n-1$ for all i. As P is finitely generated, so is $P / R u$. Since $P / R u$ is finitely generated and locally free (and R Noetherian), $P / R u$ is projective. By induction, $P / R u$ is free of rank $n-1$. Moreover $R u \cong R$ is free of rank 1 . Now consider the exact sequence $0 \rightarrow R u \rightarrow P \rightarrow P / R u \rightarrow 0$. As $P / R u$ is projective, the sequence splits. Thus $P \cong R u \oplus P / R u$ is free of rank n.
(9) (Nick) Let R be a ring, M an R-module, and x an indeterminate over R. Suppose $f(x) \in R[x]$ is a zerodivisor on $M[x]=M \otimes_{R} R[x]$. Prove there exists a nonzero element $u \in M$ such that $f(x) u=0$ (that is, all the coefficients of f annihilate u).

Proof. There exists $g(x) \in M(x)$ such that $f(x) g(x)=0$. Then $\sum_{i=0}^{k} f_{i} x^{i} \cdot \sum_{j=0}^{\ell} g_{j} x^{j}=0$. We will induct on $k+\ell$. If $k+\ell=0$, then take $u=g_{0}$. Suppose $k+\ell>0$. Then $f_{k} g_{k}=0$. Set $\bar{g}(x)=f_{k} g(x)$. If $\bar{g}(x) \neq 0$, then $\operatorname{deg} \bar{g}(x)<\operatorname{deg} g(x)$. Now $f(x) \bar{g}(x)=f(x) \cdot g(x) f_{k}$. Thus there exists $0 \neq \bar{u} \in R f_{k} g_{0}+\cdots+R f_{k} g_{\ell-1} \subseteq$ $R g_{0}+\cdots+R g_{\ell}$ with $\bar{u} f(x)=0$. If $\bar{g}(x)=0$, then $f_{k} \cdot g_{i}=0$ for all i. Let $\bar{f}(x)=f(x)-f_{k} x^{k}$. If $\bar{f}(x)=0$ then $f(x)=f_{k} x^{k}$ and $u=g_{\ell}$. If not, $\operatorname{deg}(\bar{f}(x))<\operatorname{deg} f(x)$ and $\bar{f}(x) g(x)=f(x)-f_{k} x^{k} g(x)=$ $f(x) g(x)-f_{k} g(x) x^{k}=0$. So there exists $\bar{u} \in R g_{0}+\ldots+R g_{\ell}$ such that $\bar{u} \bar{f}(x)=0$. Then $f_{k} \bar{u}=0$ since $f_{k} g_{i}=0$ for all i. Set $u=\bar{u}$.

A.2. Homework Set 2.

(1) (Katie) Let R be a Noetherian local ring of dimension d and I an ideal of R. Prove that codim $I \geq i$ if and only if I contains x_{1}, \ldots, x_{i} which form part of a system of parameters for R.
(2) (Justin) Let (R, m) be a Noetherian local ring and F. a complex $0 \rightarrow F_{s} \rightarrow F_{s-1} \rightarrow \cdots \rightarrow F_{0} \rightarrow 0$ consisting of finitely generated free modules in each degree and such that all the homology has finite length. Let M be an R-module and $J_{i}:=\operatorname{Ann}_{R} H_{m}^{i}(M)$ for $i \geq 0$. Prove that for each $i \geq 0, J_{0} J_{1} \cdots J_{s-i}$ annihilates $H_{i}\left(F . \otimes_{R} M\right)$.

Proof. Take K to be the Čech complex on a system of parameters \underline{x} and reindex F. by F^{\cdot} where $F^{i}=F_{s-i}$. Define a double complex by $C^{\bullet}:=K^{\cdot} \otimes F^{*} \otimes M$. We will now examine spectral sequences.

First filter by the columns:

$$
\begin{aligned}
{ }^{I} E_{1}^{p q} & =H^{q}\left(K^{p} \otimes F^{\cdot} \otimes M\right) \\
& =K^{p} \otimes H^{q}(F \otimes M) \text { as } K^{p} \text { is flat for all } p \\
& = \begin{cases}H^{q}(F \cdot \otimes) & \text { if } p=0 \\
K^{p} \otimes H^{q}(F \cdot M) & \text { if } p>0\end{cases}
\end{aligned}
$$

We want to show $K^{p} \otimes H^{q}(F \otimes M)=0$ for $p>0$. Then the sequence ${ }^{I} E_{1}^{p q}$ will collapse and we will get $H^{p+q}\left(F^{\cdot} \otimes M\right)={ }^{I} E_{\infty}^{p q}=H^{p+q}(\operatorname{Tot}(C))$.

Claim. $H^{q}(F \otimes M)$ is m-torsion (and so $K^{p} \otimes H^{q}(F \otimes M)=0$ for $\left.p>0\right)$.
Proof. Let $G \xrightarrow{\sim} M$ be a projective resolution of M, indexed cohomologically. Consider the
double complex $F^{\cdot} \otimes G^{\prime}$. Filtering by columns gives us

$$
{ }^{I} E_{1}^{p, q}=H^{q}\left(F^{p} \otimes G^{\cdot}\right)=F^{p} \otimes H^{q}\left(G^{\cdot}\right)= \begin{cases}F^{p} \otimes M, & \text { if } q=0 \\ 0, & \text { if } q>0\end{cases}
$$

as G is a projective resolution of M. Thus ${ }^{I I} E_{2}^{p, q}=H^{p+q}\left(F^{\cdot} \otimes M\right)$. Filtering by rows gives us

$$
{ }^{I I} E_{1}^{p, q}=H^{q}\left(F^{\cdot} \otimes G^{p}\right) \cong H^{q}\left(F^{\cdot}\right) \otimes G^{p} \cong\left(H^{q}\left(F^{\cdot}\right)\right)^{m_{p}}
$$

where $m_{p}=\operatorname{rank} G^{p}$. So ${ }^{I I} E_{1}^{p, q}$ is m-torsion as each $H^{q}\left(F^{\cdot}\right)$ has finite length. Thus ${ }^{I I} E_{\infty}^{p, q}$ are m-torsion.
Now, consider the filtration of $H^{n}=H^{n}(F \otimes M)$:

$$
0=F^{n+1} H^{n} \subset F^{n} H^{n} \subset \cdots F^{0} H^{n}=H^{n}
$$

with $F^{i} H^{n} / F^{i+1} H^{n}={ }^{I I} E_{\infty}^{i, n-i}$. For each i, there exists ℓ_{i} such that $m^{\ell_{i}}{ }^{I I} E_{\infty}^{i, n-i}=0$. So $m^{\ell_{0}} \cdots m^{\ell_{n}} H^{n}=0$, that is, H^{n} is m-torsion.
Now filter by rows:

$$
\begin{aligned}
{ }^{I I} E_{1}^{p, q} & =H^{q}\left(K \otimes\left(F^{p} \otimes M\right)\right) \\
& =H^{q}\left(K \otimes M^{n_{p}}\right), \text { where } n_{p}=\operatorname{rank} F^{p} \\
& =H_{m}^{q}\left(M^{n_{p}}\right)
\end{aligned}
$$

By hypothesis, $J_{q} \cdot{ }^{I I} E_{1}^{p, q}=0$. Since ${ }^{I I} E_{\infty}^{p, q}$ is a subquotient of ${ }^{I I} E_{1}^{p, q}$, we also have J_{q}. ${ }^{I I} E_{\infty}^{p, q}=0$.
By the main convergence theorem of spectral sequences, ${ }^{I I} E_{1}^{p q} \Rightarrow H^{p+q}(\operatorname{Tot}(C)) \cong H^{p+q}\left(F^{\cdot} \otimes M\right)$. Thus for any $n \in \mathbb{Z}$, there exists a filtration $\left\{F^{p} H^{n}\right\}_{p \in \mathbb{Z}}$ where $H^{n}=H^{n}\left(F^{\cdot}\right)$ such that $F^{p} H^{n} / F^{p+1} H^{n} \cong I I E_{\infty}^{p, n-p}$ for all p. As ${ }^{I I} E_{1}^{p q}$ is a first quadrant spectral sequence, ${ }^{I I} E_{1}^{p, n-p}=0$ if $p<0$ or $p>m$. Hence the filtration of H^{n} has the form $0=F^{n+1} H^{n} \subseteq F^{n} H^{n} \subseteq \cdots \subseteq F^{1} H^{n} \subseteq F^{0} H^{n}=H^{n}$. Since $J_{n-p}{ }^{I I} E_{\infty}^{p, n-p}=0$, we have $J_{n-p} F^{p} H^{n} \subseteq F^{p+1} H^{n}$ and hence $J_{n} J_{n-1} \cdots J_{0} H^{n}=0$.
(3) (Nick) Let (R, m) be a Cohen Macaulay ring and x_{1}, \ldots, x_{d} a system of parameters for R. Prove that for any positive integers n_{1}, \ldots, n_{d},

$$
\lambda\left(R /\left(x_{1}^{n_{1}}, \ldots, x_{d}^{n_{d}}\right)=\left(\prod_{i=1}^{d} n_{i}\right) \lambda\left(R /\left(x_{1}, \ldots, x_{d}\right)\right)\right.
$$

Proof. Induct on $N:=\sum n_{i} \geq d$. For $N=d$, we see $n_{i}=1$ for all i and we are done. So suppose $N>d$. Then there exists i with $n_{i} \geq 2$. Without loss of generality, reindex so $n_{d} \geq 2$. Let

$$
I=\left(x_{1}^{n_{1}}, \ldots, x_{d}^{n_{d}}\right), I^{\prime}=\left(x_{1}^{n_{1}}, \ldots, x_{d-1}^{n_{d-1}}, x_{d}^{n_{d}-1}\right), I^{\prime \prime}=\left(x_{1}^{n_{1}}, \ldots, x_{d-1}^{n_{d-1}}, x_{d}\right)
$$

We have a short exact sequence $0 \rightarrow I / I^{\prime} \rightarrow R / I \rightarrow R / I^{\prime} \rightarrow 0$.
Claim. $I / I^{\prime} \cong R / I^{\prime \prime}$
Proof. Define $\phi: R \rightarrow I / I^{\prime}$ by $r \mapsto r x^{n_{d}-1}+I$. Note ϕ is surjective. Thus it is enough to show $\operatorname{ker} \phi=I^{\prime \prime}$. Clearly, $\operatorname{ker} \phi \supseteq I^{\prime \prime}$. So let $y \in \operatorname{ker} \phi$. Then $y x^{n_{d}-1} \in I$. Say $y x^{n_{d}-1}=\sum_{i=1}^{d} a_{i} x_{i}^{n_{i}}$.
Then $\left(y-a_{d} x_{d}\right) x_{d}^{n_{d}-1}=\sum_{i=1}^{d-1} a_{i} x_{i}^{n_{i}} \in\left(x_{1}^{n_{1}}, \ldots, x_{d-1}^{n_{d-1}}\right)$, which is regular. Furthermore, $\left(x_{1}^{n_{1}}, \ldots, x_{d-1}^{n_{d-1}}, x_{d}^{n_{d}-1}\right)$ is regular. Thus $y-a_{D} x_{d} \in\left(x_{1}^{n_{1}}, \ldots, x_{d-1}^{n_{d-1}}\right)$ and so $y \in I^{\prime \prime}$.
Now $\lambda(R / I)=\lambda\left(R / I^{\prime}\right)+\lambda\left(R / I^{\prime \prime}\right)=n_{1} \cdots n_{d-1}\left(n_{d}-1\right) \lambda(R /(\underline{x}))+n_{1} \cdots n_{d-1} \lambda(R /(\underline{x}))=n_{1} \cdots n_{d} \lambda(R /(\underline{x}))$.
(4) (Laura) Let (R, m) be a regular local ring of characteristic $p>0$ and M an R-module of finite length. Prove that $\lambda(F(M))=p^{d} \lambda(M)$, where $d=\operatorname{dim} R$.

Proof. Induct on $\lambda(M)$. If $\lambda(M)=1$, then $M \cong R / m$. As R is a regular local ring, $m=\left(x_{1}, \ldots, x_{d}\right)$ where \underline{x} form a system of parameters. Then

$$
\lambda(F(M))=\lambda\left(F\left(R /\left(x_{1}, \ldots, x_{d}\right)\right)\right)=\lambda\left(R /\left(x_{1}^{p}, \ldots, x_{d}^{p}\right)\right)=p^{d} \lambda\left(R /\left(x_{1}, \ldots, x_{d}\right)\right)=p^{d} \lambda(M)
$$

by Nick's exercise. Now suppose $\lambda(M)>0$ and choose $N \subset M$ with $\lambda(N)<\lambda(M)$. We have a short exact sequence $0 \rightarrow N \rightarrow M \rightarrow M / N \rightarrow 0$. As R is regular, F is exact and thus $0 \rightarrow F(N) \rightarrow F(M) \rightarrow$ $F(M / N) \rightarrow 0$ is exact. By assitivity of length, we thus have

$$
\lambda(F(M))=\lambda(F(N))+\lambda(F(M / N))=p^{d} \lambda(N)+p^{d} \lambda(M / N)=p^{d} \lambda(M) .
$$

(5) (Lori) Let R be a regular local ring and I an ideal of R. Prove that $F\left(H_{I}^{i}(R)\right) \cong H_{I}^{i}(R)$ for all i.

Proof. Let $I=\left(x_{1}, \ldots, x_{n}\right)$ and recall $H_{I}^{i}(R)=H^{i}(C(\underline{x}))$ where C^{\cdot} is the Cech complex. As R is regular, F is exact. Note that $0 \rightarrow \operatorname{ker} \phi_{i} \rightarrow C_{i} \xrightarrow{\phi_{i}} C_{i+1} \rightarrow \operatorname{coker} \phi_{i} \rightarrow 0$ is exact. This yields the following commutative diagram with exact rows.

By the Five Lemma, we have $F\left(\operatorname{ker} \phi_{i}\right)=\operatorname{ker} F\left(\phi_{i}\right)$ and $F\left(\operatorname{coker} \phi_{i}\right)=\operatorname{coker} F\left(\phi_{i}\right)$. So $F\left(C^{i+1}\right) / F\left(\operatorname{im} \phi_{i}\right)=$ $F\left(C^{i+1} / \operatorname{im} \phi_{i}\right)=F\left(\operatorname{coker} \phi_{i}\right)=\operatorname{coker} F\left(\phi_{i}\right)=F\left(C^{i+1}\right) / \operatorname{im} F\left(\phi_{i}\right)$, which implies $F\left(\operatorname{im} \phi_{i}\right)=\operatorname{im} F\left(\phi_{i}\right)$. This yields another commutative diagram with exact rows

By the Five Lemma, we have $F\left(H^{i}\left(C^{\cdot}\right)\right) \cong H^{i}\left(F\left(C^{\cdot}\right)\right)(*)$.
Furthermore, we have the following commutative diagram with exact rows

By the Five Lemma, we have $\operatorname{ker} \phi_{i}=\operatorname{ker} F\left(\phi_{i}\right)$ and $\operatorname{coker} \phi_{i}=\operatorname{coker} F\left(\phi_{i}\right)$. Thus we have $H^{i}\left(C^{\cdot}\right)=$ $H^{i}\left(F\left(C^{*}\right)\right)=F\left(H^{i}\left(C^{*}\right)\right)$ by $(*)$.
(6) (Brian) Let $\phi: R \rightarrow S$ be a homomorphism of commutative rings. For an $R-\operatorname{module} M$, let $S \otimes_{\phi} M$ denote the left S-module $S \otimes_{R} M$ where S is viewed as a right R-module via ϕ (i.e., $\left.s \otimes r m=s \phi(r) \otimes m\right)$. In this context, if $\phi: R \rightarrow R$ is a Frobenius map, then $R \otimes_{\phi} M$ is $F(M)$, the Frobenius functor applied to M. By the associative property of tensor products, if $\phi: R \rightarrow S$ and $\psi: S \rightarrow T$ are ring homomorphisms, then $T \otimes_{\psi}\left(S \otimes_{\phi} M\right) \cong T \otimes_{\psi \phi} M$. Use this approach to show that Frobenius commutes with localization and completion.

Proof. We will prove the result for localization. The proof for completions is similar. Let $\phi: R \rightarrow R$ be the Frobenius map, $\psi: R \rightarrow R_{S}$ the natural map, and $\tilde{\phi}: R_{S} \rightarrow R_{S}$ the Frobenius map of R_{S}. Note that $\psi \phi=\tilde{\phi} \psi$ as $\psi \phi(r)=\psi\left(r^{p}\right)=\frac{r^{p}}{1}=\tilde{\phi}\left(\frac{r}{1}\right)=\tilde{\phi} \psi(r)$. Now,

$$
F_{R_{s}}\left(M_{S}\right)=R_{S} \otimes_{\tilde{\phi}}\left(R_{S} \otimes_{\psi} M\right)=R_{S} \otimes_{\tilde{\phi} \psi} M=R_{S} \otimes_{\psi \phi} M=R_{S} \otimes_{\psi}\left(R \otimes_{\phi} M\right)=\left(F_{R}(M)\right)_{S}
$$

(7) (Xuan) Let (R, m) be a local ring of characteristic $p>0$ and M a finitely generated R-module such that $M \cong F(M)$. Prove that M is free.

Proof. As M is finitely presented, we have free modules F and G so that $F \rightarrow G \rightarrow M \rightarrow 0$ is a minimal presentation. Applying Frobenius, we get $F \rightarrow G \rightarrow F(M) \rightarrow 0$. Now $I_{j}=I_{j}^{[p]} \subseteq I_{j}^{p} \subseteq I_{j}^{2} \subseteq I_{j}$. Thus $I_{j}=I_{j}^{2}$ which implies $I_{j}=0$ by NAK. Thus M is projective and hence free.
(8) (Silvia) Let R be a ring of characteristic $p>0$ and S a multiplicatively closed set of R. Prove that $F\left(R_{S}\right) \cong$ R_{S}. More generally, let M be a flat R-module. Prove that $F(M)$ is flat.

Proof. Define $\phi: R^{F} \times S \rightarrow R_{S}$ by $\left(r, \frac{a}{b}\right) \mapsto \frac{r a^{p}}{b^{p}}$. Then ϕ is R-balanced (that is, ϕ is additive in each component and for all $u \in R$ we have $\left.\phi\left(r u, \frac{a}{b}\right)=\phi\left(r, \frac{u a}{b}\right)\right)$.

By definition of tensor product, there exists a unique group homomorphism $\alpha: R^{F} \otimes R_{S} \rightarrow R_{S}$ such that the diagram above commutes. Also $\alpha\left(u r \otimes \frac{a}{b}\right)=u \alpha\left(r \otimes \frac{a}{b}\right)$ and so α is an R-module homomorphism. Define $\beta: R_{S} \rightarrow R^{F} \otimes_{R} R_{S}$ by $\frac{a}{b} \mapsto a b^{p-1} \otimes \frac{1}{b}$. Then β is an R-module homomorphism and one can check $\alpha \beta=1$ and $\beta \alpha=1$. Thus $R_{S} \cong R^{F} \otimes R_{S}=F\left(R_{S}\right)$.

Now assume M is flat. By Lazard's Theorem, $M=\underline{\longrightarrow}\left(M_{i}, \phi_{j}^{i}\right)$ where M_{i} are finitely generated free modules. Thus

$$
F(M)=R^{F} \otimes \underset{\longrightarrow}{\lim }\left(M_{i}, \phi_{j}^{i}\right)=\underset{\longrightarrow}{\lim } R^{F} \otimes\left(M_{i}, \phi_{j}^{i}\right)=\underset{\longrightarrow}{\lim }\left(F\left(M_{i}\right), F\left(\phi_{j}^{i}\right)\right)=\underset{i}{\lim }\left(M_{i},\left(\phi_{j}^{i}\right)^{[p]}\right) .
$$

As M_{i} are finitely generated free, M_{i} is flat. As the direct limit of flat modules is flat, we are done.
(9) (Hamid) Let R be a Noetherian ring of characteristic $p>0$. Prove that the Frobenius functor is faithful; i.e., $F(M)=0$ if and only if $M=0$.

Proof. Clearly, if $M=0$ then $F(M)=0$. So suppose $F(M)=0$. Recall $M=0$ if and only if $M_{p}=0$ and Frobenius commutes with localization. Thus we may assume (R, m) is local. Similarly, $M=0$ if and only if $\hat{R} \otimes R=0$ and Frobenius commutes with completion. Thus we may assume R is a complete local ring and hence the homomorphic image of a regular local ring Q of characteristic p. Say $R=Q / I$ and consider M as a Q-module. We have the following commutative diagram where f_{Q} and f_{R} are the Frobenius maps and π
is the natural surjection

Now $0=F(M)=\left(M \otimes_{R} Q / I\right) \otimes R^{F}$. Also $0=\left(M \otimes_{Q} Q^{F}\right) \otimes_{Q} Q / I$ as $M \otimes Q^{F}$ is I-torsion $(\oplus Q / I \rightarrow M \rightarrow 0$ exact implies $\oplus M / I^{[p]} \rightarrow M \otimes Q^{F} \rightarrow 0$ is exact). Thus $M \otimes Q^{F}=0$. If $M \neq 0$, then there exists $0 \neq x \in M$. Then $0 \rightarrow(x) \otimes Q^{F} \rightarrow M \otimes Q^{F}$ is exact, which implies $x=0$, a contradiction.

Appendix B. Cohomological Spectral Sequences

The following is based from notes taken from Weibel's An Introduction to Homological Algebra.
Definition. A cohomological spectral sequence starting with $\left\{E_{a}\right\}$ is a family $\left\{E_{r}^{p q}\right\}_{r \geq a}$ of objects, together with maps $d_{r}^{p q}: E_{r}^{p q} \rightarrow E_{r}^{p+r, q-r+1}$ such that $d_{r} d_{r}=0$ and $E_{r+1}^{p q} \cong H\left(E_{r}\right)=\operatorname{ker}\left(d_{r}^{p q}\right) / \operatorname{im}\left(d_{r}^{p-r, q+r-1}\right)$.

Definition. A cohomological spectral sequence $\left\{E_{r}^{p q}\right\}_{r \geq a}$ is said to be bounded below if for each n there exists $s=s(n)$ such that $E_{a}^{p q}=0$ for all $p<s$. The spectral sequence is said to be bounded if for each n there are only finitely many non-zero terms $E_{a}^{p q}$ with $p+q=n$.

Note that $1^{\text {st }}$ and $3^{r d}$ quadrant spectral sequences are bounded, and $2^{\text {nd }}$ quadrant spectral sequences are bounded below.
B.1. Convergence. Note that $E_{r+1}^{p q}$ is a subquotient of the previous term $E_{r}^{p q}$. Define $Z_{r+1}^{p q}=\operatorname{ker}\left(d_{r}^{p q}\right)$ and $B_{r+1}^{p q}=$ $\operatorname{im}\left(d_{r}^{p-r, q+r-1}\right)$ for $r \geq a$. Further set $Z_{a}^{p q}=E_{a}^{p q}$ and $B_{a}^{p q}=0$. Then $E_{r}^{p q} \cong Z_{r}^{p q} / B_{r}^{p q}$.
Claim. The following is a nested family of subobjects of $E_{a}^{p q}$:

$$
0=B_{a}^{p q} \subseteq \cdots \subseteq B_{r}^{p q} \subseteq B_{r+1}^{p q} \subseteq \cdots \subseteq Z_{r+1}^{p q} \subseteq Z_{r}^{p q} \subseteq \cdots \subseteq Z_{a}^{p q}=E_{a}^{p q}
$$

Proof. Induct on r. For $r=q$, we have $0=B_{a}^{p q} \subseteq Z_{a}^{p q}=E_{a}^{p q}$. For $r>a$, we know $Z_{r+1}^{p q} \subseteq E_{r+1}^{p q} \subseteq Z_{r}^{p q}$ and $B_{r}^{p q} \subseteq B_{r+1}^{p q}$. Thus we have

By a generalization of the Five Lemma, done.
Define $B_{\infty}^{p q}=\cup_{r=a}^{\infty} B_{r}^{p q}$ and $Z_{\infty}^{p q}=\cap_{r=a}^{p q} Z_{r}^{p q}$. Then set $E_{\infty}^{p q}=Z_{\infty}^{p q} / B_{\infty}^{p q}$.
Note that if $\left\{E_{r}^{p q}\right\}$ is bounded below, then $Z_{\infty}^{p q}=Z_{r}^{p q}$ for all large r. If $\left\{E_{r}^{p q}\right\}$ is bounded, then $E_{\infty}^{p q}=E_{r}^{p q}$ for all large r.

Definition. Let $\left\{E_{r}^{p q}\right\}_{r \geq a}$ be a bounded below spectral sequence. We say $E_{r}^{p q}$ converges to $H^{*}=\left\{H^{n}\right\}$ if for each n we have a filtration (i.e., a chain of submodules of H^{n})

$$
0=F^{t} H^{n} \subseteq F^{t-1} H^{n} \subseteq \cdots \subseteq F^{p+1} H^{n} \subseteq F^{p} H^{n} \subseteq \cdots \subseteq H^{n}
$$

such that $E_{\infty}^{p q} \cong F^{p} H^{p+1} / F^{p+1} H^{p+q}$ and $\cup_{p} F^{p} H^{n}=H^{n}$. In this case, we write $E_{a}^{p q} \Rightarrow H^{p+q}$.
Remark. H^{*} need not be unique, even if the spectral sequence is bounded. For example, let $E_{0}^{p q}= \begin{cases}\mathbb{Z} / 2 \mathbb{Z}, & \text { if } p, q \geq 0 \\ 0, & \text { otherwise }\end{cases}$ and $d_{r}^{p q}=0$ for all p, q, r. Then $\left\{E_{r}^{p q}\right\}$ is a first quadrant spectral sequence with $E_{\infty}^{p q}=\mathbb{Z} / 2 \mathbb{Z}$ for all $p, q \geq 0$. So $E_{0}^{p q} \Rightarrow(\mathbb{Z} / 2 \mathbb{Z})^{p+q+1}$ and $E_{0}^{p q} \Rightarrow\left(\mathbb{Z} / 2^{p+q+1} \mathbb{Z}\right)$.

Definition. The spectral sequence $\left\{E^{p} q_{r}\right\}$ collapses at $E_{r}(r \geq 2)$ if there is exactly one non-zero row or column in the lattice $E_{r}^{p q}$.

Notes.

(1) If the spectral sequence collapses at E_{r}, then $E_{r}=E_{\infty}$.
(2) Suppose $E_{a}^{p q} \Rightarrow H^{n}$ and the spectral sequence collapses at E_{r}. Then H^{*} is unique. In fact, H^{n} is the unique non-zero $E_{r}^{p q}$ with $p+q=n$.

Proof. As $E_{r}^{p q}=0$ for all $p \neq c$, we see $F^{p} H^{n}=0$ for all $p \neq c$. So $H^{n}=F \subseteq H^{n}$. Since $E_{r}^{c q}=$ $F^{c} H^{p+1} / F^{c+1} H^{p+q}=F^{c} H^{n}$, we see $E_{r}^{c q}=H^{n}$.

Remarks.

(1) Suppose a spectral sequence converting to H^{*} has $E_{2}^{p q}=0$ unless $p=h$ or $h+1$ (i.e., we have two non-zero columns). So $E_{2}^{p q} \Rightarrow H^{p+q}$. Note $d_{2}^{p q}=0$ for all p, q and so $E_{2}^{p q}=E_{\infty}^{p q}$ for all p, q. Also, $E_{2}^{h+1, n-h-1} \subseteq H^{n}$ and $H^{n} / E_{2}^{h+1, n-h-1} \cong E_{2}^{h, n-h}$.

Proof. By definition, $E_{2}^{t, h-t} \cong F^{t} H^{h} / F^{t+1} H^{h}$. Since $E^{h+2, h-(h+2)}=0$, we see $F^{h+2} H^{h}=0$. Thus $E^{h+1}, h-$ $(h+1) \cong F^{h+1} H^{n} \subseteq H^{n}$. Similarly, $H^{n} / E_{2}^{h+1, n-h-1} \cong E_{2}^{h, n-h}$.

Thus we have the exact sequence $0 \rightarrow E_{2}^{h+1, n-h-1} \rightarrow H^{n} \rightarrow E_{2}^{h, n-h} \rightarrow 0$ for all n.
(2) Suppose a spectral sequence converging to H^{*} has $E_{2}^{p q}=0$ unless $q=s$ or $s+1$ (i.e., we have two non-zero rows). So $E_{2}^{p q} \Rightarrow H p+q$. Note $d_{2}^{p q}=0$ for all $q \neq s+1$. Then $E_{\infty}^{p q}=E_{3}^{p q}=\operatorname{ker}\left(d_{2}^{p q}\right) / \operatorname{im}\left(d_{2}^{p-2, q+1}\right)$. As above, $E_{3}^{n-s, s} \subseteq H^{n}$ and $H^{n} / E_{3}^{n-s, s} \cong E_{3}^{n-s-1, s+1}$. In addition, $E^{n-2-1, s+1}=\operatorname{ker}\left(E_{2}^{n-s-1, s+1} \xrightarrow{d_{2}} E_{s}^{n-s+1, s}\right)$ and $E_{3}^{n-s, s}=E_{2}^{n-s, s} / \operatorname{im}\left(E_{2}^{n-s-2, s+1} \xrightarrow{d_{2}} E_{2}^{n-s, s}\right)$. Putting this together, we get a long exact for all n : sequence

$$
\cdots \rightarrow H^{n-1} \rightarrow E_{2}^{n-s-2, s+1} \xrightarrow{d_{2}} E_{2}^{n-s, s} \rightarrow H^{n} \rightarrow E_{2}^{n-s-1, s+1} \xrightarrow{d_{2}} E_{2}^{n-s+1, s} \rightarrow \cdots
$$

(3) Suppose $\left\{E_{r}\right\}^{p q}$ is a first quadrant spectral sequence converging to H^{*}. Then $H^{0}=E_{2}^{0,0}$ and there is an exact sequence $0 \rightarrow E_{2}^{1,0} \rightarrow H^{1} \rightarrow E_{2}^{0,1} \xrightarrow{d_{2}} E_{2}^{2,0} \rightarrow H^{2}$. Similarly, suppose $\left\{E_{r}^{p, q}\right\}$ is a third quadrant spectral sequence converging to H^{*}. Then $H^{0}=E_{2}^{0,0}$ and there is an exact sequence $H^{-2} \rightarrow E_{2}^{-2,0} \xrightarrow{d_{2}} \rightarrow E_{2}^{0,-1} \rightarrow$ $H^{-1} \rightarrow E^{-1,0} \rightarrow 0$. These are called the exact sequences of low degree.

Definition. A filtration F on a chain complex C is an ordered family of chain subcomplexes $\cdots \subseteq F^{p+1} C \subseteq$ $F^{p} C \subseteq \cdots$ of C. The filtration is exhaustive if $\cup_{p} F^{p} C=C$. The filtration is bounded below if for each n there exists $s=s(n)$ such that $F^{p} C^{n}=0$ for $p>s$.

Theorem 97. A filtration F of a chain complex C naturally determines a spectral sequence starting with $E_{0}^{p q}=$ $F^{p} C^{p+q} / F^{p+1} C^{p+q}$ and $E_{1}^{p q}=H^{p+q}\left(E_{0}^{p *}\right)$. The maps $d_{r}^{p q}$ are induced by the differential of C.

Proof. Weibel, page 133.

Theorem 98. Suppose C is a chain complex and F is a filtration of C. Suppose F is bounded below and exhaustive. Then the spectral sequence $E_{1}^{p q}$ associated to F is bounded below and converges to $H^{*}(C)$:

$$
E_{1}^{p q}=H^{p+q}\left(F^{p} C / F^{p+1} C\right) \Rightarrow H^{p+q}(C)
$$

Proof. Weibel, page 136.
B.2. Spectral sequences of Double Complexes. Let $C=C^{* *}$ be a double complex:

such that $d_{v} d_{v}=d_{h} d_{h}=d_{h} d_{v}+d_{v} d_{h}=0$. The total complex $\operatorname{Tot}(C)$ of C is defined by $\operatorname{Tot}(C)^{n}=\oplus_{p+q=n} C^{p, q}$ and $d: \operatorname{Tot}(C)^{n} \rightarrow \operatorname{Tot}(C)^{n}$ is given by $d=d_{h}+d_{v}$. There are two natural filtrations of $\operatorname{Tot}(C)$ which give rise to two spectral sequences.

First, we may filter the total complex by columns: For each n, let $X_{n}^{* *}$ be the double subcomplex of $C^{* *}$ defined by $X_{n}^{p q}=\left\{\begin{array}{ll}C^{p, q}, & \text { if } p \geq n \\ 0, & \text { otherwise. }\end{array}\right.$ Let ${ }^{I} F^{n} \operatorname{Tot}(C)$ be the total complex of $X_{n}^{* *}$. Clearly, ${ }^{I} F^{n} \operatorname{Tot}(C)$ is a subcomplex of $\operatorname{Tot}(C)$ and ${ }^{I} F^{n+1} \operatorname{Tot}(C) \subseteq^{I} F^{n} \operatorname{Tot}(C)$ for all n. As $\operatorname{Tot}(C)$ is a direct sum of $C^{p q}$'s, this filtration is always exhaustive. Also ${ }^{I} F^{n} \operatorname{Tot}(C)$ is bounded below provided $C^{* *}$ is. This filtration gives rise to a spectral sequence $\left\{{ }^{I} E_{r}^{p q}\right\}$ starting with

$$
{ }^{I} E_{0}^{p q}={ }^{I} F^{p} \operatorname{Tot}(C)^{p+q} /{ }^{I} F^{p+1} \operatorname{Tot}(C)^{p+q}=\bigoplus_{i+j=p+q, i \geq p} C^{i j} / \bigoplus_{i+j=p+q, i \geq p+1} C^{i j}=C^{p q}
$$

The maps d_{0} are just the vertical differentials d_{v} of $C^{* *}$ and so ${ }^{I} E_{1}^{p q}=H_{v}^{q}\left(C^{p *}\right)$. The maps $d_{1}: H_{v}^{q}\left(C^{p *}\right) \rightarrow$ $H_{v}^{q}\left(C^{p+1, *}\right)$ are induced by the horizontal differentials and so ${ }^{I} E_{2}^{p q}=H_{h}^{p} H_{v}^{q}(C)$. By the theorem above, if C is a bounded below double complex, then this spectral sequence converged to $H^{*}(\operatorname{Tot}(C))$:

$$
{ }^{I} E_{2}^{p q}=H_{h}^{p} H_{v}^{q}(C) \Rightarrow H^{p+q}(\operatorname{Tot}(C))
$$

Similarly, we can filter $\operatorname{Tot}(C)$ by the rows of C : for each n let $Y_{n}^{* *}$ be the double subcomplex of $C^{* *}$ defined by $Y_{n}^{p q}=\left\{\begin{array}{ll}C^{p q}, & \text { if } q \geq n \\ 0, & \text { otherwise. }\end{array}\right.$ Let ${ }^{I I} F^{n} \operatorname{Tot}(C)$ be the total complex of $Y_{n}^{* *}$. Then ${ }^{I I} F^{n} \operatorname{Tot}(C)$ is a subcomplex of $\operatorname{Tot}(C)$ and ${ }^{I I} F^{n+1} \operatorname{Tot}(C) \subseteq{ }^{I I} F^{n} \operatorname{Tot}(C)$. As before, this is an exhaustive filtration of $\operatorname{Tot}(C)$ and is bounded below if $C^{* *}$ is bounded above. This filtration gives rise to another spectral sequence $\left\{{ }^{I I} E_{r}^{p q}\right\}$ beginning with

$$
{ }^{I I} E_{0}^{p q}={ }^{I I} F^{p} \operatorname{Tot}(C)^{p+q} /{ }^{I I} F^{p+1} \operatorname{Tot}(C)^{p+q}=\bigoplus_{i+j=p+q, j \geq p} C^{i j} / \bigoplus_{i+j=p+q, j \geq p+1} C^{i j}=C^{q p} .
$$

The differentials d_{0} are the horizontal differentials and so ${ }^{I I} E_{1}^{p q}=H_{h}^{q}\left(C^{* p}\right)$. The maps d_{1} are the vertical differentials of C and so ${ }^{I I} E_{2}^{p q}=H_{v}^{p} H_{h}^{q}(C)$. Again by the theorem above, if C is a bounded above double complex, then this
spectral sequence converges to $H^{*}(\operatorname{Tot}(C))$:

$$
{ }^{I I} E_{2}^{p q}=H_{v}^{p} H_{h}^{q}(C) \Rightarrow H^{p+q}(\operatorname{Tot}(C))
$$

B.3. Applications.

Theorem 99 (Universal Coefficient Theorem for Cohomology). Let P. be a bounded below chain complex of projective R-modules such that each $d\left(P_{n}\right)$ is also projective. Then for every n and every $R-$ module M there exists an exact sequence $0 \rightarrow \operatorname{Ext}_{R}^{1}\left(H_{n-1}(P), M\right) \rightarrow H^{n}\left(\operatorname{Hom}_{R}(P, M)\right) \rightarrow \operatorname{Hom}_{R}\left(H_{n}(P), M\right) \rightarrow 0$.

Proof. Let $P=\cdots \rightarrow P_{n+1} \rightarrow P_{n} \phi P_{n-1} \rightarrow \cdots \rightarrow P_{t} \rightarrow 0$. Let I be an injective resolution of M and $C^{* *}$ the double complex defined by $C^{p q}=\operatorname{Hom}_{R}\left(P_{p}, I^{q}\right)$. Note that C is a bounded double complex. Now $C^{p *}=\operatorname{Hom}_{R}\left(P_{p}, I\right)$ and so

$$
{ }^{I} E_{1}^{p q}=H^{q}\left(C^{p, *}\right)=\operatorname{Ext}_{R}^{q}\left(P_{p}, M\right)= \begin{cases}\operatorname{Hom}_{R}\left(P_{p}, M\right), & \text { if } q=0 \\ 0, & \text { otherwise }\end{cases}
$$

since P_{p} is projective. Thus ${ }^{I} E_{1}^{p q}$ collapses and H^{*} is unique. Now

$$
{ }^{I} E_{2}^{p q}=H_{h}^{p}\left(H_{v}^{q}(C)\right)= \begin{cases}H^{p}\left(\operatorname{Hom}_{R}(P, M)\right), & \text { if } q=0 \\ 0, & \text { otherwise }\end{cases}
$$

Since ${ }^{I} E_{2}^{p q} \Rightarrow H^{p+q}(\operatorname{Tot}(C))$, we see $H^{n}(\operatorname{Tot}(C)) \cong H^{n}\left(\operatorname{Hom}_{R}(P, M)\right)$ as H^{*} is unique.
Now ${ }^{I I}=H_{h}^{q}\left(C^{*, p}\right)=H^{q}\left(\operatorname{Hom}_{R}\left(P ., I^{p}\right)\right)=\operatorname{Hom}_{R}\left(H_{q}(P), I^{p}\right)$ since $\operatorname{Hom}_{R}\left(-, I^{p}\right)$ is exact. Then ${ }^{I I} E_{2}^{p q}=$ $H_{v}^{p}\left(\operatorname{Hom}_{R}\left(H_{q}(P), I^{\cdot}\right)\right)=\operatorname{Ext}_{R}^{p}\left(H_{q}(P), M\right)$. Thus we have $\operatorname{Ext}_{R}^{p}\left(H_{q}(P), M\right) \Rightarrow H^{p+q}\left(\operatorname{Hom}_{R}(P, M)\right)$.

Recall that each $d\left(P_{n}\right)$ is projective and thus $\operatorname{ker}\left(d_{n}\right)$ is projective for all n and $\operatorname{pd}_{R} H_{n}(P) \leq 1$ for all n (consider the short exact sequence $\left.0 \rightarrow d\left(P_{n+1}\right) \rightarrow \operatorname{ker}\left(d_{n}\right) \rightarrow H_{n}(P) \rightarrow 0\right)$. Hence $\operatorname{Ext}_{R}^{p}\left(H_{q}(P), M\right)=0$ for all $p \geq 2$. So ${ }^{I I} E_{2}^{p q}=0$ for all $p \neq 0,1$. Therefore we have a two column spectral sequence. By Remark 1 , there exists exact sequences

$$
0 \rightarrow \operatorname{Ext}_{R}^{1}\left(H_{n-1}(P), M\right) \rightarrow H^{n}\left(\operatorname{Hom}_{R}(P, M)\right) \rightarrow \operatorname{Hom}_{R}\left(H_{n}(P), M\right) \rightarrow 0
$$

for all n.
Theorem 100 (Base-change for Ext). Let $f: R \rightarrow S$ be a ring map. Then there is a first quadrant spectral sequence $E_{2}^{p q}=\operatorname{Ext}_{S}^{p}\left(A, \operatorname{Ext}_{R}^{q}(S, B)\right) \Rightarrow \operatorname{Ext}_{R}^{p+q}(A, B)$ for all $S-$ modules A and R-modules B.

Proof. Let $P \rightarrow A \rightarrow 0$ be a projective S-resolution of A and $0 \rightarrow B \rightarrow I^{\cdot}$ an injective R-resolution of B. Let $C^{p q}=\operatorname{Hom}_{R}\left(P_{p}, I^{q}\right)$. Then $C^{* *}$ is a first quadrant double complex.

$$
\begin{aligned}
{ }^{I I} E_{1}^{p q}=H_{h}^{q}\left(C^{* p}\right) & =H_{h}^{q}\left(\operatorname{Hom}_{R}\left(P ., I^{p}\right)\right) \\
& =H_{h}^{q}\left(\operatorname{Hom}_{R}\left(P . \otimes_{R} S, I^{p}\right)\right) \text { as } P . \text { is projective } \\
& =H_{h}^{q}\left(\operatorname{Hom}_{S}\left(P ., \operatorname{Hom}_{R}\left(S, I^{p}\right)\right)\right) \\
& =\operatorname{Ext}_{S}^{q}\left(A, \operatorname{Hom}_{R}\left(S, I^{p}\right)\right)
\end{aligned}
$$

Since I^{p} is an injective R-module, $\operatorname{Hom}_{R}\left(S, I^{p}\right)$ is an injective S-module. Thus

$$
{ }^{I I} E_{1}^{p q}= \begin{cases}\operatorname{Hom}_{S}\left(A, \operatorname{Hom}_{R}\left(S, I^{p}\right)\right), & \text { if } q=0 \\ 0, & \text { otherwise }\end{cases}
$$

Thus the spectral sequence collapses at E_{1}. Now

$$
\begin{aligned}
{ }^{I I} E_{2}^{p q} & =H_{v}^{p}\left(H_{h}^{q}(C)\right) \\
& =H_{v}^{p}\left(\operatorname{Hom}_{S}\left(A, \operatorname{Hom}_{R}\left(S, I^{\cdot}\right)\right)\right) \text { if } q=0 \\
& =H^{p}\left(\operatorname{Hom}_{R}\left(A, I^{\cdot}\right)\right) \\
& =\operatorname{Ext}_{R}^{p}(A, B)
\end{aligned}
$$

So ${ }^{I I} E_{2}^{p q}=\left\{\begin{array}{ll}\operatorname{Ext}_{R}^{p}(A, B), & \text { if } q=0 \\ 0, & \text { otherwise. }\end{array}\right.$ and therefore $H^{n}(\operatorname{Tot}(C))=\operatorname{Ext}_{R}^{n}(A, B)$.
Similarly, we have ${ }^{I} E_{1}^{p q}=H_{v}^{q}\left(C^{p *}\right)=H_{v}^{q}\left(\operatorname{Hom}_{R}\left(P_{p}, I^{*}\right)\right)=H_{v}^{q}\left(\operatorname{Hom}_{R}\left(P_{p} \otimes_{R} S, I^{*}\right)\right)=H_{v}^{q}\left(\operatorname{Hom}_{S}\left(P_{p}, \operatorname{Hom}_{R}\left(S, I^{\cdot}\right)\right)\right)$. As P_{p} is a projective S-module, $\operatorname{Hom}_{S}\left(P_{p},-\right)$ is an exact functor. Thus

$$
{ }^{I} E_{1}^{p q}=\operatorname{Hom}_{S}\left(P_{p}, H^{q}\left(\operatorname{Hom}_{R}\left(S, I^{\cdot}\right)\right)\right)=\operatorname{Hom}_{S}\left(P_{p}, \operatorname{Ext}_{R}^{q}(S, B)\right) .
$$

Now ${ }^{I} E_{2}^{p q}=H_{h}^{p} H_{v}^{q}(C)=H_{h}^{p}\left(\operatorname{Hom}_{S}\left(P ., \operatorname{Ext}_{R}^{q}(S, B)\right)\right)=\operatorname{Ext}_{S}^{p}\left(A, \operatorname{Ext}_{R}^{q}(S, B)\right)$. Therefore,

$$
\operatorname{Ext}_{S}^{p}\left(A, \operatorname{Ext}_{R}^{q}(S, B)\right) \Rightarrow \operatorname{Ext}_{R}^{p+q}(A, B) .
$$

B.4. Grothendieck Spectral Sequences.

Definition. Let C be a complex. A right Cartan-Eilenberg resolution of C is an upper half-plane double complex $I^{* *}$ together with an augmentation chain map $C^{*} \rightarrow I^{* 0}$ such that
(1) Each $I^{p q}$ is an injective module
(2) If $C^{p}=0$ then the column $I^{p *}=0$
(3) The induced maps on the boundaries and cohomology $0 \rightarrow B^{p}(C) \rightarrow B^{p 0}(I) \rightarrow B^{p 1}(I) \rightarrow \cdots$ and $0 \rightarrow$ $H^{p}(C) \rightarrow H^{p 0}(C) \rightarrow H^{p 1}(C) \rightarrow \cdots$ are injective resolutions, where $B^{r q}(I)=\operatorname{im}\left(I^{p-1, q} \xrightarrow{d_{h}} I^{p q}, Z^{p q}(I)=\right.$ $\operatorname{ker}\left(I^{p q} \xrightarrow{d_{h}} I^{p+1, q}\right)$, and $H^{p q}(I)=Z^{p q}(I) / B^{p q}(I)$.

Remark. If I is a right Cartan-Eilenberg resolution of C then $0 \rightarrow Z^{p}(C) \rightarrow Z^{p 0}(I) \rightarrow Z^{p 1}(I) \rightarrow \cdots$ and $0 \rightarrow C^{p} \rightarrow I^{p 0} \rightarrow I^{p 1} \rightarrow \cdots$ are injective resolutions.

Lemma 101. Every complex has a right Cartan Eilenberg resolution.
Proof. The analogous statement for left Cartan Eilenberg resolutions is proved in Wiebel.
Definition. An object B of a category \mathcal{B} is F-acyclic if the right derived functor of F vanishes on B, that is $R^{i} F(B)=0$ for all $i \neq 0$.

Theorem 102 (Grothendieck Spectral Sequence \#1). Let $\mathcal{A}, \mathcal{B}, \mathcal{C}$ be abelian categories such that \mathcal{A}, \mathcal{B} have enough injectives. Suppose $G: \mathcal{A} \rightarrow \mathcal{B}$ and $F: \mathcal{B} \rightarrow \mathcal{C}$ are left exact covariant functors. Suppose G sends injective objects of \mathcal{A} to F-acyclic objects of \mathcal{B}. Then there is a convergent first quadrant spectral sequence ${ }^{I I} E_{2}^{p q}\left(R^{p} F\right)\left(R^{q} G\right)(A) \Rightarrow R^{p+q}(F G)(A)$ for every object A in \mathcal{A}. The exact sequence of low degree terms is

$$
0 \rightarrow\left(R^{1} F\right)(G A) \rightarrow R^{1}(F G)(A) \rightarrow F\left(R^{1} G(A)\right) \rightarrow\left(R^{2} F\right)(G A) \rightarrow R^{2}(F G)(A)
$$

Proof. The exact sequence of low degree terms follows from Remark 3 above. Let $0 \rightarrow A \rightarrow J$ be an injective resolution of A (in the category \mathcal{A}). Apply the functor G to J^{*} and let $I^{* *}$ be a Cartan-Eilenberg resolution of $G\left(J^{*}\right)$ in the category \mathcal{B}. Let $X^{* *}$ be the double complex $F\left(I^{* *}\right)$. Now $I^{p *}$ is an injective resolution of $G\left(J^{p}\right)$ and so

$$
{ }^{I} E_{1}^{p q}=H_{v}^{q}\left(X^{p *}\right)=H_{v}^{q}\left(F\left(I^{p *}\right)\right)=R^{q} F\left(G\left(J^{p}\right)\right) .
$$

As J^{p} is an injective object of $\mathcal{A}, G\left(J^{p}\right)$ is F-acyclic, that is $R^{i} F\left(G\left(J^{p}\right)\right)=0$ for $i>0$. Thus the spectral sequence collapses at E_{1} and we have ${ }^{I} E_{1}^{p q}=\left\{\begin{array}{ll}(F G)\left(J^{p}\right), \text { if } q=0, \\ 0, \text { otherwise. }\end{array}\right.$ So

$$
{ }^{I} E_{2}^{p q}=H_{h}^{p}\left(H_{v}^{q}(X)\right)=\left\{\begin{array}{l}
R^{p}(F G)(A), \text { if } q=0 \\
0, \text { otherwise. }
\end{array}\right.
$$

Therefore $H^{p+q}(\operatorname{Tot}(X)) \cong R^{p+q}(F G)(A)$. Now ${ }^{I I} E_{1}^{p q}=H_{h}^{q}\left(X^{* p}\right)=H_{h}^{q}\left(F\left(I^{* p}\right)\right)$. As $I^{* *}$ is a right Cartan-Eilenberg resolution of $G\left(J^{\cdot}\right)$, the kernels, boundaries, and homologies of the complex $I^{* p}$ are all injective objects of \mathcal{B}. Thus $H_{h}^{q}\left(F\left(I^{* p}\right)\right) \cong F\left(H_{h}^{q}\left(I^{* p}\right)\right)$. Now $H_{h}^{q}(I)$ is an injective resolution of $H^{q}\left(G\left(J^{*}\right)\right)=R^{q}(G)(A)$. Therefore

$$
{ }^{I I} E_{2}^{p q}=H_{v}^{p} H_{h}^{q}(X)=H_{v}^{p}\left(F\left(H_{h}^{q}(I)\right)\right)=\left(R^{p} F\right)\left(R^{q} G\right)(A)
$$

Hence $\left(R^{p} F\right)\left(R^{q} G\right)(A) \Rightarrow R^{p+q}(F G)(A)$.

Examples.

(1) Let $\mathcal{A}=\mathcal{B}=\mathcal{C}$ be the category of R-modules and $J \subset I$ ideals of R. Let $F=\operatorname{Hom}_{R}(R / I$, -$)$ and $G=H_{J}^{0}(-)$. Then G sends injectives to injectives. Since $F G=\operatorname{Hom}_{R}(R / I,-)$, we get

$$
E_{2}^{p q}=\operatorname{Ext}_{R}^{p}\left(R / I, H_{J}^{q}(M)\right) \Rightarrow \operatorname{Ext}_{R}^{p+q}(R / I, M)
$$

for all R-modules M.
(2) (Base-change of Ext) Let \mathcal{A} be the category of R-modules and $\mathcal{B}=\mathcal{C}$ the category of R / J-modules for some ideal J of R. Suppose $I \supset J$. Let $F=\operatorname{Hom}_{R / J}(R / I,-)$ and $G=\operatorname{Hom}_{R}(R / J,-)$. Then $F G=\operatorname{Hom}_{R}(R / I,-)$ and thus

$$
E_{2}^{p q}=\operatorname{Ext}_{R / J}^{p}\left(R / I, \operatorname{Ext}_{R}^{q}(R / J, M)\right) \Rightarrow \operatorname{Ext}_{R}^{p+q}(R / I, M)
$$

Definition. Let C. be a complex. A left Cartan-Eilenberg resolution of C. is an upper-half plane double complex $P_{* *}$ together with an augmentation map $P_{* 0} \rightarrow C_{*}$ such that
(1) Each $P_{p q}$ is projective
(2) If $C_{p}=0$ then the column $P_{p *}=0$
(3) The induced maps on the boundaries and homology $\cdots \rightarrow B_{p q}(P) \rightarrow B_{p 0}(P) \rightarrow B_{p}(C) \rightarrow 0$ and $\cdots H_{p 1}(P) \rightarrow$ $H_{p 0}(P) \rightarrow H_{p}(C) \rightarrow 0$ are projective resolutions (and thus the induced maps $\cdots \rightarrow Z_{p 1}(P) \rightarrow Z_{p 0}(P) \rightarrow$ $Z_{p}(C) \rightarrow 0$ and $\cdots \rightarrow P_{p 1} \rightarrow P_{p 0} \rightarrow C_{p} \rightarrow 0$ are projective resolutions).

Lemma 103. Every complex has a left Cartan-Eilenberg resolution.
Theorem 104 (Grothendieck Spectral Sequence \#2). Let \mathcal{A}, \mathcal{B}, and \mathcal{C} be abelian categories such that \mathcal{A} and \mathcal{B} have enough projectives. Suppose $G: \mathcal{A} \rightarrow \mathcal{B}$ is a right covariant functor and $F: \mathcal{B} \rightarrow \mathcal{C}$ a contravariant left exact functor. Suppose G sends projective objects of \mathcal{A} to F-acyclic objects of \mathcal{B}. Then there is a first quadrant spectral sequence $E_{2}^{p q}=\left(R^{p}\right)\left(L_{q} G\right)(M) \Rightarrow R^{p+q}(F G)(M)$ for every object M in \mathcal{A}. The exact sequence of low degree terms is

$$
0 \rightarrow\left(R^{1} F\right)(G M) \rightarrow R^{1}(F G)(M) \rightarrow F\left(L_{1} G(M)\right) \rightarrow\left(R^{2} F\right)(G M) \rightarrow R^{2}(F G)(M)
$$

Proof. The exact sequence of low degree terms follows from Remark 3 above. Let P. $\rightarrow m$ be a projective resolution of M in the category \mathcal{A}. Let $Q_{* *}$ be a left Cartan-Eilenberg resolution of $G(P$.$) in the category \mathcal{B}$. Let $X^{* *}$ be the double complex $F\left(Q_{* *}\right)$. Then $X^{* *}$ is a first quadrant double complex and ${ }^{I} E_{1}^{p q}=H_{v}^{q}\left(X^{p *}\right)$. since $Q_{p *}$ is a projective resolution of $G\left(P_{p}\right), H_{v}^{q}\left(X^{p *}\right)=H_{v}^{q}\left(F\left(Q_{p *}\right)\right)=\left(R^{q} F\right)\left(G\left(P_{p}\right)\right)$. Since P_{p} is projective, $G\left(P_{p}\right)$ is F-acyclic and so ${ }^{I} E_{1}^{p q}=\left\{\begin{array}{l}F G\left(P_{p}\right), \text { if } q=0 \\ 0, \text { otherwise. }\end{array}\right.$ Thus the spectral sequence collapses and

$$
{ }^{I} E_{2}^{p q}=H_{h}^{p} H_{v}^{q}(X)=\left\{\begin{array}{l}
R^{p}(F G)(M), \text { if } q=0 \\
0, \text { otherwise }
\end{array}\right.
$$

Therefore $H^{n}(\operatorname{Tot}(X)) \cong R^{n}(F G)(M)$. Now ${ }^{I I} E_{1}^{p q}=H_{h}^{q}\left(X^{* p}\right)=H_{h}^{q}\left(F\left(Q_{* p}\right)\right)$. As $Q_{* *}$ is a left Cartan Eilenberg resolution of $G(P)$, the horizontal kernels, boundaries, and homology of $Q_{* p}$ are all projective objects of \mathcal{B}. Thus $H_{h}^{q}\left(F\left(Q_{* p}\right)\right) \cong F\left(H_{q}^{h}\left(Q_{* p}\right)\right)$. Now $H_{q}^{h}(Q)$ is a projective resolution of $H_{q}(G(P))=L_{q} G(M)$. Therefore
${ }^{I I} E_{2}^{p q} H_{v}^{p} H_{h}^{q}(X)=H_{v}^{p}\left(F\left(H_{q}^{h}(Q)\right)\right)=\left(R^{p} F\right)\left(L_{q} G\right)(M)$ and

$$
\left(R^{p} F\right)\left(L_{q} G\right)(M) \Rightarrow R^{p+q}(F G)(M)
$$

Example. Let $\phi: R \rightarrow S$ be a ring map. Let \mathcal{A} be the category of R-modules and $\mathcal{B}=\mathcal{C}$ the category of $S-$ modules. Let $G: \mathcal{A} \rightarrow \mathcal{B}$ be $-\otimes_{R} S$ and $F: \mathcal{B} \rightarrow \mathcal{C}$ be $\operatorname{Hom}_{S}(-, N)$ for some S-module N. For any R-module $M,(F G)(M)=\operatorname{Hom}_{S}\left(M \otimes_{R} S, N\right)=\operatorname{Hom}_{R}\left(M, \operatorname{Hom}_{S}(S, N)\right)=\operatorname{Hom}_{R}(M, N)$. Also G takes projective R-modules to projective S-modules. Thus there exists a first quadrant spectral sequence

$$
E_{2}^{p q}=\operatorname{Ext}_{S}^{p}\left(\operatorname{Tor}_{q}^{R}(S, M), N\right) \Rightarrow \operatorname{Ext}_{R}^{p+q}(M, N)
$$

for all r-modules M and S-modules N.
Theorem 105 (Grothendieck Spectral Sequence \#3). Let $\mathcal{A}, \mathcal{B}, \mathcal{C}$ be abelian categories such that \mathcal{A} has enough projectives and \mathcal{B} has enough injectives. Suppose $G: \mathcal{A} \rightarrow \mathcal{B}$ is a contravariant left exact functor and $F: \mathcal{B} \rightarrow \mathcal{C}$ is a covariant left exact functor. Suppose G sends projective objects of \mathcal{A} to F-acyclic objects of \mathcal{B}. Then there is a first quadrant spectral sequence $E_{2}^{p Q}=\left(R^{p} F\right)\left(R^{q} G\right)(M) \Rightarrow R^{p+q}(F G)(M)$ for all objects M in \mathcal{A}. The exact sequence of low degree terms is

$$
0 \rightarrow\left(R^{1} F\right)(G M) \rightarrow R^{1}(F G)(M) \rightarrow F\left(R^{1} G(M)\right) \rightarrow\left(R^{2} F\right)(G M) \rightarrow R^{2}(F G)(M)
$$

Proof. Similar to that of Grothendieck Spectral Sequence $\# 1$, except start with a projective resolution of M instead of an injective resolution.

[^0]: Lynch, Laura, "Class Notes for Math 918: Homological Conjectures, Instructor Tom Marley" (2010). Math Department: Class Notes and Learning Materials. 6.
 https://digitalcommons.unl.edu/mathclass/6

[^1]: ${ }^{1}$ Last edit: August 5, 2009

