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In Feynman’s Operational Calculi, a function of indeterminates in a commutative

space is mapped to an operator expression in a space of (generally) noncommuting

operators; the image of the map is determined by a choice of measures associated

with the operators, by which the operators are ‘disentangled’. Results in this area

of research include formulas for disentangling in particular cases of operators and

measures. We consider two ways in which this process might be facilitated. First, we

develop a set of notations and operations for handling the combinatorial arguments

that tend to arise. Second, we develop an intermediate space for the disentangling

map, where commutativity might be exploited more extensively.
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Chapter 1

Overview of Feynman’s

Operational Calculi. Motivation

for the present work

In a 1951 paper, “An Operator Calculus Having Applications in Quantum Electrody-

namics” [10], physicist Richard Feynman introduced a new notation for multiplying

noncommuting operators, with the intent that this notation would make operator

manipulation easier and would, in appropriate cases, make more transparent the un-

derlying physical theory that the operators represent. His approach was the following

(this is a paraphrase of Gerald Johnson and Michel Lapidus’ description of “Feyn-

man’s heuristic ‘Rules,’ ” [24, p. 377]):

(1) Express the order of operation of a product of noncommuting operators not by

means of conventional right-to-left order of operation, but instead by attaching

time indices to the operators (an earlier time means earlier operation).

(2) Form functions of the operators, with the indices attached, and then manipulate
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the operators as though they were commuting.

(3) Finally, ‘disentangle’ the resulting expressions; that is, restore the conventional

ordering of the operators.

We will illustrate with a very simple example: Suppose A and B are two non-

commuting operators, and say we want to look at their product. The product AB

in conventional notation means that B operates first, then A, whereas BA means A

operates before B. The idea of working with operators that occur in a certain order

may be motivated by physics, in which earlier operation may correspond to an actual,

physical time sequence of two events, or it may have mathematical motivation (see

for example [20]).

In Feynman’s notation, the order of operation is not denoted by the right-to-left

order on the page. Instead, using his system we might represent the product AB as

A2B1, where the fact that the subscript 1 is smaller than the subscript 2 is the means

by which we indicate that B operates before A. Were we to exchange the order of the

operators in Feynman’s notation, keeping the indices attached, we would get B1A2,

and then the indices would still tell us (because 1 < 2) that B operates first, and

A operates second. Hence A2B1 = B1A2; both expressions represent what in con-

ventional notation is BA, so operators with Feynman time indices are commutative.

After manipulating these expressions in ways that interest us, taking advantage of

that commutativity, we eventually restore the conventional notation in the resulting

expressions, so that, for example A2B1 becomes AB and A1B2 becomes BA (and AB

is not the same as BA).

The result of the above rules is a functional calculus, in the sense that functions of

the operators are manipulated as though they were functions of commuting indeter-

minates, and in the expressions that result after these manipulations they are again
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treated like noncommuting operators. Feynman did not formalize the mathematics

of his ideas in the article; other individuals have since then developed formalizations

of a number of his ideas.

Here we will work in the context of Feynman’s Operational Calculi (FOCi) as

initiated by B. Jefferies and G. W. Johnson [13], [15], [16], [14] (and also developed

especially by L. Nielsen, B. S. Kim, and M. Lapidus). Instead of Feynman’s heuristic

approach of attaching indices to noncommuting operators and then acting as though

the operators commute, the approach here is to begin in a commutative space of

indeterminates, each of which is associated with one of the noncommuting operators,

then to map from there to the space of operators. For example, noncommuting

operators A and B will be related to indeterminates Ã and B̃ that are elements of

a space D where ÃB̃ = B̃Ã. We will also associate ‘time indices’ s1, s2 which take

values in [0, 1] to the operators A,B, respectively (we will on occasion work in another

interval, such as [0, T ]). Thus Ã(s1) is thought of as referring to the indeterminate Ã

operating at the time s1, and consequently, Ã(s1)B̃(s2) is thought of as representing

that the indeterminate Ã operates before B̃ if s1 < s2, or that B̃ operates before Ã

if s2 < s1. (Truth be told, since indeterminates commute, the results are the same.

However, we will map ÃB̃ to expressions involving the operators A and B that also

have time indices s1 and s2, where if s1 < s2 we will have B(s2)A(s1) = BA, and if

s2 < s1 we will have A(s1)B(s2) = AB, and those are not equal.)

A significant difference in this approach from Feynman’s is that in his, a given

expression involving operators with time indices results in a unique operator ex-

pression after disentangling. For the example above, if the beginning expression is∫ 1

0
A(s)ds

∫ 1

0
B(t)dt, it can only result in the operator 1

2
BA+ 1

2
AB. However, whereas

Feynman only used, in effect, Lebesgue measure, in the Jefferies-Johnson approach

each operator (together with its associated indeterminate and time index) is assigned
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a Borel measure. The measure tells (roughly speaking) which relation s1 < s2 or

s2 < s1 occurs more often. This association produces the different weights for the

terms AB and BA after disentangling. For example, if continuous probability mea-

sures µ and ν are associated with A and B, respectively, then the expression ÃB̃ will

map to

∫
{(s1,s2): 0<s1<s2<1}

BAd(µ× ν) +

∫
{(s1,s2): 0<s2<s1<1}

AB d(µ× ν)

= (µ× ν)({(s1, s2) : 0 < s1 < s2 < 1})BA

+ (µ× ν)({(s1, s2) : 0 < s2 < s1 < 1})AB. (1.1)

In the case when µ and ν are both Lebesgue measure on [0, 1], this will equal 1
2
BA+

1
2
AB, as before. However, we can choose probability measures µ and ν to produce

any linear combination of the terms AB and BA with total probability equal to 1.

We will not limit our attention to probability measures, but the intuition of relative

weights is still helpful in other cases. (Recall, a probability measure is a measure for

which the measure of the entire space is 1. A continuous Borel measure is a Borel

measure for which the measure of any set consisting of a single point is zero.) If we

choose a different set of measures, then the resulting operator expression will possibly

be different, a different linear combination, which is why we speak of Feynman’s

Operational Calculi in the plural.

(For other work on and approaches to functional calculi for noncommuting oper-

ators, see for example [4], [5], [6], [21], [28], [29], [30], [31], [33], [35], [36], [41], [42],

and [43]. Most of the other works in the bibliography regard FOCi and are cited

elsewhere in this thesis; those not cited elsewhere are [25] and [23].)

In the disentangling process we often move from an expression in commuting

indeterminates to a formula involving noncommuting operators (rather than indeter-
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minates), and at that point we like to further simplify the operator formula if we

can, and where possible to write out a completely disentangled expression in terms

of operators.

Perhaps a good question at this point is what use it is to relate noncommuting

objects to commuting objects, or why one would associate measures to operators

and to time indices. To answer the first question, there appear to be at least two

possible reasons to relate noncommuting objects to commuting objects. The first is

that it might facilitate calculations; working with commuting operators is easier in

some ways than working with noncommuting operators. The second is that there

may be physical relevance for doing so. In Feynman’s notation, the factors in the

expression
∫ 1

0
A(s)ds

∫ 1

0
B(t)dt =

∫ 1

0
B(t)dt

∫ 1

0
A(s)ds commute; one can represent

this way that an event symbolized by an operator A occurs sometime within a time

interval [0, 1], while the other represents the occurrence of an event B in that interval.

The product in this notation turns out to equal 1
2
BA + 1

2
AB, which combines the

event of A occurring before B with the event of B occurring before A, a combination

which may be physically meaningful. Associating time indices and measures to the

operators may correspond to increasing or decreasing the likelihood of each event A or

B within a given time interval, as though turning a physical apparatus to a higher or

lower setting. (Questions also arise of more mathematical interest, such as whether

an expression disentangled under one choice of measures can be approximated by

expressions disentangled under a “nearby” choice of measures. There are stability

theorems regarding when that is the case, see e.g. [26], [37], [38], [39], [40].)

This is the context of the current work. Part of the focus of research into FOCi is

to establish formulas that yield disentangled operator expressions in certain special

cases (such as physically and/or mathematically meaningful cases), and our objective

here is to consider ways that the process of developing and proving disentangling
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operator formulas and expressions may be facilitated.

One part of the process we concentrate on is combinatorial aspects of disentan-

gling. As with the example(s) we have discussed, the definition we will give of the

disentangling map involves a sum of products of a finite set of operators in all possible

orders the operators can occur. These orders will be represented by subscripts of time

indices (as in ‘s1, . . . , sm’) attached to the operators; looking at all possible orders of

operation means looking at all possible permutations, or what we will call ‘orderings’,

of the subscripts. Since proofs in FOCi often rely on being able to express that set

of orderings in different ways, we develop three operations that can be performed on

sets of orderings to relate the sets to each other. The purpose of doing so is to create

a vocabulary of these operations for use in FOCi proofs, so that for simple proofs

one does not need to just appeal to the reader’s intuition about the combinatorics

involved, and for harder proofs one does not need to create entirely new terminology

for each proof separately.

After that, our other major objective is to develop a context in which Feynman’s

suggestion of treating noncommuting operators as though they commute (if they

are labeled with time indices) may be used more fully. In Feynman’s paper [10,

p. 216, abstract] he wrote, “An alteration in the notation used to indicate the order

of operation of noncommuting quantities is suggested. Instead of the order being

defined by the position on the page, an ordering subscript is introduced so that AsBs′

means AB or BA depending on whether s exceeds s′ or vice versa. . . . An

increase in ease of manipulating some operator expressions results.” In Feynman’s

system, attaching time indices provided the freedom to treat operators as though

they commute; once he reached the desired form in that context, he would return

immediately to the noncommuting context (again we note Feynman did not make this

process rigorous). That particular feature of his system is reflected to some extent in
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the Jefferies-Johnson approach, but we would like to extend it. We will consider how

a space may be added to the Jefferies-Johnson approach, intermediate between the

commuting and noncommuting spaces, so that calculations in the intermediate space

may both make use of commutativity to reach a desired form (time-ordered form),

and be able to map readily to the desired form in the noncommuting space.

In addition, prior to addressing those two objectives, we will develop two or so

small results that will be useful in proofs and examples to follow (and may be useful

more generally), namely a theorem about permuting factors of a product measure

within an integral, and a disentangling theorem for use when a measure in a monomial

is replaced by a sum of two measures.
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Chapter 2

The definition of the disentangling

map

Feynman’s Operational Calculi involves mapping elements of a particular commuta-

tive function space (D) into a noncommutative space of operators (L(X)), where the

actions of the maps depend on a choice of measures. We start, after a preliminary

definition, by defining D.

Definition 2.0.1. Let r1, . . . , rn be positive real numbers, and let A = A(r1, . . . , rn)

be the space of complex-valued functions (z1, . . . , zn) 7→ f(z1, . . . , zn) of n complex

variables which are analytic at (0, . . . , 0), and have power series

f(z1, . . . , zn) =
∞∑

m1,...,mn=0

cm1,...,mnz
m1
1 · · · zmnn (2.1)

that are absolutely convergent at least on the closed polydisk |zj| ≤ rj. A norm

‖f‖ = ‖f‖A :=
∞∑

m1,...,mn=0

|cm1,...,mn|rm1
1 · · · rmnn (2.2)
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can be defined on A, making A into a commutative Banach algebra with identity under

pointwise multiplication. (We can say this because “A(r1, . . . , rn) can be identified

with the weighted l1-space, where the weight on the index (m1, . . . ,mn) is rm1
1 · · · rmnn ”;

see [13, p. 5, Proposition 1.1].)

Definition 2.0.2 (The disentangling algebra D). Given a Banach space X and

nonzero operators A1, . . . , An ∈ L(X) (where L(X) is the space of all bounded linear

operators from X into X), we define the disentangling algebra D = D(Ã1, . . . , Ãn)

to be the space A(r1, . . . , rn), where we stipulate that rj = ‖Aj‖ for all j. We will com-

monly use the symbols Ã1, . . . , Ãn to represent the formal indeterminates z1, . . . , zn,

in order to make an association between the indeterminates Ã1, . . . , Ãn ∈ D and the

operators A1, . . . , An ∈ L(X), respectively.

(A remark on notation here: The space denoted ‘D(Ã1, . . . , Ãn)’ has at times

been denoted ‘D(A1, . . . , An)’; the literature appears not to be settled about which

is better. The parameters in the expression D(A1, . . . , An) seem to indicate both

the convergence radii, rj = ‖Aj‖ for all j, and the operators A1, . . . , An associated

with the indeterminates z1, . . . , zn. However, since the parameters are operators,

expressions such as D(A1 ‖µ1‖ , . . . , An ‖µn‖) might be allowed, where multiplying

an operator by the total value of a measure (or by some other scalar) is also an

operator, in which case it is not clear whether, for example, an indeterminate Ã1

should be associated with the operator A1 or the operator A1 ‖µ1‖. For that reason,

the present author has chosen to include the tildes in the expression D(Ã1, . . . , Ãn), in

order to be completely unambiguous how indeterminates and operators are associated;

whatever operator the tilde is applied to, whether Ã1 or (A1 ‖µ1‖)∼, is the operator

associated with the corresponding indeterminate, and its norm is the convergence

radius—technically, then, we should probably write Ãj [with a wide tilde] to show
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that Aj is the operator and not just A, but let us just say that that will be understood

and we will be more careful when we need to be. Additionally, keeping the tildes

reminds us what the members of the space D(Ã1, . . . , Ãn) look like. Should we want

to associate an operator with an indeterminate, but also to incorporate both the

operator and a measure in the radius of convergence of the indeterminate, we can

refer to each parameter as (Aj, µj)
∼ to say that the indeterminate is associated with

Aj and that the radius is rj = ‖Aj‖ ‖µj‖.)

Therefore, D is a commutative Banach algebra with identity, where the norm is

given by

‖f(Ã1, . . . , Ãn)‖ = ‖f(Ã1, . . . , Ãn)‖D :=
∞∑

m1,...,mn=0

|cm1,...,mn|‖A1‖m1 · · · ‖An‖mn <∞

(2.3)

(see [13, p. 5, Proposition 1.2]).

Functions in D are thus infinite sums of monomials, but in this thesis we will

focus only on polynomials, though there may not be great difficulty in applying

similar results to infinite series. Mostly we will work with monomials, and it is useful

to implement a special notation for monomials. Specifically, given any nonnegative

integers m1, . . . ,mn we define

Pm1,...,mn(z1, . . . , zn) := zm1
1 · · · zmnn , (2.4)

or alternatively,

Pm1,...,mn(Ã1, . . . , Ãn) = Ãm1
1 · · · Ãmnn ∈ D. (2.5)

The disentangling maps we will define momentarily will map such a monomial



11

Pm1,...,mn(Ã1, . . . , Ãn) ∈ D to an operator in L(X) that is a function of the operators

A1, . . . , An. More specifically, it is mapped to a linear combination of products that

consist of m1 factors of the operator A1, m2 factors of the operator A2, etc., in some

order. For example, a disentangling map will take the monomial Ã2B̃1 = ÃB̃Ã = B̃Ã2

to some linear combination of A2B,ABA, and BA2.

In fact, there will be more than one disentangling map (and therefore more than

one operational calculus), yielding possibly different linear combinations from the

same monomial. For instance, although one disentangling map might take the mono-

mial ÃB̃ to the operator 1
2
AB+ 1

2
BA, another will take it to a different linear combi-

nation, say, 2
3
AB + 1

3
BA, for example. The values of the coefficients assigned to the

different terms will be determined by a selected set of measures, each of which is asso-

ciated with an operator. In this example, we might choose to associate the continuous

Borel probability measure µ with the operator A and the continuous Borel probability

measure ν with the operator B. The effect is that the times in an interval where the

measure is larger will produce a greater contribution of the associated operator at

that time. For example, if µ has its entire support in the lower half of the interval

[0, 1] and ν has its support in the upper half of the interval [0, 1], then that will force

the operator A (associated with µ) to occur before the operator B (associated with

ν), which means that the monomial ÃB̃ will map under the disentangling map Tµ,ν

with those respective measures to the operator BA, without any contribution from

an AB term. (As a possible model of a physical situation, this could represent that

apparatus A is turned on for the first half of an interval, and apparatus B is turned

on for the second half of the interval.) In all that follows here, we will consider only

continuous, finite positive Borel measures, usually on the interval [0, 1].

Given a monomial of several factors, some possibly repeated, we will want to

distinguish the different instances of each operator. Thus when dealing with the
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monomial Pm1,...,mn(Ã1, . . . , Ãn) ∈ D, which has m1 copies of Ã1, m2 copies of Ã2,

etc., we will rename the operators as follows: Let m := m1 +m2 + · · ·+mn, and let

Bl(1), . . . ,Bl(n) denote blocks of integers

Bl(1) := {1, . . . ,m1}, (2.6)

Bl(2) := {m1 + 1, . . . ,m1 +m2},
...

Bl(n) := {m1 + · · ·+mn−1 + 1, . . . ,m}.

Then define

Ck :=



A1, k ∈ Bl(1)

A2, k ∈ Bl(2)

...

An, k ∈ Bl(n).

(2.7)

The monomial Pm1,...,mn(Ã1, . . . , Ãn) will be mapped to a sum of products of

copies of the operators A1, . . . , An, or as we have now renamed the operators, a sum

of products of the operators C1, . . . , Cm. To discuss the order in which C1, . . . , Cm

operate, we will think of them as operating at different times s1, . . . , sm, respectively,

with these times lying in the (time) interval [0, 1], with earlier time corresponding to

earlier operation. (Starting from the case of the interval [0, 1] it is not difficult to

generalize to an interval [0, T ] for an arbitrary time T . However, we will stay with

the case [0, 1].) That is, we assign to each operator Cj a time index sj that takes

values in [0, 1], giving us a set of time-indexed operators {Cj(sj)}mj=1.

For example, if an expression includes time-indexed operators C1(s1), C2(s2), and
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C3(s3) with s2 < s1 < s3, then C2(s2) operates before C1(s1), which operates before

C3(s3). These time-indexed operators are naturally taken to be time-dependent for

certain kinds of problems; however, we will always limit ourselves here to the case of

time-independent operators: Cj(sj) ≡ Cj, j = 1, . . . ,m. Thus, each operator is still

viewed as possibly operating at various times, but it remains the same operator at

all times. Moreover, we will consider only operators that are bounded.

The last step before defining the disentangling maps is to introduce a notation

to represent the different possible orders in which the time-indices in the m-tuple

(s1, . . . , sm) ∈ [0, 1]m can occur. We will usually want to arrange operators so that

their time indices s1, . . . , sm are in increasing time order from right to left. As the

various indices range throughout [0, 1]m, their time order relative to each other will

change. (For example, sometimes s1 < s2, and other times s2 < s1.) With that in

mind, we let Sm be the set of permutations of the set of numbers {1, . . . ,m} (that

is, bijections from the set {1, . . . ,m} to itself), and for each permutation π ∈ Sm we

define the set

∆m(π) := {(s1, . . . , sm) ∈ [0, 1]m : 0 < sπ(1) < · · · < sπ(m) < 1}.

Each permutation, then, gives us one ordering of the time indices, and different

permutations give us different orderings of the time indices. We will sometimes ab-

breviate the above set as

{sπ(1) < sπ(2) < · · · < sπ(m)} := ∆m(π) or {sπ(m) > · · · > sπ(2) > sπ(1)} := ∆m(π).

It may be noticed that under this definition of ∆m(π), the union of all such sets

will include nearly all, but not quite all of the points in the set [0, 1]m, because points
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in [0, 1]m for which two time indices si, sj are equal to each other or are equal to 0

or 1 are omitted from the union. For example, in the case m = 2, the the union of

the sets {(s1, s2) : 0 < s1 < s2 < 1} and {(s1, s2) : 0 < s2 < s1 < 1} will not be all

of [0, 1] × [0, 1], because the points (s1, s2) with s1 = s2, s1 = 0, s1 = 1, s2 = 0, or

s2 = 1 are omitted. For our purposes those particular points are unimportant, so this

definition will suffice. The reason they are unimportant is that the sets ∆m(π) will

serve as regions of integration with respect to some product measure µm1
1 ×· · ·×µmnn ,

where µ1, . . . , µn are continuous Borel measures and
∑n

i=1mi = m. As noted in [13,

p. 7, Lemma 2.1], since the measures are continuous, this has the consequence that

any subset of [0, 1]m having two or more coordinates equal, or having a fixed value

(such as 0 or 1) for some particular coordinate, has measure zero.

Since in what follows the measures we will deal with will exclusively be finite,

continuous, positive Borel measures on a finite interval (usually [0, 1]), we will define

Mcb[a, b] := {all finite, continuous, positive Borel measures on the interval [a, b]}.

(It is possible in FOCi to consider more than just continuous measures; see e.g. [27],

[3].) We will often deal with product measures that have as factors a set of these Borel

measures. It may be worth noting here that given two topological spaces X and Y

and their Borel classes B(X),B(Y ), it is not in general true that B(X) ⊗ B(Y ) =

B(X × Y ) (see [8, p. 240]). Thus, given Borel measures µ on X and ν on Y , and

their product measure µ × ν defined on B(X) ⊗ B(Y ), the product measure might

not be defined on the entire Borel class B(X × Y ). However, for the cases we will

be dealing with, the measures and their products will always be Borel measures.

(That the component spaces are separable metric spaces is sufficent to establish that

B(X)⊗ B(Y ) = B(X × Y ); see [11, p. 23], Proposition 1.5.)
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Often it will be useful for the measures we use to be probability measures, and

whether we are working with time indices in the interval [0, 1] or more generally [0, T ],

we are able to scale the measures to yield probability measures. If we ever intend to

use probability measures in this thesis, we will say so explicitly. (For a discussion of

the relationship between disentangling using probability measures and disentangling

using other measures, see [15, Section 3].)

The last thing we will do in preparation for defining the disentangling map is to do

a calculation in the disentangling algebra D that motivates the definition of the map.

Let us consider for a moment the case when the measures µ1, . . . , µn are continuous

Borel probability measures. We define indeterminates C̃1, . . . , C̃m in much the same

way as the operators C1, . . . , Cm were defined:

C̃k :=



Ã1, k ∈ Bl(1)

Ã2, k ∈ Bl(2)

...

Ãn, k ∈ Bl(n).

(2.8)

We attach time indices, say C̃k(sk) ≡ C̃k for k = 1, . . . ,m. It can then be shown (using

commutativity, [13, Proposition 2.2, p. 8]) that the monomial Pm1,...,mn(Ã1, . . . , Ãn) ∈

D can be rewritten as

Pm1,...,mn(Ã1, . . . , Ãn) = Ãm1
1 · · · Ãmnn = C̃1C̃2 · · · C̃m

=
∑
π∈Sm

∫
∆m(π)

C̃π(m)(sπ(m)) · · · C̃π(1)(sπ(1)) (µm1
1 × · · · × µmnn )(ds1, . . . , dsm). (2.9)

Remark 1. Related to (2.9) we have, for example, Ã1 =
∫ 1

0
Ã1(s1)µ1(ds1). It is also

the case that A1 =
∫ 1

0
A1(s1)µ1(ds1), given A1(s1) ≡ A1 (since µ1 is a probability
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measure). In these expressions it is clear that if µ1 is zero over some region within

the interval [0, 1], then the associated operator A1(s1) has no effect at values of s1

within that region; it can be viewed as not operating there; A1(s1) operates only for

values of s1 within the support of the measure µ1. A similar statement can be made for

multiple time-indexed operators and their associated measures; the measures affect

the times at which the operators operate, so we speak of “using measures to attach

time indices to operators.”

Imitating the form of the expression (2.9), we make the following definition for

any set of finite, continuous Borel measures on [0, 1] (not only probability measures):

Definition 2.0.3 (The disentangling map). Given D = D(Ã1, . . . , Ãn), and given

µ1, µ2, . . . , µn ∈Mcb[0, 1] together with nonnegative integers m1, . . . ,mn, the disen-

tangling map

Tµ1,...,µn : D(Ã1, . . . , Ãn)→ L(X)

is defined on monomials by

Tµ1,...,µn [Pm1,...,mn(Ã1, . . . , Ãn)]

:=
∑
π∈Sm

∫
∆m(π)

Cπ(m) · · ·Cπ(1) (µm1
1 × · · · × µmnn )(ds1, . . . , dsm), (2.10)

also denoted

Pm1,...,mn
µ1,...,µn

(A1, . . . , An) := Tµ1,...,µn [Pm1,...,mn(Ã1, . . . , Ãn)]. (2.11)

If m = 0 (i.e., m1 = · · · = mn = 0), we interpret Pm1,...,mn
µ1,...,µm

(A1, . . . , An) to be the

identity operator I ∈ L(X). In (2.16) and throughout this thesis, the integral of a

product of operators is defined by equating it to the same expression but with the



17

operators factored out of the integral:

∫
∆m(π)

Cπ(m) · · ·Cπ(1) (µm1
1 × · · · × µmnn )(ds1, . . . , dsm)

:= Cπ(m) · · ·Cπ(1)

∫
∆m(π)

(µm1
1 × · · · × µmnn )(ds1, . . . , dsm). (2.12)

It is the fact that the operators are time-independent that allows us to use this

definition, pulling the operators outside the integral. (It is, however, possible to make

sense of the integral and the disentangling map in the time-dependent case as well.

See for example [19], and especially the work of Byung Moo Ahn et al., [1], [2], [3].)

Theorem 2.0.4. Let A1, . . . , An ∈ L(X) be associated with measures µ1, . . . , µn ∈

Mcb[0, 1], let m1, . . . ,mn be nonnegative integers and m := m1 + · · · + mn, and let

blocks of integers Bl(1), . . . ,Bl(n) be as in (2.6) and operators C1, . . . , Cm be as in

(2.7). Moveover, define the measures ν1, . . . , νm by

νk :=



µ1, k ∈ Bl(1)

µ2, k ∈ Bl(2)

...

µn, k ∈ Bl(n).

(2.13)

Then

Pm1,...,mn
µ1,...,µn

(A1, . . . , An) = P 1,...,1
ν1,...,νm

(C1, . . . , Cm), (2.14)

where if m = 0 we interpret P 1,...,1
ν1,...,νm

(C1, . . . , Cm) to be the identity operator I ∈ L(X).

Proof. The case m = 0 is immediate. Otherwise, by Definition 2.0.3 we have

Pm1,...,mn
µ1,...,µn

(A1, . . . , An) =
∑
π∈Sm

∫
∆m(π)

Cπ(m) · · ·Cπ(1) (µm1
1 × · · · × µmnn )(ds1, . . . , dsm)
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=
∑
π∈Sm

∫
∆m(π)

Cπ(m) · · ·Cπ(1) (ν1 × · · · × νm)(ds1, . . . , dsm)

= P 1,...,1
ν1,...,νm

(C1, . . . , Cm). (2.15)

The disentangling map therefore maps the monomial Pm1,...,mn(Ã1, . . . , Ãn) to a

sum of integrals, each integral involving a product of all of the operators in a different

order. Whatever product we began with, the integrals we have mapped to are in

‘disentangled’ form; that is, they are time-ordered. To see this, we write the definition

in terms of the time-indexed operators we defined earlier, Cj(sj) ≡ Cj, j = 1, . . . ,m:

Tµ1,...,µn [Pm1,...,mn(Ã1, . . . , Ãn)]

=
∑
π∈Sm

∫
∆m(π)

Cπ(m)(sπ(m)) · · ·Cπ(1)(sπ(1)) (µm1
1 × · · · × µmnn )(ds1, . . . , dsm). (2.16)

Here, when integrating over the set ∆m(π), in which sπ(1) < sπ(2) < · · · < sπ(m),

the operators appear in the corresponding order Cπ(m)(sπ(m)) · · ·Cπ(1)(sπ(1)), with the

lowest time index on the far right and the highest time index on the far left.

That is the usual pattern for introducing the disentangling map (a similar develop-

ment is given in, for example, [13],[15], and [24]), and it is patterned after Feynman’s

description of an operator calculus given in [10]: Beginning with a product of com-

muting objects, each object is assigned a time index taking values in [0, 1], and the

expression is manipulated into time-ordered form (as in Equation (2.9)). Then the

expression is, in a manner of speaking, converted to an operator expression that has

operators in the corresponding order (as in Equation (2.16)); it is as though the tildes

have been erased.

However, the reader should be cautioned about one element of this process which
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may be somewhat misleading (though our mathematics here is valid). Specifically, it

relates to ‘erasing’ the tildes. By what we have said in Equations (2.9) and (2.16), it is

entirely correct for us to say in the case of probability measures µ1, . . . , µn ∈Mcb[0, 1]

that

Tµ1,...,µn

[∑
π∈Sm

∫
∆m(π)

C̃π(m)(sπ(m)) · · · C̃π(1)(sπ(1)) (µm1
1 × · · · × µmnn )(ds1, . . . , dsm)

]

=
∑
π∈Sm

∫
∆m(π)

Cπ(m) · · ·Cπ(1) (µm1
1 × · · · × µmnn )(ds1, . . . , dsm). (2.17)

The difference in appearance between the inside of the left-hand expression and the

entire right-hand expression is that in the latter, the time indices have been removed

and the tildes have been erased. Since the map Tµ1,...,µn is linear, and since there is

such a similarity between the two expressions—in fact, the map was defined to create

this similarity—one might expect the map to hold not only for the entire sum, but

also term-by-term. However, that is not the case. That is, generally speaking,

Tµ1,...,µn

[∫
∆m(π)

C̃π(m)(sπ(m)) · · · C̃π(1)(sπ(1)) (µm1
1 × · · · × µmnn )(ds1, . . . , dsm)

]
6=
∫

∆m(π)

Cπ(m) · · ·Cπ(1) (µm1
1 × · · · × µmnn )(ds1, . . . , dsm) (2.18)

for the various choices of π ∈ Sm.

Let us take a simple example. Given operators A,B ∈ L(X) associated with

continuous Borel probability measures µ, ν, respectively, on [0, 1], and letting Ã(s) ≡

Ã and B̃(s) ≡ B̃ on [0, 1], we have that

Tµ,ν
[
ÃB̃
]

= Tµ,ν
[∫
{s<t}

B̃(t)Ã(s)(µ× ν)(ds, dt) +

∫
{t<s}

Ã(s)B̃(t)(µ× ν)(ds, dt)

]
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=

∫
{s<t}

BA(µ× ν)(ds, dt) +

∫
{t<s}

AB(µ× ν)(ds, dt). (2.19)

However, often

Tµ,ν
[∫
{s<t}

B̃(t)Ã(s) (µ× ν)(ds, dt)

]
6=
∫
{s<t}

BA (µ× ν)(ds, dt) (2.20)

and

Tµ,ν
[∫
{t<s}

Ã(s)B̃(t) (µ× ν)(ds, dt)

]
6=
∫
{t<s}

AB (µ× ν)(ds, dt). (2.21)

We will calculate a specific example in Section 6.1. (One exception, when equality

does hold, is when the operators commute.)

On the other hand, in Feynman’s notation (where A(s) and B(t) commute), the

time-ordered expression

∫ 1

0

∫ 1

s

B(t)A(s) dt ds does become

∫ 1

0

∫ 1

s

BA dt ds, (2.22)

while ∫ 1

0

∫ s

0

A(s)B(t) dt ds becomes

∫ 1

0

∫ s

0

AB dt ds. (2.23)

Seeing this distinction between the definitions we are using and Feynman’s no-

tation, the present author believes it may be beneficial to have a process in which

expressions in a commutative space (similar to D) and in L(X) that have the same

form can be mapped term-by-term as in Feynman’s process, and that were we to

have this, we could possibly take greater advantage of commutativity. This possibil-

ity will be discussed in Chapter 6, where we consider another way of performing the

disentangling procedure. The definition of the disentangling map as we have stated
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it (Definition 2.0.3) remains the same, though, and we will continue to use the same

definition throughout this thesis.

Having defined the disentangling maps—which may well be different maps if the

measures are chosen differently—we have laid enough groundwork to start focusing

on specific techniques in the theory of Feynman’s Operational Calculi. We begin with

simple examples.

Example 1. Let A,B ∈ L(X) be operators, let µ, ν be finite, continuous Borel

measures on the interval [0, 1] associated with the operators A andB, respectively, and

let m1 := m2 := 1. We wish to disentangle the monomial P 1,1(Ã, B̃). The definition

gives us

Tµ,ν [P 1,1(Ã, B̃)] = P 1,1
µ,ν(Ã, B̃)

=

∫
{(s1,s2): 0<s1<s2<1}
A(s1)B(s2)(µ× ν)(ds1, ds2) +

∫
{(s1,s2): 0<s2<s1<1}
B(s2)A(s1)(µ× ν)(ds1, ds2)

= AB

∫
{(s1,s2): 0<s2<s1<1}

(µ× ν)(ds1, ds2) +BA

∫
{(s1,s2): 0<s2<s1<1}

(µ× ν)(ds1, ds2)

= (µ× ν){(s1, s2) : 0<s2<s1< 1}AB + (µ× ν){(s1, s2) : 0<s2<s1<1}BA.

(2.24)

The result is a linear combination of products of the operators A and B with coeffi-

cients that depend on the measures µ and ν associated with A and B, respectively.

In particular, if µ and ν are both Lebesgue measure on [0, 1], then the result of the

disentangling is 1
2
AB + 1

2
BA.

Example 2. For a second example, let A1, A2 ∈ L(X) be operators, let µ1, µ2 be

finite, continuous Borel measures on the interval [0, 1] associated with the operators

A1, A2, respectively, and let m1 := 2,m2 := 1. Let D := D(Ã1, Ã2). Then assigning
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the names C1 :=A1, C2 :=A1, C3 :=A2, we have that

Tµ1,µ2 [P
2,1(Ã1, Ã2)]

:=
∑
π∈S3

∫
∆m(π)

Cπ(3)Cπ(2)Cπ(1) (µ2
1 × µ1

2)(ds1, ds2, ds3)

=
∑
π∈S3

∫
{(s1,s2,s3)∈[0,1]3: 0<π(s1)<π(s2)<π(s3)<1}

Cπ(3)Cπ(2)Cπ(1) (µ2
1 × µ1

2)(ds1, ds2, ds3)

=

∫
{s1<s2<s3}
C3C2C1 (µ2

1 × µ1
2)(ds1, ds2, ds3) +

∫
{s1<s3<s2}
C2C3C1 (µ2

1 × µ1
2)(ds1, ds2, ds3)

+

∫
{s2<s1<s3}
C3C1C2 (µ2

1 × µ1
2)(ds1, ds2, ds3) +

∫
{s2<s3<s1}
C1C3C2 (µ2

1 × µ1
2)(ds1, ds2, ds3)

+

∫
{s3<s1<s2}
C2C1C3 (µ2

1 × µ1
2)(ds1, ds2, ds3) +

∫
{s3<s2<s1}
C1C2C3 (µ2

1 × µ1
2)(ds1, ds2, ds3)

= µ2
1 × µ2({s1 < s2 < s3})A2A

2
1 + µ2

1 × µ2({s1 < s3 < s2})A1A2A1

+µ2
1 × µ2({s2 < s1 < s3})A2A

2
1 + µ2

1 × µ2({s2 < s3 < s1})A1A2A1

+µ2
1 × µ2({s3 < s1 < s2})A2

1A2 + µ2
1 × µ2({s3 < s2 < s1})A2

1A2

= (µ2
1 × µ2)({s3 < s1 < s2} ∪ {s3 < s2 < s1})A2

1A2

+(µ2
1 × µ2)({s1 < s3 < s2} ∪ {s2 < s3 < s1})A1A2A1

+(µ2
1 × µ2)({s1 < s2 < s3} ∪ {s2 < s1 < s3})A2A

2
1. (2.25)

In the case where µ1 and µ2 are both Lebesgue measure, the result will equal 1
3
A2

1A2 +

1
3
A1A2A1 + 1

3
A2A

2
1.

Example 3. The examples so far have yielded mostly symmetric-looking results (in

the sense that the form of the result does not clearly favor one order of the operators
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versus another order). Next we do an example with specific measures, where the

choice of measures clearly affects the outcome and produces something less symmetric.

Let A,B ∈ L(X) be operators, and let µ1 := l|[0, 1
2

], µ2 := l|[ 1
2
,1] be Borel measures

on [0, 1], where l denotes Lebesgue measure. (That is, µ1(E) = l(E ∩ [0, 1
2
]) and

µ2(E) = l(E ∩ [1
2
, 1]) for any Lebesgue measurable set E ⊆ [0, 1]. These are not

probability measures, and the coefficients will not add to 1 when we are finished.)

We will also choose exponents m1 := 1,m2 := 1. Then defining C1 := A,C2 := B we

have

Tµ1,µ2 [P
1,1(Ã, B̃)]

=
∑
π∈S2

∫
∆2(π)

Cπ(2)Cπ(1)(µ1 × µ2)(ds1, ds2)

=

∫
{s2>s1}

C2C1(µ1 × µ2)(ds1, ds2) +

∫
{s1>s2}

C1C2(µ1 × µ2)(ds1, ds2)

= C2C1

∫ 1

0

∫ s2

0

µ1(ds1)µ2(ds2) + C1C2

∫ 1

0

∫ 1

s2

µ1(ds1)µ2(ds2)

= C2C1

∫ 1

0

∫ s2

0

l|[0, 1
2

](ds1)l|[ 1
2
,1](ds2) + C1C2

∫ 1

0

∫ 1

s2

l|[0, 1
2

](ds1)l|[ 1
2
,1](ds2)

= C2C1

∫ 1

0

min{s2,
1
2
}l|[ 1

2
,1](ds2) + C1C2

∫ 1

0

max{1
2
− s2, 0}l|[ 1

2
,1](ds2)

= C2C1

∫ 1

1
2

min{s2,
1
2
} ds2 + C1C2

∫ 1

1
2

max{1
2
− s2, 0} ds2

= C2C1

∫ 1

1
2

1

2
ds2 + C1C2

∫ 1

1
2

0 ds2

=
1

4
C2C1 =

1

4
BA. (2.26)
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Chapter 3

Useful properties for disentangling

monomials

3.1 Permuting factors of a product measure

Before we begin to develop ways of manipulating operators and disentangling maps,

it would be helpful to establish a few properties of product measures. The first of

these ensures what one might expect, that under quite general hypotheses, if we have

a complex-valued µ×ν-integrable function f defined on a space X×Y , and a function

g defined on Y ×X, where g(y, x) = f(x, y), and if F is a µ× ν-measurable subset of

X × Y , then G := {(y, x) : (x, y) ∈ F} is a ν × µ-measurable subset of Y ×X, and

we may write

∫
F

f(x, y) d(µ× ν)(x, y) =

∫
G

g(y, x) d(ν × µ)(y, x). (3.1)

Moreover, this generalizes to product measures with any finite number of factors.

Essentially all we are saying is that if we look at two product spaces that are the same
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except for the order of the factors, then we can in effect do all the same integrating

and get the same results on the two different product spaces, provided we make the

corresponding changes in the orders of the coordinates and of the measures. We

will prove this using a change of variables theorem, but we first need to describe the

relationship between measurable sets in the two product spaces of interest; specifically,

we will show that there is a measurable bijection between them which preserves

measures.

We consider a product measure space (X = X1 × · · · × Xn,M = M1 ⊗ · · · ⊗

Mn, µ = µ1 × · · · × µn) formed from measure spaces (Xj,Mj, µj) for j = 1, . . . , n,

where µ1, . . . , µn are σ-finite positive Borel measures on the respective spaces X1, . . . ,

Xn. (The proof of the main theorem of this section does not require that the measures

be Borel measures, but generally we will be considering Borel measures throughout

this thesis.) Let σ ∈ Sn (that is, σ : {1, 2, . . . , n} → {1, 2, . . . , n} is a bijection)

be fixed. Given σ, we will use the letter h to represent various relations involving

σ. (The effect of h depends on the choice of σ, but for our purposes we are dealing

with only one σ, and hence only one h.) We want to define a map h from the space

(X,M, µ) to a space we will call (h(X),M̂, µ̂), where the measure µ̂ is a product of

the same measures as µ, but the factors are permuted. (Note, the ‘hat’ notation here

[‘M̂’ and ‘µ̂’] has nothing to do with Fourier transforms.) Specifically, we define the

following:

• Let h(X) := Xσ(1) × · · · ×Xσ(n).

• For any x = (x1, . . . , xn) ∈ X, define h(x) := (xσ(1), . . . , xσ(n)) ∈ h(X). It is not

difficult to show that this map h is a bijection from X to h(X).

• For any subset E ⊆ X, define (as usual) h(E) := {h(x) : x ∈ E}.
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Because h is a bijection, this implies that h and h−1 preserve subsets and dis-

tribute set differences of sets and over arbitrary intersections and unions of

subsets of X and h(X), respectively. (See [34, p. 20, Problems 2, 3].)

• Define M̂ :=Mσ(1) ⊗ · · · ⊗Mσ(n). (Later we will establish that the collection

M̂ is the same as the collection h(M) := {h(E) : E ∈M}.)

• Define the measure µ̂ := µσ(1) × · · · × µσ(n). (Later we will argue that µ̂(F ) =

µ(h−1(F )) for all sets F ∈ M̂, implying that µ̂ = µh−1, where µh−1 is the image

measure of µ under h.)

Under those definitions, we will show that (h(X),M̂, µ̂) = (h(X), h(M), µh−1)

(as noted parenthetically above), in order to establish the following:

Theorem 3.1.1. If µ = µ1 × · · · × µn, where µ1, . . . , µn are σ-finite Borel measures

on X1, . . . , Xn, respectively, and if f : X = X1 × . . . × Xn → C is a µ-integrable

function, then f ◦ h−1 is µh−1-integrable, and

∫
X

f dµ =

∫
h(X)

f ◦ h−1 d(µh−1). (3.2)

Remark 2. Note that since µ1, . . . , µn are σ-finite, the product of the measures is

associative, and is also σ-finite.

Proof. We offer only a sketch of the actual proof.

Our main objective in this proof is to establish that the bijection h : X → h(X)

is a measurable map and preserves measures. We will do so using the definition of a

product measure space, as applied to both (X,M, µ) and (h(X),M̂, µ̂).

Examining the definition of the measure space (h(X),M̂, µ̂). To recall the defini-

tion of a product measure, we quote Folland [11, p. 65], where he has just defined the
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product of two measures µ and ν:

“The same construction works for any finite number of factors. That is, suppose

(Xj ,Mj , µj) are measure spaces for j = 1, . . . , n. If we define a rectangle to be a set of

the form A1 × · · · × An with Aj ∈ Mj , then the collection A of finite disjoint unions of

rectangles is an algebra, and the same procedure as above produces a measure µ1×· · ·×µn

on M1 ⊗ · · · ⊗Mn such that

µ1 × · · · × µn(A1 × · · · ×An) =
n∏
1

µj(Aj).

Moreover, if the µj ’s are σ-finite so that the extension from A to
⊗n

1Mj is uniquely deter-

mined, the obvious associativity properties hold.”

We use Folland’s definition of the algebra A (from which M is generated), and

then we construct the measure space (h(X),M̂, µ̂) similarly to (X,M, µ). We start

by defining Â to be the collection of all finite disjoint unions of ‘measurable rectangles’

in M of the form Aσ(1) × · · · × Aσ(n), with sets Aj ∈ Mj for all j. The collection Â

is then an algebra.

Let h(A) := {h(E) : E ∈ A}. Since (one can show) each measurable rectangle

Aσ(1)× · · · ×Aσ(n) in Â is the image under h of a measurable rectangle A1× · · · ×An

in A, and h preserves disjoint unions, we have that Â ⊆ h(A). Similar reasoning

gives us the reverse inclusion, and thus Â = h(A), so in what follows we will use the

designation h(A) for this collection of sets.

The collection h(A) is thus an algebra, which by the process described above

produces the measure µ̂ := µσ(1)×· · ·×µσ(n) on the space M̂ =Mσ(1)⊗· · ·⊗Mσ(n),
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where

µσ(1) × · · · × µσ(n)(Aσ(1) × · · · × Aσ(n)) =
n∏
1

µσ(j)(Aσ(j)) (3.3)

for every measurable rectangle Aσ(1) × · · · × Aσ(n) ∈Mσ(1) × · · · ×Mσ(n).

Comparing the measures µ and µ̂ on their respective algebras, and comparing their

related outer measures. With this definition of the measure µ̂, given any measurable

rectangle B = B1 × · · · ×Bn ∈ A, with Bj ∈Mj for j = 1, . . . , n, we have

µ(B) = µ1 × · · · × µn(B1 × · · · ×Bn)

=
n∏
1

µj(Bj)

=
n∏
1

µσ(j)(Bσ(j))

= µσ(1) × · · · × µσ(n)(Bσ(1) × · · · ×Bσ(n))

= µ̂(h(B)). (3.4)

The measures µ and µ̂ therefore agree on corresponding measurable rectangles in

their respective algebras A and h(A), and therefore on each pair of corresponding

sets in the two algebras (since h and h−1 preserve unions and by finite additivity of

the measures). The extension of the algebra h(A) to the σ-algebra M̂ is uniquely

determined, because the measures µ1, . . . , µn here are taken to be σ-finite (and so

we may refer to “the” σ-algebra M̂). We now intend to show that the product

measure µ̂ applied to sets in that σ-algebra M̂ agrees with the product measure µ

applied to corresponding sets in the σ-algebra M. That is, we will show that for

any µ-measurable set E (that is, for any E ∈ M) we have that h(E) ∈ M̂ and

µ(E) = µ̂(h(E)). We will use the method for extending a pre-measure to a measure

that is described in Folland [11, pp.30-31].
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Using the measures µ on X and µ̂ on h(X) as pre-measures on the algebras A

and Â, respectively, they induce outer measures µ∗ on X and µ̂∗ on h(X), given by

µ∗(E) = inf

{
∞∑
1

µ(Ci) : Ci ∈ A, E ⊆
∞⋃
1

Ci

}
(3.5)

and

µ̂∗(F ) = inf

{
∞∑
1

µ̂(Di) : Di ∈ h(A), F ⊆
∞⋃
1

Di

}
(3.6)

for all subsets E ⊆ X and F ⊆ h(X). One can show that set relationships involving

the map h together with the equalities we have established for corresponding sets in

the algebras A and Â imply that for any E ⊆ X we have µ̂∗(h(E)) = µ∗(E).

Now, the restriction of the outer measure µ∗ to the σ-algebra M generated by A

and the restriction of the outer measure µ̂∗ to the σ-algebra M̂ generated by h(A)

are measures ([11, Theorem 1.14, p. 31]), which we have called µ and µ̂, respectively.

Therefore, the measures µ on M and µ̂ on M̂ agree on corresponding sets E and

h(E) provided E ∈ M and h(E) ∈ M̂. To finally establish the truth of Theorem

3.1.1, we would like to be able to say that a set in M always corresponds to a set in

M̂ under the map h—both that h(M) ⊆ M̂) and that h−1(M̂) ⊆M—equivalently,

that h(M) = M̂.

Demonstrating the equality of σ-algebras h(M) = M̂. We claim that a set E ⊆ X

is in the σ-algebra M = M1 ⊗ · · · ⊗ Mn if and only if h(E) is in the σ-algebra

M̂ = Mσ(1) ⊗ · · · ⊗ Mσ(n). Since M is the σ-algebra generated by A, M is the

intersection of all σ-algebras containing A;

M :=
⋂
{S : S is a σ-algebra on X with A ⊆ S}. (3.7)
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Similarly, M̂ is the σ-algebra generated by h(A);

M̂ :=
⋂
{S ′ : S ′ is a σ-algebra on h(X) with h(A) ⊆ S ′}. (3.8)

We hope to show that E ∈ M if and only if h(E) ∈ M̂, and for that we first

note that any collection S is a σ-algebra on X if and only if h(S) is a σ-algebra on

h(X). Similarly, S ′ is a σ-algebra on h(X) if and only if h−1(S ′) is a σ-algebra on

h−1(h(X)) = X. (We will not demonstrate these; they follow from the preservation

of set relationships by h and h−1.)

We may therefore rewrite the definition of M̂, the σ-algebra generated by h(A),

letting S := h−1(S ′) (so h(S) = h(h−1(S ′)) = S ′), as

M̂ :=
⋂
{h(S) : h(S) is a σ-algebra on h(X) with h(A) ⊆ h(S)}

=
⋂
{h(S) : S is a σ-algebra on X with A ⊆ S}, (3.9)

because h(A) ⊆ h(S) is equivalent to A ⊆ S, and then, taking h outside the

intersection,

M̂ = h
(⋂
{S : S is a σ-algebra on X with A ⊆ S}

)
= h(M). (3.10)

This yields M̂ = h(M), as we claimed. Moreover, h−1(M̂) = h−1(h(M)) =M.

Measurability of h and h−1, demonstration that µ̂ is an image measure, and inte-

gration. Because of this result, we may now refer to (h(X),M̂, µ̂) as (h(X), h(M), µ̂).

Also as a consequence, given any set E ∈M we have that h(E) ∈ h(M), so h−1 is a

measurable function. Similarly, h is a measurable function.
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Therefore, we have the agreement of measures that we wanted, namely that given

any set E ∈M, we have h(E) ∈ M̂, and hence µ(E) = µ∗(E) = µ̂∗(h(E)) = µ̂(h(E)),

so µ(E) = µ̂(h(E)); moreover, given any set F ∈ h(M), we have that F = h(E) for

some E ∈ M, and therefore µ̂(F ) = µ̂(h(E)) = µ(E) = µ(h−1(F )). The latter fact

tells us that µ̂ is the image measure of µ under h, as we claimed earlier. That is,

µ̂ = µh−1. Thus we may write h : (X,M, µ) → (h(X), h(M), µh−1). (We will

therefore refer to µh−1 rather than µ̂ in what follows.)

Now we are ready to address integration. We will appeal to the following change-

of-variable theorem [8, p. 82], where µh−1 refers to the image measure of µ under h:

Theorem 3.1.2 (Change of variables). Let (X,M, µ) be a measure space, let (Y,N )

be a measurable space, and let h : (X,M) → (Y,N ) be measurable. Let g be an

extended real-valued N -measurable function on Y . Then g is µh−1-integrable if and

only if g ◦ h is µ-integrable. If these functions are integrable, then

∫
X

(g ◦ h) dµ =

∫
Y

g d(µh−1). (3.11)

Continuing the proof of Theorem 3.1.1, we consider a µ-integrable function f :

X → R, and we look at the integral
∫
X
f dµ. In order to apply Theorem 3.1.2, we let

Y := h(X), and N := h(M). We observe that (X,M, µ) is a measure space. We have

shown that (h(X), h(M)) is a measurable space and that h : (X,M)→ (h(X), h(M))

is a measurable function. Now define the function g : Y = h(X)→ R by g = f ◦ h−1.

Then given any Borel-measurable set F ∈ R, we have f−1(F ) ∈ M (since f is

assumed integrable on X, and hence measurable). Thus h(f−1(F )) ∈ h(M); that is,

(f ◦ h−1)−1(F ) ∈ h(M), and therefore g = f ◦ h−1 is h(M)-measurable. Also, by

hypothesis, g ◦ h = f ◦ h−1 ◦ h = f is µ-integrable.
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We may therefore apply Theorem 3.1.2, and the result is that

∫
X

f dµ =

∫
h(X)

f ◦ h−1 d(µh−1). (3.12)

We therefore have the desired result in the case f is real-valued. The case of complex-

valued f follows from that without much difficulty, establishing Theorem 3.1.1.

Corollary 3.1.3. Using the same notation as in the previous theorem for a given

σ ∈ Sn, if µ = µ1 × · · · × µn, where µ1, . . . , µn are σ-finite measures on X1, . . . , Xn,

respectively, if E ⊆ X is a µ-measurable subset of X = X1×· · ·×Xn, and if f : X → C

is a µ-integrable function, then f ◦ h−1 is µh−1-integrable, and

∫
E

f dµ =

∫
h(E)

f ◦ h−1 d(µh−1). (3.13)

(Again, because µ1, . . . , µn are σ-finite, the product of the measures is associative.)

Proof. We note first that since E is a µ-measurable set and h−1 is measurable (as

shown in the proof of Theorem 3.1.1), h(E) is a µh−1-measurable set, so we may

integrate over it. Second, we can say of the product function fχE (recall χE is the

characteristic function of the set E) that for all x ∈ X,

[(fχE) ◦ h−1](h(x)) = (fχE)(x) = f(x)χE(x)

= (f ◦ h−1)(h(x))χh(E)(h(x)) = [(f ◦ h−1)χh(E)](h(x)), (3.14)

and hence (fχE) ◦ h−1 = (f ◦ h−1)χh(E). Therefore, applying Theorem 3.1.1 to fχE,

∫
E

f dµ =

∫
X

fχE dµ
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=

∫
h(X)

(fχE) ◦ h−1 d(µh−1)

=

∫
h(X)

(f ◦ h−1)χh(E) d(µh−1)

=

∫
h(E)

f ◦ h−1 d(µh−1), (3.15)

establishing the corollary.

We will now define a convenient notation for using the above theorems in connec-

tion with Feynman’s Operational Calculi.

Definition 3.1.4. Given the product measure space (X = X1 × · · · × Xn,M =

M1 ⊗ · · · ⊗ Mn, µ = µ1 × · · · × µn) formed from measure spaces (Xj,Mj, µj) for

j = 1, . . . , n, where µ1, . . . , µn are σ-finite (positive) Borel measures on X1, . . . , Xn,

respectively, and given a fixed permutation σ ∈ Sm, we make the following definitions:

• We define the product space Xσ := Xσ(1) × · · · ×Xσ(n).

• Given x = (x1, . . . , xn) ∈ X, we define a map from the space X to the space

Xσ by xσ := (xσ(1), . . . , xσ(n)).

• Given any subset E ⊆ X we define Eσ := {xσ : x ∈ E} ⊆ Xσ.

• We define µσ := µσ(1)× · · · × µσ(n). (Thus µσ is identical to µ̂ and µh−1 defined

earlier.)

• Given a function f : X → C, we define the function fσ : Xσ → C by fσ(y) :=

f(y(σ−1)). (Thus we have fσ(xσ) = f((xσ)(σ−1)) = f(x) for all x ∈ X. Note that

this fσ is identical to f ◦ h−1 that was defined earlier.)

Using this notation, we may write Corollary 3.1.3 in the following form:
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Corollary 3.1.5 (Integration in a permuted product space). Given any product mea-

sure space (X = X1 × · · · × Xn,M = M1 ⊗ · · · ⊗Mn, µ = µ1 × · · · × µn), where

µ1, . . . , µn are σ-finite Borel measures on X1, . . . , Xn, respectively, and given any per-

mutation σ ∈ Sn, if E ⊆ X is a µ-measurable set, and if f : X → C is a µ-integrable

function, then fσ is µσ-integrable, and

∫
E

f dµ =

∫
Eσ
fσ dµσ, (3.16)

or equivalently, ∫
E

f(x) dµ(x) =

∫
Eσ
f(x) dµσ(xσ). (3.17)

(Again, because µ1, . . . , µn are σ-finite, the product of the measures is associative.)

Proof. To prove this, we simply define the function h : X → Xσ as before. This gives

h(x) = xσ for all x ∈ X, h(E) = Eσ, f ◦ h−1 = fσ, and µh−1 = µσ. Making these

substitutions establishes Equation (3.16) directly. From there we have

∫
E

f(x) dµ(x) =

∫
Eσ
fσ dµσ =

∫
Eσ
fσ(xσ) dµσ(xσ) =

∫
Eσ
f(x) dµσ(xσ), (3.18)

and the corollary is proved.

Remark 3. For the applications we will have for Corollary 3.1.5, we will be integrating

operators. Since, however, the operators are time-independent, they may be factored

out of the integral, and then back in, for a similar result. That is, given any operator

A ∈ L(Y ) for a Banach space Y and the conditions of Corollary 3.1.5, we have that

∫
E

f(x)A dµ(x) =

∫
E

f(x) dµ(x)A

=

∫
Eσ
f(x) dµσ(xσ)A
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=

∫
Eσ
f(x)A dµσ(xσ). (3.19)

Example 4. Consider the set E := {(s1, s2) : 1 > s1 > s2 > 0}. Let the permutation

σ ∈ S2 be given by σ(1) = 2, σ(2) = 1. We then have that (s1, s2)σ = (s2, s1) for all

s1, s2 ∈ [0, 1], and hence

Eσ = {(s1, s2) : 1 > s1 > s2 > 0}σ

= {(s1, s2)σ ∈ [0, 1]2 : (s1, s2) ∈ E}

= {(s2, s1) ∈ [0, 1]2 : 1 > s1 > s2 > 0}. (3.20)

Given an integrable function f : [0, 1] × [0, 1] → C and σ-finite Borel measures

µ, ν on [0, 1], we therefore have by Corollary 3.1.5 that

∫
{s1>s2}

f(s1, s2) d(µ× ν)(s1, s2) =

∫
{(s1,s2): 1>s1>s2>0}

f(s1, s2) d(µ× ν)(s1, s2)

=

∫
{(s1,s2)∈[0,1]2: 1>s1>s2>0}σ

f(s1, s2) d(µ× ν)σ(s1, s2)σ

=

∫
{(s2,s1)∈[0,1]2: 1>s1>s2>0}

f(s1, s2) d(ν × µ)(s2, s1)

=

∫
{s1>s2}

f(s1, s2) d(ν × µ)(s2, s1). (3.21)

Note that in the last expression, integration is with respect to the measure ν×µ, which

means the integrand should be a ν×µ-measurable function, whereas the function f is

defined to be µ× ν-measurable, not ν × µ-measurable. However, we can view the set

of function values f(s1, s2) as being images of a ν×µ-measurable function, namely the

function fσ, since f(s1, s2) = fσ(s2, s1) for all values of s1, s2; thus the last integral

makes sense. Also note that we have introduced a small change in the meaning of

‘{s1 > s2}’; in the first integral it refers to {(s1, s2) ∈ [0, 1]2 : 1 > s1 > s2 > 0},
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whereas in the last integral it refers to {(s2, s1) ∈ [0, 1]2 : 1 > s1 > s2 > 0}. However,

the context makes this clear, since the product measure µ × ν in the first integral

expression (defined on [0, 1] × [0, 1]) is applied to ordered pairs (s1, s2), while the

product measure ν × µ in the last integral expression (defined on [0, 1] × [0, 1]) is

applied to ordered pairs (s2, s1).

Theorem 3.1.6. Given any permutations π, σ ∈ Sm, m ≥ 1, we have [∆m(π)]σ =

∆m(σ−1π). In particular, if em ∈ Sm is the identity permutation, then [∆m(π)]π =

∆m(em).

Proof. Let π, σ ∈ Sm, m ≥ 1. Then

[∆m(π)]σ = {(s1, . . . , sm) ∈ [0, 1]m : 0 < sπ(1) < · · · < sπ(m) < 1}σ

= {(s1, . . . , sm)σ ∈ [0, 1]m : 0 < sπ(1) < · · · < sπ(m) < 1}

= {(sσ(1), . . . , sσ(m)) ∈ [0, 1]m : 0 < sπ(1) < · · · < sπ(m) < 1}. (3.22)

We rename the variables, replacing sσ(1), . . . , sσ(m) with s1, . . . , sm, respectively, which

is to say that we apply the permutation σ−1 to every subscript in the last expression

above. We obtain

[∆m(π)]σ = {(s1, . . . , sm) : 0 < sσ−1(π(1)) < · · · < sσ−1(π(m)) < 1}

= ∆m(σ−1(π)). (3.23)

This gives us the first statement of the theorem, and the second statement follows

immediately.

Theorem 3.1.7 (Composing permutations of a product measure). Given any per-

mutations π, σ ∈ Sm,m ≥ 1, and given any measures ν1, . . . , νm ∈ Mcb[0, 1], we
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have

(νσ(1) × · · · × νσ(m))
π = νσπ(1) × · · · × νσπ(m); (3.24)

that is,

[(ν1 × · · · × νm)σ]π = (ν1 × · · · × νm)σπ. (3.25)

Proof. Letting µj := νσ(j) for j = 1, . . . ,m, we have

(νσ(1) × · · · × νσ(m))
π = (µ1 × · · · × µm)π

= µπ(1) × · · · × µπ(m)

= νσπ(1) × · · · × νσπ(m). (3.26)

By similar reasoning we can establish for points x ∈ X1 × · · · × Xm and sets

E ⊆ X1 × · · · ×Xm that (xσ)π = xσπ and (Eσ)π = Eσπ.

One thing Corollary 3.1.3 allows us to do is to rewrite the definition of the disen-

tangling of a monomial (Definition 2.0.3) in another useful way:

Theorem 3.1.8 (Alternate definition of disentangling a monomial). Given D =

D(A1, . . . , An), and given µ1, µ2, . . . , µn ∈ Mcb[0, 1] together with nonnegative in-

tegers m1, . . . ,mn, let blocks of integers Bl(1), . . . ,Bl(n) and operators C1, . . . , Cm be

defined in the usual way, as well as measures

νk :=



µ1, k ∈ Bl(1)

µ2, k ∈ Bl(2)

...

µn, k ∈ Bl(n),

(3.27)
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so that the measures ν1, . . . , νm are associated with the operators C1, . . . , Cm, respec-

tively. We then have

Tµ1,...,µn [Pm1,...,mn(Ã1, . . . , Ãn)] =

=
∑
π∈Sm

∫
∆m(em)

Cπ(m) · · ·Cπ(1) (νπ(1) × · · · × νπ(m))(dsπ(1), . . . , dsπ(m)), (3.28)

where em ∈ Sm is the identity permutation, so that the set ∆m(em) is given by

∆m(em) = {(s1, . . . , sm) : 0 < s1 < · · · < sm < 1} = {(sπ(1), . . . , sπ(m)) : 0 <

sπ(1) < · · · < sπ(m) < 1}.

Proof. Under the given hypotheses, we have by Corollary 3.1.5 that

Tµ1,...,µn [Pm1,...,mn(Ã1, . . . , Ãn)]

= Pm1,...,mn
µ1,...,µn

(A1, . . . , An) = P 1,...,1
ν1,...,νm

(C1, . . . , Cm)

=
∑
π∈Sm

∫
∆m(π)

Cπ(m) · · ·Cπ(1) (ν1 × · · · × νm)(ds1, . . . , dsm)

=
∑
π∈Sm

∫
[∆m(π)]π

Cπ(m) · · ·Cπ(1) (ν1 × · · · × νm)π(ds1, . . . , dsm)π

=
∑
π∈Sm

∫
∆m(em)

Cπ(m) · · ·Cπ(1) (νπ(1) × · · · × νπ(m))(dsπ(1), . . . , dsπ(m)). (3.29)

A result of this theorem is the following corollary, which we will have use for later:

Corollary 3.1.9. Given D = D(A1, . . . , An), where A1, . . . , An ∈ L(X), and given

finite, continuous Borel measures µ1, . . . , µn on the interval [0, 1], together with non-

negative integers m1, . . . ,mn, we have for any permutation σ ∈ Sn that

Pm1,...,mn
µ1,...,µn

(A1, . . . , An) = P
mσ(1),...,mσ(n)
µσ(1),...,µσ(n) (Aσ(1), . . . , Aσ(n)). (3.30)
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Remark 4. The result in Corollary 3.1.9 is given in [13, Proposition 2.11, p. 14] for

the case of probability measures. The proposition is stated there without proof, intro-

duced by the statement that it follows directly from the definition of the disentangling

map. Were the article’s definition the one we have just discussed here in Theorem

3.1.8, it would indeed follow directly, but it does not seem to follow so directly from

the original definition of the disentangling map, which our Definition 2.0.3 matches.

Perhaps the authors simply recognized Corollary 3.1.5 intuitively as an application

of a change of variables theorem. Nevertheless, it seems good in the current section

of this thesis to attempt to outline a justification of this proposition.

Proof. Assigning the same names as before for C1, . . . , Cm and ν1, . . . , νm, we may

take any fixed permutation τ ∈ Sm and, letting e ∈ Sm be the identity permutation,

say using Theorems 3.1.7 and 3.1.8 (and then just changing the index of summation)

that

P 1,...,1
ντ(1),...,ντ(m)

(Cτ(1), . . . , Cτ(m))

=
∑
π∈Sm

∫
∆m(em)

Cτπ(m) · · ·Cτπ(1) (ντπ(1) × · · · × ντπ(m))(dsτπ(1), . . . , dsτπ(m))

=
∑
τπ∈Sm

∫
∆m(em)

Cτπ(m) · · ·Cτπ(1) (ντπ(1) × · · · × ντπ(m))(dsτπ(1), . . . , dsτπ(m)). (3.31)

Letting ρ := τπ each time we select τπ ∈ Sm gives

P 1,...,1
ντ(1),...,ντ(m)

(Cτ(1), . . . , Cτ(m))

=
∑
ρ∈Sm

∫
∆m(em)

Cρ(m) · · ·Cρ(1) (νρ(1) × · · · × νρ(m))(dsρ(1), . . . , dsρ(m))

= P 1,...,1
ν1,...,νm

(C1, . . . , Cm). (3.32)

In particular, any rearrangement of the Aj’s corresponds to a rearrangement of the
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Ck’s, so for any permutation σ ∈ Sn there is some permutation τ ∈ Sm for which the

list Cτ(1), . . . , Cτ(m) has every Aσ(1) preceding every Aσ(2), preceding every Aσ(3), etc.,

and similarly for the measures. We can then say

Pm1,...,mn
µ1,...,µn

(A1, . . . , An) = P 1,...,1
ν1,...,νm

(C1, . . . , Cm)

= P 1,...,1
ντ(1),...,ντ(m)

(Cτ(1), . . . , Cτ(m))

= P
mσ(1),...,mσ(n)
µσ(1),...,µσ(n) (Aσ(1), . . . , Aσ(n)). (3.33)

(Note: The way permutations are handled in this proof is a technique that will be

used again, such as in Remark 24, Section 6.2.)

3.2 Disentangling a monomial that involves a

sum of two measures

Besides the sort of “commutativity” properties we have just shown for product mea-

sures, we would like to establish what is effectively a distributive law for measures

in the context of disentangling a monomial. For example, we would like to calculate

disentanglings of the form P 1,m2,...,mn
ν+η,µ2,...,µn(A1, . . . , An). (Later, in Theorem 4.3.7, we will

consider a distributive law for disentangling a monomial involving a sum of operators,

P 1,m2,...,mn
µ1,µ2,...,µn

(B + C,A2, . . . , An).)

To do so, we begin by noting two straightforward results. The first is that the sum

of two measures is a measure: If µ and ν are (positive) measures on the measurable

space (X,M), and the function µ + ν : M → [0,∞] is defined by (µ + ν)(E) =

µ(E) + ν(E) for all E ∈M, then µ+ ν is a measure on (X,M).

The second is a distributive law that holds for product measures: If µ is a σ-finite

(positive) measure on (X1,M1) and ν, η are σ-finite (positive) measures on (X2,M2),
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then

µ× (ν + η) = µ× ν + µ× η. (3.34)

For the rest of this thesis we will assume X is a Banach space unless otherwise

stated. Using the above facts, we are able to prove the following disentangling theo-

rem:

Theorem 3.2.1 (Distributive law for disentangling a monomial that involves a sum

of two measures). Let A1, A2, . . . , An ∈ L(X), and let m2, . . . ,mn be non-negative

integers. Then given finite, continuous Borel measures ν, η, µ2, µ3, . . . , µn on the in-

terval [0, 1] associated with the operators A1, A1, A2, A3, . . . , An, respectively, we have

that

P 1,m2,...,mn
ν+η,µ2,...,µn(A1, . . . , An) = P 1,m2,...,mn

ν,µ2,...,µn
(A1, . . . , An) + P 1,m2,...,mn

η,µ2,...,µn
(A1, . . . , An). (3.35)

Remark 5. Since, when disentangling a monomial, we may by Corollary 3.1.9 per-

mute the operators and correspondingly permute the measures and exponents with-

out changing the value of the expression, the theorem will hold as well if the sum of

measures appears later in the list of measures, with an exponent 1 corresponding to

them.

Proof. We start by assigning blocks of integers almost the same as before: Let m :=

1 +m1 +m2 + · · ·+mn, and let

Bl(1) := {1},

Bl(2) := {2, 3, . . . , 1 +m2},
...

Bl(n) := {1 +m2 + · · ·+mn−1 + 1, . . . ,m}. (3.36)
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We again assign names of operators by Ck := Aj for k ∈ Bl(j), where j = 1, . . . , n

k = 1, . . . ,m. Then

P 1,m2,...,mn
ν+η,µ2,...,µn(A1, . . . , An)

=
∑
π∈Sm

∫
∆m(π)

Cπ(m) · · ·Cπ(1) ((ν + η)× µm2
2 × · · · × µmnn )(ds1, ds2, . . . , dsm)

=
∑
π∈Sm

∫
∆m(π)

Cπ(m) · · ·Cπ(1)(ν × µm2
2 × · · · × µmnn )(ds1, ds2, . . . , dsm)

+
∑
π∈Sm

∫
∆m(π)

Cπ(m) · · ·Cπ(1)(η × µm2
2 × · · · × µmnn )(ds1, ds2, . . . , dsm)

= P 1,m2,...,mn
ν,µ2,...,µn

(A1, . . . , An) + P 1,m2,...,mn
η,µ2,...,µn

(A1, . . . , An). (3.37)

Although the finiteness of the measures may not have been needed in these steps, σ-

finiteness was used both in applying the distributive law established in the previous

theorem, and in guaranteeing that the product of the measures is associative.

We may extend this result using Corollary 3.1.9:

Theorem 3.2.2 (Disentangling a monomial that involves a sum of two measures).

Given a Banach space X, together with operators A1, . . . , An ∈ L(X), non-negative

integers m1, . . . ,mn, and finite, continuous Borel measures ν, η, µ2, µ3, . . . , µn on the

interval [0, 1] associated with A1, A1, A2, A3, . . . , An, respectively, we have that

Pm1,m2,...,mn
ν+η,µ2,...,µn (A1, A2, A3, . . . , An)

=

m1∑
k=0

m1

k

P k,m1−k,m2,m3,...,mn
ν,η,µ2,µ3...,µn

(A1, A1, A2, A3, . . . , An). (3.38)

Remark 6. Although the theorem here introduces a summation while making changes

in the first argument of the monomial being disentangled, Corollary 3.1.9 allows us to
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apply the theorem to other arguments, and of course we may also apply the theorem

repeatedly if there is more than one sum of measures appearing among the subscripts

of P .

Proof. (A later result, Theorem 4.3.8, will be proved in much the same way.) We

observe first that if m1 = 0, then both sides of Equation (3.38) reduce to

Pm2,...,mn
µ2,...,µn

(A2, . . . , An).

Let us therefore assume that m1 > 0.

We observe next that

Pm1,m2,...,mn
ν+η,µ2,...,µn (A1, A2, . . . , An) = P j,m1−j,m2,...,mn

ν+η,ν+η,µ2,...,µn(A1, A1, A2, . . . , An) (3.39)

for any j = 0, . . . ,m1. (The reason we can say this is that when we rename the copies

of the operators A1, . . . , An with the names C1, . . . , Cm, the names C1, . . . , Cm1 all

refer to the operator A1, whether we are calculating the disentangling on the left-

hand side of Equation (3.39) or the disentangling on the right-hand side. Moreover,

the operator µ+ ν is associated with each of those operators. Thus the definition of

the disentangling map will yield the same expression for both. In effect this argument

is Proposition 3.6 of [13], applied more generally than to probability measures.) We

will show by mathematical induction that, for any j = 0, . . . ,m1,

Pm1,m2,...,mn
ν+η,µ2,...,µn (A1, A2, . . . , An)

=

j∑
k=0

j
k

P k,j−k,m1−j,m2,m3...,mn
ν,η,ν+η,µ2,µ3...,µn (A1, A1, A1, A2, A3, . . . , An). (3.40)
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For the case j = 0, we have that the right-hand side of Equation (3.40) is just the

one term

P 0,0,m1−0,m2,m3...,mn
ν,η,ν+η,µ2,µ3...,µn (A1, A1, A1, A2, A3, . . . , An)

= Pm1,m2,m3...,mn
ν+η,µ2,µ3...,µn (A1, A2, A3, . . . , An), (3.41)

which is identical to the left-hand side.

Let us now suppose that Equation (3.40) holds for each j = 0, 1, . . . , h, where

h < m1. Then applying Corollary 3.1.9 and Theorem 3.2.1 in various ways (as well

as splitting and combining exponents), we have

Pm1,m2,...,mn
ν+η,µ2,...,µn (A1, A2, . . . , An)

=
h∑
k=0

h
k

P k,h−k,m1−h,m2,m3...,mn
ν,η,ν+η,µ2,µ3...,µn (A1, A1, A1, A2, A3, . . . , An)

=
h∑
k=0

h
k

P 1,k,h−k,m1−h−1,m2,m3...,mn
ν+η,ν,η,ν+η,µ2,µ3...,µn (A1, A1, A1, A1, A2, A3, . . . , An)

=
h∑
k=0

h
k

P 1,k,h−k,m1−h−1,m2,m3...,mn
ν,ν,η,ν+η,µ2,µ3...,µn (A1, A1, A1, A1, A2, A3, . . . , An)

+
h∑
k=0

h
k

P 1,k,h−k,m1−h−1,m2,m3...,mn
η,ν,η,ν+η,µ2,µ3...,µn (A1, A1, A1, A1, A2, A3, . . . , An)

=
h∑
k=0

h
k

P k+1,h−k,m1−h−1,m2,m3...,mn
ν,η,ν+η,µ2,µ3...,µn (A1, A1, A1, A2, A3, . . . , An)

+
h∑
k=0

h
k

P k,h+1−k,m1−h−1,m2,m3...,mn
ν,η,ν+η,µ2,µ3...,µn (A1, A1, A1, A2, A3, . . . , An)
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=
h+1∑
k=1

 h

k − 1

P k,h+1−k,m1−h−1,m2,m3...,mn
ν,η,ν+η,µ2,µ3...,µn (A1, A1, A1, A2, A3, . . . , An)

+
h∑
k=0

h
k

P k,h+1−k,m1−h−1,m2,m3...,mn
ν,η,ν+η,µ2,µ3...,µn (A1, A1, A1, A2, A3, . . . , An). (3.42)

Applying the properties of binomial coefficients that

h
0

 =

h+ 1

0

 = 1,

h
h

 =

h+ 1

h+ 1

 = 1,

and for 0 < k ≤ h,  h

k − 1

+

h
k

 =

h+ 1

k

 ,

we get

Pm1,m2,...,mn
ν+η,µ2,...,µn (A1, A2, . . . , An)

=
h+1∑
k=0

h+ 1

k

P k,h+1−k,m1−h−1,m2,m3...,mn
ν,η,ν+η,µ2,µ3...,µn (A1, A1, A1, A2, A3, . . . , An). (3.43)

By mathematical induction, this proves Equation (3.40) for j = 0, 1, . . . ,m1. The

case j = m1 yields

Pm1,m2,...,mn
ν+η,µ2,µ3,...,µn(A1, A2, . . . , An)

=

m1∑
k=0

m1

k

P k,m1−k,0,m2,m3...,mn
ν,η,ν+η,µ2,µ3...,µn (A1, A1, A1, A2, A3, . . . , An)
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=

m1∑
k=0

m1

k

P k,m1−k,m2,m3...,mn
ν,η,µ2,µ3...,µn

(A1, A1, A2, A3, . . . , An), (3.44)

which establishes Equation (3.38).

An example of the use of Theorem 3.2.2 will be given below, in Section 4.3,

Example 15.
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Chapter 4

Orderings and operations on

orderings

4.1 Orderings

As we have discussed, in Feynman’s Operational Calculi one finds products of time-

indexed operators, and thus expressions such as:

Cπ(m)(sπ(m)) · · ·Cπ(2)(sπ(2))Cπ(1)(sπ(1)),

where {Cj}mj=1 are operators, {sj}mj=1 are time indices that we are taking to have

values in the interval [0, 1], and π ∈ Sm = Perm{1, 2, . . . ,m} (that is, Sm is the

collection of all bijections from {1, . . . ,m} to {1, . . . ,m}). For our purposes here we

will handle only the time-independent operator case, Cj(sj) ≡ Cj, allowing us to drop

the time indices:

Cπ(m) · · ·Cπ(2)Cπ(1).

We find this, for example, in our definition of the disentangling map of a monomial,
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Definition 2.0.3:

Tµ1,··· ,µn [Pm1,··· ,mn(Ã1, . . . , Ãn)]

:=
∑
π∈Sm

∫
∆m(π)

Cπ(m) · · ·Cπ(1) (µm1
1 × · · · × µmnn )(ds1, . . . , dsm). (4.1)

Since, in expressions like this, we deal with all the permutations of the subscripts

on the operators C1, . . . , Cm, the proofs of various FOCi results often involve combi-

natorial arguments about the order in which the subscripts 1, 2, . . . ,m appear. For

example, it is useful at times to regard the permutation π that specifies that order

as the joining of two shorter permutations σ and τ in some way. In order to handle

such concepts more easily, we would like to develop a way to express relationships

among permutations of different lengths, which we will do in terms of operations on

‘orderings’.

Definition 4.1.1 (Orderings). Given any finite set P , the set of orderings of P is the

set OP := {all bijections σ : {1, 2, . . . , card(P )} → P}. We represent an individual

ordering σ ∈ OP as σ = [σ(1), σ(2), . . . , σ(card(P ))], and we say that σ orders the

set P . The length of an ordering σ ∈ OP is defined to be length(σ) := card(P ). Two

orderings of two sets are said to be disjoint if the sets they order are disjoint.

(By card(P ) we mean the cardinality of the set P .)

Note that this definition includes the case of an empty set P = ∅, in which case

there is only one ordering, namely the empty map from P = ∅ to P = ∅. Thinking

of maps as sets of ordered pairs, the empty map is the set consisting of no ordered

pairs; that is, it is the empty set. So we will represent the empty map by the empty

set symbol, ∅ : ∅ → ∅. The empty map ∅ : ∅ → ∅ is trivially a bijection, so we are

indeed able to say that ∅ ∈ O∅, and we will call it the null ordering (or sometimes
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the empty ordering); in fact, O∅ = {∅}.

Example 5. Let P = {2, 3, 5}. Then the map σ given by σ(1) = 3, σ(2) = 2, σ(3) = 5

is an ordering of P ; that is, σ = [σ(1), σ(2), σ(3)] = [3, 2, 5] ∈ OP . In fact, OP =

{[2, 3, 5], [2, 5, 3], [3, 2, 5], [3, 5, 2], [5, 2, 3], [5, 3, 2]}. Since OP is a set, we may of course

list its elements in any order.

Remark 7. The notation [s1, s2, . . . , sm] gives the full description of an ordering map.

It implies the associated domain {1, 2, . . . ,m} and range {s1, s2, . . . , sm}.

Remark 8. Orderings are the same as permutations in the case when the set to be

ordered or permuted is the set {1, 2, . . . ,m} for some nonnegative integer m. That is,

O{1,2,...,m} = Sm. (We will therefore at times apply ordering notation to permutations.)

Remark 9. Since OP := {all bijections σ : {1, 2, . . . , card(P )} → P}, we have that

the number of those bijections is

card(OP ) = card(P )!.

This holds even in the case P = ∅, where we have card(O∅) = card({∅}) = 1 = 0! =

card(∅)!.

Remark 10. One caution about the notation for orderings: In other, contexts, per-

mutations are often represented in ‘cycle notation’, involving a string of elements

in which each maps to the next. For example, in cycle notation the expression

‘π = [1 3 2]’ would refer to the map 1 7→ 3 7→ 2 7→ 1. This is not what we

mean here by the expression π = [1, 3, 2]. Instead, for us ‘[1, 3, 2]’ is simply an or-

dered list of the images of 1, 2, 3, respectively, under the map; that is, ‘π = [1, 3, 2]’

means π(1) = 1, π(2) = 3, π(3) = 2. In general, ‘π = [p1, p2, . . . , pm]’ will mean

π(1) = p1, π(2) = p2, . . . , π(m) = pm.
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Before we discuss the ‘merge’ operation on orderings, it may be helpful to note

the following: Suppose that we have an ordering π ∈ OP , where P is a finite

set, and suppose that x, y ∈ P. Then x and y appear in the representation π =

[π(1), π(2), . . . , π(card(P ))]. The element x is to the left of y if and only if there exist

j, k ∈ {1, 2, . . . , card(P )}, j < k, with π(j) = x and π(k) = y. Equivalently, x is to the

left of y if and only if π−1(x) < π−1(y); that expression will appear in the definition

of the merge operation. (Also, x and y are the same if and only if π−1(x) = π−1(y).)

4.2 The merge operation

Our next objective is to express relationships among orderings, such as expressing

a set of orderings of several objects in terms of sets of orderings of fewer objects.

For example we might want to think of the orderings of five objects as a kind of

combination of the orderings of three of those objects and the orderings of the other

two objects. Our reason for wanting to think this way is that if we are working with

five linear operators A1, . . . , A5 and their associated measures µ1, . . . , µ5, it may be

that two of the operators are distinguished from the other three in some way. For

example, maybe A1 and A2 commute with all the others, but A3, A4, A5 do not. Or

maybe µ1 and µ2 have their support in a proper subinterval of [0, 1], while µ3, µ4

and µ5 have their support in the rest of the interval. (The latter situation allows

disentangling to occur in two steps, first in the subinterval, and then over the whole

interval using the operator that results from the first step, as described in Theorem 2.1

of [22], which is related to the ‘autonomous bracket’ concept of V. Maslov, described

in [35, p. 15].) In order to handle a variety of relationships, we will use operations on

orderings that are defined below.

We will start by defining the ‘merge’ operation � on sets of orderings. Two other



51

operations will be defined later, but the merge operation is the main operation we

will deal with. We will also provide examples of how these operations may be applied

to FOCi.

Definition 4.2.1 (The merge operation). Given disjoint, finite sets P and Q and

orderings σ ∈ OP , τ ∈ OQ, we define {σ}�{τ} to be the set of all orderings π ∈ OP ·∪Q

with the two properties that

(i) π−1(x) < π−1(y) if and only if σ−1(x) < σ−1(y) for all x, y ∈ P, and

(ii) π−1(x) < π−1(y) if and only if τ−1(x) < τ−1(y) for all x, y ∈ Q.

Given sets of orderings U ⊆ OP ,V ⊆ OQ, we define U � V (‘U merge V ’) by

U � V :=
⋃

σ∈U ,τ∈V

({σ} � {τ}) . (4.2)

(We will show in Theorem 4.2.5 that the union in Equation 4.2 is disjoint. The symbol

‘ ·∪’, as in “π ∈ OP ·∪Q” above, represents a disjoint union of sets.)

Often P and Q will be sets of positive integers.

Remark 11. The definition is interpreted so that if either U = ∅ or V = ∅ or both,

then the union
⋃
σ∈U ,τ∈V{σ} � {τ} is empty, hence U � V = ∅.

Remark 12. The merge operation can be regarded as a special case of the ‘shuffle’

of two languages in the theory of formal languages—see [12, pp. 292-293]—as was

pointed out to the author by a colleague, Scott Dyer. The statement of the definition

of the shuffle is much like part (iii) of Theorem 4.3.5 below. This special case in effect

applies the shuffle to disjoint languages, each of which has equal-length strings of

exactly the same distinct symbols. The ‘concatenation’ and ‘excerption’ operations
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defined below similarly have counterparts in that field; the excerption operation se-

lects a subword. Our focus for all three operations is on developing propositions that

may be applied to the subscripts of operators in FOCi.

To clarify Definition 4.2.1, we repeat a comment from the end of Section 4.1.

Given an ordering σ = [σ(1), σ(2), . . . , σ(card(P ))] ∈ OP and elements x, y ∈ P ,

the statement that σ−1(x) < σ−1(y) means that x is to the left of y in the explicit

representation σ = [σ(1), σ(2), . . . , σ(card(P ))]. When we say then in property (i) of

the definition that π−1(x) < π−1(y) if and only if σ−1(x) < σ−1(y) for all x, y ∈ P, we

are saying that the order of the two elements x and y is the same in π as in σ. We may

therefore think of the merge operation as an order-preserving operation; when applied

to the singleton sets {σ} and {τ}, {σ}�{τ}, it produces all possible orderings of the

objects that σ and τ together order that preserve the relative order of the objects σ

orders and that preserve the relative order of the objects that τ orders.

Properties (i) and (ii) in the definition of the merge operation both use the phrase

“if and only if,” which makes them useful properties to apply when we have a set

of orderings that satisfies the definition. However, it happens that when we want to

prove that a set of orderings satisfies the definition of a merging of two sets, proving

weaker statements is enough:

Theorem 4.2.2 (Equivalent statements for the merge definition). Property (i) in

Definition 4.2.1 may be replaced by either of these equivalent statements:

(i ′) If π−1(x) < π−1(y) then σ−1(x) < σ−1(y) for all x, y ∈ P.

(i ′′) If σ−1(x) < σ−1(y) then π−1(x) < π−1(y) for all x, y ∈ P.

Property (ii) in the definition may be replaced by either of these equivalent statements:

(ii ′) If π−1(x) < π−1(y) then τ−1(x) < τ−1(y) for all x, y ∈ Q.
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(ii ′′) If τ−1(x) < τ−1(y) then π−1(x) < π−1(y) for all x, y ∈ Q.

Proof. All of these equivalences follow from the fact that σ, π, and τ are bijections.

We will show that (i) is equivalent to (i′).

Comparing (i) and (i′), we note first that (i) clearly implies (i′). We can see that

(i′) implies (i) by contraposition: If (i′) is true, that is, if π−1(x) < π−1(y) implies

that σ−1(x) < σ−1(y) for all x, y ∈ P, then the supposition that for some x, y ∈ P we

have π−1(x) ≥ π−1(y) gives us either that π−1(x) = π−1(y), in which case x = y and

therefore σ−1(x) = σ−1(y), or else that π−1(x) > π−1(y), in which case (by (i′) itself)

σ−1(x) > σ−1(y). Hence, π−1(x) ≥ π−1(y) implies that σ−1(x) ≥ σ−1(y), and by

contraposition, σ−1(x) < σ−1(y) implies π−1(x) < π−1(y). Therefore, (i) is equivalent

to (i′). We omit proofs of the other equivalences, as they are similar.

Example 6. Let P := {1, 2}, Q := {3, 4}. Then we have OP := {[1, 2], [2, 1]},OQ :=

{[3, 4], [4, 3]}. Letting σ := [1, 2], τ := [3, 4], we have

{σ} � {τ} = {[1, 2, 3, 4], [1, 3, 2, 4], [3, 1, 2, 4], [1, 3, 4, 2], [3, 1, 4, 2], [3, 4, 1, 2]}. (4.3)

Note that the elements of {σ} � {τ} all preserve the relative order of the entries in

σ and the relative order of the entries in τ , while allowing any other variation in the

order.

To apply this example of the merge operation, consider a situation in which we

would like to find the sum of products of four operators A1, A2, A3, A4 in all possible

orders, except that A1 always operates before A2, and A3 always operates before A4.

(This is similar to what we might do in FOCi, but greatly simplified.) The sum of
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the operators in all orders without restriction would be

∑
π∈O{1,2,3,4}

Aπ(4)Aπ(3)Aπ(2)Aπ(1). (4.4)

The sum of the operators with the restriction listed above would be

∑
π∈{[1,2]}�{[3,4]}

Aπ(4)Aπ(3)Aπ(2)Aπ(1). (4.5)

Another possible situation in which to apply the merging of two (singleton) sets

of orderings would be if we want to add up the possible products of two copies of

the operator A and two copies of the operator B. More specifically, let us say that

C1 := C2 := A and C3 := C4 := B, and that we are interested in the sum

∑
π∈O{1,2,3,4}

Cπ(4)Cπ(3)Cπ(2)Cπ(1). (4.6)

As the reader may verify, the set O{1,2,3,4} can be rewritten as

O{1,2,3,4} = {[1, 2], [2, 1]} � {[3, 4], [4, 3]} = ·⋃
σ∈{[1,2],[2,1]}
τ∈{[3,4],[4,3]}

{σ} � {τ}. (4.7)

We can therefore write the sum as

∑
π∈O{1,2,3,4}

Cπ(4)Cπ(3)Cπ(2)Cπ(1) =
∑

σ∈{[1,2],[2,1]}
τ∈{[3,4],[4,3]}

∑
π∈{σ}�{τ}

Cπ(4)Cπ(3)Cπ(2)Cπ(1). (4.8)

At this point we note that the sum over σ and τ will be the same whether we choose

σ = [1, 2] or σ = [2, 1], because C1 = C2 = A. Also the sum over σ and τ will be

the same whether we choose τ = [3, 4] or τ = [4, 3], because C3 = C4 = B. We will
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therefore rewrite the sum by choosing one of each (σ = [1, 2] and τ = [3, 4]) and

multiplying by the number of duplicate choices:

∑
π∈O{1,2,3,4}

Cπ(4)Cπ(3)Cπ(2)Cπ(1) = 2× 2×
∑
σ=[1,2]
τ=[3,4]

∑
π∈{σ}�{τ}

Cπ(4)Cπ(3)Cπ(2)Cπ(1)

= 4×
∑

π∈{[1,2]}�{[3,4]}

Cπ(4)Cπ(3)Cπ(2)Cπ(1). (4.9)

This reduces the number of terms in the sum. In the example here, the number of

terms is reduced from 4! = 24 to 2!2! = 4. (The set {[1, 2]} � {[3, 4]} is given the

designation P2,2 in [24, p. 575], where it is used as an index set in an application

similar to this. We will give the general definition of Pm1,...,mn below. This notation

simplifies expressions in FOCi in, for example, the context of evolution equations—see

[9, pp.24ff]—where the number of terms in a sum can be significantly reduced.)

Example 7. Let

P := {1, 3, 5}, Q := {6, 9}.

ThenOP = {[1, 3, 5], [1, 5, 3], [3, 1, 5], [3, 5, 1], [5, 1, 3], [5, 3, 1]},OQ = {[6, 9], [9, 6]}. Let

σ := [3, 5, 1] ∈ OP , τ := [6, 9] ∈ OQ.

Then

{σ} � {τ} = {[3, 5, 1, 6, 9], [3, 5, 6, 1, 9], [3, 6, 5, 1, 9], [6, 3, 5, 1, 9], [3, 5, 6, 9, 1],

[3, 6, 5, 9, 1], [6, 3, 5, 9, 1], [3, 6, 9, 5, 1], [6, 3, 9, 5, 1], [6, 9, 3, 5, 1]}. (4.10)

(Again, the elements of a set may of course be listed in any order, but we will use

the same order in each of our examples, according to the order they are generated
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by Theorem 4.3.6, below.) At this point we will not demonstrate that {σ} � {τ}

is exactly the set shown in Equation (4.10). We will however, by choosing π :=

[6, 3, 5, 9, 1] ∈ O{1,3,5,6,9}, indicate the validity of (4.10) using Theorem 4.2.2. We

claim that π ∈ {σ} � {τ}. By the definition of {σ} � {τ}, π needs to satisfy both

(i′) If σ−1(x) < σ−1(y) then π−1(x) < π−1(y) for all x, y ∈ P , and

(ii′′) If τ−1(x) < τ−1(y) then π−1(x) < π−1(y) for all x, y ∈ Q.

Theorem 4.2.2 says in effect, “An ordering π will be in the set {σ} � {τ} if and

only if when we look at π, the elements it has in common with σ (the elements of P )

appear in the same relative (left-to-right) order in π as in σ, and the elements it has

in common with τ (the elements of Q) appear in the same relative order in π as in

τ .” We will do this below.

We first note that by the notation we are using,

σ = [3, 5, 1] = [σ(1), σ(2), σ(3)], τ = [6, 9] = [τ(1), τ(2)],

π = [6, 3, 5, 9, 1] = [π(1), π(2), π(3), π(4), π(5)].

Consider first the elements of P = {1, 3, 5}, which are ordered by σ. Taking them

in the order specified by σ, we see that σ−1(3) = 1, σ−1(5) = 2 and σ−1(1) = 3. The

pairs x, y ∈ P for which σ−1(x) < σ−1(y) are then x = 3, y = 5; x = 3, y = 1; and x =

5, y = 1. For these pairs we have:

x = 3, y = 5 : σ−1(3) = 1 < 2 = σ−1(5) and π−1(3) = 2 < 3 = π−1(5),

x = 3, y = 1 : σ−1(3) = 1 < 3 = σ−1(1) and π−1(3) = 2 < 5 = π−1(1), and

x = 5, y = 1 : σ−1(5) = 2 < 3 = σ−1(1) and π−1(5) = 3 < 5 = π−1(1).
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For τ , which orders Q = {6, 9}, there is only the pair x = 6, y = 9, for which:

x = 6, y = 9 : τ−1(6) = 1 < 2 = τ−1(9) and π−1(6) = 1 < 4 = π−1(9).

This confirms that π ∈ {σ} � {τ}.

In some cases an easier method for checking whether an ordering π is an element of

the merging of two singleton sets of orderings {σ}� {τ} is contained in the following

theorem:

Theorem 4.2.3 (Alternate definition of merge). Let P and Q be disjoint, finite sets

and σ ∈ OP , τ ∈ OQ be orderings. Let p1, p2, . . . , pcard(P ), q1, q2, . . . , qcard(Q) be defined

by

[p1, p2, . . . , pcard(P )] := [σ(1), σ(2), . . . , σ(card(P ))] = σ, and

[q1, q2, . . . , qcard(Q)] := [τ(1), τ(2), . . . , τ(card(Q))] = τ.

(This will imply that P = {p1, p2, . . . , pcard(P )} and Q = {q1, q2, . . . , qcard(Q)}.) Then

{σ} � {τ} is the set of all π ∈ OP ·∪Q for which both

(i) π−1(p1) < π−1(p2) < · · · < π−1(pcard(P )) and

(ii) π−1(q1) < π−1(q2) < · · · < π−1(qcard(Q)).

Note that property (i) will be vacuously satisfied if card(P ) = 0 or 1, and property

(ii) will be vacuously satisfied if card(Q) = 0 or 1.

Proof. With the hypotheses as stated, let us suppose that π ∈ {σ} � {τ}. Since

pi = σ(i) for all i ∈ {1, 2, . . . , card(P )}, we have that σ−1(pi) = i for all i. Therefore,

σ−1(p1) = 1 < σ−1(p2) = 2 < . . . < σ−1(pcard(P )) = card(P ).
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Consequently, by definition of the merge operation,

π−1(p1) < π−1(p2) < . . . < π−1(pcard(P )).

Similarly we may establish that π−1(q1) < π−1(q2) < . . . < π−1(qcard(Q)), and therefore

(i) and (ii) of the theorem hold.

On the other hand, with the given hypotheses, let us suppose that (i) and (ii) hold.

Then taking any x, y ∈ P with σ−1(x) < σ−1(y) we let j := σ−1(x) and k := σ−1(y).

But then x = σ(j) = pj and y = σ(k) = pk with j < k, so by property (i) we have that

π−1(x) = π−1(pj) < π−1(pk) = π−1(y). This establishes property (i) of the definition

of the merge operation applied to π ∈ {σ} � {τ}. Property (ii) of the definition is

established similarly. Therefore, π ∈ {σ} � {τ}.

Example 8. Continuing Example 7, but now using Theorem 4.2.3, we are claiming

for σ = [3, 5, 1] and τ = [6, 9] that

{σ} � {τ} = {[3, 5, 1, 6, 9], [3, 5, 6, 1, 9], [3, 6, 5, 1, 9], [6, 3, 5, 1, 9], [3, 5, 6, 9, 1],

[3, 6, 5, 9, 1], [6, 3, 5, 9, 1], [3, 6, 9, 5, 1], [6, 3, 9, 5, 1], [6, 9, 3, 5, 1]}. (4.11)

Although the sets are in fact equal, for now we will only show the inclusion

{σ} � {τ} ⊇ {[3, 5, 1, 6, 9], [3, 5, 6, 1, 9], [3, 6, 5, 1, 9], [6, 3, 5, 1, 9], [3, 5, 6, 9, 1],

[3, 6, 5, 9, 1], [6, 3, 5, 9, 1], [3, 6, 9, 5, 1], [6, 3, 9, 5, 1], [6, 9, 3, 5, 1]}, (4.12)

and equality will then follow from a cardinality argument once we have proved The-

orem 4.2.9.

Defining p1, p2, p3, q1, q2 as in Theorem 4.2.3, we have [p1, p2, p3] := [3, 5, 1] = σ
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and [q1, q2] = [6, 9] := τ. We first look at each of the orderings π on the right-hand

side of Equation (4.12) to see whether π−1(p1) < π−1(p2) < π−1(p3); that is, whether

π−1(3) < π−1(5) < π−1(1). In the first ordering listed, [3, 5, 1, 6, 9], we have that

π−1(3) = 1 < π−1(5) = 2 < π−1(1) = 3, so that satisfies the desired property

(property (i) of Theorem 4.2.3). It is easy to see in the remaining orderings that 3

precedes 5, which precedes 1. Similarly, checking whether π−1(q1) < π−1(q2)—that

is, whether π−1(6) < π−1(9)—we see that in all of the orderings π, 6 is in fact to the

left of 9. Therefore, all of these orderings are in {σ} � {τ} as claimed.

Example 9. We have given an example of the merge operation applied to singleton

sets. For an example using more general sets, let

U := {[1, 5, 3], [3, 5, 1]} ⊆ OP , V := {[6, 9]} ⊆ OQ.

The set U �V is defined to be the union of all sets of the form {σ}�{τ} where σ ∈ U

and τ ∈ V . Hence,

U � V =

(
{[1, 5, 3]} � {[6, 9]}

)
∪
(
{[3, 5, 1]} � {[6, 9]}

)
= {[1, 5, 3, 6, 9], [1, 5, 6, 3, 9], [1, 6, 5, 3, 9], [6, 1, 5, 3, 9], [1, 5, 6, 9, 3],

[1, 6, 5, 9, 3], [6, 1, 5, 9, 3], [1, 6, 9, 5, 3], [6, 1, 9, 5, 3], [6, 9, 1, 5, 3],

[3, 5, 1, 6, 9], [3, 5, 6, 1, 9], [3, 6, 5, 1, 9], [6, 3, 5, 1, 9], [3, 5, 6, 9, 1],

[3, 6, 5, 9, 1], [6, 3, 5, 9, 1], [3, 6, 9, 5, 1], [6, 3, 9, 5, 1], [6, 9, 3, 5, 1]}.

We now go on to state theorems involving the merge operation. We begin by

showing the effect of the merge operation when one of the sets consists of the empty

ordering.
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Theorem 4.2.4 (Merging with the empty ordering). If P is a finite set and U ⊆ OP ,

then U � {∅} = {∅} � U = U .

Proof. Since we have already established that the merge of the empty set and any

set is empty, we will assume throughout this proof that U is nonempty. In order to

apply the definition of merging (Definition 4.2.1), we will name the empty set Q = ∅,

which yields that OQ = O∅ = {∅}.

First we will consider the case P = ∅. In this case, U ⊆ OP implies that U = {∅}

(since we are assuming U is nonempty), so we want to look at U � {∅} = {∅} � {∅},

and we claim {∅} � {∅} = {∅}.

To show the inclusion {∅} � {∅} ⊆ {∅} is straightforward, since given any π ∈

{∅} � {∅}, the definition of merging tells us that π ∈ O∅ ·∪∅ = O∅ = {∅}. To show

the reverse inclusion, {∅} � {∅} ⊇ {∅}, we consider any π ∈ {∅}, which is to say

that π = ∅, the null ordering. Let us also say σ := τ := ∅. Using the definition of

merging, we will be able to say that π ∈ {∅} � {∅} = {σ} � {τ} if we can show that

π ∈ O∅ ·∪∅ = O∅ = {∅}, which we already know, and that conditions (i) and (ii) in the

definition of merging hold, namely (i) π−1(x) < π−1(y) if and only if σ−1(x) < σ−1(y)

for all x, y ∈ P, and (ii) π−1(x) < π−1(y) if and only if τ−1(x) < τ−1(y) for all

x, y ∈ Q. In fact, both of these conditions are vacuously satisfied since P and Q are

both empty sets. Thus π ∈ {σ} � {τ} = {∅} � {∅}, and {∅} � {∅} ⊇ {∅}. Therefore,

{∅} � {∅} = {∅}, so for the case P = ∅ we have U � {∅} = U . It follows also that

{∅} � U = {∅} � {∅} = {∅}.

Second, we consider the case card(P ) = 1, say P = {a}. Then card(OP ) = 1! = 1

and OP = {[a]}. Consequently, since U ⊆ OP we have that U = {[a]} (because we are

assuming U is nonempty). We are therefore interested in the set U�{∅} = {[a]}�{∅},

and we claim {[a]} � {∅} = {[a]}. Let σ := [a] ∈ U , τ := ∅ ∈ OQ = O∅.
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To show the includion {[a]} � {∅} ⊆ {[a]} is straightforward, since given any

π ∈ {[a]}� {∅}, the definition of merging tells us that π ∈ O{a} ·∪∅ = O{a} = {[a]}. To

show the reverse inclusion, {[a]} � {∅} ⊇ {[a]}, we consider an arbitrary π ∈ {[a]},

which can only be π = [a]. We wish to show that π ∈ {[a]} � {∅} = {σ} � {τ} using

the definition of merging. We already have that π ∈ O{a} = O{a} ·∪∅, so we have only

to demonstrate that π satisfies properties (i) and (ii) of the definition of merging,

namely (i) π−1(x) < π−1(y) if and only if σ−1(x) < σ−1(y) for all x, y ∈ P, and (ii)

π−1(x) < π−1(y) if and only if τ−1(x) < τ−1(y) for all x, y ∈ Q. This time, P has

only one element, and Q is empty, so again both conditions are vacuously satisfied,

telling us that π ∈ {σ} � {τ} = {[a]} � {∅}. Thus {[a]} � {∅} ⊇ {[a]}, and hence

{[a]}�{∅} = {[a]}. Therefore, we again have U �{∅} = U . Establishing {∅}�U = U

is similar.

Finally, consider the case card(P ) ≥ 2. We are trying to prove U � {∅} = U ,

which we will again break up into two subset relationships, first U �{∅} ⊆ U . Choose

any π ∈ U � {∅}. This implies that π ∈ {σ} � {∅} for some σ ∈ U ⊆ OP . Again

let τ := ∅ ∈ O∅ = OQ. Then by the definition of merging and Theorem 4.2.2,

π ∈ OP ·∪Q = OP , and

(i) if π−1(x) < π−1(y) then σ−1(x) < σ−1(y) for all x, y ∈ P , and

(ii) if π−1(x) < π−1(y) then τ−1(x) < τ−1(y) for all x, y ∈ Q.

Since Q is empty, the second condition provides us with nothing. But define

[p1, p2, . . . , pcard(P )] := π = [π(1), π(2), . . . , π(card(P ))], so that

π−1(p1) = 1 < π−1(p2) = 2 < · · · < π−1(pcard(P )) = card(P ),
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and the first condition will then give us that

σ−1(p1) < σ−1(p2) < · · · < σ−1(pcard(P )).

Since the domain of σ is the set {1, 2, . . . , card(P )}, this implies that

σ−1(p1) = 1, σ−1(p2) = 2, · · · , σ−1(pcard(P )) = card(P ).

Consequently σ(i) = pi = π(i) for all i ∈ {1, 2, . . . , card(P )}, and thus π = σ ∈ U .

Therefore, U � {∅} ⊆ U .

For the reverse inclusion, U � {∅} ⊇ U , choose an arbitrary π ∈ U . Say σ :=

π and let τ := ∅. We claim that π ∈ {σ} � {τ}, which we will prove using the

definition of the merge operation. Certainly we know that π ∈ OP = OP ·∪Q. The

two remaining conditions we need to satisfy are that (i) π−1(x) < π−1(y) if and

only if σ−1(x) < σ−1(y) for all x, y ∈ P , and (ii) π−1(x) < π−1(y) if and only if

τ−1(x) < τ−1(y) for all x, y ∈ Q. But (i) holds since π = σ, and (ii) holds vacuously

because Q is empty. Therefore, π ∈ {σ} � {τ} = {σ} � {∅}, and consequently

π ∈
⋃
σ∈U ,τ∈{∅}{σ} � {τ} = U � {∅}. Therefore, U � {∅} ⊇ U . Thus we have both

inclusions, and hence U � {∅} = U . Similarly, {∅} � U = U .

Theorem 4.2.5. For finite, disjoint sets P and Q, let σ1, σ2 ∈ OP and τ1, τ2 ∈

OQ. If either σ1 6= σ2 or τ1 6= τ2 or both, then {σ1} � {τ1} and {σ2} � {τ2} are

disjoint. Consequently, for any sets of orderings U ⊆ OP and V ⊆ OQ, the union⋃
σ∈U ,τ∈V{σ} � {τ} is a disjoint union, ·⋃ σ∈U ,τ∈V{σ} � {τ}.

Proof. We will prove this by the contrapositive. Let P,Q be finite, disjoint sets, let

σ1, σ2 ∈ OP and τ1, τ2 ∈ OQ, and suppose that π ∈
(
{σ1} � {τ1}

)
∩
(
{σ2} � {τ2}

)
.

We will show that σ1 = σ2 and τ1 = τ2.
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Using the definition of the merge operation (Definition 4.2.1) twice, for any x, y ∈

P , σ−1
1 (x) < σ−1

1 (y) is equivalent to π−1(x) < π−1(y), which in turn is equivalent

to σ−1
2 (x) < σ−1

2 (y). Now, for any j, k ∈ {1, 2, . . . , card(P )} with j < k we have

σ1(j), σ1(k) ∈ P , so clearly σ−1
1 (σ1(j)) = j < k = σ−1

1 (σ1(k)). This will imply that

σ−1
2 (σ1(j)) < σ−1

2 (σ1(k)). Consequently,

σ−1
2 (σ1(1)) < σ−1

2 (σ1(2)) < σ−1
2 (σ1(3)) < · · · < σ−1

2 (σ1(card(P ))).

Since σ−1
2 (σ1(j)) are elements of the domain of σ2, which is the set {1, 2, . . . , card(P )},

we obtain

σ−1
2 (σ1(1)) = 1, σ−1

2 (σ1(2)) = 2, σ−1
2 (σ1(3)) = 3, . . . , σ−1

2 (σ1(card(P ))) = cardP,

hence σ1(i) = σ2(i) for all x ∈ {1, 2, . . . , card(P )}, i.e., σ1 = σ2. Similarly τ1 = τ2.

Hence σ1 = σ2 and τ1 = τ2, as required.

Theorem 4.2.6 (Merging subsets of two sets). If P and Q are disjoint, finite sets,

and if U ⊆ W ⊆ OP and V ⊆ Z ⊆ OQ, then U � V ⊆ W �Z.

Proof. Let π ∈ U � V . Then, by Definition 4.2.1, there exist σ ∈ U , τ ∈ V with

π ∈ {σ} � {τ}. But then σ ∈ W , τ ∈ Z, so π ∈ {σ} � {τ} ⊆ W � Z. Therefore,

U � V ⊆ W �Z.

Theorem 4.2.7 (Set relations and merge). Let P and Q be disjoint, finite sets, and

let U ⊆ OP and V ,W ⊆ OQ. Then

(i) U � (V ∪W) = (U � V) ∪ (U �W),

(ii) U � (V ∩W) = (U � V) ∩ (U �W),

(iii) U � (V rW) = (U � V)r (U �W), and
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(iv) if V ∩W = ∅, then U � (V ·∪W) = (U � V) ·∪(U �W).

Proof. (i) Claim: U � (V ∪W) = (U � V) ∪ (U �W).

(Proof of ⊆) Let π ∈ U � (V ∪ W). Then there exist σ ∈ U , τ ∈ V ∪ W with

π ∈ {σ} � {τ}. But then τ ∈ V or τ ∈ W , so π ∈ U � V or π ∈ U �W. Thus

π ∈ (U � V) ∪ (U �W).

(Proof of ⊇) Since V ,W ⊆ V ∪ W , we have U � V ⊆ U � (V ∪ W) and

U �W ⊆ U � (V ∪W). Therefore, (U � V) ∪ (U �W) ⊆ U � (V ∪W).

(ii) Claim: U � (V ∩W) = (U � V) ∩ (U �W).

(Proof of⊆) Since V∩W ⊆ V ,W we have U�(V∩W) ⊆ U�V and U�(V∩W) ⊆

U �W . Therefore, U � (V ∩W) ⊆ (U � V) ∩ (U �W).

(Proof of ⊇) Let π ∈ (U�V)∩(U�W). Then π ∈ U�V and π ∈ U�W , so there

exist σ ∈ U , τ ∈ V with π ∈ {σ} � {τ}, and there exist σ′ ∈ U , τ ′ ∈ W with

π ∈ {σ′}�{τ ′}. By Theorem 4.2.5, σ = σ′ and τ = τ ′, so τ ∈ V ∩W . Therefore,

π ∈ {σ} � {τ} ⊆ U � (V ∩W), and hence (U � V) ∩ (U �W) ⊆ U � (V ∩W).

(iii) Claim: U � (V rW) = (U � V)r (U �W).

Let π ∈ U � (V rW). There exist σ ∈ U , τ ∈ V rW such that π ∈ {σ} � {τ}.

Then τ ∈ V and τ /∈ W . It follows that π ∈ {σ} � {τ} ⊆ U � V , and we

claim that π /∈ U � W . Assume to the contrary, i.e. that π ∈ U � W . It

then follows that there are σ′ ∈ U , τ ′ ∈ W with π ∈ {σ′} � {τ ′}. But then

({σ} � {τ}) ∩ ({σ′} � {τ ′}) 6= ∅, so σ = σ′, τ = τ ′ by Theorem 4.2.5, and so

τ = τ ′ ∈ W , which is a contradiction. Therefore, π /∈ U � W , and therefore

π ∈ (U � V)r (U �W). Thus U � (V rW) ⊆ (U � V)r (U �W).

On the other hand, suppose that π ∈ (U �V)r (U �W). Then π ∈ U �V , but

π /∈ U�W . Since π ∈ U�V , let us say π ∈ {σ}�{τ} for some σ ∈ U , τ ∈ V , and
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we claim that τ /∈ W . If we suppose that τ ∈ W , then π ∈ {σ}�{τ} ⊆ U�W , a

contradiction. Therefore τ /∈ W , and we see that π ∈ {σ}�{τ} ⊆ U�(VrW).

Hence (U � V)r (U �W) ⊆ U � (V rW).

(iv) Claim: If V ∩W = ∅, then U � (V ·∪W) = (U � V) ·∪(U �W).

Let V ∩W = ∅. Then by (i) we have U � (V ·∪W) = (U � V) ∪ (U �W), so all

we need to show is that the union on the right-hand side is disjoint. But by (ii)

we have (U � V) ∩ (U �W) = U � (V ∩W) = U � ∅ = ∅, so the union on the

right-hand side is a disjoint union.

Theorem 4.2.8. If P and Q are disjoint, finite sets, and if U ,W ⊆ OP and V ,Z ⊆

OQ are nonempty sets of orderings with U � V =W �Z, then U =W and V = Z.

Proof. Choose an arbitrary σ ∈ U . Because V is nonempty, there exists an ordering

τ ∈ V . Choose any π ∈ {σ} � {τ}. Then π ∈ {σ} � {τ} ⊆ U � V =W �Z, so there

exist σ′ ∈ W , τ ′ ∈ Z with π ∈ {σ′} � {τ ′}. Then π ∈
(
{σ} � {τ}

)
∩
(
{σ′} � {τ ′}

)
.

It follows from Theorem 4.2.5 that σ = σ′ and τ = τ ′. Therefore, σ ∈ W . Hence,

U ⊆ W . A similar argument gives that V ⊆ Z. The reverse inclusions follow in the

same way, and therefore, U =W and V = Z.

Theorem 4.2.9 (Cardinality of merged sets). For finite, disjoint sets P,Q and sets

of orderings U ⊆ OP ,V ⊆ OQ, the cardinality of U � V is given by

card(U � V) =
[card(P ) + card(Q)]!

card(P )! card(Q)!
card(U) card(V). (4.13)

Proof. For arbitrary σ ∈ OP , τ ∈ OQ, we know that the length of σ is card(P ),

and that of τ is card(Q). The orderings in {σ} � {τ} will therefore have length

card(P ) + card(Q). Since the elements of σ remain in a fixed relative order for all
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π ∈ {σ}�{τ}, as do the elements of τ, each such π can be specified by simply stating

which positions in π are occupied by elements from σ. That is, we can specify π by

choosing card(P ) of the card(P ) + card(Q) positions to be occupied by elements of

σ. Consequently, the cardinality of {σ} � {τ} is given by

card({σ} � {τ}) =
[card(P ) + card(Q)]!

card(P )! card(Q)!
.

We know that U�V =
⋃
σ∈U ,τ∈V{σ}�{τ}, and each {σ}�{τ} has the same cardinal-

ity. The union
⋃
σ∈U ,τ∈V{σ}�{τ} is disjoint by Theorem 4.2.5, so card(

⋃
σ∈U ,τ∈V{σ}�

{τ}) = card({σ} � {τ}) · card(U) · card(V), i.e.,

card (U � V) =
[card(P ) + card(Q)]!

card(P )! card(Q)!
card(U) card(V).

Remark 13. The cardinality formula in the preceding theorem holds when either P or

Q is empty, or when U or V is empty. For example, if U or V is empty, then both sides

of the formula are zero. If both U and V are nonempty but Q = ∅, then U�V = U , so

the left-hand side is card(U), and the right-hand side is card(P )!
card(P )!

(card(U))(1) = card(U).

Example 10. Continuing with the sets in Example 9 above, we have

U = {[1, 5, 3], [3, 5, 1]} ⊆ OP , V = {[6, 9]} ⊆ OQ,

where P = {1, 3, 5}, Q = {6, 9}. The cardinality of U � V is therefore

card(U � V) =
(3 + 2)!

3! 2!
(2)(1) = 20,
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which agrees with the set U � V found in Example 9.

Remark 14. Johnson and Lapidus [24] have used the notation Pm1,m2 to refer to

the set of permutations of the integers {1, 2, . . . ,m1 + m2} for which the first m1

integers {1, 2, . . . ,m1} retain their canonical order relative to each other, and the last

m2 integers {m1 + 1,m1 + 2, . . . ,m1 + m2} retain their canonical order relative to

each other also. Using the merge notation, we are now able to represent that set as

Pm1,m2 = {[1, . . . ,m1]}�{[m1 +1, . . . ,m1 +m2]}. The cardinality of the set Pm1,m2 is

then card(Pm1,m2) = card({[1, . . . ,m1]}�{[m1+1, . . . ,m1+m2]}) = (m1+m2)!
m1!m2!

(1)(1) =

(m1+m2)!
m1!m2!

. The definition can be extended: Pm1,...,mn := {1, . . . ,m1}�{m1+1, . . . ,m1+

m2} � · · · � {m1 + · · ·+mn−1 + 1, . . . ,m1 + · · ·+mn}.

Theorem 4.2.10. The merge operation � is commutative and associative.

Proof. Commutativity is immediate from the fact that the definition of U � V is

symmetric with respect to the sets U and V .

We will prove associativity first for merged singleton sets, and then for merged

sets in general. To begin, we claim that given pairwise disjoint, finite sets P,Q,R

and orderings µ ∈ OP , ν ∈ OQ, ω ∈ OR, we have

({µ} � {ν})� {ω} = {µ} � ({ν} � {ω}). (4.14)

Let p = card(P ), q = card(Q), r = card(R).

It will be helpful to define an auxiliary set. Let Σ(µ, P ; ν,Q; ω,R) be defined by

Σ(µ, P ; ν,Q; ω,R)

:=
{

all λ ∈ OP ·∪Q ·∪R such that

(I) λ−1(x) < λ−1(y) if and only if µ−1(x) < µ−1(y) for all x, y ∈ P,
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(II) λ−1(x) < λ−1(y) if and only if ν−1(x) < ν−1(y) for all x, y ∈ Q, and

(III) λ−1(x) < λ−1(y) if and only if ω−1(x) < ω−1(y) for all x, y ∈ R
}
.

We will prove associativity of singleton sets by showing that both sides of Equa-

tion (4.14) equal this auxiliary set. We start by proving that ({µ} � {ν}) � {ω} =

Σ(µ, P ; ν,Q; ω,R).

First we show that ({µ} � {ν})� {ω} ⊆ Σ(µ, P ; ν,Q; ω,R). Let

λ ∈ ({µ} � {ν})� {ω} =
⋃

π∈{µ}�{ν}

{π} � {ω}.

Then λ ∈ {π} � {ω} for some π ∈ {µ} � {ν}. Note by the definition of the merge

operation (Definition 4.2.1) we have π ∈ OP ·∪Q, λ ∈ OP ·∪Q ·∪R.

The definition of the merge operation for λ ∈ {π} � {ω} also implies that

(i) λ−1(x) < λ−1(y) if and only if π−1(x) < π−1(y) for all x, y ∈ P ·∪Q, and

(ii) λ−1(x) < λ−1(y) if and only if ω−1(x) < ω−1(y) for all x, y ∈ R,

and the definition of the merge operation for π ∈ {µ} � {ν} implies that

(iii) π−1(x) < π−1(y) if and only if µ−1(x) < µ−1(y) for all x, y ∈ P , and

(iv) π−1(x) < π−1(y) if and only if ν−1(x) < ν−1(y) for all x, y ∈ Q.

Parts (i) and (iii) give us (I); parts (i) and (iv) give us (II), and part (ii) gives

us (III). Therefore, λ ∈ Σ(µ, P ; ν,Q; ω,R), and consequently, ({µ} � {ν}) � {ω} ⊆

Σ(µ, P ; ν,Q; ω,R).
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To show the reverse inclusion ({µ} � {ν})� {ω} ⊇ Σ(µ, P ; ν,Q; ω,R), let

λ ∈ Σ(µ, P ; ν,Q; ω,R).

Then λ is a bijection; λ : {1, 2, p+ q + r} → P ·∪Q ·∪R.

Choose distinct i1, i2, . . . , ip+q ∈ {1, 2, . . . , p + q + r} (the domain of λ) so that

λ(iα) ∈ P ·∪Q for each α ∈ {1, 2, . . . , p + q}. Without loss of generality, assume that

i1 < i2 < . . . < ip+q. Define π : {1, 2, . . . , p + q} → P ·∪Q by π(α) = λ(iα) for all α.

Then π is a bijection (because λ is bijective and each iα is distinct for distinct α), so

π ∈ OP ·∪Q. We would like to show that π ∈ {µ} � {ν}.

To show this, we look first at property (i) in the definition of the merge operation

as it pertains to π ∈ {µ}�{ν}. We select any x, y ∈ P. Let j := π−1(x), k := π−1(y).

Then

π−1(x) < π−1(y)

if and only if j < k

if and only if ij < ik

if and only if λ−1(π(j)) < λ−1(π(k))

if and only if λ−1(x) < λ−1(y)

if and only if µ−1(x) < µ−1(y) (4.15)

by (I). Thus part (i) of the merge definition holds. A similar argument replacing P

with Q and µ with ν gives us part (ii). Therefore, π ∈ {µ} � {ν}.

We also claim that λ ∈ {π} � {ω}. In order to check property (i) of the merge

definition applied to λ ∈ {π}�{ω}, we take any x, y ∈ P ·∪Q and let j := π−1(x), k :=
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π−1(y). Then

π−1(x) < π−1(y)

if and only if j < k

if and only if ij < ik

if and only if λ−1(π(j)) < λ−1(π(k))

if and only if λ−1(x) < λ−1(y), (4.16)

establishing property (i) of the definition of the merge operation (the definition of

λ ∈ {π} � {ω}). As for property (ii) of the same definition, that is identical to (III)

and therefore also holds. Consequently,

λ ∈ {π} � {ω} ⊆ ({µ} � {ν})� {ω},

and hence, Σ(µ, P ; ν,Q; ω,R) ⊆ ({µ} � {ν})� {ω}.

Therefore,

({µ} � {ν})� {ω} = Σ(µ, P ; ν,Q; ω,R). (4.17)

Now we will use this fact to prove associativity of the merge operation for singleton

sets. To do this, note that if we relabel the variables, Equation (4.17) can be written

({ν} � {ω})� {µ} = Σ(ν,Q; ω,R; µ, P ). (4.18)

Second, note that the set Σ(µ, P ; ν,Q; ω,R) is defined symmetrically with respect to

the three pairs (µ, P ), (ν,Q), (ω,R), meaning that any rearrangement of those pairs
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will produce the same set. In particular,

Σ(µ, P ; ν,Q; ω,R) = Σ(ν,Q; ω,R; µ, P ). (4.19)

Combining Equations (4.17)–(4.19), we have that

({µ} � {ν})� {ω} (4.17)
= Σ(µ, P ; ν,Q; ω,R)

(4.19)
= Σ(ν,Q; ω,R; µ, P )

(4.18)
= ({ν} � {ω})� {µ}

= {µ} � ({ν} � {ω}), (4.20)

where an appeal to commutativity of merging gives that last step, and this establishes

associativity of the merge operation for singleton sets.

To prove associativity for general finite sets, we start with the observation that

given any disjoint, finite sets P,Q, and any set of orderings U ⊆ OP , and any ordering

τ ∈ OQ, we have

U � {τ} =
⋃

σ∈U ,τ ′∈{τ}

{σ} � {τ ′} =
⋃
σ∈U

{σ} � {τ}. (4.21)

Now, let P,Q,R be pairwise disjoint, finite sets, and let U ⊆ OP , V ⊆ OQ, W ⊆

OR. We claim that (U � V)�W = U � (V �W).

Beginning from the left-hand side, we have:

(U � V)�W =
⋃
ω∈W

⋃
π∈U�V

{π} � {ω}

=
⋃
ω∈W

⋃
µ∈U ,ν∈V

⋃
π∈{µ}�{ν}

{π} � {ω}
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=
⋃
ω∈W

⋃
µ∈U ,ν∈V

({µ} � {ν})� {ω}, (4.22)

where the index change in the next-to-last step is valid because U �V =
⋃

µ∈U ,ν∈V

{µ}�

{ν}, and the last step is due to the observation we just made (Equation (4.21)).

Continuing from Equation (4.22), adjusting the indices and applying associativity for

singleton sets, we have

(U � V)�W =
⋃
µ∈U

⋃
ν∈V,ω∈W

({µ} � {ν})� {ω}

=
⋃
µ∈U

⋃
ν∈V,ω∈W

{µ} � ({ν} � {ω})

=
⋃
µ∈U

⋃
ν∈V,ω∈W

⋃
ρ∈{ν}�{ω}

{µ} � {ρ}

=
⋃
µ∈U

⋃
ρ∈V�W

{µ} � {ρ}

= U � (V �W). (4.23)

This establishes associativity of the merge operation.

Theorem 4.2.11. If P and Q are disjoint, finite sets, then OP �OQ = OP ·∪Q.

Proof. By the definition of merging (Definition 4.2.1), if π ∈ OP � OQ, then π ∈

{σ} � {τ} for some σ ∈ OP , τ ∈ OQ. But then by the same definition, π ∈ OP ·∪Q.

Therefore, OP �OQ ⊆ OP ·∪Q.

For the reverse inclusion, let π ∈ OP ·∪Q. Say π = [π(1), π(2), . . . , π(m+n)], where

card(P )=:m, card(Q)=:n. The range of π is then P ·∪Q={π(1), π(2), . . . , π(m + n)}.

We now split up P ·∪Q as P = {π(j1), . . . , π(jm)}, Q = {π(k1), . . . ,

π(kn)} with {j1, j2, . . . , jm, k1, k2, . . . , kn} = {1, . . . ,m + n} (the elements of the set

on the left and the set on the right are not necessarily in the same order). Without
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loss of generality, j1 < j2 < · · · < jm and k1 < k2 < · · · < kn.

Define σ : {1, . . . ,m} → P and τ : {1, . . . , n} → Q by

σ(1) = π(j1), σ(2) = π(j2), . . . , σ(m) = π(jm),

τ(1) = π(k1), τ(2) = π(k2), . . . , τ(n) = π(kn).

Then σ = [σ(1), . . . , σ(m)] ∈ OP , and τ = [τ(1), . . . , τ(n)] ∈ OQ. We show that

π ∈ {σ}� {τ} using the definition of the merge operation and Theorem 4.2.2. To do

so, suppose that x, y ∈ P with σ−1(x) < σ−1(y). The way we have defined σ gives us

that π−1(σ(i)) = ji for all i ∈ {1, 2, . . . ,m}. Thus

π−1(x) = π−1(σ(σ−1(x))) = jσ−1(x)

< jσ−1(y) = π−1(σ(σ−1(y)))

= π−1(y).

We therefore have that property (i′′) of Theorem 4.2.2 holds, and thus that property

(i) of Definition 4.2.1 is satisfied. Similarly, if x, y ∈ P with τ−1(x) < τ−1(y), then

π−1(x) < π−1(y), satisfying property (ii) of Definition 4.2.1. Therefore, by definition,

π ∈ {σ} � {τ}, and therefore π ∈ OP �OQ.

Corollary 4.2.12. For any positive integer m we have that Sm+1 = Sm � {[m+ 1]},

and therefore for any positive integer m, Sm = {[1]} � {[2]} � · · · � {[m]}.

Proof. Using the relationship between permutations and orderings (Remark 8) and

applying Theorem 4.2.11, we have Sm�{[m+1]} = O{1,...,m}�O{m+1} = O{1,...,m,m+1}
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= Sm+1, establishing the first statement.

We prove the second part by induction: Certainly S1 = O{1} = {[1]} ([1] is just

the map 1 7→ 1). Suppose that for some positive integer k we have Sk = {[1]} �

{[2]}� · · ·�{[k]}. Then {[1]}�{[2]}� · · ·�{[k]}�{[k+ 1]} = Sk�{[k+ 1]} = Sk+1

by what was just shown. By induction this establishes the desired result.

Theorem 4.2.13. Let P1, P2, . . . , Pn be pairwise disjoint, finite sets, and let U1 ⊆

OP1 ,U2 ⊆ OP2 , . . . ,Un ⊆ OPn be sets of orderings. Then

U1 � U2 � · · · � Un = ·⋃
σ1∈U1
σ2∈U2
...

σn∈Un

{σ1} � {σ2} � · · · � {σn}. (4.24)

Proof. That the union on the right-hand side of Equation (4.24) is disjoint is a di-

rect consequence of Theorem 4.2.5 (every different choice of σ1 will change all of the

elements of the merge, and similarly for different choices of σ2, . . . , σn). It will there-

fore suffice to prove the statement rewritten as a union (without specifying that it is

disjoint):

U1 � U2 � · · · � Un =
⋃
σ1∈U1
σ2∈U2
...

σn∈Un

{σ1} � {σ2} � · · · � {σn}. (4.25)

To use induction on n, we begin by noting that for the case n = 1 we have the

claim that U1 =
⋃
σ∈U1

{σ}, which is true by definition of union. For the case n = 2 we

have, by definition of the merge operation,

U1 � U2 =
⋃
σ1∈U1
σ2∈U2

{σ1} � {σ2}. (4.26)

Now we suppose that Equation (4.25) holds for n = k, where k ≥ 2. Looking at
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the case when n = k + 1 we have

U1 � U2 � · · · � Uk � Uk+1 =


⋃
σ1∈U1
σ2∈U2
...

σk∈Uk

{σ1} � {σ2} � · · · � {σk}

� Uk+1

=
⋃

τ∈
⋃
σ1∈U1
σ2∈U2
...

σk∈Uk

{σ1}�{σ2}�···�{σk}, σk+1∈Uk+1

{τ} � {σk+1}

=
⋃
σ1∈U1
σ2∈U2
...

σk∈Uk

⋃
τ∈{σ1}�{σ2}�···�{σk}

σk+1∈Uk+1

{τ} � {σk+1}

=
⋃
σ1∈U1
σ2∈U2
...

σk∈Uk

⋃
σk+1∈Uk+1

({σ1} � {σ2} � · · · � {σk})� {σk+1}

=
⋃
σ1∈U1
σ2∈U2
...

σk∈Uk
σk+1∈Uk+1

{σ1} � {σ2} � · · · � {σk} � {σk+1}. (4.27)

By induction, Equation 4.25 holds, and therefore so does Equation 4.24.

We now want to give a few examples using the merge operation. These examples

have appeared in the work of other authors (without the merge operation), and in

presenting them here in terms of merging we will not necessarily use all the properties

of merging (such as commutativity and associativity), but these examples give some

idea of the possible benefits of writing disentangling expressions in terms of the merge

operation. The benefits may sometimes be in terms of clarity more than efficiency,

but conceivably there could be applications where efficiency would be improved by

use of the merge operation.

In the following example and thereafter, the notation ‘Mcb[0, 1]’ will be used to



76

represent the set of all finite, continuous Borel measures on the interval [0, 1].

Example 11. (A result from [13], extended beyond probability measures.) Con-

sider operators A1, . . . , An ∈ L(X) associated with measures µ1, . . . , µn ∈ Mcb[0, 1],

respectively. Let m1, . . . ,mn, be nonnegative integers and m :=
∑n

i=1mi.

Define blocks of integers Bl(1), . . . ,Bl(n) by

Bl(1) := {1, 2, . . . ,m1}

Bl(2) := {m1 + 1,m1 + 2, . . . ,m1 +m2}
...

Bl(n) := {m1 + · · ·+mn−1 + 1, . . . ,m},

(4.28)

and define operators C1, . . . , Cm and measures ν1, . . . , νm by

Cj :=



A1, j ∈ Bl(1)

A2, j ∈ Bl(2)

...

An, j ∈ Bl(n),

and νj :=



µ1, j ∈ Bl(1)

µ2, j ∈ Bl(2)

...

µn, j ∈ Bl(n),

(4.29)

or briefly, Cj = Ai and νj = µi whenever j ∈ Bl(i), for i = 1, . . . , n, j = 1, . . . ,m.

We would like to prove the following formula for disentangling a monomial:

Pm1,...,mn
µ1,...,µn

(A1, . . . , An)

= m1!m2! . . .mn!
∑

π∈Pm1,...,mn

∫
{sπ(m)>···>sπ(1)}

Cπ(m) . . . Cπ(1)(µ
m1
1 × · · · × µmnn )(ds1, . . . , dsm).
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The proof, which relies on Corollary 3.1.5, is as follows: By definition,

Pm1,...,mn
µ1,...,µn

(A1, . . . , An) :=
∑
π∈Sm

∫
{sπ(m)>···>sπ(1)}

Cπ(m) . . . Cπ(1)(µ
m1
1 × · · · × µmnn )(ds1, . . . , dsm).

(4.30)

The index of summation is

π ∈ Sm = O{1,2,...,m} = OBl(1) �OBl(2) � · · · � OBl(n)

= ·⋃
τ1∈OBl(1)

τ2∈OBl(2)
···

τn∈OBl(n)

{τ1} � {τ2} � · · · � {τn}. (4.31)

Hence,

Pm1,...,mn
µ1,...,µn

(A1, . . . , An)

=
∑

τ1∈OBl(1)

τ2∈OBl(2)
···

τn∈OBl(n)

∑
π∈{τ1}�{τ2}�···�{τn}

∫
{(s1,...,sm): sπ(m)>···>sπ(1)}

Cπ(m) . . . Cπ(1)(µ
m1
1 × · · · × µmnn )(ds1, . . . , dsm)

=
∑

τ1∈OBl(1)

τ2∈OBl(2)
···

τn∈OBl(n)

∑
π∈{τ1}�{τ2}�···�{τn}

∫
{(s1,...,sm): sπ(m)>···>sπ(1)}

Cπ(m) . . . Cπ(1)(ν1 × · · · × νn)(ds1, . . . , dsm).

(4.32)

In the latter expression, consider what the integral is when an ordering τ1 is chosen

from OBl(1), compared with what it will be if a different ordering τ ′1 is chosen from

OBl(1). Let us say (regarding the index of the inner sum) that π′ is identical to π,

except that π corresponds to the choice τ1, and π′ corresponds to the choice τ ′1. We

can express π′ as a composition of π and another permutation, say π′ = σπ for some
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σ ∈ Sm. Then

∫
{(s1,...,sm): sπ′(m)>···>sπ′(1)}

Cπ′(m) . . . Cπ′(1)(ν1 × · · · × νn)(ds1, . . . , dsm)

=

∫
{(s1,...,sm): sσπ(m)>···>sσπ(1)}

Cπ′(m) . . . Cπ′(1)(ν1 × · · · × νm)(ds1, . . . , dsm). (4.33)

Since both τ1 and τ ′1 order only the elements in the block Bl(1), the only operators

they affect are those Cj with subscripts j ∈ Bl(1), all of which are equal to A1.

Rearranging the copies of the operator A1 has no effect on the product of operators—

that is, Cπ′(m) . . . Cπ′(1) = Cπ(m) . . . Cπ(1)—so the right-hand expression becomes

∫
{(s1,...,sm): sσπ(m)>···>sσπ(1)}

Cπ(m) . . . Cπ(1)(ν1 × · · · × νm)(ds1, . . . , dsm)

=

∫
{(sσ(1),...,sσ(m)): sσπ(m)>···>sσπ(1)}

Cπ(m) . . . Cπ(1)(ν1 × · · · × νm)σ(ds1, . . . , dsm)σ

=

∫
{(sσ(1),...,sσ(m)): sσπ(m)>···>sσπ(1)}

Cπ(m) . . . Cπ(1)(νσ(1) × · · · × νσ(m))(dsσ(1), . . . , dsσ(m)) (4.34)

by Corollary 3.1.5. Next we rename variables, sσ(j) 7→ sj for j = 1, . . . ,m, and get

∫
{(s1,...,sm): sπ(m)>···>sπ(1)}

Cπ(m) . . . Cπ(1)(νσ(1) × · · · × νσ(m))(ds1, . . . , dsm). (4.35)

Finally, we note that the permutation σ, given by π′ = σπ, affects only the indices in

Bl(1), and so changes only the order of the m1 copies of the measure µ1, thus having

no effect. We may therefore write νσ(1) × · · · × νσ(m) = ν1 × · · · × νm, yielding the

expression ∫
{(s1,...,sm): sπ(m)>···>sπ(1)}

Cπ(m) . . . Cπ(1)(ν1 × · · · × νm)(ds1, . . . , dsm). (4.36)

In other words, the change from τ1 to τ ′1, and the resulting change from π to π′, have

no effect on the integral.
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Consequently, the inner sum on the right-hand side of Equation (4.32) is the

same for all m1! orderings τ1 that we can select from OBl(1). We can therefore just

choose one such ordering and multiply the result by m1!. We will choose the ordering

τ1 = [1, 2, . . . ,m1] and then rewrite the sum as

Pm1,...,mn
µ1,...,µn

(A1, . . . , An)

=
∑

τ1=[1,2,...,m1]
τ2∈OBl(2)
···

τn∈OBl(n)

m1!
∑

π∈{τ1}�{τ2}�···�{τn}

∫
{sπ(m)>···>sπ(1)}

Cπ(m) . . . Cπ(1)(µ
m1
1 × · · · × µmnn )(ds1, . . . , dsm).

(4.37)

The same argument works for the other blocks, enabling us to rewrite the sum as

Pm1,...,mn
µ1,...,µn

(A1, . . . , An)

=
∑

τ1=[1,2,...,m1]
τ2=[m1+1,...,m1+m2]

···
τn=[m1+···+mn−1+1,...,m]

m1!m2! · · ·mn!
∑

π∈{τ1}�{τ2}�···�{τn}

∫
{sπ(m)>···>sπ(1)}
Cπ(m) . . . Cπ(1)(µ

m1
1 ×· · ·×µmnn )(ds1, . . . , dsm)

= m1!m2! · · ·mn!
∑

π∈{[1,2,...,m1]}
�{[m1+1,...,m1+m2]}

···
�{[m1+···+mn−1+1,...,m]}

∫
{sπ(m)>···>sπ(1)}

Cπ(m) . . . Cπ(1)(µ
m1
1 × · · · × µmnn )(ds1, . . . , dsm)

= m1!m2! . . .mn!
∑

π∈Pm1,...,mn

∫
{sπ(m)>···>sπ(1)}

Cπ(m) . . . Cπ(1)(µ
m1
1 × · · · × µmnn )(ds1, . . . , dsm).

(4.38)
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4.3 The concatenation operation

A second operation we can define relative to orderings is concatenation. The effect is

to take two orderings and place them next to each other to make a longer ordering,

or in the case of two sets, the effect is to form the set of all orderings that can be

formed by taking one ordering from the first set and one ordering from the second

set and placing them next to each other the same way.

Concatenation is therefore a less complicated operation than the merge opera-

tion. However, the concept is useful; we will show that the merging of orderings can

be expressed in terms of concatenations, and several proofs will rely on arguments

involving concatenation.

Definition 4.3.1 (The concatenation operation). Given disjoint, finite sets P,Q with

card(P ) = m and card(Q) = n and orderings σ = [σ(1), σ(2), . . . , σ(m)] ∈ OP , τ =

[τ(1), τ(2), . . . , τ(n)] ∈ OQ, we define the ordering concatenation σ.τ ∈ OP ·∪Q by

σ.τ := [σ(1), σ(2), . . . , σ(m), τ(1), τ(2), . . . , τ(n)]. (4.39)

That is,

(σ.τ)(j) :=

 σ(j) if 1 ≤ j ≤ m

τ(j −m) if m+ 1 ≤ j ≤ m+ n.
(4.40)

Given sets of orderings U ⊆ OP ,V ⊆ OQ, we define the set concatenation

U .V ⊆ OP ·∪Q by

U .V :=
⋃

σ∈U ,τ∈V

{σ.τ}. (4.41)

(In fact the union is disjoint, which is straightforward to establish.)

Remark 15. Concatenation also makes sense in the case when one or both of the
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orderings are the null ordering. In either case, the definition is interpreted to say that

if σ ∈ OP is an ordering of a finite set P , then σ.∅ = ∅.σ = σ ∈ OP .

If P is a finite set and U ⊆ OP , then

U .{∅} =
⋃

σ∈U ,τ∈{∅}

{σ.τ} =
⋃
σ∈U

{σ.∅} =
⋃
σ∈U

{σ} = U . (4.42)

Similarly, {∅}.U = U .

It ought to be remarked that, in constrast to (4.42), for P a finite set and U ⊆ OP

we have U .∅ =
⋃
σ∈U ,τ∈∅{σ}.{τ} = ∅, and similarly for ∅.U , i.e., U .∅ = ∅.U = ∅.

(The reader might find reason for concern here, since the statement ‘∅.∅ = ∅’

could be a statement about null orderings or a statement about empty sets. However,

happily, the statement is true in both interpretations. The context should stipulate

which is intended.)

Example 12. Let σ = [1, 2, 3], τ = [6, 7, 8, 9] be orderings. Then their concatenation

is σ.τ = [1, 2, 3].[6, 7, 8, 9] = [1, 2, 3, 6, 7, 8, 9].

Let U = {[1, 2, 3], [3, 2, 1]},V = {[4, 5, 6], [5, 6, 4], [6, 4, 5]} be sets of orderings.

Then

U .V = {[1, 2, 3, 4, 5, 6], [1, 2, 3, 5, 6, 4], [1, 2, 3, 6, 4, 5],

[3, 2, 1, 4, 5, 6], [3, 2, 1, 5, 6, 4], [3, 2, 1, 6, 4, 5]}.

It is relatively straightforward to see that the length of σ.τ is the length of σ plus

the length of τ. The cardinality of the set concatenation U .V for sets of orderings

U ⊆ OP ,V ⊆ OQ is given by card(U .V) = card(U) card(V).

Remark 16. Both concatenation operations (concatenation of orderings and concate-

nation of sets of orderings) are associative but not commutative. Non-commutativity
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is simple: [1].[2] = [1, 2] 6= [2, 1] = [2].[1], and similarly for sets. For associativity of

ordering concatenation, giving orderings σ ∈ OP , τ ∈ OQ, ρ ∈ OR of pairwise disjoint,

finite sets P,Q,R, we have

(σ.τ).ρ = ([σ(1), . . . , σ(card(P ))].[τ(1), . . . , τ(card(Q))]).[ρ(1), . . . , ρ(card(R))]

= [σ(1), . . . , σ(card(P )), τ(1), . . . , τ(card(Q))].[ρ(1), . . . , ρ(card(R))]

= [σ(1), . . . , σ(card(P )), τ(1), . . . , τ(card(Q)), ρ(1), . . . , ρ(card(R))]

= [σ(1), . . . , σ(card(P ))].[τ(1), . . . , τ(card(Q)), ρ(1), . . . , ρ(card(R))]

= [σ(1), . . . , σ(card(P ))].([τ(1), . . . , τ(card(Q))].[ρ(1), . . . , ρ(card(R))])

= σ.(τ.ρ).

(4.43)

For set concatenation, say U ⊆ OP ,V ⊆ OQ,W ⊆ OR, we have

(U .V).W =
⋃

π∈U .V,ρ∈W

{π.ρ}

=
⋃

π∈
⋃
σ∈U,τ∈V{σ.τ}, ρ∈W

{π.ρ}

=
⋃

σ∈U ,τ∈V

⋃
π∈{σ.τ}, ρ∈W

{π.ρ}

=
⋃

σ∈U ,τ∈V,ρ∈W

{(σ.τ).ρ}

=
⋃

σ∈U ,τ∈V,ρ∈W

{σ.(τ.ρ)}

=
⋃

τ∈V,ρ∈W

⋃
σ∈U ,η∈{τ.ρ}

{σ.η}

=
⋃

σ∈U , η∈
⋃
τ∈V,ρ∈W{τ.ρ}

{σ.η}
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=
⋃

σ∈U ,η∈V.W

= U .(V .W). (4.44)

Theorem 4.3.2. Given pairwise disjoint, finite sets P1, . . . , Pn and sets of orderings

U1 ⊆ OP1 , . . . ,Un ⊆ OQ1 , we have

U1.U2. · · · .Un = ·⋃
σ1∈U1
σ2∈U2
...

σn∈Un

{σ1.σ2. · · · .σn}. (4.45)

Proof. That the union on the right-hand side of Equation (4.45) is disjoint is seen

directly, since the concatenation σ1.σ2. · · · .σn can be written as one long string of

elements, and any different choice of some σi will change the order of the elements

within that part of the larger ordering σ1.σ2. · · · .σn, which means it is a different

ordering. It will therefore suffice to prove the statement as a union (without specifying

that it is disjoint):

U1.U2. · · · .Un =
⋃
σ1∈U1
σ2∈U2
...

σn∈Un

{σ1.σ2. · · · .σn}. (4.46)

To use mathematical induction on n, we begin by noting that for the case n = 1

we have the claim that U1 =
⋃
σ∈U1

{σ}, which is true by the definition of a union. For

the case n = 2 we claim

U1.U2 =
⋃
σ1∈U1
σ2∈U2

{σ1.σ2}, (4.47)

and in fact that is true by the definition of set concatenation.

Now we suppose that Equation (4.46) holds for n = k, where k ≥ 2. Then looking
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at the case when n = k + 1 we have

U1.U2. · · · .Uk.Uk+1 =


⋃
σ1∈U1
σ2∈U2
...

σk∈Uk

{σ1.σ2. · · · .σk}

 .Uk+1

=
⋃

τ∈
⋃
σ1∈U1
σ2∈U2
...

σk∈Uk

{σ1.σ2.··· .σk}, σk+1∈Uk+1

{τ.σk+1}

=
⋃
σ1∈U1
σ2∈U2
...

σk∈Uk

⋃
τ∈{σ1.σ2.··· .σk}
σk+1∈Uk+1

{τ.σk+1}

=
⋃
σ1∈U1
σ2∈U2
...

σk∈Uk

⋃
σk+1∈Uk+1

{(σ1.σ2. · · · .σk).σk+1}

=
⋃
σ1∈U1
σ2∈U2
...

σk∈Uk
σk+1∈Uk+1

{σ1.σ2. · · · .σk.σk+1}. (4.48)

By mathematical induction, therefore, Equation 4.46 holds, and therefore so does

Equation 4.45.

Theorem 4.3.3 (Concatenating subsets of two sets). If P and Q are disjoint, finite

sets, and if U ⊆ W ⊆ OP and V ⊆ Z ⊆ OQ, then U .V ⊆ W .Z.

Proof. Let π ∈ U .V . Then by definition of set concatenation, π = σ.τ for some

σ ∈ U , τ ∈ V . But then σ ∈ W , τ ∈ Z, so π ∈ W .Z. Therefore, U .V ⊆ W .Z.

Theorem 4.3.4. If P and Q are disjoint, finite sets, and if U ,W ⊆ OP and V ,Z ⊆

OQ are nonempty sets of orderings with U .V =W .Z, then U =W and V = Z.
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Proof. Let m := card(P ), n := card(Q). Choose an arbitrary ordering σ ∈ U . Because

V is nonempty, there exists an ordering τ ∈ V . Let π := σ.τ. Then π ∈ U .V =W .Z.

So π = σ′.τ ′ for some σ′ ∈ W , τ ′ ∈ Z. But then π = [σ(1), . . . , σ(m), τ(1), . . . , τ(n)] =

[σ′(1), . . . , σ′(m), τ ′(1), . . . , τ ′(n)], and equating these term-by-term, σ = σ′ and τ =

τ ′. Therefore, σ ∈ W . Hence, U ⊆ W . A similar argument gives V ⊆ Z. Similarly,

the reverse inclusions follow, and therefore, U =W and V = Z.

The following theorem will be useful for proving several subsequent results in this

section (Theorems 4.3.6, 4.3.9, 4.3.11, and 4.3.13 appeal to it directly, and other

results in the section follow from those):

Theorem 4.3.5 (Merging in terms of concatenation). Let P and Q be disjoint, finite

sets, let m := card(P ), and let σ ∈ OP , τ ∈ OQ. Then the following are equivalent:

(i) π ∈ {σ} � {τ},

(ii) π = τ1.[σ(1)].τ2.[σ(2)]. · · · .τm.[σ(m)].τm+1 for some pairwise disjoint orderings

τ1, τ2, . . . , τm+1 of subsets of Q with τ = τ1.τ2. · · · .τm+1, and

(iii) π = σ1.τ1.σ2.τ2. · · · .σk.τk for some k ≥ 1, where σ1, σ2, . . . , σk are pairwise dis-

joint orderings of subsets of P and τ1, τ2, . . . , τk are pairwise disjoint orderings

of subsets of Q with σ = σ1.σ2. · · · .σk and τ = τ1.τ2. · · · .τk.

[Note that the expression π = σ1.τ1.σ2.τ2. · · · .σk.τk in (iii) is not unique for a given π,

and some of the orderings above, especially in (ii) and (iii), can be the null ordering.]

Proof. Define n := card(Q).

(i)⇒(ii): Let π ∈ {σ} � {τ}. Then π = [π(1), π(2), . . . ,

π(m + n)] ∈ OP ·∪Q. Let [p1, p2, . . . , pm] := σ = [σ(1), σ(2), . . . , σ(m)], so that P =
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{p1, p2, . . . , pm}. Since the elements of P are images of π, we may define

j1 := π−1(p1), j2 := π−1(p2), . . . , jm := π−1(pm),

and so

σ = [p1, p2, . . . , pm] = [π(j1), π(j2), . . . , π(jm)].

Since σ−1(p1) < σ−1(p2) < · · · < σ−1(pm), it follows from Definition 4.2.1 that

π−1(p1) < π−1(p2) < · · · < π−1(pm), which is to say, j1 < j2 < · · · < jm.

The remaining entries in π = [π(1), π(2), . . . , π(m+ n)] make up the set

Q = {π(1), π(2), . . . , π(j1 − 1), π(j1 + 1), . . . , π(j2 − 1), π(j2 + 1),

. . . , π(jm − 1), π(jm + 1), . . . , π(m+ n− 1), π(m+ n)}; (4.49)

the set of images of τ. Working with τ as we just did with σ, we let [q1, q2, . . . , qn] :=

τ = [τ(1), τ(2), . . . , τ(n)]. Then τ−1(q1) < τ−1(q2) · · · < τ−1(qn), so by the definition

of merging, π−1(q1) < π−1(q2) < · · · < π−1(qn). That is,

π−1(τ(1)) < π−1(τ(2)) < · · · < π−1(τ(n)). (4.50)

Since the pre-images of Q under the map π are the set

{1, 2, . . . , j1 − 1, j1 + 1, . . . , j2 − 1, j2 + 1, . . . , jm − 1, jm + 1, . . . ,m+ n}, (4.51)

we see that the elements in the set shown in (4.51) are identical in the given order to

the order given in (4.50); hence,
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τ(1) = π(1), τ(2) = π(2), . . . , τ(j1 − 1) = π(j1 − 1),

τ(j1) = π(j1 + 1), . . . , τ(j2 − 2) = π(j2 − 1),

τ(j2 − 1) = π(j2 + 1), . . . , τ(jm −m) = π(jm − 1),

τ(jm −m+ 1) = π(jm + 1), . . . , τ(n) = π(m+ n). (4.52)

This enables us to say that

τ = [π(1), π(2), . . . , π(j1 − 1), π(j1 + 1), . . . , π(j2 − 1),

π(j2 + 1), . . . , π(jm − 1), π(jm + 1), . . . , π(m+ n)]

= [π(1), π(2), . . . , π(j1 − 1)].[π(j1 + 1), . . . , π(j2 − 1)].[π(j2 + 1), . . . ]. · · ·

.[ . . . , π(jm − 1)].[π(jm + 1), . . . , π(m+ n)]. (4.53)

Choosing τ1 := [π(1), . . . , π(j1 − 1)], τ2 := [π(j1 + 1), . . . , π(j2 − 1)], . . . , τm+1 :=

[π(jm + 1), . . . , π(m+ n)] (which are pairwise disjoint) gives

τ = τ1.τ2. · · · τm+1. (4.54)

We then have

π = [π(1), π(2), . . . , π(j1 − 1), π(j1), π(j1 + 1), . . . , π(j2 − 1), π(j2), π(j2 + 1),

. . . , π(jm − 1)π(jm), π(jm + 1), . . . , π(m+ n)]

=[π(1), π(2), . . . , π(j1 − 1)].[σ(1)].[π(j1 + 1) . . . , π(j2 − 1)].[σ(2)].[π(j2 + 1), . . . ]. · · ·

.[ . . . , π(jm − 1)].[σ(m)].[π(jm + 1), . . . , π(m+ n)]

=τ1.[σ(1)].τ2.[σ(2)]. · · · .[σ(m)].τm+1. (4.55)
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(ii)⇒(iii): Given that π = τ1.[σ(1)].τ2.[σ(2)]. · · · .τm.[σ(m)].τm+1 for some pairwise

disjoint orderings τ1, τ2, . . . , τm+1, with τ = τ1.τ2. · · · .τm+1, we let k := m + 1 ≥ 1

(we know m ≥ 0 because m = card(P )), and we let σ1 := ∅, σ2 := [σ(1)], σ3 :=

[σ(2)], . . . , σm+1 := [σ(m)] (these singleton orderings are pairwise disjoint). Then

π = ∅.σ1.τ1.σ2.τ2. · · · .σm+1.τm+1 = σ1.τ1.σ2.τ2. · · · .σk.τk, with σ = ∅.[σ(1)].[σ(2)]. · · ·

.[σ(m)] = σ1.σ2. · · · .σk and τ = τ1.τ2. · · · .τk.

(iii)⇒(i): Let π = σ1.τ1.σ2.τ2. · · · .σk.τk for some k ≥ 1, where σ1, σ2, . . . , σk are

pairwise disjoint orderings of subsets of P with σ = σ1.σ2. · · · .σk, and τ1, τ2, . . . , τk are

pairwise disjoint orderings of subsets of Q with τ = τ1.τ2. · · · .τk. Define m1, . . . ,mk,

n1, . . . , nk to be the lengths of the orderings σ1, σ2, . . . , σk, τ1, τ2, . . . , τk, respectively.

Then m1 +m2 + · · ·+mk = m, n1 + n2 + · · ·+ nk = n, and

π = σ1.τ1.σ2.τ2. · · · .σk.τk

= [σ1(1), σ1(2), . . . , σ1(m1), τ1(1), τ1(2), . . . , τ1(n1),

σ2(1), σ2(2), . . . , σ2(m2), τ2(1), τ2(2), . . . , τ2(n2),

. . .

σk(1), σk(2), . . . , σk(mk), τk(1), τk(2), . . . , τk(nk)].

(4.56)

We will show that π ∈ {σ} � {τ} using the definition of the merge operation and

Theorem 4.2.2. We observe first that the entries in the representation of π above are

exactly the elements of the set P ·∪Q, so π ∈ OP ·∪Q.

Second, we suppose that x, y ∈ P with π−1(x) < π−1(y). Then x = σα(j) and

y = σβ(l) for some α, β ∈ {1, 2, . . . , k}, j ∈ {1, 2, . . . ,mα}, and l ∈ {1, 2, . . . ,mβ}.

Looking at (4.56), the fact that π−1(x) < π−1(y) (so x is to the left of y) tells us that
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either α < β or else α = β and j < l. Since

σ = [σ(1), . . . , σ(m)] = [σ1(1), . . . , σ1(m1), σ2(1), . . . , σ2(m2), σ3(1), . . . , σk(mk)],

this will imply that σ−1(σα(j)) < σ−1(σβ(l)), in other words, that σ−1(x) < σ−1(y).

A similar demonstration tells us that if x, y ∈ Q and π−1(x) < π−1(y), then

τ−1(x) < τ−1(y). Together these facts and the definition of the merge operation show

that π ∈ {σ} � {τ}.

In order to list all the elements of the merging of two orderings, the following

theorem is useful (and it is what we have been using up to this point for listing

orderings, though we have not said so):

Theorem 4.3.6 (Recursive expression for merging singletons). If P and Q are dis-

joint, finite sets with card(P ) = m ≥ 1 and card(Q) = n ≥ 0, and if σ ∈ OP and

τ ∈ OQ, then

{σ} � {τ}

=
n·⋃
k=0

((
{[σ(1), . . . , σ(m−1)]}�{[τ(1), . . . , τ(k)]}

)
.{[σ(m)].[τ(k+1), . . . , τ(n)]}

)
.

(4.57)

Before we prove this theorem, a few words are appropriate about how to interpret

the theorem. As indicated by the left-hand side of Equation (4.57), we are merging

σ = [σ(1), . . . , σ(m)] and τ = [τ(1), . . . , τ(n)]. We want to list all orderings in that

merging, and to do so we will use the last entry in the ordering σ, namely σ(m), as
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a “pivot,” meaning simply that we will interpret the terms on the right-hand side of

(4.57) by considering separately the parts to the left of σ(m) and the parts to the

right of σ(m). Since σ(m) is the last entry in σ, the entries to the right of σ(m) are

the end of the ordering τ. We work through all possible orderings by starting with the

entire ordering τ to the right of σ(m), then all but the first entry of τ , then all but

the first two entries of τ , etc. To the left of σ(m) will then be all orderings we can

construct with the rest of the entries of σ and the rest of the entries of τ , preserving

the relative orders of σ entries among themselves and τ entries among themselves.

Moreover, we can view the expression (4.57) as being recursive; it expresses a merging

of two orderings as a union of terms that involve merging smaller orderings.

It is worth noting that we could perform the recursion in the opposite direction,

using σ(1) as the pivot. This would give the formula

{σ} � {τ}

=
n·⋃
k=0

(
{[τ(1), . . . , τ(k)].[σ(1)]}.

(
{[σ(2), . . . , σ(m)]} � {[τ(k + 1), . . . , τ(n)]}

))
.

(4.58)

Proof of Theorem 4.3.6. First we will show that Equation (4.57) holds if we replace

the disjoint union symbol with simply a union symbol; that is, we will first show
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{σ} � {τ}

=
n⋃
k=0

((
{[σ(1), . . . , σ(m−1)]}�{[τ(1), . . . , τ(k)]}

)
.{[σ(m)].[τ(k+1), . . . , τ(n)]}

)
.

(4.59)

To show the left-hand side of (4.59) is a subset of the right-hand side, we let π ∈

{σ} � {τ}. By Theorem 4.3.5, π = τ1.[σ(1)].τ2.[σ(2)]. · · · .τm.[σ(m)].τm+1 for some

pairwise disjoint orderings τ1, τ2, . . . , τm+1 of subsets of Q with τ = τ1.τ2. · · · .τm+1.

But then τm+1 = [τ(k + 1), . . . , τ(n)] for some k ∈ {0, 1, . . . , n}. The fact that part

(ii) of that theorem implies part (i) of the theorem gives us

τ1.[σ(1)].τ2[σ(2)]. · · · .[σ(m− 1)].τm ∈ {[σ(1), . . . , σ(m− 1)]} � {[τ(1), . . . , τ(k)]}.

Therefore,

π = (τ1.[σ(1)].τ2.[σ(2)]. · · · .[σ(m− 1)].τm).([σ(m)].τm+1)

∈
(
{[σ(1), . . . , σ(m− 1)]} � {[τ(1), . . . , τ(k)]}

)
.{[σ(m)].[τ(k + 1), . . . , τ(n)]}

⊆
n⋃
k=1

((
{[σ(1), . . . , σ(m− 1)]} � {[τ(1), . . . , τ(k)]}

)
.{[σ(m)].[τ(k + 1), . . . , τ(n)]}

)
,

giving the desired inclusion.

For the reverse inclusion, consider any element π in the right-hand side of Equation

(4.59). For this π, there exist k ∈ {0, 1, . . . , n} and ρ ∈ {[σ(1), . . . , σ(m − 1)]} �

{[τ(1), . . . , τ(k)]} for which π = ρ.[σ(m)].[τ(k+1), . . . , τ(n)]. But then the implication



92

(i)⇒(ii) of Theorem 4.3.5 gives us, when applied to ρ, that

ρ = τ1.[σ(1)].τ2[σ(2)]. · · · .[σ(m− 1)].τm

for some pairwise disjoint orderings τ1, τ2, . . . , τm of subsets of {τ(1), τ(2), . . . , τ(k)}

with [τ(1), . . . , τ(k)] = τ1.τ2. · · · .τm. Then

π = τ1.[σ(1)].τ2.[σ(2)]. · · · .τm.[σ(m)].τm+1,

where τm+1 := [τ(k + 1), . . . , τ(n)] (which is disjoint with each of τ1, . . . , τm), and so

τ = τ1. . . . , τm+1. Thus (by Theorem 4.3.5) π ∈ {σ} � {τ}. Therefore, the union of

the elements on the right-hand side of Equation (4.59) is contained in the left-hand

side. Therefore, the two sides of (4.59) are equal.

All that remains is to note the the union on the right-hand side of (4.59) is in

fact disjoint: Suppose that two different terms of the union—that is, terms with

different values of k, say k = k1 and k = k2—contain a common ordering, call it

π. The first of these ends with [σ(m)].[τ(k1 + 1), . . . , τ(n)], and the other ends with

[σ(m)].[τ(k2 +1), . . . , τ(n)]. For that same ordering to be in both of these terms of the

sum, then, it is necessary that endings match entry-by-entry starting at some entry

(since these endings appear in every ordering in that term). Because σ(m) is the

furthest-right element of P in each of the orderings for these two terms, the entries

must match from there to the end. Thus [τ(k1 + 1), . . . , τ(n)] = [τ(k2 + 1), . . . , τ(n)].

But then k1 = k2, which implies that these orderings are in the same term of the

union. Consequently, different choices of k give disjoint terms of the union. Thus

(4.59) becomes (4.57).

Example 13. We apply the preceding theorem to two examples. The first is merging
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a singleton with another ordering, say {[2]} � {[4, 5, 6, 7]}. Here m = 1 and n = 4, so

k runs from 0 to 4. For the various values of k, the right-hand side of Equation (4.57)

will be as follows:

k = 0 : ({∅} � {∅}).{[2].[4, 5, 6, 7]} = {[2, 4, 5, 6, 7]},

k = 1 : ({∅} � {[4]}).{[2].[5, 6, 7]} = {[4, 2, 5, 6, 7]},

k = 2 : ({∅} � {[4, 5]}).{[2].[6, 7]} = {[4, 5, 2, 6, 7]},

k = 3 : ({∅} � {[4, 5, 6]}).{[2].[7]} = {[4, 5, 6, 2, 7]},

k = 4 : ({∅} � {[4, 5, 6, 7]}).{[2].∅} = {[4, 5, 6, 7, 2]}. (4.60)

Second is an example we have already discussed: We claim

{[3, 5, 1]}�{[6, 9]} = {[3, 5, 1, 6, 9], [3, 5, 6, 1, 9], [3, 6, 5, 1, 9], [6, 3, 5, 1, 9], [3, 5, 6, 9, 1],

[3, 6, 5, 9, 1], [6, 3, 5, 9, 1], [3, 6, 9, 5, 1], [6, 3, 9, 5, 1], [6, 9, 3, 5, 1]}.

Applying the theorem, the second ordering has length 2, so k runs from 0 to 2. The

different values of k give us the following:

k = 0 : ({[3, 5]} � {∅}).{[1].[6, 9]} = {[3, 5, 1, 6, 9]},

k = 1 : ({[3, 5]} � {[6]}).{[1].[9]} = {[3, 5, 6, 1, 9], [3, 6, 5, 1, 9], [6, 3, 5, 1, 9]},

k = 2 : ({[3, 5]} � {[6, 9]}).{[1].∅} = {[3, 5, 6, 9, 1],

[3, 6, 5, 9, 1], [6, 3, 5, 9, 1],

[3, 6, 9, 5, 1], [6, 3, 9, 5, 1], [6, 9, 3, 5, 1]}.

We can use the preceding results to prove the following:



94

Theorem 4.3.7 (Distributive law for disentangling a monomial that involves a sum of

two operators). Given operators B,C,A2, A3, . . . , An ∈ L(X), non-negative integers

m2, . . . ,mn, and measures µ1, . . . , µn ∈ Mcb[0, 1] (finite, continuous Borel measures

on [0, 1]), where µ1 is associated with B and C, and µ2, . . . , µn are associated with

A2, . . . , An, respectively, we have

P 1,m2,...,mn
µ1,µ2,...,µn

(B + C,A2, . . . , An)

= P 1,m2,...,mn
µ1,µ2,...,µn

(B,A2, . . . , An) + P 1,m2,...,mn
µ1,µ2,...,µn

(C,A2, . . . , An). (4.61)

Proof. First we note that given any operators A,B,C,D ∈ L(X) we have

A(B + C)D = A(BD + CD) = ABD + ACD.

Second, we let m := 1+m2+· · ·+mn and define blocks of integers Bl(2), . . . ,Bl(n)

by

Bl(1) := {1} (4.62)

Bl(2) := {2, . . . , 1 +m2},

Bl(3) := {1 +m2 + 1, . . . , 1 +m2 +m3},

. . .

Bl(n) := {1 +m2 + · · ·+mn−1 + 1, . . . ,m},
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and we define

Ck :=



B + C, k ∈ Bl(1) (that is, k = 1)

A2, k ∈ Bl(2)

A3, k ∈ Bl(3)

...

An, k ∈ Bl(n).

(4.63)

Then

P 1,m2,...,mn
µ1,µ2,...,µn

(B + C,A2, . . . , An)

=
∑
π∈Sm

∫
∆m(π)

Cπ(m) . . . Cπ(1) (µm1
1 × . . .× µmnn )(ds1, . . . , dsm). (4.64)

Working with Sm, we apply the definition of the merging of sets and then Theorem

4.3.6 to get

Sm = {[1]} � O{2,...,m} = ·⋃
τ∈O{2,...,m}

{[1]} � {τ}

= ·⋃
τ∈O{2,...,m}

m−1·⋃
k=0

{[τ(1), . . . , τ(k), 1, τ(k + 1), . . . , τ(m− 1)]}

= ·⋃
τ∈O{2,...,m}

m·⋃
j=1

{[τ(1), . . . , τ(j − 1), 1, τ(j), . . . , τ(m− 1)]}. (4.65)

We therefore have

P 1,m2,...,mn
µ1,µ2,...,µn

(B + C,A2, . . . , An)
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=
∑

τ∈O{2,...,m}

m∑
j=1

∫
{(s1,...,sm): 1>sτ(m−1)>···>sτ(j)>s1>sτ(j−1)>···>sτ(1)>0}
Cτ(m−1) · · ·Cτ(j)C1Cτ(j−1) · · ·Cτ(1) (µm1

1 × . . .× µmnn )(ds1, . . . , dsm)

=
∑

τ∈O{2,...,m}

m∑
j=1

∫
{(s1,...,sm): 1>sτ(m−1)>···>sτ(j)>s1>sτ(j−1)>···>sτ(1)>0}
Cτ(m−1) · · ·Cτ(j)BCτ(j−1) · · ·Cτ(1) (µm1

1 × . . .× µmnn )(ds1, . . . , dsm)

+
∑

τ∈O{2,...,m}

m∑
j=1

∫
{(s1,...,sm): 1>sτ(m−1)>···>sτ(j)>s1>sτ(j−1)>···>sτ(1)>0}
Cτ(m−1) · · ·Cτ(j)CCτ(j−1) · · ·Cτ(1) (µm1

1 × . . .× µmnn )(ds1, . . . , dsm)

= P 1,m2,...,mn
µ1,µ2,...,µn

(B,A2, . . . , An) + P 1,m2,...,mn
µ1,µ2,...,µn

(C,A2, . . . , An). (4.66)

Extending this result, we have the following theorem:

Theorem 4.3.8 (Disentangling a monomial that involves a sum of two operators).

Given operators B,C,A2, A3, . . . , An ∈ L(X), non-negative integers m1, . . . ,mn, and

measures µ1, . . . , µn ∈Mcb[0, 1], where µ1 is associated with B and C, and µ2, . . . , µn

are associated with A2, . . . , An, respectively, we have

Pm1,m2,...,mn
µ1,µ2,...,µn

(B + C,A2, A3, . . . , An)

=

m1∑
k=0

m1

k

P k,m1−k,m2,m3...,mn
µ1,µ1,µ2,µ3...,µn

(B,C,A2, A3, . . . , An), (4.67)

where

m1

k

 is the binomial coefficient,

m1

k

 =
m1!

k!(m1 − k)!
.

Proof. We observe first that if m1 = 0, then both sides of Equation (4.67) reduce to

Pm2,...,mn
µ2,...,µn

(A2, . . . , An).

Let us therefore assume that m1 > 0.
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We observe next that

Pm1,m2,...,mn
µ1,µ2,...,µn

(B + C,A2, . . . , An) = P j,m1−j,m2,...,mn
µ1,µ1,µ2,...,µn

(B + C,B + C,A2, . . . , An) (4.68)

for any j = 0, . . . ,m1, and we will show by induction that for any j = 0, . . . ,m1,

Pm1,m2,...,mn
µ1,µ2,...,µn

(B + C,A2, . . . , An)

=

j∑
k=0

j
k

P k,j−k,m1−j,m2,m3...,mn
µ1,µ1,µ1,µ2,µ3...,µn

(B,C,B + C,A2, A3, . . . , An). (4.69)

For the case j = 0, we see that the right-hand side of Equation (4.69) is just the

one term

P 0,0,m1−0,m2,m3...,mn
µ1,µ1,µ1,µ2,µ3...,µn

(B,C,B + C,A2, A3, . . . , An)

= Pm1,m2,m3...,mn
µ1,µ2,µ3...,µn

(B + C,A2, A3, . . . , An), (4.70)

which is identical to the left-hand side.

Let us now suppose that Equation (4.69) holds for each j = 0, 1, . . . , h, where

h < m1:

Pm1,m2,...,mn
µ1,µ2,...,µn

(B + C,A2, . . . , An)

=
h∑
k=0

h
k

P k,h−k,m1−h,m2,m3...,mn
µ1,µ1,µ1,µ2,µ3...,µn

(B,C,B + C,A2, A3, . . . , An).
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We split the third exponent and apply Corollary 3.1.9:

h∑
k=0

h
k

P 1,k,h−k,m1−h−1,m2,m3...,mn
µ1,µ1,µ1,µ1,µ2,µ3...,µn

(B + C,B,C,B + C,A2, A3, . . . , An).

Apply Theorem 4.3.7:

h∑
k=0

h
k

P 1,k,h−k,m1−h−1,m2,m3...,mn
µ1,µ1,µ1,µ1,µ2,µ3...,µn

(B,B,C,B + C,A2, A3, . . . , An)

+
h∑
k=0

h
k

P 1,k,h−k,m1−h−1,m2,m3...,mn
µ1,µ1,µ1,µ1,µ2,µ3...,µn

(C,B,C,B + C,A2, A3, . . . , An).

Apply Corollary 3.1.9 and combine B terms, C terms:

h∑
k=0

h
k

P k+1,h−k,m1−h−1,m2,m3...,mn
µ1,µ1,µ1,µ2,µ3...,µn

(B,C,B + C,A2, A3, . . . , An)

+
h∑
k=0

h
k

P k,h+1−k,m1−h−1,m2,m3...,mn
µ1,µ1,µ1,µ2,µ3...,µn

(B,C,B + C,A2, A3, . . . , An).

Finally, we adjust the first summation index to get

Pm1,m2,...,mn
µ1,µ2,...,µn

(B + C,A2, . . . , An)

=
h+1∑
k=1

 h

k − 1

P k,h+1−k,m1−h−1,m2,m3...,mn
µ1,µ1,µ1,µ2,µ3...,µn

(B,C,B + C,A2, A3, . . . , An)

+
h∑
k=0

h
k

P k,h+1−k,m1−h−1,m2,m3...,mn
µ1,µ1,µ1,µ2,µ3...,µn

(B,C,B + C,A2, A3, . . . , An). (4.71)
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Applying the properties of binomial coefficients that

h
0

 =

h+ 1

0

 = 1,

h
h

 =

h+ 1

h+ 1

 = 1,

and for 0 < k ≤ h,  h

k − 1

+

h
k

 =

h+ 1

k

 ,

we get

Pm1,m2,...,mn
µ1,µ2,...,µn

(B + C,A2, . . . , An)

=
h+1∑
k=0

h+ 1

k

P k,h+1−k,m1−h−1,m2,m3...,mn
µ1,µ1,µ1,µ2,µ3...,µn

(B,C,B + C,A2, A3, . . . , An). (4.72)

By induction, this proves Equation (4.69) for j = 0, 1, . . . ,m1. The case j = m1

yields

Pm1,m2,...,mn
µ1,µ2,...,µn

(B + C,A2, . . . , An)

=

m1∑
k=0

m1

k

P k,m1−k,0,m2,m3...,mn
µ1,µ1,µ1,µ2,µ3...,µn

(B,C,B + C,A2, A3, . . . , An)

=

m1∑
k=0

m1

k

P k,m1−k,m2,m3...,mn
µ1,µ1,µ2,µ3...,µn

(B,C,A2, A3, . . . , An), (4.73)

which establishes Equation (4.67).

An alternate characterization of the concatenation of two orderings is possible, as

follows:
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Theorem 4.3.9 (A concatenation as a particular element of a merging). If P and Q

are disjoint, finite sets, then

(i) If σ ∈ OP and τ ∈ OQ, then σ.τ ∈ {σ} � {τ}, and (σ.τ)−1(a) < (σ.τ)−1(b) for

all a ∈ P, b ∈ Q. Conversely, if σ ∈ OP and τ ∈ OQ, and if π ∈ {σ}� {τ} and

π−1(a) < π−1(b) for all a ∈ P, b ∈ Q, then π = σ.τ .

(ii) If U ⊆ OP , V ⊆ OQ, then π ∈ U .V if and only if both π ∈ U � V and π−1(a) <

π−1(b) for all a ∈ P, b ∈ Q.

Proof. (Proof of (i)) Let card(P ) = m, card(Q) = n.

Let π = σ.τ , and let a ∈ P, b ∈ Q. Then by Theorem 4.3.5 parts (iii) and (i),

π ∈ {σ} � {τ}. Secondly, there exist j ∈ {1, 2, . . . ,m}, k ∈ {1, 2, . . . , n} with σ(j) =

a, τ(k) = b. But then by the definition of concatenation (Definition 4.3.1), π(j) =

σ(j) = a and π(m+ k) = τ(k) = b, so

π−1(a) = j < m+ k = π−1(b).

On the other hand, suppose that ρ ∈ {σ} � {τ} and that for every a ∈ P, b ∈ Q

we have that ρ−1(a) < ρ−1(b). Then the same theorem tells us (part (i) implies (ii))

that ρ = τ1.[σ(1)].τ2.[σ(2)]. · · · .τm.[σ(m)].τm+1 for some pairwise disjoint orderings

τ1, τ2, . . . , τm+1 of subsets of Q with τ = τ1.τ2. · · · .τm+1. As a result, if τm 6= ∅, then

τm(1) ∈ Q and σ(m) ∈ P with τm(1) to the left of σ(m) in the ordering ρ, that is,

ρ−1(τm(1)) < ρ−1(σ(m)); this contradicts our assumption that for every a ∈ P, b ∈ Q

we have ρ−1(a) < ρ−1(b). Therefore, τm = ∅, and similarly, τ1 = · · · = τm−1 = ∅,

leaving us with τm+1 = τ . Consequently, ρ = [σ(1)].[σ(2)]. · · · .[σ(m)].τm+1 = σ.τ.

(Proof of (ii)) Suppose π ∈ U .V . Then π = σ.τ for some orderings σ ∈ U , τ ∈ V ,

so π = σ.τ ∈ {σ} � {τ} ⊆ U � V , and for all a ∈ P, b ∈ Q we have π−1(a) < π−1(b),
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both by part (i).

On the other hand, suppose that π ∈ U � V and that π−1(a) < π−1(b) for all a ∈

P, b ∈ Q. Then π ∈ {σ} � {τ} for some σ ∈ U , τ ∈ V , and therefore π = σ.τ ⊆ U .V

by part (i).

Example 14 (Disentangling with ordered supports). We can apply the above the-

orem to prove a result for ordered supports [22, Corollary 2.7]; the proof here is

substantially different from that in [22], where it involves probability measures, and

where it is a corollary of a theorem on disentangling by means of the ‘extraction of

a linear factor’ (which can be applied if a number of measures have their support in

a subinterval [a, b] of [0, T ] and the rest have their supports in [0, a] ∪ [b, T ].). Also,

to simplify the exposition, the result below is proved first in the case of disentangling

when every exponent equals 1, after which we prove a theorem involving general ex-

ponents. The technique used in the early steps of the proof relies on expressing the

supports of the measures in terms of characteristic functions.

Let C1, . . . , Cm ∈ L(X), and associate measures ν1, . . . , νm ∈Mcb[0, 1] to C1, . . . ,

Cm, respectively. Suppose further that there is an a ∈ (0, 1) for which supp[ν1], . . . ,

supp[νk] ⊆ [0, a] and supp[νk+1], . . . , supp[νm] ⊆ [a, 1] for some k ∈ {0, 1, . . . ,m}.

Then

P 1,...,1
ν1,...,νm

(C1, . . . , Cm) = P 1,...,1
νk+1,...,νm

(Ck+1, . . . , Cm)P 1,...,1
ν1,...,νk

(C1, . . . , Ck), (4.74)

where if k = 0 we understand P 1,...,1
ν1,...,νk

(C1, . . . , Cm) to refer to the identity operator

I ∈ L(X), and if k = m we understand P 1,...,1
νk+1,...,νm

(Ck+1, . . . , Cm) to refer to the

identity operator I ∈ L(X).

The reasoning behind Equation (4.74) is as follows: The cases k = 0 and k = m are

immediate. For the others, we note first that for j = 1, . . . , k we have νj = νj|[0,a] =
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νj|(0,a) by hypothesis and because the measures are continuous, and similarly for

j = k+1, . . . ,m, we have νj = νj|[a,1] = νj|(a,1). By the definition of the disentangling

map we have

P 1,...,1
ν1,...,νm

(C1, . . . , Cm) =
∑
π∈Sm

∫
∆m(π)

Cπ(m) · · ·Cπ(1)(ν1 × · · · × νm)(ds1, . . . , dsm)

=
∑
π∈Sm

∫
∆m(π)

Cπ(m) · · ·Cπ(1)(ν1|(0,a)×· · ·×νk|(0,a)×νk+1|(a,1)×· · ·×νm|(a,1))(ds1, . . . , dsm)

=
∑
π∈Sm

∫
∆m(π)

χ(0,a)k×(a,1)m−k(s1, . . . , sm)Cπ(m) · · ·Cπ(1)(ν1 × · · · × νm)(ds1, . . . , dsm)

=
∑
π∈Sm

∫
∆m(π)∩[(0,a)k×(a,1)m−k]

Cπ(m) · · ·Cπ(1)(ν1 × · · · × νm)(ds1, . . . , dsm). (4.75)

The terms of the sum will survive only if the region of integration ∆m(π)∩ [(0, a)k ×

(a, 1)m−k] is nonempty. That region is the set of all points (s1, . . . , sm) for which

sπ(1) < sπ(2) < · · · < sπ(m) and for which s1, . . . , sk ∈ (0, a) and sk+1, . . . , sm ∈ (a, 1).

The latter two facts tell us that for all i ∈ {1, . . . , k} and for all j ∈ {k + 1, . . . ,m}

we have si ≤ a < sj. Combining this with the string of inequalities sπ(1) < sπ(2) <

· · · < sπ(m), we can say of the subscripts that {π(1), . . . , π(k)} = {1, . . . , k} and

{π(k + 1), . . . , π(m)} = {k + 1, . . . ,m}. Therefore, π−1(x) < π−1(y) for all x ∈

{1, . . . , k}, y ∈ {k + 1, . . . ,m}. Hence since Sm = O{1,...,m} = O{1,...,k} � O{k+1,...,m},

by Theorem 4.3.9(ii) we have for the nonzero terms in (4.75) that

π ∈ O{1,...,k}.O{k+1,...,m} = ·⋃
σ∈O{1,...,k}

τ∈O{k+1,...,m}

{σ.τ}, (4.76)

and thus

P 1,...,1
ν1,...,νm

(C1, . . . , Cm)
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=
∑

σ∈O{1,...,k}
τ∈O{k+1,...,m}

∫
∆m(σ.τ)∩[(0,a)k×(a,1)m−k]

Cτ(m−k) · · ·Cτ(1)Cσ(k) · · ·Cσ(1)(ν1 × · · · × νm)(ds1, . . . , dsm).

(4.77)

(Note since σ.τ is a permutation, we have ∆m(σ.τ) = {(s1, . . . , sm) : 0 < sσ(1) < · · · <

sσ(k) < sτ(1) < · · · < sτ(m−k) < 1}.)

The region of integration in (4.77) is

∆m(σ.τ) ∩ [(0, a)k × (a, 1)m−k]

= {(s1, . . . , sm) : 0 < sσ(1) < · · · < sσ(k) < a < sτ(1) < · · · < sτ(m−k) < 1}

= {(s1, . . . , sk) : 0 < sσ(1) < · · · < sσ(k) < a}

× {(sk+1, . . . , sm) : a < sτ(1) < · · · < sτ(m−k) < 1}. (4.78)

For τ ∈ O{k+1,...,m} we define ∆k+1,m(τ) := {(sk+1, . . . , sm) : 0 < sτ(1) < · · · <

sτ(m−k) < 1}, and then up to a set of ν1 × · · · × νm-measure zero, we have

∆m(σ.τ) ∩ [(0, a)k × (a, 1)m−k] = ∆k(σ)×∆k+1,m(τ).

Therefore, using the equality just above and applying the Fubini-Tonelli Theorem,

we have

P 1,...,1
ν1,...,νm

(C1, . . . , Cm)

=
∑

σ∈O{1,...,k}
τ∈O{k+1,...,m}

∫
∆k(σ)×∆k+1,m(τ)

Cτ(m−k) · · ·Cτ(1)Cσ(k) · · ·Cσ(1)(ν1 × · · · × νm)(ds1, . . . , dsm)
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=
∑

σ∈O{1,...,k}
τ∈O{k+1,...,m}

∫
∆k+1,m(τ)

[∫
∆k(σ)

Cτ(m−k) · · ·Cτ(1)Cσ(k) · · ·Cσ(1)

× (ν1 × · · · × νk)(ds1, . . . , dsk)

]
(νk+1 × · · · × νm)(dsk+1, . . . , dsm)

=

 ∑
τ∈O{k+1,...,m}

∫
∆k+1,m(τ)

Cτ(m−k) · · ·Cτ(1)(νk+1 × · · · × νm)(dsk+1, . . . , dsm)


×

 ∑
σ∈O{1,...,k}

∫
∆k(σ)

Cσ(k) · · ·Cσ(1)(ν1 × · · · × νk)(ds1, . . . , dsk)


= P 1,...,1

νk+1,...,νm
(Ck+1, . . . , Cm)P 1,...,1

ν1,...,νk
(C1, . . . , Ck). (4.79)

This establishes Equation (4.74).

From the result in the preceding example, we may immediately state the following

theorem, which is found in [22, Corollary 2.7] (there, it is a corollary of a theorem on

the ‘extraction of a linear factor’, a concept pursued further in [18]):

Theorem 4.3.10 (Disentangling with ordered supports). Let A1, . . . , An ∈ L(X)

be operators to which we associate finite, continuous Borel measures µ1, . . . , µn on

[0, 1], and suppose that there is an a ∈ (0, 1) and an l ∈ {1, . . . , n} with supp[µ1], . . . ,

supp[µl] ⊆ [0, a] and supp[µl+1], . . . , supp[µn] ⊆ [a, 1]. Let m1, . . . ,mn be nonnegative

integers. Then

Pm1,...,mn
µ1,...,µn

(A1, . . . , An) = Pml+1,...,mn
µl+1,...,µn

(Al+1, . . . , An)Pm1,...,ml
µ1,...,µl

(A1, . . . , Al). (4.80)

Proof. The theorem is proved by making the same assignment of names of operators

as in Equation 4.29, as well as assignments of the names ν1, . . . , νm to the measures

µ1, . . . , µn corresponding to the way C1, . . . , Cm are assigned to A1, . . . , An, letting

k := m1 + · · ·+ml, and then applying Equation (4.74).
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Example 15. With Theorem 4.3.10 in hand, we are now able to illustrate Theorem

3.2.2, as promised above, employing it to reproduce a ‘decomposing disentanglings’

result from [17, p. 4]. Let A1, A2 ∈ L(X) be associated with measures µ1, µ2 ∈

Mcb[0, 1], respectively, let m1,m2 be nonnegative integers, and let a ∈ (0, 1). Define

µ1,1 := µ1|[0,a], µ1,2 := µ1|[a,1], µ2,1 := µ2|[0,a], and µ2,2 := µ2|[a,1]. Then we claim that

Pm1,m2
µ1,µ2

(A1, A2) =
∑

i1+j1=m1
i2+j2=m2

m1!

i1!j1!

m2!

i2!j2!
P j1,j2
µ1,2,µ2,2

(A1, A2)P i1,i2
µ1,1,µ2,1

(A1, A2). (4.81)

To see this, first note that µ1 = µ1,1 +µ1,2 and µ2 = µ2,1 +µ2,2. Then using Theorem

3.2.2 twice, we have

Pm1,m2
µ1,µ2

(A1, A2) = Pm1,m2
µ1,1+µ1,2,µ2,1+µ2,2

(A1, A2)

=

m1∑
i1=0

m1

i1

P i1,m1−i1,m2
µ1,1,µ1,2,µ2,1+µ2,2

(A1, A1, A2)

=

m1∑
i1=0

m1

i1

 m2∑
i2=0

m2

i2

P i1,m1−i1,i2,m2−i2
µ1,1,µ1,2,µ2,1,µ2,2

(A1, A1, A2, A2)

=

m1∑
i1=0

m2∑
i2=0

m1!

i1!(m1 − i1)!

m2!

i2!(m2 − i2)!
P i1,i2,m1−i1,m2−i2
µ1,1,µ2,1,µ1,2,µ2,2

(A1, A2, A1, A2)

=
∑

i1+j1=m1
i2+j2=m2

m1!

i1!j1!

m2!

i2!j2!
P i1,i2,j1,j2
µ1,1,µ2,1,µ1,2,µ2,2

(A1, A2, A1, A2). (4.82)

We then apply theorem Theorem 4.3.10 to arrive at Equation (4.81).

We continue our discussion of the relationship of concatenation operation and the

merge operation with the following theorem:

Theorem 4.3.11. If P1, P2, . . . , Pn are pairwise disjoint, finite sets, and σ1 ∈ OP1 ,

σ2 ∈ OP2 , . . . , σn ∈ OPn, then σ1.σ2. · · · .σn ∈ {σ1}�{σ2}� · · ·�{σn}. (For the case
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n = 1 we will interpret {σ1} � {σ2} � · · · � {σn} to equal {σ1}.)

Proof. We will prove this by induction. The case n = 1 is immediate, since it merely

claims σ1 ∈ {σ1}. The case n = 2, is immediate from Theorem 4.3.5 (using (iii)⇒(i),

letting τ1 := σ2, k = 1). To prove the rest, we suppose that the conclusion of the

theorem holds for some n = k ≥ 2; that is, σ1.σ2. · · · .σk ∈ {σ1} � {σ2} � · · · {σk}.

Then

σ1.σ2. · · · .σk.σk+1 = (σ1.σ2. · · · .σk).(σk+1) (4.83)

∈ {σ1.σ2. · · · .σk} � {σk+1} (4.84)

⊆ ({σ1} � {σ2} � · · · � {σk})� {σk+1} (4.85)

by the case n = 2, by the induction hypothesis, and by Theorem 4.2.6. Thus

σ1.σ2. · · · .σk+1 ∈ {σ1} � {σ2} � · · · � {σk+1}, and the theorem follows by induc-

tion.

Part of the usefulness of the merge and concatenation operations is that they

enable us to express a set of orderings in two or more ways. In particular, if we use a

set of orderings as the index set for a summation, then we can express the summation

in more than one way. We are therefore interested in stating a few theorems which

equate sets of orderings.

Theorem 4.3.12 (Set relations and concatenation). If P and Q are disjoint, finite

sets, and if U ⊆ OP and V ,W ⊆ OQ, then

(i) U .(V ∪W) = (U .V) ∪ (U .W),

(ii) U .(V ∩W) = (U .V) ∩ (U .W),

(iii) U .(V rW) = (U .V)r (U .W) and (V rW).U = (V .U)r (W .U), and
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(iv) if V ∩W = ∅, then U .(V ·∪W) = (U .V) ·∪(U .W).

Proof. (i) Claim: U .(V ∪W) = (U .V) ∪ (U .W).

(Proof of ⊆.) Let π ∈ U .(V ∪W). Then there exist σ ∈ U , τ ∈ V ∪W with π =

σ.τ. But then τ ∈ V or τ ∈ W , so π ∈ U .V or π ∈ U .W. Thus π ∈ (U .V)∪(U .W).

(Proof of ⊇.) Since V ,W ⊆ V ∪ W , we have U .V ⊆ U .(V ∪ W) and U .W ⊆

U .(V ∪W). Therefore, (U .V) ∪ (U .W) ⊆ U .(V ∪W).

(ii) Claim: U .(V ∩W) = (U .V) ∩ (U .W).

(Proof of ⊆.) Since V ∩W ⊆ V ,W we have U .(V ∩W) ⊆ U .V and U .(V ∩W) ⊆

U .W . Therefore, U .(V ∩W) ⊆ (U .V) ∩ (U .W).

(Proof of ⊇.) Let π ∈ (U .V) ∩ (U .W). Then π ∈ U .V and π ∈ U .W , so

there exist σ ∈ U , τ ∈ V with π = σ.τ , and there exist σ′ ∈ U , τ ′ ∈ W

with π = σ′.τ ′. But then π = [σ(1), . . . , σ(card(P )), τ(1), . . . , τ(card(Q))] =

[σ′(1), . . . , σ′(card(P )), τ ′(1), . . . , τ ′(card(Q))], and equating these expressions

term-by-term gives σ = σ′ and τ = τ ′, so τ ∈ V ∩ W . Therefore, π = σ.τ ∈

U .(V ∩W), and hence (U .V) ∩ (U .W) ⊆ U .(V ∩W).

(iii) Claim: U .(V rW) = (U .V)r (U .W).

(Proof of ⊆.) Let π ∈ U .(VrW). Then there exist σ ∈ U , τ ∈ VrW such that

π = σ.τ. Then τ ∈ V and τ /∈ W . It is clear that π = σ.τ ∈ U .V , and we claim

that π /∈ U .W . Supposing on the contrary that π ∈ U .W implies that there are

σ′ ∈ U , τ ′ ∈ W with π = σ′.τ ′. But then σ.τ = σ′.τ ′, so σ = σ′, τ = τ ′, and

then τ = τ ′ ∈ W , which is a contradiction. Therefore, π /∈ U .W , and therefore

π ∈ (U .V)r (U .W). Thus U .(V rW) ⊆ (U .V)r (U .W).

(Proof of ⊇.) Conversely, suppose that π ∈ (U .V)r (U .W). Then π ∈ U .V , but

π /∈ U .W . For π ∈ U .V , write π = σ.τ for some σ ∈ U , τ ∈ V . We claim that
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τ /∈ W . If on the contrary we suppose that τ ∈ W , then π = σ.τ ∈ U .W , a

contradiction. Therefore τ /∈ W , and it follows that π = σ.τ ∈ U .(V rW). We

conclude (U .V)r (U .W) ⊆ U .(V rW).

The proof that (V rW).U = (V .U)r (W .U) is completely analogous.

(iv) Claim: If V ∩W = ∅, then U .(V ·∪W) = (U .V) ·∪(U .W).

Let V ∩W = ∅. Then by (i) we have that U .(V ·∪W) = (U .V)∪ (U .W), so all we

need to show is that the union on the right-hand side is disjoint. But in fact,

by (ii) we have that (U .V) ∩ (U .W) = U .(V ∩W) = U .∅ = ∅, so the union on

the right-hand side is a disjoint union.

Theorem 4.3.13. If σ ∈ OP and τ ∈ OQ for disjoint, finite sets P and Q with

m = card(P ), n = card(Q), then

{σ} � {τ} = ·⋃
τ1.τ2.··· .τm+1=τ

{τ1.[σ(1)].τ2.[σ(2)]. · · · .τm.[σ(m)].τm+1}

= ·⋃
j1+···+jm+1=n
j1,...,jm+1≥0

{[τ(1), τ(2), . . . , τ(j1), σ(1),

τ(j1 + 1), τ(j1 + 2), . . . , τ(j1 + j2), σ(2),

τ(j1 + j2 + 1), τ(j1 + j2 + 2), . . . , τ(j1 + j2 + j3), σ(3),

. . . τ(j1 + · · ·+ jm), σ(m),

τ(j1 + · · ·+ jm + 1), . . . , τ(n)]},

(4.86)

where ‘ ·∪’ indicates a disjoint union, and where τ1, . . . , τm+1 are disjoint orderings of

finite subsets of subsets of Q.
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Proof. Theorem 4.3.5 parts (i) and (ii) immediately give

{σ} � {τ} =
⋃

τ1.τ2.··· .τm+1=τ

{τ1.[σ(1)].τ2.[σ(2)]. · · · .τm.[σ(m)].τm+1}, (4.87)

so for the first equality it remains to show only that the union is disjoint.

Suppose that

τ1.[σ(1)].τ2.[σ(2)]. · · · .τm.[σ(m)].τm+1 = τ ′1.[σ(1)].τ ′2.[σ(2)]. · · · .τ ′m.[σ(m)].τ ′m+1

(4.88)

for some τ1.τ2. · · · .τm+1 = τ ′1.τ
′
2. · · · .τ ′m+1 = τ. The two orderings on the two sides

of Equation (4.88) must match entry-by-entry. Since σ(1) on one side equals σ(1)

on the other, σ(1) must appear at the same position in the two orderings, so we

must have that length(τ1) = length(τ ′1), and hence, τ1 = τ ′1. Similarly τ2 = τ ′2, τ3 =

τ ′3, . . . , τm+1 = τ ′m+1. But then as indices for the union, τ1.τ2. · · · .τm+1 = τ and

τ ′1.τ
′
2. · · · .τ ′m+1 = τ are the same index; they correspond to the same term of the

union. Therefore, distinct indices correspond to distinct terms of the union, which

are therefore disjoint sets (since the sets are singletons). Thus the union is disjoint.

The second equality in (4.86) holds because

·⋃
τ1.τ2.··· .τm+1=τ

{τ1.[σ(1)].τ2.[σ(2)]. · · · .τm.[σ(m)].τm+1}
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= ·⋃
τ1.τ2.··· .τm+1=τ
j1:=length(τ1)
j2:=length(τ2)

...
jm+1:=length(τm+1)

{[τ(1), τ(2), . . . , τ(j1)].[σ(1)]

.[τ(j1 + 1), τ(j1 + 2), . . . , τ(j1 + j2)].[σ(2)]

.[τ(j1 + j2 + 1), τ(j1 + j2 + 2), . . . , τ(j1 + j2 + j3)].[σ(3)]

. . . .[ . . . , τ(j1 + · · ·+ jm)].[σ(m)]

.[τ(j1 + · · ·+ jm + 1), . . . , τ(n)]}

= ·⋃
j1+···+jm+1=n
j1,...,jm+1≥0

{[τ(1), τ(2), . . . , τ(j1), σ(1),

τ(j1 + 1), τ(j1 + 2), . . . , τ(j1 + j2), σ(2),

τ(j1 + j2 + 1), τ(j1 + j2 + 2), . . . , τ(j1 + j2 + j3), σ(3),

. . . τ(j1 + · · ·+ jm), σ(m),

τ(j1 + · · ·+ jm + 1), . . . , τ(n)]},

(4.89)

where in the second step we have the unions applying to the same terms, so we merely

have to note that the index sets are the same. That is true because on the left side of

the equation we use the orderings τ1, . . . , τm+1 only to find their lengths to determine

the values of j1, . . . , jm+1 (they do not appear elsewhere in the expression), which

must therefore take all possible nonnegative values having a sum of length(τ) = n,

and that is exactly the index set specified on the right side of the equation.

Example 16. Let σ := [1, 7] (P = {1, 7}) and τ := [8, 9] (Q = {8, 9}). Using

Theorem 4.3.13, we note that m = 2, n = 2, so the second union in the theorem is

taken over sums j1 + j2 + j3 = 2, where j1, j2, j3 are nonnegative integers. The only

possibilities are (j1, j2, j3) = (2, 0, 0), (0, 2, 0), (0, 0, 2), (1, 1, 0), (1, 0, 1), and (0, 1, 1).

Each choice gives us one term of the union shown in the theorem. For example,

(1, 0, 1) gives us the ordering [τ(1), σ(1), σ(2), τ(2)] = [8, 1, 7, 9].

Another way to look at this is that we are splitting τ into a concatenation of

m + 1 = 2 + 1 = 3 pieces in all possible ways and inserting the entries of σ in
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between, one at a time. (That is essentially what the first union in the theorem does.)

The choice of indices (j1, j2, j3) = (1, 0, 1) means τ is a concatenation of orderings of

lengths 1, 0, and 1, in that order, thus τ := [8, 9] = [8].∅.[9]. This contributes the

ordering [8].[σ(1)].∅.[σ(2)].[9] = [8].[1].∅.[7].[9] = [8, 1, 7, 9] to the union. Similarly,

(j1, j2, j3) = (2, 0, 0) contributes the ordering [8, 9].[1].∅.[7].∅ = [8, 9, 1, 7].

Continuing with the other choices of indices we obtain the set of orderings

{[8, 9, 1, 7], [1, 8, 9, 7], [1, 7, 8, 9], [8, 1, 9, 7], [8, 1, 7, 9], [1, 8, 7, 9]},

which we can verify is exactly {σ} � {τ}.

Theorem 4.3.14. Let P and Q be finite, disjoint sets with m = card(P ). If σ ∈ OP ,

then

{σ} � OQ = ·⋃
Q1 ·∪··· ·∪Qm+1=Q

OQ1 .{[σ(1)]}.OQ2 .{[σ(2)]}. · · · .{[σ(m)]}.OQm+1 . (4.90)

Proof. By Theorem 4.3.13 we have

{σ} � OQ = ·⋃
τ∈OQ

{σ} � {τ}

= ·⋃
τ∈OQ

·⋃
τ1.τ2.··· .τm+1=τ

{τ1.[σ(1)].τ2.[σ(2)]. · · · .τm.[σ(m)].τm+1} (4.91)

where τ1, . . . , τm+1 are disjoint orderings of subsets of Q.

We examine the index set for the last union. Given any choice of τ ∈ OQ and

concatenation of disjoint orderings τ1.τ2. · · · .τm+1 = τ , we may assign the disjoint

subsets of Q ordered by τ1, . . . , τm+1 the names Q1, . . . , Qm+1, respectively. Note that
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this yields exactly one possible ordered choice of the sets Q1, . . . , Qm+1, since each

τj is an ordering of exactly one set. This implies τ = τ1.τ1. · · · .τm+1 ∈ OQ1 ·∪··· ·∪Qm+1 ,

and since τ orders Q, this implies Q = Q1 ·∪ · · · ·∪Qm+1. On the other hand, given

any partition Q = Q1 ·∪ · · · ·∪Qm+1 and choices τ1 ∈ OQ1 , . . . , τm+1 ∈ OQm+1 , there is

a unique ordering τ = τ1.τ2. · · · .τm+1; note τ ∈ OQ1 ·∪··· ·∪Qm+1 = OQ. We therefore

have a bijection between the set of all (m + 2)-tuples of the form (τ, τ1, . . . , τm+1)

with τ ∈ OQ and τ1.τ2. · · · .τm+1 = τ (where τ1, . . . , τm+1 are disjoint) and the set of

all (2m+ 2)-tuples of the form (Q1, . . . , Qm+1, τ1, . . . , τm+1) with Q = Q1 ·∪ · · · ·∪Qm+1

and τ1 ∈ OQ1 , . . . , τm+1 ∈ OQm+1 . Consequently, we may re-index the union:

{σ} � OQ = ·⋃
Q1 ·∪··· ·∪Qm+1=Q

·⋃
τ1∈OQ1
τ2∈OQ2···

τm+1∈OQm+1

{τ1.[σ(1)].τ2.[σ(2)]. · · · .τm.[σ(m)].τm+1}

= ·⋃
Q1 ·∪··· ·∪Qm+1=Q

OQ1 .{[σ(1)]}.OQ2 .{[σ(2)]}. · · · .{[σ(m)]}.OQm+1 , (4.92)

where the last step follows from the definition of concatenating sets.

Corollary 4.3.15. If P and Q are finite, disjoint sets and m = card(P ), then

OP ·∪Q = OP �OQ = ·⋃
σ∈OP

Q1 ·∪··· ·∪Qm+1=Q

OQ1 .{[σ(1)]}.OQ2 .{[σ(2)]}. · · · .{[σ(m)]}.OQm+1 . (4.93)

Proof. The first equality was established earlier (Theorem 4.2.11), and it is included

here only to draw attention to the relationship between the expression OP � OQ

and the right-hand side. The proof below will be of the second equality. Using the
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definition of merging and Theorem 4.3.14,

OP ·∪Q = OP �OQ

= ·⋃
σ∈OP

·⋃
τ∈OQ

{σ} � {τ}

= ·⋃
σ∈OP

{σ} � OQ

= ·⋃
σ∈OP

·⋃
Q1 ·∪··· ·∪Qm+1=Q

OQ1 .{[σ(1)]}.OQ2 .{[σ(2)]}. · · · .{[σ(m)]}.OQm+1

= ·⋃
σ∈OP

Q1 ·∪··· ·∪Qm+1=Q

OQ1 .{[σ(1)]}.OQ2 .{[σ(2)]}. · · · .{[σ(m)]}.OQm+1 . (4.94)

Example 17. (This example is motivated by Section 19.4 of [24].) Consider the

same operators A1, . . . , An, C1, . . . , Cm, nonnegative integers m1, . . . ,mn, and mea-

sures µ1, . . . , µn as in Example 11 above, together with an operator B ∈ L(X)

associated with the finite, continuous Borel measure ν on [0, 1] and a nonnega-

tive integer k. We want to find an expression for Pm1,...,mn,k
µ1,...,µn,ν

(A1, . . . , An, B). Let

Cm+1 := Cm+2 := · · · := Cm+k := B. Then by the definition of the disentangling

map,

Pm1,...,mn,k
µ1,...,µn,ν

(A1, . . . , An, B)

=
∑

π∈Sm+k

∫
{sπ(m+k)>···>sπ(1)}
Cπ(m+k) · · ·Cπ(1)(µ

m1
1 × · · · × µmnn × νk)(ds1, . . . , dsm+k). (4.95)
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Using the second equality in the conclusion of Theorem 4.3.13, the summation is over

Sm+k = O{1,...,m} ·∪{m+1,...,m+k} = O{1,...,m} �O{m+1,...,m+k}

= ·⋃
σ∈O{1,...,m}

τ∈O{m+1,...,m+k}

{σ} � {τ}

= ·⋃
σ∈O{1,...,m}

τ∈O{m+1,...,m+k}

·⋃
q1+q2+···+qm+1=k

q1,...,qm+1≥0

{[τ(1), . . . , τ(q1), σ(1), τ(q1 + 1), . . . , τ(q1 + q2), σ(2),

. . . , τ(q1 + · · ·+ qm), σ(m), τ(q1 + · · ·+ qm + 1), . . . , τ(k)]}. (4.96)

With (4.96), the disentangling becomes

Pm1,...,mn,k
µ1,...,µn,ν

(A1, . . . , An, B)

=
∑

σ∈O{1,...,m}

∑
τ∈O{m+1,...,m+k}

q1+q2+···+qm+1=k
q1,...,qm+1≥0

∫
{sτ(k)>···>sτ(q1+···+qm+1)>sσ(m)>···>sτ(q1+1)>sσ(1)>sτ(q1)>···>sτ(1)}
Cτ(k) · · ·Cτ(q1+···+qm+1)Cσ(m) · · ·Cτ(q1+1)Cσ(1)Cτ(q1) · · ·Cτ(1)

× (µm1
1 × · · · × µmnn × νk)(ds1, . . . , dsm+k)

=
∑

σ∈O{1,...,m}

∑
τ∈O{m+1,...,m+k}

q1+q2+···+qm+1=k
q1,...,qm+1≥0

∫
{sτ(k)>···>sτ(q1+···+qm+1)>sσ(m)>···>sτ(q1+1)>sσ(1)>sτ(q1)>···>sτ(1)}
Bqm+1Cσ(m)B

qm · · ·Cσ(2)B
q2Cσ(1)B

q1

× (µm1
1 × · · · × µmnn × νk)(ds1, . . . , dsm+k), (4.97)

since every image of τ is in {m+1, . . . ,m+k}, and Cm+1 = Cm+2 = · · · = Cm+k = B.

As it happens, any choice of τ in the summation index will produce the same
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summand, since every sτ(j) corresponds to the same operator B and to the same

measure ν. We can therefore rewrite the summation by choosing a single ordering

τ and multiplying by the number of choices for τ , which is k!. We will choose the

ordering τ = [m+ 1,m+ 2, . . . ,m+ k]. (This means that the symbol τ will disappear

from the expression, leaving that specific ordering in is place.)

Pm1,...,mn,k
µ1,...,µn,ν

(A1, . . . , An, B)

= k!
∑
σ∈Sm

∑
q1+q2+···+qm+1=k

q1,...,qm+1≥0

∫
{sm+k>···>sm+q1+···+qm+1>sσ(m)>···>sm+q1+1>sσ(1)>sm+q1>···>sm+1}

Bqm+1Cσ(m) · · ·Cσ(2)B
q2Cσ(1)B

q1

× (µm1
1 × · · · × µmnn × νk)(ds1, . . . , dsm+k).

Using the method of Example 11, we can express this as

Pm1,...,mn,k
µ1,...,µn,ν

(A1, . . . , An, B)

= m1!m2! · · · mn! k!
∑

σ∈Pm1,...,mn
q1+q2+···+qm+1=k

q1,...,qm+1≥0

∫
{sm+k>···>sm+q1+···+qm+1>sσ(m)>···
>sm+q1+1>sσ(1)>sm+q1>···>sm+1}

Bqm+1Cσ(m) · · ·Cσ(2)B
q2Cσ(1)B

q1

× (µm1
1 × · · · × µmnn × νk)(ds1, . . . , dsm+k).

Theorem 4.3.16. Given any finite set P , we have OP = ·⋃ x∈P OPr{x}.{[x]}.

Proof. (Proof of ⊆.) Let π ∈ OP , let m := card(P ), and let x := π(m). Then π =

[π(1), . . . , π(m−1)].[x] with [π(1), . . . , π(m−1)] ∈ OPr{x}. Hence, π ∈ OPr{x}.{[x]},

and OP ⊆ ·⋃ x∈P OPr{x}.{[x]}. (That the union is disjoint for distinct choices of x is

clear.)

(Proof of ⊇.) Conversely, let π ∈ ·⋃ x∈P OPr{x}.{[x]}. Then π = σ.τ for some

σ ∈ OPr{x}, τ ∈ {[x]} = O{x}. But then by the definition of concatenation, π = σ.τ ∈

O(Pr{x}) ·∪{x} = OP . Hence, ·⋃ x∈P OPr{x}.{[x]} ⊆ OP , so OP = ·⋃ x∈P OPr{x}.{[x]}.
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Example 18. We have previously defined the disentangling map Tµ1,...,µn : D =

D(A1, . . . , An) → L(X) for finite, continuous Borel measures µ1, . . . , µn defined on

the interval [0, 1]. Strictly for purposes of this example, we will define a similar dis-

entangling map T tµ1,...,µn
: D→ L(X) for finite, continuous Borel measures µ1, . . . , µn

defined on the interval [0, T ], where t ∈ [0, T ]. (This has been done more gener-

ally in [19] on time-dependent operators; we continue to restrict our attention to

time-independent operators.) As before, we associate the measures µ1, . . . , µn with

the operators A1, . . . , An ∈ L(X), respectively; m1, . . . ,mn are nonnegative inte-

gers, with m :=
∑

jmj; we have blocks of integers Bl(1) := {1, 2, . . . ,m1},Bl(2) :=

{m1 + 1, . . . ,m1 +m2}, . . . ,Bl(n) := {m1 + · · ·+mn−1 + 1, . . . ,m}; as well as inde-

terminates C̃k := Ãj and operators Ck := Aj and measures νk := µj for k ∈ Bl(j),

where j = 1, . . . , n; k = 1, . . . ,m. We further define, for any permutation π ∈ Sm,

the set

∆t
m(π) := {(s1, . . . , sm) ∈ [0, t]m : 0 < sπ(1) < sπ(2) < · · · < sπ(m) < t}. (4.98)

Then the disentangling map applied to a monomial is defined by

T tµ1,...,µn
[Pm1,...,mn(Ã1, . . . , Ãn)]

:=
∑
π∈Sm

∫
∆t
m(π)

Cπ(m) · · ·Cπ(1) (µm1
1 × · · · × µmnn )(ds1, . . . , dsm). (4.99)

With these definitions, we have, for t ∈ (0, T ),
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T tµ1,...,µn
[Pm1,...,mn(Ã1, . . . , Ãn)]

=
n∑
i=1

∫
[0,t]

Ai T sµ1,...,µn

[
∂

∂Ãi
Pm1,...,mn(Ã1, . . . , Ãn)

]
µi(ds). (4.100)

To verify (4.100), we note that the left-hand is

T tµ1,...,µn
[Pm1,...,mn(Ã1, . . . , Ãn)]

:=
∑
π∈Sm

∫
∆t
m(π)

Cπ(m) · · ·Cπ(1) (µm1
1 × · · · × µmnn )(ds1, . . . , dsm). (4.101)

Using Theorem 4.3.16, the summation is over

Sm = O{1,...,m} =
m·⋃
j=1

O{1,...,j−1,j+1,...,m}.{[j]} =
m·⋃
j=1

·⋃
σ∈O{1,...,j−1,j+1,...,m}

{σ.[j]},

which tells us that

T tµ1,...,µn
[Pm1,...,mn(Ã1, . . . , Ãn)]

=
m∑
j=1

∑
σ∈O{1,...,j−1,j+1,...,m}

∫
{t>sj>sσ(m−1)>···>sσ(1)>0}

Cj Cσ(m−1) · · ·Cσ(1)(ν1 × · · · × νm)(ds1, . . . , dsm)

=
m∑
j=1

∑
σ∈O{1,...,j−1,j+1,...,m}

∫
{t>sj>sσ(m−1)>···>sσ(1)>0}

Cj Cσ(m−1) · · ·Cσ(1)

× (ν1 × · · · × νj−1 × νj+1 × · · · × νm × νj)(ds1, . . . , dsj−1, dsj+1, . . . , dsm, dsj),

(4.102)

by Corollary 3.1.3. Next we change the region of integration into a characteristic

function and factor the characteristic function.
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T tµ1,...,µn
[Pm1,...,mn(Ã1, . . . , Ãn)]

=
m∑
j=1

∑
σ∈O{1,...,j−1,j+1,...,m}

∫
(0,t)m

Cj Cσ(m−1) · · ·Cσ(1)

× χ{t>sj>sσ(m−1)>···>sσ(1)>0}(s1, . . . , sj−1, sj+1, . . . , sm, sj)

× (ν1 × · · · × νj−1 × νj+1 × · · · × νm × νj)(ds1, . . . , dsj−1, dsj+1, . . . , dsm, dsj)

=
m∑
j=1

∑
σ∈O{1,...,j−1,j+1,...,m}

∫
(0,t)m

Cj Cσ(m−1) · · ·Cσ(1)

× χ{t>sj>sσ(m−1)>···>sσ(1)>0}(s1, . . . , sj−1, sj+1, . . . , sm)χ{t>sj>0}(sj)

× (ν1 × · · · × νj−1 × νj+1 × · · · × νm × νj)(ds1, . . . , dsj−1, dsj+1, . . . , dsm, dsj).

We are then able to apply the Fubini-Tonelli Theorem, which allows us to change the

integral into an iterated integral and guarantees that the inner integral is a measurable

function with respect to the measure used in the outer integration. This yields

T tµ1,...,µn
[Pm1,...,mn(Ã1, . . . , Ãn)]

=
m∑
j=1

∑
σ∈O{1,...,j−1,j+1,...,m}

∫
(0,t)

[ ∫
(0,t)m−1

Cj Cσ(m−1) · · ·Cσ(1)

× χ{sj>sσ(m−1)>···>sσ(1)>0}(s1, . . . , sj−1, sj+1, . . . , sm)

×(ν1×· · ·×νj−1×νj+1×· · ·×νm)(ds1, . . . , dsj−1, dsj+1, . . . , dsm)

]
χ{t>sj>0}(sj)νj(dsj)

=
m∑
j=1

∑
σ∈O{1,...,j−1,j+1,...,m}

∫
{t>sj>0}

Cj

[ ∫
{sj>sσ(m−1)>···>sσ(1)>0}

Cσ(m−1) · · ·Cσ(1)

× (ν1 × · · · × νj−1 × νj+1 × · · · × νm)(ds1, . . . , dsj−1, dsj+1, . . . , dsm)

]
νj(dsj).

(4.103)

We now rename sj as s, we change the outer region of integration from (0, t) to [0, t]

(which we may do since νj is a continuous measure), we move the inner summation
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into the outer integral, and we apply the definition of the disentangling map:

T tµ1,...,µn
[Pm1,...,mn(Ã1, . . . , Ãn)]

=
m∑
j=1

∫
[0,t]

Cj

[ ∑
σ∈O{1,...,j−1,j+1,...,m}

∫
{s>sσ(m−1)>···>sσ(1)>0}
Cσ(m−1) · · ·Cσ(1)

× (ν1 × · · · × νj−1 × νj+1 × · · · × νm)(ds1, . . . , dsj−1, dsj+1, . . . , dsm)

]
νj(ds)

=
m∑
j=1

∫
[0,t]

Cj T sν1,...,νj−1,νj+1,...,νm
[P 1,...,1(C̃1, . . . , C̃j−1, C̃j+1, . . . , C̃m)] νj(ds). (4.104)

In the last expression, the m1 terms of the sum for which Cj = A1 are all identical, as

are the m2 terms having Cj = A2, etc. For each of these, the disentangling expression

in the integrand has one less factor of, respectively, A1, A2, etc. We may therefore

rewrite the expression as

T tµ1,...,µn
[Pm1,...,mn(Ã1, . . . , Ãn)]

=
n∑
i=1

mi

∫
[0,t]

Ai T sµ1,...,µn
[Pm1,...,mj−1,mj−1,mj+1,...,mn(Ã1, . . . , Ãn)]µi(ds)

=
n∑
i=1

∫
[0,t]

Ai T sµ1,...,µn
[mi P

m1,...,mj−1,mj−1,mj+1,...,mn(Ã1, . . . , Ãn)]µi(ds)

=
n∑
i=1

∫
[0,t]

Ai T sµ1,...,µn

[
∂

∂Ãi
Pm1,...,mn(Ã1, . . . , Ãn)

]
µi(ds). (4.105)

Linearity of partial derivatives, linear operators, integrals, finite sums, and the disen-

tangling map give that a similar property will hold if Pm1,...,mn(Ã1, . . . , Ãn) is replaced

by an arbitrary polynomial f(Ã1, . . . , Ãn).
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4.4 The excerption operation

So far in this chapter we have defined orderings and two operations on orderings,

namely the merge and concatenation operations. Concatenation of two orderings

places them side-by-side to give another ordering, whereas merging two orderings,

or rather merging two sets that consist of one ordering each, produces longer order-

ings that mix the two orderings together (while preserving the relative order of the

elements of each). Both operations yield longer orderings. Next we consider the ‘ex-

cerption’ operation, which takes orderings and yields shorter orderings, one might say

‘suborderings’. In a sense, the excerption operation can recover items that have been

merged, and therefore plays a role something like an inverse of the merge operation

(but not exactly), as we will discuss. First we will show that what we will define as

an excerption from an ordering actually exists.

Theorem 4.4.1. Let P be a finite set, let σ ∈ OP , and let Q ⊆ P. Then there exists

a unique ordering π ∈ OQ that satisfies each of the following properties, which are

equivalent:

(i) π−1(x) < π−1(y) if and only if σ−1(x) < σ−1(y) for all x, y ∈ Q.

(ii) If π−1(x) < π−1(y) then σ−1(x) < σ−1(y) for all x, y ∈ Q.

(iii) If σ−1(x) < σ−1(y) then π−1(x) < π−1(y) for all x, y ∈ Q.

(iv) σ−1(π(1)) < σ−1(π(2)) < · · · < σ−1(π(card(Q))).

Proof. First we will show the existence and uniqueness of an ordering satisfying (i),

and then we will show that (i)–(iv) are equivalent.

The first case to consider is if card(Q) = 0, that is, Q = ∅. In that case, the only

possible ordering π ∈ OQ = O∅ = {∅} is π = ∅, giving us the uniqueness of π. There
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are no x, y ∈ Q, so property (i) is in fact vacuously satisfied for the ordering π = ∅,

giving us existence.

Second, we consider the case when card(Q) = 1; say Q = {a}. Then there is only

one ordering π ∈ OQ = O{a} = {[a]}, namely π = [a], giving us the uniqueness of π.

Since there is only one element a ∈ Q, we cannot have x, y ∈ Q with σ−1(x) < σ−1(y),

so property (i) is vacuously satisfied for the ordering π = [a], giving us existence.

If card(Q) > 1, let m := card(P ), n := card(Q), so for σ ∈ OP we have σ =

[σ(1), σ(2), . . . , σ(m)]. Since Q is a subset of P = {σ(1), σ(2), . . . , σ(m)}, we may

choose i1, i2, . . . , in ∈ {1, 2, . . . ,m} with

{σ(i1), σ(i2), . . . , σ(in)} = Q,

and without loss of generality, i1 < i2 < · · · < in. Let π := [σ(i1), σ(i2), . . . , σ(in)];

that is, π(j) = σ(ij) for j = 1, 2, . . . , n.

It follows that π ∈ OQ. Let x, y ∈ Q with π−1(x) < π−1(y), and let j :=

π−1(x), k := π−1(y), so j < k. Hence

σ−1(x) = σ−1(π(j)) = σ−1(σ(ij)) = ij < ik = σ−1(σ(ik)) = σ−1(π(k)) = σ−1(y).

If, on the other hand, x, y ∈ Q are such that π−1(x) = π−1(y) then σ−1(x) = σ−1(y),

or if x, y ∈ Q with π−1(x) > π−1(y) then (by what was just done), σ−1(x) > σ−1(y).

Therefore, for any x, y ∈ Q we have that π−1(x) < π−1(y) if and only if σ−1(x) <

σ−1(y), which is property (i).

For uniqueness, consider a possibly different π′ ∈ OQ with the property (i) that

if x, y ∈ Q, then π′−1(x) < π′−1(y) if and only if σ−1(x) < σ−1(y). We already know

that σ−1(x) < σ−1(y) if and only if π−1(x) < π−1(y), and together these imply that
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π′−1(x) < π′−1(y) if and only if π−1(x) < π−1(y). But then since clearly

π−1(π(1)) < π−1(π(2)) < · · · < π−1(π(n)),

we must have

π′−1(π(1)) < π′−1(π(2)) < · · · < π′−1(π(n)),

and then

1 = π′−1(π(1)) < 2 = π′−1(π(2)) < · · · < n = π′−1(π(n)).

Therefore, π = π′, and we have established uniqueness.

As for the equivalence of (i)–(iv), we will show that (i) is equivalent to each of

the others. If card(Q) = 0 or card(Q) = 1, then the statements (i)–(iv) are all

vacuously satisfied for the ordering π we have identified above, and thus they are

equivalent. (It may not be as clear that property (iv) is vacuously satisfied, but we

may regard that as equivalent to the statement that σ−1(π(j)) < σ−1(π(j + 1)) for

all j, j + 1 ∈ {1, 2, . . . , card(Q)}, and that statement is vacuously satisfied in these

cases.)

For the remaining case, if card(Q) > 1, suppose that (i) holds. Then clearly (ii)

and (iii) hold. It is also clear that

π−1(π(1)) < π−1(π(2)) < · · · < π−1(π(card(Q))),

so (i) implies that

σ−1(π(1)) < σ−1(π(2)) < · · · < σ−1(π(card(Q))),
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which means that (iv) holds.

Conversely, assume (ii); i.e., π−1(x) < π−1(y) implies that σ−1(x) < σ−1(y) for

all x, y ∈ Q. If we take x, y ∈ Q with π−1(x) = π−1(y), we obtain x = y, so that

σ−1(x) = σ−1(y). If we take x, y ∈ Q with π−1(x) > π−1(y), then we get by (ii) that

σ−1(x) < σ−1(y). Therefore, π−1(x) < π−1(y) if and only if σ−1(x) < σ−1(y) for all

x, y ∈ Q, which is property (iii). Similarly, letting (iii) hold instead also implies (i).

Now suppose that (iv) holds: σ−1(π(1)) < σ−1(π(2)) < · · · < σ−1(π(card(Q))).

Let x, y ∈ Q. Then we can find j, k ∈ {1, 2, . . . , card(Q)} with π(j) = x, π(k) = y. If

π−1(x) < π−1(y), then j < k, so (iv) gives that σ−1(π(j)) < σ−1(π(k)), which is to say

σ−1(x) < σ−1(y). Thus (ii) holds, so (i) holds. Therefore, (i)–(iv) are equivalent.

We are now prepared to define the excerption operation on orderings:

Definition 4.4.2 (The excerption operation). Let P be a finite set, and let Q be

any set. Given any ordering σ ∈ OP , we define σoQ (‘σ excerpt Q’) to be the unique

ordering π ∈ OP∩Q that satisfies the following property:

(i) π−1(x) < π−1(y) if and only if σ−1(x) < σ−1(y) for all x, y ∈ P ∩Q.

We call σoQ the excerption of the set Q from the ordering σ. (Note that if P ∩Q

is the empty set, then σoQ is the null ordering, and if P ∩ Q has only one element,

P ∩Q = {a}, then σoQ = [a].)

We define a related map on a set of orderings: Given any set U ⊆ OP and any

set Q, we define UoQ, the excerption of the set Q from the set of orderings U

to be the set

UoQ :=
⋃
σ∈U

{σoQ}.

(Note that if U is empty, then UoQ is empty, whereas if U is nonempty and P ∩Q = ∅,

then UoQ = {∅}, the set consisting of only the null ordering.)
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[Although the symbol “o” is borrowed from algebra, where it indicates a “wreath

product,” the usage here is entirely unrelated to that. Here it is meant to suggest

something like a restriction map.]

The excerption of a set Q from an ordering σ ∈ OP is thought of as pulling the

elements of Q out of σ and keeping those elements, preserving their order.

Remark 17. As established by Theorem 4.4.1, we may replace property (i) in Defini-

tion 4.4.2 by one of the following three statements:

(ii) If π−1(x) < π−1(y) then σ−1(x) < σ−1(y) for all x, y ∈ P ∩Q.

(iii) If σ−1(x) < σ−1(y) then π−1(x) < π−1(y) for all x, y ∈ P ∩Q.

(iv) σ−1(π(1)) < σ−1(π(2)) < · · · < σ−1(π(card(P ∩Q))).

Remark 18. If σ ∈ OP for some finite set P , then excerpting the empty set from the

ordering σ gives us σo∅ = ∅ (the null ordering). As for sets of orderings, we have

∅oQ = ∅ (empty set excerpt Q is the empty set) for any set Q, since the union over

the empty set is empty. If U ⊆ OP for a finite set P with U 6= ∅, then Uo∅ = {∅}

(the set consisting of the null ordering). [The reader might again have reason for

concern here, since the statement ‘∅oQ = ∅’ could be a statement about null orderings

or a statement about empty sets. But again, happily, the statement is true in both

interpretations. Context should indicate which is intended.]

It is immediate from Definition 4.4.2 that if P is a finite set, if Q is any set, and

if σ ∈ OP , then σoQ = σoP∩Q, since P ∩Q = P ∩ (P ∩Q).

It also follows readily from the definition and the preceding theorem that for

any finite set P and ordering σ ∈ OP we can say that σoP = σ (because certainly

σ−1(σ(1)) < σ−1(σ(2)) < · · · < σ−1(σ(card(P ))) ), and from that we can say that if
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U ⊆ OP then UoP = U . In fact, if U ⊆ OP , then UoR = U for any set R with P ⊆ R

(because UoR = UoP∩R = UoP = U).

Example 19. Let P := {1, 2, 3, 4, 5}, Q := {2, 4, 5, 7, 8}, σ := [3, 4, 1, 5, 2] ∈ OP ,

and U := {[3, 5, 4, 1, 2], [2, 3, 4, 5, 1], [3, 2, 4, 1, 5]} ⊆ OP . Then P ∩ Q = {2, 4, 5}, so

σoQ = [4, 5, 2], and UoQ = {[5, 4, 2], [2, 4, 5]}.

Theorem 4.4.3 (Relationship between excerption and merging). Let P,Q be disjoint,

finite sets. Then the following hold:

(i) If σ ∈ OP and τ ∈ OQ, then π ∈ {σ}�{τ} if and only if π ∈ OP ·∪Q and σ = πoP

and τ = πoQ. (In particular, given any π ∈ OP ·∪Q, we have π ∈ {πoP}� {πoQ}.)

(ii) If U ⊆ OP ·∪Q, then U ⊆ UoP � UoQ. Consequently, UoP � UoQ = U if and only

if card(UoP � UoQ) = card(U).

(iii) If U ⊆ OP ·∪Q, and both V ⊆ OP and W ⊆ OQ are nonempty, then V �W = U

if and only if V = UoP , W = UoQ, and card(V �W) = card(U).

Proof. To prove claim (i), let σ ∈ OP and τ ∈ OQ, and let π ∈ {σ} � {τ}. By

the definition of the merge operation (Definition 4.2.1) we have π ∈ OP ·∪Q with the

properties that π−1(x) < π−1(y) if and only if σ−1(x) < σ−1(y) for all x, y ∈ P , and

that π−1(x) < π−1(y) if and only if τ−1(x) < τ−1(y) for all x, y ∈ Q. But then by

definition of excerption, σ = πoP and τ = πoQ.

Conversely, let σ ∈ OP and τ ∈ OQ, let π ∈ OP ·∪Q, and let σ = πoP and τ = πoQ.

Then for every x, y ∈ P with π−1(x) < π−1(y) we have σ−1(x) < σ−1(y), and for

every x, y ∈ Q with π−1(x) < π−1(y) we have τ−1(x) < τ−1(y). The definition of

merging yields that π ∈ {σ} � {τ}.

To prove claim (ii), let U ⊆ OP ·∪Q. By what was just established, given any π ∈ U

we have π ∈ {πoP}� {πoQ} ⊆ UoP �UoQ, so U ⊆ UoP �UoQ. Because U ⊆ UoP �UoP
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and because U and UoP�UoP are finite, we have equality if and only if the cardinalities

are the same. Thus, we have established the desired result.

The proof of (ii) established the “if” part of claim (iii). To prove the “only if” part

of (iii), let U ⊆ OP ·∪Q, V ⊆ OP , and W ⊆ OQ, with V ,W nonempty, and suppose

that V �W = U . Then card(V �W) = card(U). All we need to show, then, is that

V = UoP and W = UoQ.

To show that V = UoP , we begin by showing that V ⊆ UoP . Consider an arbitrary

σ ∈ V . Since W 6= ∅, we can find an ordering τ ∈ W . We now select any π ∈

{σ} � {τ} ⊆ V �W = U , and then we have by (i) that σ = πoP ∈ UoP . Therefore,

V ⊆ UoP . Similarly, W ⊆ UoQ.

Next we show that V ⊇ UoP . Consider an arbitrary element σ′ ∈ UoP . Then

σ′ = π′oP for some π′ ∈ U = V � W . But then π′ ∈ {σ′′} � {τ ′′} for some σ′′ ∈ V

and τ ′′ ∈ W . By (i) this implies that σ′′ = π′oP . Therefore, σ′ = π′oP = σ′′ ∈ V , and

hence, UoP ⊆ V . Similarly, UoQ ⊆ W . Therefore, V = UoP and W = UoQ.

Example 20. Let A1, A2, A3 ∈ L(X), and associate measures µ1, µ2, µ3 to these

operators, respectively. Let m1,m2,m3 be nonnegative integers with m := m1 +m2 +

m3. The definitions of blocks of integers Bl(1),Bl(2),Bl(3) and operators C1, . . . , Cm

are, as before, given by

Bl(1) := {1, 2, . . . ,m1}

Bl(2) := {m1 + 1,m1 + 2, . . . ,m1}

Bl(3) := {m1 +m2 + 1, . . . ,m},

Ck :=


A1 if k ∈ Bl(1)

A2 if k ∈ Bl(2)

A3 if k ∈ Bl(3).

(4.106)
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The disentangling of the monomial Pm1,m2,m3(Ã1, Ã2, Ã3) is

Pm1,m2,m3
µ1,µ2,µ3

(A1, A2, A3) =
∑
π∈Sm

∫
∆m(π)

Cπ(m) · · ·Cπ(1)(µ
m1
1 × µm2

2 × µm3
3 )(ds1, . . . , dsm).

(4.107)

Let us suppose we are dealing with a situation in which we know that every operator

A1 occurs before every A2. Thus for each

π ∈ Sm = O{1,2,...,m} = OBl(1) ·∪Bl(2) ·∪Bl(3) = OBl(1) �OBl(2) �OBl(3) (4.108)

we have π−1(x) < π−1(y) for all x ∈ Bl(1), y ∈ Bl(2). If we excerpt the set

Bl(1) ·∪Bl(2) from π we then have (πoBl(1) ·∪Bl(2))
−1(x) < (πoBl(1) ·∪Bl(2))

−1(y) for all

x ∈ Bl(1), y ∈ Bl(2), and therefore since πoBl(1) ·∪Bl(2) ∈ OBl(1) � OBl(2), we have

πoBl(1) ·∪Bl(2) ∈ OBl(1).OBl(2). Consequently,

π ∈ {πoBl(1) ·∪Bl(2)} � {πoBl(3)} ⊆ (OBl(1).OBl(2))�OBl(3).

Since we have not placed any further restrictions on the choice of π, we may therefore

rewrite the sum as the sum over all such terms:

Pm1,m2,m3
µ1,µ2,µ3

(A1, A2, A3)

=
∑

π∈(OBl(1).OBl(2))�OBl(3)

∫
∆m(π)

Cπ(m) · · ·Cπ(1)(µ
m1
1 × µm2

2 × µm3
3 )(ds1, . . . , dsm).

(4.109)

We have therefore expressed the sum with fewer terms, using both the merge and

concatenation operations in the summation index.

Corollary 4.4.4 (Excerption recovers merged sets). Let P,Q be disjoint, finite sets.
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If U ⊆ OP and V ⊆ OQ are nonempty, then U = (U � V)oP and V = (U � V)oQ.

Proof. This follows immediately from Theorem 4.4.3 part (iii).

Corollary 4.4.4 enables us to go from the merging of two sets of orderings down to

one of the two sets that are ‘factors’ of the merge operation. This suggests that we

can use excerption in settings where we might want a kind of ‘inverse’ of the merge

operation, and this was a primary motivation for defining the excerption operation.

One place this use of excerption is especially apparent is in Theorem 4.4.12, below.

Example 21. Let P := {2, 3}, Q := {5, 6}. Let σ := [2, 3], τ := [6, 5], π := [6, 2, 5, 3].

Then we can see both that π ∈ {σ} � {τ} (that is, [6, 2, 5, 3] ∈ {[2, 3]} � {[6, 5]})

and that σ = πoP , τ = πoQ (that is, [2, 3] = [6, 2, 5, 3]o{2,3} and [6, 5] = [6, 2, 5, 3]o{5,6},

respectively).

Example 22. Let P := {3, 7}, Q := {2, 4}, and let U ⊆ OP ·∪Q be the set

U := {[3, 7, 4, 2], [4, 2, 3, 7], [3, 4, 2, 7], [3, 4, 7, 2], [4, 3, 7, 2]}. (4.110)

Then UoP = {[3, 7]} and UoQ = {[4, 2]}. Does U = UoP � UoQ? Certainly U ⊆

UoP � UoQ, but they are not equal, because card(U) = 5, whereas

card(UoP � UoQ) =
[card(P ) + card(Q)]!

card(P )! card(Q)!
card(UoP ) card(UoQ) =

(2 + 2)!

2! 2!
(1)(1) = 6.

(4.111)

The missing ordering is [4, 3, 2, 7].

Theorem 4.4.5. If P and Q are sets with P ⊆ Q, if R is a finite set, and if σ ∈ OR,

then σoP = (σoQ)oP .
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Proof. Let π = σoQ. Then π ∈ OR∩Q and

σ−1(π(1)) < σ−1(π(2)) < · · · < σ−1(π(card(R ∩Q))). (4.112)

Also, (σoQ)oP = πoP ∈ O(R∩Q)∩P = OR∩P . By the definition of the excerption opera-

tion,

1 ≤ π−1(πoP (1)) < π−1(πoP (2)) < · · · < π−1(πoP (card(R ∩ P ))) ≤ card(R ∩Q),

(4.113)

and combining the information in (4.112) and (4.113) (applying the first to the ele-

ments of the second), we have

σ−1(π(π−1(πoP (1)))) < σ−1(π(π−1(πoP (2)))) < · · · < σ−1(π(π−1(πoP (card(R ∩ P )))));

that is,

σ−1(πoP (1)) < σ−1(πoP (2)) < · · · < σ−1(πoP (card(R ∩ P ))).

Hence by the definition of the excerption operation (of σoP ), σoP = πoP = (σoQ)oP .

Corollary 4.4.6. Let P be a finite set, and let Q be any set. Then OP∩Q = (OP )oQ.

Proof. Observe that OP = OP∩Q �OP\Q, with both OP∩Q and OP\Q nonempty. By

Corollary 4.4.4, OP∩Q = (OP∩Q � OP\Q)oP∩Q = (OP )oP∩Q = (OP )oQ. The very last

step there comes from a careful reading of the definition of excerption, where we see

that excerpting a set Q from an ordering of elements of P results in an ordering of

the elements of their intersection. Since P ∩(P ∩Q) = (P ∩Q), there is no distinction

between excerpting Q from a set of orderings of P and excerpting P ∩ Q from a set

of orderings of P .
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The excerption and concatenation operations interact well, in that excerption

distributes over concatenation, as the next theorem and its corollary state.

Theorem 4.4.7 (Distribution of excerption over ordering concatenation). Let P,Q

be disjoint, finite sets, and let R be any set. If σ ∈ OP and τ ∈ OQ, then (σ.τ)oR =

σoR.τ oR.

Remark 19. To clarify the order of operations, we will stipulate that excerption is

performed prior to concatenating or merging.

Proof. Let P,Q be disjoint, finite sets; let R be any set, and let σ ∈ OP , τ ∈ OQ. Let

π := (σ.τ)oR. We wish to show that π = σoR.τ oR.

We start by noting that π orders the correct objects: Since σ.τ ∈ OP ·∪Q, we have

π = (σ.τ)oR ∈ O(P ·∪Q)∩R = O(P∩R) ·∪(Q∩R), while σoR ∈ OP∩R and τ oR ∈ OQ∩R, so

σoR.τ oR ∈ O(P∩R) ·∪(Q∩R).

Moreover, π ∈ O(P∩R) ·∪(Q∩R) = OP∩R � OQ∩R, and so there exist orderings µ ∈

OP∩R, ν ∈ OQ∩R for which π ∈ {µ} � {ν}. We would like to show that π = µ.ν and

that µ = σoR and ν = τ oR.

To show that π = µ.ν, we will use Theorem 4.3.9. We already have π ∈ OP∩R �

OQ∩R, so we only need to show that for all a ∈ P ∩ R, b ∈ Q ∩ R we have π−1(a) <

π−1(b). In fact, we have (σ.τ)−1(a) < (σ.τ)−1(b) by Theorem 4.3.9, which implies that

(σ.τ)o−1
R (a) < (σ.τ)o−1

R (b) by the definition of excerption, that is, π−1(a) < π−1(b).

Thus π = µ.ν.

It remains to show that µ = σoR and ν = τ oR. To show the first of these using

the definition of excerption (Definition 4.4.2), we already have that σ ∈ OP and

µ ∈ OP∩R, so it suffices to show that for every x, y ∈ P ∩R we have µ−1(x) < µ−1(y)

if and only if σ−1(x) < σ−1(y). Let x, y ∈ P ∩ R. Then µ−1(x) < µ−1(y) if and

only if π−1(x) < π−1(y) (by definition of π ∈ {µ} � {ν}), if and only if (σ.τ)o−1
R (x) <
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(σ.τ)o−1
R (y) (by how we defined π), if and only if (σ.τ)−1(x) < (σ.τ)−1(y) (by definition

of excerption), if and only if σ−1(x) < σ−1(y) (by definition of the concatenation σ.τ).

Hence µ = σoR, and similarly, ν = τ oR, giving us that π = σoR.τ oR, and completing

the proof.

Corollary 4.4.8 (Distribution of excerption over set concatenation). Let P,Q be

disjoint, finite sets, and let R be any set. If U ⊆ OP and V ⊆ OQ, then (U .V)oR =

UoR.VoR.

Proof. By definition of excerption for a set of orderings, using Theorem 4.4.7,

(U .V)oR =
⋃

π∈U .V

{πoR} =
⋃

σ∈U ,τ∈V

{(σ.τ)oR}
Thm.
4.4.7=

⋃
σ∈U ,τ∈V

{σoR.τ oR} =
⋃

σ′∈UoR,τ ′∈VoR

{σ′.τ ′}

= UoR.VoR.

Distributive properties also hold for excerption over merging.

Theorem 4.4.9. [Distribution of excerption over merged singletons] Let P,Q be dis-

joint, finite sets, let R be any set, and let σ ∈ OP , τ ∈ OQ. Then

({σ} � {τ})oR = {σoR} � {τ oR}.

Proof. (Proof of ⊆.) Let π ∈ ({σ} � {τ})oR. Then π = ρoR for some ρ ∈ {σ} � {τ},

and π ∈ O(P ·∪Q)∩R = O(P∩R) ·∪(Q∩R).

But by Theorem 4.4.3(i), σ = ρoP , and thus by Theorem 4.4.5, πoP∩R = (ρoR)oP∩R

= ρoP∩R = (ρoP )oP∩R = σoP∩R = σoR, and similarly, πoQ∩R = τ oQ∩R = τ oR. Theorem

4.4.3(i) then shows that π ∈ {πoP∩R} � {πoQ∩R} = {σoR} � {τ oR}. Hence ({σ} �

{τ})oR ⊆ {σoR} � {τ oR}.
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(Proof of ⊇.) Let π ∈ {σoR} � {τ oR}. Our objective is to find an ordering ρ ∈

{σ} � {τ} with ρoR = π. To do so we will write π, σ, and τ as concatenations of

several orderings in the style of Theorem 4.3.5, then piece them together to form ρ,

and finally demonstrate that ρ has the desired properties.

First, we let

α := σoR, β := τ oR,

so we can say π ∈ {α} � {β}, where α ∈ OP∩R and β ∈ OQ∩R. We note that

π ∈ O(P∩R) ·∪(Q∩R) = O(P ·∪Q)∩R. By Theorem 4.3.5 we have

π = α1.β1.α2.β2. · · · .αk.βk

for some concatenations

α = α1.α2. · · · .αk, β = β1.β2. · · · .βk with k ≥ 1.

Because α is an excerption from σ, all the elements of α appear in the ordering

σ, with order preserved. In particular, the initial elements in each of the orderings

α1, . . . , αk appear in α and thus in σ, in order. We may thus break up σ just before

each of those elements, defining

σ0 := [σ(1), σ(2), . . . , σ(σ−1(α1(1))− 1)],

σ1 := [σ(σ−1(α1(1)))=α1(1), σ(σ−1(α1(1)) + 1), . . . , σ(σ−1(α2(1))− 1)],

σ2 := [σ(σ−1(α2(1)))=α2(1), σ(σ−1(α2(1)) + 1), . . . , σ(σ−1(α3(1))− 1)],

...

σk := [σ(σ−1(αk(1)))=αk(1), σ(σ−1(αk(1)) + 1), . . . , σ(card(P ))], (4.114)
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and similarly for β and τ ,

τ0 := [τ(1), τ(2), . . . , τ(τ−1(β1(1))− 1)],

τ1 := [τ(τ−1(β1(1)))=β1(1), τ(τ−1(β1(1)) + 1), . . . , τ(τ−1(β2(1))− 1)],

τ2 := [τ(τ−1(β2(1)))=β2(1), τ(τ−1(β2(1)) + 1), . . . , τ(τ−1(β3(1))− 1)],

...

τk := [τ(τ−1(βk(1)))=βk(1), τ(τ−1(βk(1)) + 1), . . . , τ(card(Q))]. (4.115)

Then σ = σ0.σ1. · · · .σk, τ = τ0, τ1. · · · .τk. Define ρ := σ0.τ0.σ1.τ1. · · · .σk.τk.

We claim that π = ρoR. Note that by the definition of excerption (or rather, the

equivalent statement (iv) following the definition) applied to α = σoR we have

σ−1(α(1)) < σ−1(α(2)) < · · · < σ−1(α(card(P ∩R))), (4.116)

and therefore (recalling that α = α1.α2. · · · .αk),

σ−1(α1(1)) < σ−1(α1(2)) < · · · < σ−1(α1(length(α1)))

<σ−1(α2(1)) < σ−1(α2(2)) < · · · < σ−1(α2(length(α2)))

...

<σ−1(αk(1)) < σ−1(αk(2)) < · · · < σ−1(αk(length(αk))). (4.117)

Now, for each σj, j = 1, 2, . . . , k, we have by inspection that σj(x) = σ(x + γj) for

all x in the domain of σj, where γj = length(σ0) + length(σ1) + · · · + length(σj−1).

Consequently, if i = σj(x) = σ(x+ γj), then σ−1(i) = x+ γj = σ−1
j (i) + γj. Looking
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at each row j = 1, 2, . . . , k of the inequality (4.117) will then give us that

σ−1
j (αj(1)) + γj < σ−1

j (αj(2)) + γj < · · · < σ−1
j (αj(length(αj)) + γj, (4.118)

and therefore canceling every γj,

σ−1
j (αj(1)) < σ−1

j (αj(2)) < · · · < σ−1
j (αj(length(αj)). (4.119)

Hence, σjoR = αj for j = 1, 2, . . . , k, and since there are no elements of R in the

image of σ0 we have σ0oR = ∅. (The first part of the previous sentence may not be

so obvious. The orderings σ0, σ1, . . . , σk together order the entire set that σ orders,

which is the set P . This includes the set P ∩ R, which together α1, . . . , αk order.

The ordering σj was specifically defined so that of those elements of P ∩R, it orders

exactly those that αj orders—not those of any other αi. All other elements ordered

by σj are still in P but outside of R. Thus the intersection of R with the set ordered

by σj is the set ordered by αj, so if we excerpt the set R from σj, we end up with

an ordering that orders exactly what αj orders. The string of inequalities then yields

that σjoR = αj.) Similarly, τ0oR = ∅, τjoR = βj for j = 1, 2, . . . , k.

Thus by Theorem 4.4.7, ρoR = σ0oR.τ0oR.σ1oR.τ1oR. · · · .σkoR.τkoR =

∅.∅.α1.β1.α2.β2. · · · .αk.βk = π. Hence, π = ρoR with ρ ∈ {σ} � {τ}, so π ∈ ({σ} �

{τ})oR. Therefore, {σoR} � {τ oR} ⊆ ({σ} � {τ})oR.

Corollary 4.4.10 (Distribution of excerption over merged sets). If P and Q are

disjoint, finite sets, if U ⊆ OP and V ⊆ OQ, and if R is any set, then

(U � V)oR = UoR � VoR.
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Proof. With the hypotheses as stated, using the definitions of excerption and merging

and Theorem 4.4.9,

(U � V)oR =
⋃

π∈U�V

{πoR} =
⋃

σ∈U ,τ∈V

⋃
π∈{σ}�{τ}

{πoR} =
⋃

σ∈U ,τ∈V

({σ} � {τ})oR

=
⋃

σ∈U ,τ∈V

({σoR} � {τ oR}) =
⋃

σ′∈UoR,τ ′∈VoR

({σ′} � {τ ′})

= UoR � VoR.

Viewing the merge operation as something like a multiplication, we might wonder

whether it is possible to factor a given set of orderings nontrivially, and furthermore,

whether there is some kind of canonical factorization for a set of orderings. With

that in mind, to conclude this section, we begin by defining irreducibility of a set of

orderings.

Definition 4.4.11 (Irreducible set of orderings). Let P be a finite set. A set of

orderings U ⊆ OP is called irreducible if P 6= ∅, U 6= ∅, and there are no pairs of

disjoint, nonempty subsets Q,R ⊆ P with Q ·∪R = P and nonempty sets of orderings

V ⊆ OQ, W ⊆ OR for which V�W = U . (Note that irreducibility of U ⊆ OP requires

that P is nonempty, and hence U is not the set consisting of the null ordering.)

Remark 20. The negation of irreducibility is useful to know for proving the next

theorem. If P is a finite set and U ⊆ OP is a nonempty set of orderings that is

not irreducible, then this definition implies that there are disjoint, nonempty subsets

Q,R ⊆ P with Q ·∪R = P and nonempty sets of orderings V ⊆ OQ, W ⊆ OR for

which V �W = U . By Theorem 4.4.3(iii) this implies that V = UoQ and W = UoR.
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Hence, U = UoQ � UoR, with both factors nonempty and not consisting of just the

null ordering.

Theorem 4.4.12. [Unique merge factorization into irreducibles] If P is a finite,

nonempty set, and there is a nonempty set of orderings W ⊆ OP , then there exist

nonempty, pairwise disjoint subsets P1, P2, . . . , Pk ⊆ P with ·⋃ k

i=1 Pi = P , and there

exist sets of orderings W1 ⊆ OP1 , W2 ⊆ OP2 , . . . , Wk ⊆ OPk , for which Wi is ir-

reducible for each i = 1, 2, . . . , k, and W = W1 � W2 � · · · � Wk. Moreover, this

factorization into irreducibles is unique up to order of the factors.

Proof. We will prove both statements of the theorem using induction. For the first

we use strong induction on the cardinality of the set P . For the anchor step, let

P be a finite, nonempty set, let W ⊆ OP be nonempty, and suppose card(P ) = 1,

say, P = {a}. The fact that W ⊆ OP is nonempty tells us that W = {[a]}. But

then P cannot be expressed as a disjoint union of nonempty sets, and therefore W is

irreducible. Our factorization is W =W .

For the induction step, let P be a finite, nonempty set with cardinality card(P ) >

1, and suppose that factorization into irreducibles is possible for every nonempty set

W ′ of orderings of nonempty finite sets P ′ having card(P ′) < card(P ). Let W ⊆ OP

be nonempty. If W is irreducible, then again we have the factorization we sought,

W = W . If, on the other hand, W is not irreducible, then there exist nonempty,

disjoint subsets Q,R ⊆ P with Q ·∪R = P and nonempty sets of orderings U ⊆

OQ, V ⊆ OR with U � V = W . Since Q and R are nonempty, and their union is P ,

their cardinalities must be strictly less than card(P ), which implies by the induction

hypothesis that U and V can be factored into irreducibles.

We therefore have nonempty, pairwise disjoint subsets Q1, Q2, . . . , Qm ⊆ Q with

·⋃m

i=1 Qi = Q, and sets of orderings U1 ⊆ OQ1 , U2 ⊆ OQ2 , . . . , Um ⊆ OQm , for which
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Ui is irreducible for each i = 1, 2, . . . ,m, and U = U1 � U2 � · · · � Um. We also have

nonempty, pairwise disjoint subsets R1, R2, . . . , Rn ⊆ R with ·⋃ n

i=1 Ri = R, and sets

of orderings V1 ⊆ OR1 , V2 ⊆ OR2 , . . . , Vn ⊆ ORn , for which Vi is irreducible for each

i = 1, 2, . . . , n, and V = V1 � V2 � · · · � Vn. But then since Q and R are disjoint,

the entire collection Q1, . . . , Qm, R1, . . . , Rn is pairwise disjoint, and W = U � V =

U1�· · ·�Um�V1�· · ·�Vn, so we have found a factorization ofW into irreducibles.

Therefore, by strong mathematical induction, we know that any nonempty W ⊆

OP for a finite, nonempty set P can be factored into irreducibles as described. It

remains to show that the factorization into irreducibles is unique up to the order of

the factors.

Suppose for this W that

W = U1 � · · · � Um = V1 � · · · � Vn, (4.120)

where U1, . . . ,Um,V1, . . . ,Vn are irreducible, with U1 ⊆ OQ1 , . . . , Um ⊆ OQm , V1 ⊆

OR1 , . . . , Vn ⊆ ORn , where Q1, . . . , Qm are pairwise disjoint with ·⋃m

i=1Qi = P , and

R1, . . . , Rn are pairwise disjoint with ·⋃ n

i=1Ri = P. (Note that except for P and W ,

the names we are using here represent completely different entities than they did in

the proof a moment ago that W factors into irreducibles.)

Consider WoQ1 . By Corollary 4.4.10 we have WoQ1 = U1oQ1 � · · · � UmoQ1 =

U1 � {∅} � · · · � {∅} = U1. But then

U1 =WoQ1 = V1oQ1 � · · · � VnoQ1 . (4.121)

Note that for all j = 1, . . . , n we know VjoQ1 orders the set Q1 ∩ Rj. If Q1 ∩ Rj is

nonempty for at least two values of j ∈ {1, 2, . . . , n}, then the right-hand side gives a
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nontrivial factorization for U1, which cannot be the case, since U1 is irreducible. So at

most one Rj has nonempty intersection with Q1. But at least one Rj has nonempty

intersection with Q1 (since ∅ 6= Q1 ⊆ P and R1 ·∪ · · · ·∪Rn = P ), so we can say that

exactly one has; without loss of generality, Q1∩R1 6= ∅, and in fact Q1 ⊆ R1. We can

use the same reasoning (looking at V1) to show that R1 has nonempty intersection

with exactly one Qj, where j ∈ {1, 2, . . . ,m}, and we know in particular that must

be Q1. So R1 ⊆ Q1. Therefore, Q1 = R1. But then

U1 =WoQ1 =WoR1 = V1oR1 � · · · � VnoR1 = V1 � {∅} � · · · � {∅} = V1. (4.122)

By similar reasoning we can say without loss of generality that U2 = V2. (We

know that U2 must equal one of the factors on the right-hand expression in Equation

(4.120), and that it orders a different set from what V1 orders.) Continuing the

process tells us that the middle expression and right-hand expression in Equation

(4.120) must have an equal number of factors, and that those two sets of factors are

identical. Therefore, factorization is unique up to the order of the factors.
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Chapter 5

Further properties of the merge,

concatenation, and excerption

operations

5.1 Set relationships and excerption

We would like to express more relationships involving the merging and concatenating

of sets, but to do so, we first need to prove a few more facts involving excerption,

such as set relations.

Theorem 5.1.1 (Set relations and excerption). If P is a finite set, if U ,V ⊆ OP ,

and if R is any set, then the following hold:

(i) (U ∪ V)oR = UoR ∪ VoR.

(ii) (U ∩ V)oR ⊆ UoR ∩ VoR. In particular, if UoR ∩ VoR = ∅, then (U ∩ V)oR = ∅,

and therefore, U ∩ V = ∅.

(iii) (U r V)oR ⊇ UoR r VoR.
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Proof.

(i) Claim: (U ∪ V)oR = UoR ∪ VoR.

We prove this using a string of equivalences: We have π ∈ (U ∪ V)oR if and only

if π = σoR for some σ ∈ U or σ ∈ V , which in turn is true if and only if π ∈ UoR or

π ∈ VoR, which is to say π ∈ UoR ∪ VoR.

(ii) Claim: (U ∩ V)oR ⊆ UoR ∩ VoR.

Let π ∈ (U ∩V)oR. Then π = σoR for some σ ∈ U ∩V . But then σ ∈ U and σ ∈ V ,

so π ∈ UoR and π ∈ VoR; that is, π ∈ UoR ∩ VoR.

(The proof of the “in particular” statement is in the statement itself. The last

part is due to the contrapositive of the existence statement given in Theorem 4.4.1.)

(iii) Claim: (U r V)oR ⊇ UoR r VoR.

Let π ∈ UoR r VoR. Then π ∈ UoR, so there exists σ ∈ U with π = σoR. If we

suppose that σ ∈ V also, then π ∈ VoR, which is a contradiction. Therefore, σ /∈ V ,

implying σ ∈ U r V . Hence, π ∈ (U r V)oR.

Incidentally, it is easy to show that statements (ii) and (iii) cannot be changed to

equality. For (ii), if P := {1, 2} is ordered by the sets U := {[1, 2]} and V := {[2, 1]},

and if R := {1}, then (U ∩ V)oR = ∅oR = ∅, while UoR ∩ VoR = {[1]} ∩ {[1]} = {[1]}.

For (iii), using the same sets, (U r V)oR = {[1, 2]}oR = {[1]}, whereas UoR r VoR =

{[1]}r {[1]} = ∅.

For some of the manipulations we will be doing in the next section, the following

theorem will be useful:

Theorem 5.1.2. If P and Q are disjoint, finite sets, if U ⊆ OP and V ⊆ OQ, and if

R is any set, then

[(U � V)r (U .V)]oR ⊇ (U oR � VoR)r (U oR.VoR). (5.1)
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Proof. By Theorem 5.1.1 we have

[(U � V)r (U .V)]oR ⊇ (U � V)oR r (U .V)oR

= (U oR � VoR)r (U oR.VoR). (5.2)

Of these two theorems, Theorems 5.1.1 and 5.1.2, the most useful properties for

us will be parts (i) and (ii) of Theorem 5.1.1. Another useful fact occurs in a case

when equality holds for Equation (5.1), as follows:

Theorem 5.1.3. Let L, P,Q, and R be pairwise disjoint, finite sets, and let U ⊆

OL,V ⊆ OP ,W ⊆ OQ, and Z ⊆ OR. Then

(
[(U .V)� (W .Z)]r [(U .V).(W .Z)]

)
oP ·∪Q = (V �W)r (V .W). (5.3)

Proof. By Theorem 5.1.2,

(
[(U .V)� (W .Z)]r [(U .V).(W .Z)]

)
oP ·∪Q

⊇ [(U .V)oP ·∪Q � (W .Z)oP ·∪Q]r [(U .V)oP ·∪Q.(W .Z)oP ·∪Q]

= [({∅}.V)� (W .{∅})]r [({∅}.V).(W .{∅})] = (V �W)r (V .W). (5.4)

For inclusion in the forward direction, let l := card(L), p := card(P ), q :=

card(Q), r := card(R), and let

π ∈
(

[(U .V)� (W .Z)]r [(U .V).(W .Z)]

)
oP ·∪Q. (5.5)

By definition of excerption, π = ρoP ·∪Q for some ordering ρ ∈ [(U .V) � (W .Z)] r
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[(U .V).(W .Z)]. Since ρ ∈ (U .V) � (W .Z), but ρ /∈ (U .V).(W .Z), there must be an

x ∈ L ·∪P and y ∈ Q ·∪R with ρ−1(x) ≮ ρ−1(y) by Theorem 4.3.9, so ρ−1(y) < ρ−1(x)

(since x 6= y).

Let σ := ρoL ·∪P , τ := ρoQ ·∪R, so σ orders L ·∪P , and τ orders Q ·∪R, and

σ = [σ(1), σ(2), . . . , σ(l + p)], τ = [τ(1), τ(2), . . . , τ(q + r)]. (5.6)

But then in this explicit representation for σ we have σ(l+ p) appearing to the right

of every other element of L ·∪P , and therefore σ−1(x) ≤ σ−1(σ(l + p)), and similarly,

τ−1(τ(1)) ≤ τ−1(y), where σ(l + p) ∈ P and τ(1) ∈ Q. By the definition of the

excerptions σ = ρoL ·∪P , τ = ρoQ ·∪R, this tells us that ρ−1(x) ≤ ρ−1(σ(l + p)) and

ρ−1(τ(1)) ≤ ρ−1(y); hence

ρ−1(τ(1)) ≤ ρ−1(y) < ρ−1(x) ≤ ρ−1(σ(l + p)). (5.7)

The definition of the excerption ρoP ·∪Q and the facts σ(l + p) ∈ P and τ(1) ∈ Q then

say that

ρo−1
P ·∪Q(τ(1)) ≤ ρo−1

P ·∪Q(σ(l + p)). (5.8)

The fact that ρ ∈ (U .V)� (W .Z) implies that

ρoP ·∪Q ∈ [(U .V)� (W .Z)]oP ·∪Q

= (UoP ·∪Q.VoP ·∪Q)� (WoP ·∪Q.ZoP ·∪Q)

= ({∅}.V)� (W .{∅})

= V �W . (5.9)

But we just said that ρo−1
P ·∪Q(τ(1)) ≤ ρo−1

P ·∪Q(σ(l+ p)) with σ(l+ p) ∈ P and τ(1) ∈ Q,
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so by Theorem 4.3.9, ρoP ·∪Q /∈ V .W . Therefore, π = ρoP ·∪Q ∈ (V �W)r (V.W). This

establishes Equation (5.3).

5.2 Combining sets of orderings

Next we offer two theorems about the intersection of sets formed by both merging

and concatenating.

Theorem 5.2.1. If P,Q and R are pairwise disjoint, finite sets, with sets of orderings

U ⊆ OP , V ⊆ OQ, and W ⊆ OR, then

U .(V �W) = [(U .V)�W ] ∩ [(U .W)� V ]. (5.10)

Proof. We note first that if any of U ,V , or W is empty, then both sides of (5.10)

are the empty set, and thus they are equal. For the remainder of the proof we will

therefore assume the sets to be nonempty.

(Proof of ⊆.) Since U .(V �W) ⊆ O(P ·∪Q) ·∪R, we have by Theorem 4.4.3(ii) that

U .(V �W) ⊆ [U .(V �W)]oP ·∪Q � [U .(V �W)]oR

= [UoP ·∪Q.(VoP ·∪Q �WoP ·∪Q)]� [UoR.(VoR �WoR)]

= [U .(V � {∅})]� [{∅}.({∅} �W)]

= (U .V)�W . (5.11)

Similarly (excerpting by P ·∪R and by Q), we have U .(V�W) ⊆ (U .W)�V . Therefore,

U .(V �W) ⊆ [(U .V)�W ] ∩ [(U .W)� V ]. (5.12)
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(Proof of ⊇.) Using this technique again, and applying Theorem 5.1.1,

[(U .V)�W ] ∩ [(U .W)� V ]

⊆
(

[(U .V)�W ] ∩ [(U .W)� V ]

)
oP �

(
[(U .V)�W ] ∩ [(U .W)� V ]

)
oQ ·∪R

⊆
(

[(U .V)�W ]oP∩[(U .W)� V ]oP
)
�
(

[(U .V)�W ]oQ ·∪R∩[(U .W)� V ]oQ ·∪R
)

= (U ∩ U)� [(V �W) ∩ (W �V)]

= U � (V �W). (5.13)

Furthermore, for any π ∈ [(U .V) �W ] ∩ [(U .W) � V ] we have that πoP ·∪Q ∈ U .V , so

for any x ∈ P, y ∈ Q we have πo−1
P ·∪Q(x) < πo−1

P ·∪Q(y), so π−1(x) < π−1(y). Similarly,

for any x ∈ P, y ∈ R we have π−1(x) < π−1(y). Therefore, for any x ∈ P, y ∈ Q ·∪R

we have π−1(x) < π−1(y). Combining this with the fact that π ∈ U � (V �W) tells

us by Theorem 4.3.9 that

π ∈ U .(V �W). (5.14)

Roughly speaking, Theorem 5.2.1 says that if U precedes V and W , then U pre-

cedes V , and U precedes W .

Theorem 5.2.2. If P,Q and R are pairwise disjoint, finite sets, with sets of orderings

U ⊆ OP , V ⊆ OQ, and W ⊆ OR, then

[(U .V)�W ] ∩ [U � (V .W)] = U .V .W (5.15)

holds.
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Proof. Starting from the left-hand side,

[(U .V)�W ] ∩ [U � (V .W)]

=

(
[(U .V).W ] ·∪

[
((U .V)�W)r ((U .V).W)

])
∩ [U � (V .W)]

=

(
(U .V .W) ∩ [U � (V .W)]

)
·∪
([

((U .V)�W)r ((U .V).W)
]
∩ [U � (V .W)]

)
.

(5.16)

Applying excerption properties (including Theorem 5.1.3) to the right-hand term, we

have

([
((U .V)�W)r ((U .V).W)

]
∩ [U � (V .W)]

)
oQ ·∪R

⊆
[
((U .V)�W)r ((U .V).W)

]
oQ ·∪R ∩ [U � (V .W)]oQ ·∪R

= [(V �W)r (V .W)] ∩ (V .W)

= ∅. (5.17)

Consequently,

[
((U .V)�W)r ((U .V).W)

]
∩ [U � (V .W)] = ∅. (5.18)

That process eliminates the last parenthetical expression in Equation (5.16), leav-

ing

[(U .V)�W ] ∩ [U � (V .W)]

= (U .V .W) ∩ [U � (V .W)]

= (U .V .W) ∩
(

[U .(V .W)] ·∪[(U � (V .W))r (U .(V .W))]

)



146

= [(U .V .W) ∩ (U .V .W)] ·∪
(

(U .V .W) ∩ [(U � (V .W))r (U .V .W)]

)
= (U .V .W) ·∪ ∅

= U .V .W . (5.19)

Roughly speaking, the statement of the theorem is that if U precedes V , and

V precedes W , then U precedes V precedes W . The interpretation of the theorem

is that while merging several sets of orderings produces a larger set of orderings,

concatenating produces fewer orderings from that same larger set, so if we take a

number of sets of orderings that are combined by merging or concatenating or both,

and intersect that result with a different combination of mergings or concatenatings

of the same sets where the sets appear in the same order, then the intersection will

be a combination of the same sets that tends to preserve the concatenations. (To

express a general theorem of this sort is beyond the scope of this dissertation, but the

process used in proving the last theorem can be applied in more general situations.)
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Chapter 6

Disentangling through an

intermediate space

6.1 Issues that arise in different approaches to

disentangling

We would like to consider another approach to Feynman’s Operational Calculi and

to the disentangling map Tµ1,...,µn : D→ L(X) defined by Jefferies and Johnson ([13],

[15], [16], [14]; see Chapter 2 above). In particular, we would like to consider how the

process of evaluating the map might be simplified by a further use of commutativity.

Before we do so, let us first review the disentangling process as Feynman described

it (but we will adjust his notation slightly) and then compare his process to the

Jefferies-Johnson system. Consider noncommuting, time-independent operators A

and B. In Feynman’s paper introducing his operational calculus [10], as we have

discussed earlier, he created a notation for describing the operator product AB by

means of indices attached to the operators to show which operator operates first. For
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example, A(1)B(0) in his notation means that B operates before A, because 0 < 1.

(The indices can be viewed as indicating the “time” of operation, with the lower time

happening first.) This gives A(1)B(0) = AB. That product can also be written as

B(0)A(1) = AB; we are allowed to exchange the order of A(1) and B(0) on the page

because the indices tell us in which order they operate. Therefore, although A(1)B(0)

equals the product of two operators A and B that do not commute with each other,

we can manipulate A(1) and B(0) as though they did in fact commute. We might

say that the notation commutes, even though the operators do not.

Feynman was interested in certain formulas involving products of noncommuting

operators, with the products potentially including the operator factors in all possible

orders. He would begin with a product expressed in his time-indexed notation and

then rearrange it until he could write it in the conventional right-to-left notation (the

operator on the right acting first), and this he called ‘disentangling.’

Let us again summarize Feynman’s ‘rules’ as we did in Chapter 1:

(1) Express the order of operation of a product of noncommuting operators not by

means of conventional right-to-left order of operation, but instead by attaching

time indices to the operators (an earlier time means earlier operation).

(2) Form functions of the operators, with the indices attached, and then manipulate

the operators as though they were commuting.

(3) Finally, ‘disentangle’ the resulting expressions; that is, restore the conventional

ordering of the operators.

For example, Feynman would start with operators A and B and attach indices as
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just described, then express their product as

∫ 1

0

A(s) ds

∫ 1

0

B(s) ds, (6.1)

which equals ∫ 1

0

∫ 1

0

A(s)B(t) dt ds, (6.2)

where A(s)B(t) := AB if t < s and A(s)B(t) := BA if s < t. (The expression

‘A(s)B(t)’ is undefined for s = t). The next step is to break the integration into the

region where t < s and the region where s < t (ignoring regions where s = t since

those together have zero measure). That gives

∫ 1

0

A(s) ds

∫ 1

0

B(s) ds =

∫ 1

0

∫ s

0

A(s)B(t) dt ds+

∫ 1

0

∫ 1

s

B(t)A(s) dt ds. (6.3)

The terms on the right-hand side are time-ordered (t < s in the first integral, and

s < t in the second), so now he returns to conventional notation, yielding

∫ 1

0

∫ s

0

AB dt ds+

∫ 1

0

∫ 1

s

BAdt ds = AB

∫ 1

0

∫ s

0

dt ds+BA

∫ 1

0

∫ 1

s

dt ds

=
1

2
AB +

1

2
BA. (6.4)

We want to notice two things here. First of all, the process begins with a somewhat

vague notion of a ‘product of two operators A and B’, not specifying whether the

product is AB or BA or something else, from which it then it jumps to the expression∫ 1

0
A(s) ds

∫ 1

0
B(s) ds. Secondly, as Feynman stated, the two factors of this expression

are not to be evaluated independently. Even though
∫ 1

0
A(s) ds = A and

∫ 1

0
B(s) ds =

B, making those replacements in the expression
∫ 1

0
A(s) ds

∫ 1

0
B(s) ds is not allowed;

that would yield AB, which we see does not equal the final result, 1
2
AB + 1

2
BA.
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This also holds for the simpler expression A(s)B(t), where A(s) = A and B(t) = B;

substitution is not allowed unless it is known whether s < t or t < s and unless

the factors have been put in their proper order. These two facts about Feynman’s

approach might be considered weaknesses from a mathematical standpoint—a vague

definition and the failure of substitution.

A benefit of the approach of Jefferies and Johnson, which we have been using

throughout this thesis, is that they do not run into those difficulties. The reason

is that in their approach, they perform commutative operations in a space (D) that

is different from the noncommutative space of operators (L(X)). The disentangled,

noncommutative expression at the end of the process is not equal to the original,

commutative expression; it is instead the image of a map from the commutative

space into the noncommutative space. (Feynman was aware that he had not made his

notation completely rigorous, but it is not clear from his article whether he viewed

the particular issues mentioned here as being genuinely problematic, as far as the

present author can tell.)

In the Jefferies-Johnson approach, recall, they map from the ‘disentangling alge-

bra’ D, which is a commutative space of complex functions of complex indetermi-

nates, to the generally noncommutative space L(X) of bounded, linear operators on

the Banach space X. Taking A,B ∈ L(X) to be noncommuting, time-independent

operators, they associate to them complex indeterminates called Ã, B̃ ∈ D, respec-

tively (these could just as well be called z1 and z2, but using the same letters A

and B serves as a reminder of the association between the indeterminates and the

operators). They use those indeterminates to express the function they want to dis-

entangle. Continuing the example from the previous paragraphs, the function to be

disentangled is the product ÃB̃ ∈ D. Since the indeterminates Ã and B̃ commute,

their product can be expressed without implying which operator operates first; this
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overcomes the first difficulty in Feynman’s system of how to refer to a product of A

and B in some sense without having to commit to one of the two orders AB or BA.

To perform the disentangling process for this example in the Jefferies and Johnson

approach—still reflecting the three ‘rules’ that Feynman used but did not state—

they would first attach time indices s1 and s2, using Lebesgue measure l on [0, 1], to

the two indeterminates Ã and B̃, giving Ã(s1) ≡ Ã and B̃(s2) ≡ B̃ (and similarly

for the operators, A(s1) ≡ A and B(s2) ≡ B ∈ L(X)). (Recall, in general the

Jefferies-Johnson approach can use other measures besides Lebesgue measure, and

the operators A(s1), B(s2) are viewed as operating or not operating depending on

whether s1 and s2 lie within the supports of their respective measures—so the time

indices are said to be “attached using measures.”) Following the second rule, to

disentangle ÃB̃, it is first noted—because Lebesgue measure is a probability measure

on [0, 1]—that

ÃB̃ =

∫ 1

0

Ã(s1) ds1

∫ 1

0

B̃(s2) ds2

=

∫ 1

0

∫ s1

0

Ã(s1)B̃(s2) ds2 ds1 +

∫ 1

0

∫ 1

s1

Ã(s1)B̃(s2) ds2 ds1

=

∫
{1>s1>s2>0}

Ã(s1)B̃(s2) (l × l)(ds1, ds2) +

∫
{1>s2>s1>0}

B̃(s2)Ã(s1) (l × l)(ds1, ds2), (6.5)

in which commutativity has been used to help separate the terms where s1 > s2 from

those where s1 < s2. Note here that the second issue of Feynman’s notation, the

failure of direct substitution, is resolved; Ã may be freely substituted for
∫ 1

0
Ã(s1) ds1

and B̃ for
∫ 1

0
B̃(s2) ds2 in the product

∫ 1

0
Ã(s1) ds1

∫ 1

0
B̃(s2) ds2 = ÃB̃, because the

work is done in a commutative space, namely D.

Based on the form of the last expression in Equation (6.5), the Jefferies-Johnson

definition of the disentangling of the product ÃB̃ under the disentangling map Tl, l is
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a reasonable one. They define it to be

Tl, l[ÃB̃] = Tl, l
[∫
{1>s1>s2>0}
Ã(s1)B̃(s2) (l × l)(ds1, ds2) +

∫
{1>s2>s1>0}
B̃(s2)Ã(s1) (l × l)(ds1, ds2)

]
:=

∫
{1>s1>s2>0}
A(s1)B(s2) (l × l)(ds1, ds2) +

∫
{1>s2>s1>0}
B(s2)A(s1) (l × l)(ds1, ds2)

= AB

∫
{1>s1>s2>0}

(l × l)(ds1, ds2) +BA

∫
{1>s2>s1>0}

(l × l)(ds1, ds2)

=
1

2
AB +

1

2
BA, (6.6)

where the disentangling map seems to have the effect of simply removing the tildes.

This map thereby reflects the third rule, returning a time-ordered expression to con-

ventional operator notation. Be careful to note that in these expressions in the

Jefferies-Johnson approach, a product of time-indexed operators does not have the

same meaning as in the Feynman system, so here ‘A(s1)B(s2)’ means only AB—never

BA—whereas for Feynman ‘A(s1)B(s2)’ means AB if s1 > s2 or BA if s1 < s2.

As shown, then, the approach of Jefferies and Johnson improves on the two per-

ceived weaknesses of the Feynman notation by defining the commutative space D,

which the disentangling map T maps into the noncommutative space L(X). Now we

would like to take an additional step, motivated by a somewhat different interpreta-

tion of Feynman’s ‘rules’ than the one used in the Jefferies-Johnson approach. The

effect will be that while we continue to use the map defined by Jefferies and Johnson,

we will consider another process by which the image of the map may be calculated,

a process in which commutativity may be further exploited.

To motivate the new process, we return to a claim made in Chapter 2 above

(shortly after Theorem 2.0.4), namely that though the definition of the disentangling

map takes a sum of terms involving indeterminates to a sum of terms in the same
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form but involving the corresponding operators,

Tµ1,...,µn

[∑
π∈Sm

∫
∆m(π)

C̃π(m)(sπ(m)) · · · C̃π(1)(sπ(1)) (µm1
1 × · · · × µmnn )(ds1, . . . , dsm)

]

=
∑
π∈Sm

∫
∆m(π)

Cπ(m) · · ·Cπ(1) (µm1
1 × · · · × µmnn )(ds1, . . . , dsm) (6.7)

in the case of probability measures µ1, . . . , µn ∈Mcb[0, 1] (shown earlier as Equation

(2.17)), the corresponding terms of this sum do not necessarily map to each other.

We will do an example to show this.

Let noncommuting operators A,B ∈ L(X) each be associated with Lebesgue

measure l on [0, 1], and let Ã(s) ≡ Ã and B̃(s) ≡ B̃ on [0, 1]. We then have

Tl,l
[
ÃB̃
]

= Tl,l
[∫
{t>s}

B̃(t)Ã(s) (l × l)(ds, dt) +

∫
{s>t}

Ã(s)B̃(t) (l × l)(ds, dt)
]

=

∫
{t>s}

BA (l × l)(ds, dt) +

∫
{s>t}

AB (l × l)(ds, dt). (6.8)

However, we claim,

Tl,l
[∫
{s>t}

Ã(s)B̃(t) (l × l)(ds, dt)
]
6=
∫
{s>t}

AB (l × l)(ds, dt), (6.9)

and

Tl,l
[∫
{t>s}

B̃(t)Ã(s) (l × l)(ds, dt)
]
6=
∫
{t>s}

BA (l × l)(ds, dt). (6.10)

We will show this for inequality (6.9) by calculating both sides. On the left-hand side

we have

Tl, l
[∫
{1>s>t>0}
Ã(s)B̃(t) (l × l)(ds, dt)

]
= Tl, l

[
ÃB̃

∫
{1>s>t>0}

(l × l)(ds, dt)
]
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= Tl, l
[

1

2
ÃB̃

]
=

1

2
Tl, l
[
ÃB̃
]

=
1

2

(
1

2
AB +

1

2
BA

)
=

1

4
AB +

1

4
BA. (6.11)

However, on the right-hand side we have

∫
{1>s>t>0}
A(s)B(t) (l × l)(ds, dt) = AB

∫
{1>s>t>0}

(l × l)(ds, dt) =
1

2
AB, (6.12)

and these do not agree since A and B do not commute. Therefore, the individual

summands on the left side of Equation (6.7) to which the disentangling map is applied

do not necessarily map to the corresponding summands (without the tildes) on the

right side of the equation, even though the entire sum does map to the entire sum.

This suggests that we need to be careful to recognize that in applying the third

of Feynman’s ‘rules’, moving from a commutative expression to an expression of

the same form in conventional operator notation, the Jefferies-Johnson approach has

defined this in the case of a monomial Pm1,...,mn(Ã1, . . . , Ãn) only if that monomial is

expressed in the particular time-ordered form

∑
π∈Sm

∫
∆m(π)

C̃π(m)(sπ(m)) · · · C̃π(1)(sπ(1)) (µm1
1 × · · · × µmnn )(ds1, . . . , dsm); (6.13)

only then can the tildes be freely erased. If monomials are written in a different

form, even if the form has the appearance of being time-ordered, one might not be at

liberty to erase the tildes. For example, suppose we have (as we had a moment ago)

noncommuting operators A,B ∈ L(X), each associated with Lebesgue measure l on
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[0, 1], and suppose Ã(s) ≡ Ã and B̃(s) ≡ B̃ on [0, 1]. Then ÃB̃ ∈ D, and it is valid

in the space D to write

ÃB̃ = 2

∫
{s>t}

Ã(s)B̃(t)(l × l)(ds, dt), (6.14)

but this does not map under Tl,l to an expression in the same form as the right-hand

side without the tildes, which is

2

∫
{s>t}

A(s)B(t)(l × l)(ds, dt) = 2

∫
{s>t}

(l × l)(ds, dt)A(s)B(t) = 2

(
1

2

)
AB = AB;

(6.15)

instead it maps to Tl,l[ÃB̃] = 1
2
AB + 1

2
BA.

We might find it beneficial, if we are able, to develop a space (modeled partly after

D) in which not only are indeterminates (associated with operators) commutative,

but also in which converting indeterminates to operators (‘erasing the tildes’) from

any valid form of an element of the space will yield the element’s image under the

disentangling map. For now, let us call that space E. If we had such a space, this might

allow us to apply a somewhat different interpretation of Feynman’s ‘rules’: Beginning

with a function f of indeterminates in the space D, we would first attach time indices

(as before) and then form an expression g in the space E. Second, we would freely

manipulate g according to the rules of the space E, including commutativity, until g

is in whichever time-ordered form we desire. Third (if we have properly defined the

space E), we would then be able to convert the indeterminates in that form of g to

operators (‘erase the tildes’) and yield the element of L(X) that is the image of f

under the disentangling map.

Our main objective of this chapter is therefore to define a space E as described,

which we will call the ‘intermediate disentangling space’ for the disentangling map.
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When we have done so, we will be able to obtain various results from existing FOCi

work, but some can be obtained more easily. In some cases we can do so much

more easily, for example, when obtaining decomposing disentangling formulas (see

Examples 28 and 36), especially when the number of measures is three or more.

6.2 An intermediate set for the disentangling

map

Let us suppose we have a monomial in D. As we have said, we would like to manipulate

its form, and then use that form to find the image of the disentangling map in L(X).

As we have also said, Feynman did something like that process; he began with the

notion of a product of operators A and B, then he manipulated the form of that prod-

uct using an unconventional operator notation (which we can summarize by saying

‘A(s)B(t)’ represents the function of (s, t) given by χ{s>t}(s, t)AB + χ{t>s}(s, t)BA),

and once he reached a form in which the operators were in proper time order, he

returned to conventional operator notation. In a sense, then, he moved from a prod-

uct to a space of forms to a space of operators. We will do similarly, by mapping a

monomial in D into a space of expressions we will call E (so called because, for one

thing, it follows D) that includes various forms in which the disentangled monomial

may be expressed, and then map from there to the disentangled operator L(X) that

has a corresponding form.

In fact, Feynman’s Operational Calculi in the Jefferies-Johnson approach already

has something like that intermediate space of forms, namely, the set of expressions of

the form ‘Pm1,...,mn
µ1,...,µn

(A1, . . . , An)’, which will serve as our starting point.

The reasons the set of expressions of the form Pm1,...,mn
µ1,...,µn

(A1, . . . , An) can be said
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to be like an intermediate space of forms are, firstly, in the disentangling process

it does appear intermediate between a monomial in D and its disentangled image

in L(X). Specifically, given operators A1, . . . , An ∈ L(X) associated with measures

µ1, . . . , µn ∈ Mcb[0, 1], respectively, along with nonnegative integers m1, . . . ,mn, we

have corresponding indeterminates Ã1, . . . , Ãn ∈ D, and we make the usual assign-

ments of the operator names C1, . . . , Cm, where m = m1 + · · · + mn. Since D is an

algebra, Ãm1
1 · · · Ãmnn ∈ D, and

Tµ1,...,µn [Ãm1
1 · · · Ãmnn ] = Pm1,...,mn

µ1,...,µn
(A1, . . . , An)

=
∑
π∈Sm

∫
∆m(π)

Cπ(m) · · ·Cπ(1)(µ
m1
1 × · · · × µmnn )(ds1, . . . , dsm) ∈ L(X). (6.16)

Secondly, the form of Pm1,...,mn
µ1,...,µn

(A1, . . . , An) can be changed in certain ways without

changing its value as an element of L(X). For example, by Corollary 3.1.9 we have

that for any permutation σ ∈ Sn,

Pm1,...,mn
µ1,...,µn

(A1, . . . , An) = P
mσ(1),...,mσ(n)
µσ(1),...,µσ(n) (Aσ(1), . . . , Aσ(n)). (6.17)

That is essentially a kind of commutativity, where we commute the operators, mea-

sures, and exponents in a consistent way dictated by the permutation σ. Third,

although the expression Pm1,...,mn
µ1,...,µn

(A1, . . . , An) represents an element of L(X), not el-

ements of another space, in a sense it can be considered to be a map P into L(X)

from a space of 3n-tuples of operators, measures, and exponents, each of which we

could write as (A1, . . . , An;µ1, . . . , µn;m1, . . . ,mn). We will imitate this type of map

in our definition of an intermediate space for the disentangling map.

Before we define the ‘intermediate disentangling space’ that we will call E, we will

first define a set G ′ which contains (as a proper subset) the set of generators for a
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vector space V , of which the space E is a quotient space. The set G ′ together with a

map TG′ can also be made to play an intermediate role in the disentangling process,

as we will see. But to define G ′, we first need to define a certain notation for the

arguments of a function.

In undergraduate mathematics when dealing with functions, instructors are some-

times careful to emphasize for their students the distinction between a function f and

the value f(x, y) of the function at a point (x, y). At times ‘dot’ notation f(·, ·) is

used to emphasize that f is a function of two arguments, without having to name the

arguments. There are, however, times when it would be helpful to be able to both

refer to a function as a function (not a function value) and name its arguments at the

same time. For this purpose we will, in a manner of speaking, “name the dots” by

putting variable names above the dots, or rather, dots under variable names. For ex-

ample we will refer to the function f(·, ·) as f(x
˙
, y

˙
) to indicate that in the immediate

context the names of the arguments of the function f will be ‘x’ and ‘y’. This allows

us, for example, to refer to the function g(x
˙
) = 3x

˙
+ 2 or the function (x

˙
− 1)2, in

contrast to the values g(x) = 3x+ 2 and (x− 1)2. (Incidentally, one place this could

make useful distinctions is with partial derivatives; given a function F (x
˙
, y

˙
, z

˙
) with

z
˙

= x
˙

+ y
˙
, we could distinguish between two partial derivatives with respect to x,

namely the derivative of the function F (x
˙
, y, x+ y) and the derivative of the function

F (x
˙
, y, x

˙
+ y). But we will not do any of that in this thesis.) Given a function f on

a set X × Y , the statement ‘f(x
˙
, y

˙
) = g(y

˙
, x

˙
)’ implies that g is a function on Y ×X

and that f(x, y) = g(y, x) for all values of x ∈ X and y ∈ Y .

We now define the set G ′. (‘G ′’ is for ‘generator’, though technically a subset G

will be used to generate V , of which E is a quotient space. It must be admitted that

it is therefore not entirely necessary to define all of G ′, but we do so because it is a

good context in which to define certain notations and to become familiar with them
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before going on.) Its elements will involve characteristic functions, and often it may

be helpful to think of those as playing a role something like integral symbols.

Definition 6.2.1 (The set G ′). Let G ′ be the set of all functions on [0, 1]m (for all

m ≥ 0) of the form

χE(s
˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm) (6.18)

(which we will refer to as a ‘monomial’), where all of the following hold:

1. E ⊆ [0, 1]m is a Borel set.

a) If E ′ ⊆ [0, 1]m is a Borel set differing from E by a set of ν1×· · ·×νm-measure

zero, then χE′(s
˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm) is consid-

ered to be the same as χE(s
˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm)

as elements of G ′ .

b) If σ ∈ Sm is any permutation, then

χEσ(s
˙1
, . . . , s

˙m
)σC̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm)

= χEσ(s
˙σ(1)

, . . . , s
˙σ(m)

)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm) (6.19)

is considered to be the same element of G ′ as χE(s
˙1
, . . . , s

˙m
)C̃1(s1) · · ·

C̃m(sm)dν1(s1) · · · dνm(sm).

2. C̃1, . . . C̃m, dν1, . . . , dνm are 2m (not necessarily distinct) commuting complex

indeterminates that are associated, respectively, with nonzero operators C1, . . . ,

Cm ∈ L(X) and measures ν1, . . . , νm ∈ Mcb[0, 1]. (Recall, Mcb[0, 1] is the set

of finite, continuous Borel measures on [0, 1].)
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3. The use of the index ‘sj’ in the expression C̃j(sj) is merely a label to indicate

that the indeterminate C̃j is associated with the (dotted) argument s
˙ j

of the

function χE. It is not a value. (In general, we can think of C̃(s) as the ordered

pair (C̃, ‘s’).) Similarly, the ‘sj’ in the expression dνj(sj) is a label to indicate

that the indeterminate dνj is associated with the argument s
˙ j

of the function

χE.

4. When m = 0, we will regard the expression χE(s
˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)

dν1(s1) · · · dνm(sm) ∈ G ′ as being equal to 1. (One might attempt to picture

the constant function 1 as being like a degenerate characteristic function on a

single point we could call [0, 1]0 and having no arguments, but we will just say

the expression equals 1.)

It may very well be that it would be clear enough most of the time to write elements

of the set G ′ without dots under the arguments of the characteristic functions, with

the reader understanding that a function is intended and not just a function value;

however, for the sake of clarity in this thesis we will keep the dots throughout.

Remark 21. At times we may choose to give the indeterminates more conventional

complex variable names such as zj and wj, and then we would have expressions such

as

χE(s
˙1
, . . . , s

˙m
)z1(s1) · · · zm(sm)w1(s1) · · ·wm(sm) ∈ G ′. (6.20)

Remark 22. In what follows, if we make a declaration of the form

χE(s
˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm) ∈ G ′, (6.21)

it will be understood that the various elements are what they should be as stipulated in

the definition of G ′: m ≥ 0; E ⊆ [0, 1]m is a Borel set; the operators are represented
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by capital letters C1, . . . , Cm ∈ L(X); the measures are represented by lowercase

Greek letters ν1, . . . , νm ∈Mcb[0, 1]; etc.

Remark 23. Since G ′ is only a set, it does not include operations. For example,

we cannot add two elements in the set G ′. In particular, even if we have disjoint

Borel sets E1, E2 ⊆ [0, 1] with χE1 ·∪E2(s
˙
)Ã(s)dµ(s) ∈ G ′, which we can express as

[χE1 + χE2 ](s
˙
)Ã(s)dµ(s) or even as [χE1(s

˙
) + χE2(s

˙
)]Ã(s)dµ(s), we will avoid writing

χE1 ·∪E2(s
˙
)Ã(s)dµ(s) as χE1(s

˙
)Ã(s)dµ(s) + χE2(s

˙
)Ã(s)dµ(s) as an element of G ′ (even

though that would be a sum of products of real-valued functions and complex inde-

terminates, which has a natural pointwise definition). However, later when we form

the space E from elements of G ′, we will introduce an addition operation.

In what follows we will generally consider only nonzero operators.

Example 23. The sets (0, 1)2 and {(s, t) : 0 < s < t < 1} are Borel sets in [0, 1]2, so

for operators A,B ∈ L(X) and measures µ, ν we have

χ(0,1)2(s
˙
, t
˙
)Ã(s)B̃(t)dµ(s)dν(t) ∈ G ′, (6.22)

and

χ{(s,t): 0<s<t<1}(s
˙
, t
˙
)Ã(s)B̃(t)dµ(s)dν(t)

=: χ{s<t}(s
˙
, t
˙
)Ã(s)B̃(t)dµ(s)dν(t)

= χ{(t,s): 0<s<t<1}(t
˙
, s

˙
)Ã(s)B̃(t)dµ(s)dν(t)

=: χ{s<t}(t
˙
, s

˙
)Ã(s)B̃(t)dµ(s)dν(t) ∈ G ′. (6.23)

(By commutativity, we could just as well write the last expression as dν(t)dµ(s)B̃(t)
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Ã(s)χ{s<t}(t
˙
, s

˙
), but usually we will not.) In fact, we can write

χ(0,1)2(s
˙
, t
˙
)Ã(s)B̃(t)dµ(s)dν(t)

= [χ{s<t} + χ{s>t}](s
˙
, t
˙
)Ã(s)B̃(t)dµ(s)dν(t) ∈ G ′. (6.24)

Before we state two more notational conventions in G ′, we will define a map TG′

from G ′ into L(X) that will play a role similar to that played by the disentangling

map Tµ1,...,µn on D.

Definition 6.2.2 (The intermediate disentangling map TG′). Given the definitions

above, define TG′ : G ′ → L(X) by TG′ [1] = I, the identity operator in L(X), and

TG′ [χE(s
˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm)]

:=
∑
π∈Sm

∫
∆m(π)

χE(s1, . . . , sm)Cπ(m) · · ·Cπ(1)(ν1 × · · · × νm)(ds1, . . . , dsm) (6.25)

for arbitrary χE(s
˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm) ∈ G ′, m ≥ 1.

Remark 24. We need to show that the map TG′ is well-defined with regard to the

commuting of indeterminates and with regard to Definition 6.2.1 parts 1a and 1b.

First, the fact that the indeterminates of χE(s
˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1)

· · · dνm(sm) commute is not really an issue, since once we have identified the coefficient

function of the monomial as χE(s
˙1
, . . . , s

˙m
), the association between the arguments

of χE and the indeterminates and the choice of permutation π ∈ Sm will dictate

uniquely the order that the operators and measures will appear in the right-hand

expression in Equation (6.25).

Second, it is clear that if the set E is changed by a set of ν1 × · · · × νm-measure

zero, the value of the integral defining TG′ will remain unchanged.
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More of an issue is the fact that there are several ways that the coefficient function

can be written without changing the element of G ′ to which we are referring. Suppose,

for example, we choose any σ ∈ Sm and rewrite

χE(s
˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm) (6.26)

as

χEσ(s
˙σ(1)

, . . . , s
˙σ(m)

)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm). (6.27)

By commutativity of the indeterminates in G ′ we may also write this as

χEσ(s
˙σ(1)

, . . . , s
˙σ(m)

)C̃σ(1)(sσ(1)) · · · C̃σ(m)(sσ(m))dνσ(1)(sσ(1)) · · · dνσ(m)(sσ(m)). (6.28)

Then by definition of TG′ (making use of Theorem 3.1.7 and Corollary 3.1.5, and an

argument similar to one used to prove Corollary 3.1.9) we have

TG′ [χEσ(s
˙σ(1)

, . . . , s
˙σ(m)

)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm)]

= TG′ [χEσ(s
˙σ(1)

, . . . , s
˙σ(m)

)C̃σ(1)(sσ(1)) · · · C̃σ(m)(sσ(m))dνσ(1)(sσ(1)) · · · dνσ(m)(sσ(m))]

=
∑
π∈Sm

∫
∆m(π)

χEσ(sσ(1), . . . , sσ(m))Cσπ(m) · · ·Cσπ(1)(νσ(1)×· · ·×νσ(m))(dsσ(1), . . . , dsσ(m))

=
∑
π∈Sm

∫
[∆m(π)]σ−1
χE(s1, . . . , sm)Cσπ(m) · · ·Cσπ(1)(νσ(1)×· · ·×νσ(m))

σ−1

(dsσ(1), . . . , dsσ(m))
σ−1

=
∑
π∈Sm

∫
∆m(σπ)

χE(s1, . . . , sm)Cσπ(m) · · ·Cσπ(1)(ν1 × · · · × νm)(ds1, . . . , dsm). (6.29)

Changing the index of summation to σπ ∈ Sm and letting ρ := σπ gives

TG′ [χEσ(s
˙σ(1)

, . . . , s
˙σ(m)

)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm)]
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=
∑
ρ∈Sm

∫
∆m(ρ)

χE(s1, . . . , sm)Cρ(m) · · ·Cρ(1)(ν1 × · · · × νm)(ds1, . . . , dsm)

= TG′ [χE(s
˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm)]. (6.30)

Consequently, changing the coefficient function using σ as shown has no effect on the

image of TG′ . Thus TG′ is well-defined.

Example 24. We will apply TG′ to the elements of G ′ presented in the previous

example. For the first we have (letting A(s) ≡ A,B(t) ≡ B)

TG′ [χ(0,1)2(s
˙
, t
˙
)Ã(s)B̃(t)dµ(s)dν(t)]

=

∫
{t>s}
χ(0,1)2(s, t)B(t)A(s) (µ× ν)(ds, dt) +

∫
{s>t}
χ(0,1)2(s, t)A(s)B(t) (µ× ν)(ds, dt)

=

∫
{t>s}

B(t)A(s) (µ× ν)(ds, dt) +

∫
{s>t}

A(s)B(t) (µ× ν)(ds, dt)

= P 1,1
µ,ν(A,B)

= (µ× ν)({(s, t) : 0 < s < t < 1})BA+ (µ× ν)({(s, t) : 0 < t < s < 1})AB.

(6.31)

For the second we have

TG′ [χ{0<s<t<1}(s
˙
, t
˙
)Ã(s)B̃(t)dµ(s)dν(t)]

=

∫
{t>s}
χ{s<t}(s, t)B(t)A(s) (µ× ν)(ds, dt) +

∫
{s>t}
χ{s<t}(s, t)A(s)B(t) (µ× ν)(ds, dt)

=

∫
{t>s}

B(t)A(s) (µ× ν)(ds, dt) + 0

= (µ× ν)({(s, t) : 0 < s < t < 1})BA. (6.32)

In particular, if µ, ν are both Lebesgue measure on [0, 1], then the former result

equals 1
2
AB + 1

2
BA, and the latter result equals 1

2
BA.
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In fact, the above example, especially the first of the two parts, is the starting point

for much of what follows, which is to relate the map TG′ on G ′ to the disentangling

map Tµ1,...,µn on D by way of the monomial disentangling Pm1,...,mn
µ1,...,µn

(A1, . . . , An). We

begin with a theorem that relates the two directly.

Theorem 6.2.3 (Disentangling a monomial of first-power factors). Given operators

C1, . . . , Cm ∈ L(X) and measures ν1, . . . , νm ∈Mcb[0, 1], we have

TG′ [χ(0,1)m(s
˙ 1
, . . . , s

˙ m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm)] = P 1,...,1

ν1,...,νm
(C1, . . . , Cm).

(6.33)

Proof. The result follows immediately from the definitions of both expressions. (For

the degenerate case m = 0, both sides equal the identity operator I ∈ L(X).)

In fact, we can state a more general result.

Theorem 6.2.4 (Disentangling over restricted measures). Given operators C1, . . . ,

Cm ∈ L(X), given measures ν1, . . . , νm ∈ Mcb[0, 1], and given Borel sets E1, . . . , Em

⊆ [0, 1], we have

TG′ [χE1×···×Em(s
˙ 1
, . . . , s

˙ m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm)]

= P 1,...,1
ν1|E1

,...,νm|Em
(C1, . . . , Cm). (6.34)

Proof. Starting from the right-hand side, we have

P 1,...,1
ν1|E1

,...,νm|Em
(C1, . . . , Cm)

=
∑
π∈Sm

∫
∆m(π)

Cπ(m) · · ·Cπ(1)(ν1|E1 × · · · × νm|Em)(ds1, . . . , dsm)

=
∑
π∈Sm

∫
∆m(π)

χE1×···×Em(s1, . . . , sm)Cπ(m) · · ·Cπ(1)(ν1 × · · · × νm)(ds1, . . . , dsm)
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= TG′ [χE1×···×Em(s
˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm)], (6.35)

which is the left-hand side.

We see, then, a relationship between the map TG′ and the disentangling of a

monomial whose exponents all equal 1. We would like to address a general monomial

Pm1,...,mn(Ã1, . . . , Ãn).

To find Pm1,...,mn
µ1,...,µn

(A1, . . . , An), we need to be able to express exponentiation of an

element of G ′. For example, if χE(s
˙
)Ã(s)dµ(s) ∈ G ′, we would like to be able to, in

effect, multiply it by itself. However, we cannot write that as

‘[χE(s)Ã(s)dµ(s)]2 = χE(s
˙
)Ã(s)dµ(s)χE(s

˙
)Ã(s)dµ(s)’,

because the expression on the right has more than one characteristic function (and

that is not yet defined in G ′); moreover, it is unclear on the right whether each

label ‘s’ is associated with the first argument s
˙

or the second. Our solution will

be to establish two notational conventions, both of which will make manipulating

characteristic functions similar to manipulating integral symbols.

Our first convention will be that characteristic functions may be factored into

other characteristic functions in whatever way this can ordinarily be done with char-

acteristic functions. Thus, for example, if E1 ⊆ [0, 1]j and E2 ⊆ [0, 1]k are Borel sets,

if C1, . . . , Cj+k ∈ L(X), and if ν1, . . . , νj+k ∈Mcb[0, 1], then we can write

χE1×E2(s
˙1
, . . . , s

˙ j+k
)C̃1(s1) · · · C̃j+k(sj+k)dν1(s1) · · · dνj+k(sj+k)

= χE1(s
˙1
, . . . , s

˙ j
)χE2(s

˙ j+1
, . . . , s

˙ j+k
)C̃1(s1) · · · C̃j+k(sj+k)dν1(s1) · · · dνj+k(sj+k).

(6.36)
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As a second example of this, if A,B ∈ L(X) and µ, ν ∈Mcb[0, 1], then we may write

χ{0<s
˙
<t

˙
<1}(s

˙
, t
˙
)Ã(s)B̃(t)dµ(s)dν(t) = χ(0,1)(t

˙
)χ(0,t

˙
)(s

˙
)Ã(s)B̃(t)dµ(s)dν(t). (6.37)

We will express this more generally by means of the next definition. We make use

here of the ‘named dots’ notation in order to represent a function that is the section of

another function. (As an example of the section of a function, if f(x
˙
, y

˙
, z

˙
) is a function

of three variables, then the x-section of f is the function on two variables that results

from setting a fixed value for x. We represent the x-section of f as ‘f(x, y
˙
, z

˙
)’ and

the y-section of f as ‘f(x
˙
, y, z

˙
)’, etc.)

Definition 6.2.5. Let χE(s
˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm) ∈ G ′.

Suppose m1, . . . ,mn are nonnegative integers with m1 + · · · + mn = m, and sup-

pose E1, . . . , En ⊆ [0, 1]m are Borel sets with
⋂n
j=1Ej = E (and consequently we have

χE1χE2 · · ·χEn = χE). Then we define

χE1(s
˙1
, . . . , s

˙m1
, sm1+1, . . . , sm)χE2(s1, . . . , sm1 , s

˙m1+1
, . . . , s

˙m1+m2
, sm1+m2+1, . . . , sm)

· · ·χEn(s1, . . . , sm1+···+mn−1 , s
˙m1+···+mn−1+1

, . . . , s
˙m

)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm)

:= χE(s
˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm). (6.38)

Moreover, each characteristic function in the left-hand expression is allowed to com-

mute with the others and with the labeled indeterminates C̃1(s1), . . . , C̃m(sm), dν1(s1),

. . . , dνm(sm). (For the degenerate case, the number 1 may also be placed as a factor

in the expression and allowed to commute with the other factors.)

Furthermore, we are free to replace any of the characteristic functions in (6.38)

with an equivalent expression. For example, if for some j ∈ {1, . . . , n} we can write

Ej = [0, 1]m1+···+mj−1×Fj× [0, 1]m−m1−···−mj for some Borel set Fj ⊆ [0, 1]mj , then we
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may replace

χEj(s1, . . . , sm1+···+mj−1
, s

˙m1+···+mj−1+1
, . . . , s

˙m1+···+mj
, sm1+···+mj+1, . . . , sm) (6.39)

with

χEj(s
˙m1+···+mj−1+1

, . . . , s
˙m1+···+mj

), (6.40)

since these are equal as functions of s
˙m1+···+mj−1+1

, . . . , s
˙m1+···+mj

.

To interpret Definition 6.2.5, notice mainly that the arguments on the left, with

dots, match those on the right. The idea is this: We begin with a product of charac-

teristic functions; for all (s1, . . . , sm) ∈ (0, 1)m we have

χE1(s1, . . . , sm)χE2(s1, . . . , sm) · · ·χEn(s1, . . . , sm) = χE(s1, . . . , sm). (6.41)

For the characteristic function over E on the right-hand side, we view s1, . . . , sm as

arguments (putting dots under them). For each of the characteristic functions on the

left, we view some of s1, . . . , sm as arguments and some as parameters, so each be-

comes a characteristic function with a smaller number of arguments, and together the

arguments include each of s1, . . . , sm appearing exactly once. If the two sides are then

multiplied by the product of indeterminates C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm), the

result is regarded as the same element of G ′. We will look at a specific example in

Example 25 below.

Remark 25. It might raise concern that the foregoing definition allows us to change a

characteristic function on one domain to a characteristic function on another domain

(the domain is a product, and we are exchanging factors, yielding a possibly different

domain), meaning it is then a different function. For example, if E1, E2 ⊆ [0, 1] are
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Borel sets, if A,B ∈ L(X), and if µ, ν ∈Mcb[0, 1], then we are able to write

χE1×E2(s
˙
, t
˙
)Ã(s)B̃(t)dµ(s)dν(t) = χE1(s

˙
)χE2(t

˙
)Ã(s)B̃(t)dµ(s)dν(t)

= χE2(t
˙
)χE1(s

˙
)Ã(s)B̃(t)dµ(s)dν(t)

= χE2×E1(t
˙
, s

˙
)Ã(s)B̃(t)dµ(s)dν(t). (6.42)

Because in Equation (6.42) the characteristic function has changed from χE1×E2 to

χE2×E1 , one might be concerned about whether the last expression is a different ele-

ment of G ′ than the first—but in fact, the two elements are the same. By Definition

6.2.1 part 1b, an element of G ′ is unchanged if we permute the arguments of its charac-

teristic function and we correspondingly permute the coordinates of its characteristic

function set; in particular,

χE1×E2(s
˙
, t
˙
)Ã(s)B̃(t)dµ(s)dν(t) = χ{(s,t): s∈E1, t∈E2}(s

˙
, t
˙
)Ã(s)B̃(t)dµ(s)dν(t)

= χ{(t,s): s∈E1, t∈E2}(t
˙
, s

˙
)Ã(s)B̃(t)dµ(s)dν(t)

= χE2×E1(t
˙
, s

˙
)Ã(s)B̃(t)dµ(s)dν(t). (6.43)

By similar reasoning we can see that commuting characteristic functions in Equation

(6.38) is valid, and so Definition 6.2.5 is well-defined.

Example 25. Although the left-hand expression in Equation (6.38) is rather involved,

it does not always need to be so in practice. Consider χ{s<t}(s
˙
, t
˙
)Ã(s)B̃(t)dµ(s)dν(t) ∈

G ′. The set E := {s < t} = {(s, t) ∈ (0, 1)2 : s < t} equals the intersection of the set

E1 := {(s, t) ∈ (0, 1)2} = (0, 1)2 with the set E2 := {(s, t) ∈ (0, 1)2 : s < t} = E.

We could take sections of the characteristic functions χE1 and χE2 in two different

ways. We will take the s-section of χE1 and the t-section of χE2 . For all (s, t) ∈ (0, 1)2,
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we have

χE1(s, t) = χ{(s,t)∈(0,1)2}(s, t) = χ{t∈(0,1)}(t) = χ(0,1)(t), (6.44)

so for any s ∈ (0, 1) we can write

χE1(s, t
˙
) = χ(0,1)(t

˙
). (6.45)

For all (s, t) ∈ (0, 1)2, we have

χE2(s, t) = χ{(s,t)∈(0,1)2: s<t}(s, t) = χ{s∈(0,1): s<t}(s) = χ{s<t}(s) = χ(0,t)(s), (6.46)

so for any t ∈ (0, 1) we can write

χE2(s
˙
, t) = χ{s<t}(s

˙
) = χ(0,t)(s

˙
). (6.47)

We may therefore write

χ{s<t}(s
˙
, t
˙
)Ã(s)B̃(t)dµ(s)dν(t)

= χ(0,1)(t
˙
)χ(0,t)(s

˙
)Ã(s)B̃(t)dµ(s)dν(t)

= χ(0,1)(t
˙
)B̃(t)χ(0,t)(s

˙
)Ã(s)dµ(s)dν(t). (6.48)

The first convention, just defined, for dealing with exponentiation addresses the

issue of having multiple characteristic functions in the expression for one element of

G ′. Our second convention will address the problem of trying to match the labels on

the indeterminates to the arguments of characteristic functions when there is more

than one. The solution is merely a matter of defining the ‘scope’ of each variable.

(Here we borrow a computer programming concept; the ‘scope’ of a variable refers to
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the broadest context in which a variable name has a particular meaning. A variable

name may be used in more than one context to mean different things, so these contexts

need to be clearly specified. In mathematics we see something similar when dealing

with ‘dummy variables’ in integrals; two integrals multiplied by each other may use

the same integration variable name, such as t in
∫
X
f(t)dt

∫
Y
g(t)dt, but the variables

in the two integrals have meanings that are independent of each other.) The scope

rules we choose will be like those used with integrals.

Definition 6.2.6 (Scope rules and associated notation in G ′). Given an element

χE(s
˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm) ∈ G ′, (6.49)

we will sometimes write it as

χE C̃1(s1) · · · C̃m(sm)(dν1 × · · · × dνm)(s1, . . . , sm), (6.50)

where the changes here are that the arguments have been taken off of the charac-

teristic function, and the measure-related indeterminates have been combined with

product signs. This notation may also be applied to characteristic functions and

their corresponding indeterminates within a larger expression in G ′. In all cases the

following rules shall apply:

• The same notation must be used for all characteristic functions (and associated

measure-related indeterminates) in the expression.

• A characteristic function and its associated measure-related indeterminates act

like left and right parentheses, in the sense that the characteristic function must

appear to the left of the measure-related indeterminate(s) that correspond(s)
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to it, and given any two pairs of characteristic functions and their associated

measure-related indeterminates, either the first pair is entirely inside (between)

the second pair, or else neither part of the first pair is inside the second pair

(that is, they nest like parentheses).

• Finally, if a variable name somewhere in the expression refers to an argument of

a given characteristic function (as an argument or as a label, for example), then

that use of the variable name must occur between the characteristic function and

the labeled measure-related indeterminate to which it is associated, inclusive;

uses outside of that are independent of uses inside.

Example 26. Drawing from our previous example, we can write

χ(0,1)(t
˙
)χ{s<t}(s

˙
)Ã(s)B̃(t)dµ(s)dν(t) (6.51)

as

χ(0,1)χ{s<t}Ã(s)B̃(t)dµ(s)dν(t) (6.52)

or as

χ(0,1)B̃(t)χ{s<t}Ã(s)dµ(s)dν(t). (6.53)

In both cases, χ(0,1) is then understood to be a function having argument t
˙
, while

χ{s<t} has argument s
˙
. Alternatively, we could write the same expression as

χ{s<t}Ã(s)B̃(t)(dµ× dν)(s, t). (6.54)

Notice the similarity between the above expression and its image under the map TG′ ,
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where for purposes of illustration we will use A(s) ≡ A and B(t) ≡ B:

TG′ [χ{s<t}Ã(s)B̃(t)(dµ× dν)(s, t)]

=

∫
{s<t}

χ{s<t}B(t)A(s)(µ× ν)(ds, dt) +

∫
{s>t}

χ{s>t}A(s)B(t)(µ× ν)(ds, dt)

=

∫
{s<t}

B(t)A(s)(µ× ν)(ds, dt). (6.55)

We see that the characteristic function has been replaced by an integral sign in its

image, while the operators have been time-ordered and the tildes have been deleted.

Furthermore, we may write

[
χ(0,1)Ã(s)dµ(s)

]2

=
[
χ(0,1)Ã(s)dµ(s)

] [
χ(0,1)Ã(s)dµ(s)

]
∈ G ′ (6.56)

to refer to

χ(0,1)2(s
˙1
, s

˙2
)Ã(s1)Ã(s2)dµ(s1)dµ(s2), (6.57)

because the scope rules make the label s in the earlier expression a ‘dummy’ variable;

the use in the first factor χ(0,1)Ã(s)dµ(s) is independent of its use in the second factor.

When we change back to the original notation, we need to name those independent

uses with different names, here s1 and s2.

The convention we have just defined therefore allows us to write several factors

with different argument names as a single factor with an exponent, so now we may

work with exponentiation of elements of G ′. (To be precise, we have not really defined

a product of elements of G ′—which is still a set without operations—but we can write

some of those elements in ways that suggest products and exponentiation. In the space

E described below that is developed from part of G ′, however, we will define a product

operation.) Besides what we have just defined, we will dictate that any element of G ′
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taken to the zeroth power is 1.

Now we may state Theorem 6.2.3 more generally, expressing the disentangling of a

monomial Pm1,...,mn(Ã1, . . . , Ãn) in terms of the intermediate disentangling map TG′ .

Theorem 6.2.7. Let operators A1, . . . , An ∈ L(X) be associated with, respectively,

measures µ1, . . . , µn ∈Mcb[0, 1], and let m1, . . . ,mn be nonnegative integers. Then

Tµ1,...,µn [Ãm1
1 · · · Ãmnn ] = Pm1,...,mn

µ1,...,µn
(A1, . . . , An)

= TG′
[(
χ(0,1)Ã(s1)dµ(s1)

)m1

· · ·
(
χ(0,1)Ã(sn)dµ(sn)

)mn]
. (6.58)

Proof. We let m = m1 + · · · + mn and assign names of blocks Bl(1), . . . ,Bl(n), op-

erators C1, . . . , Cm, and measures ν1, . . . , νm as usual. Then by Theorems 6.2.3 and

2.0.4 we have

TG′
[(
χ(0,1)Ã(s1)dµ(s1)

)m1

· · ·
(
χ(0,1)Ã(sn)dµ(sn)

)mn]
= TG′

[(
χ(0,1)(t

˙1
)C̃(t1)dµ(t1)

)
· · ·
(
χ(0,1)(t

˙m
)C̃(tm)dµ(tm)

)]
= TG′

[
χ(0,1)m(t

˙1
, . . . , t

˙m
)C̃(t1)dµ(t1) · · · C̃(tm)dµ(tm)

]
= P 1,...,1

ν1,...,νm
(C1, . . . , Cm)

= Pm1,...,mn
µ1,...,µn

(A1, . . . , An). (6.59)

Note that this also holds when m = 0, in which case the disentangling map and TG′

both yield the identity operator I ∈ L(X).

The map TG′ , especially Theorem 6.2.7, will be our focus in the next section. After

that we will build the space E using the set G ′.
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6.3 Using the intermediate set G ′

The main results we wish to address now, while still working with the set G ′ and

the map TG′ , are a distributive property and a binomial theorem related to sums of

characteristic functions, together with the three most important theorems for our

work with intermediate disentangling maps, which deal with applying the map TG′

to time-ordered or partially time-ordered expressions in G ′. First we look at the

distributive property and binomial theorem.

Theorem 6.3.1 (TG′ distributes over certain sums of characteristic functions). Given

integer m ≥ 1, C1, . . . , Cm ∈ L(X) and ν1, . . . , νm ∈ Mcb[0, 1], and given disjoint

Borel sets E1, E2 ⊆ [0, 1]m, we have

TG′ [(χE1 + χE2)(s
˙ 1
, . . . , s

˙ m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm)]

= TG′ [χE1(s
˙ 1
, . . . , s

˙ m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm)]

+ TG′ [χE2(s
˙ 1
, . . . , s

˙ m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm)].

(6.60)

Proof. We will omit the proof, which involves simply applying the definition of the

map TG′ and splitting the sum inside the integral.

Theorem 6.3.2 (A binomial theorem for certain sums of characteristic functions).

Let m ∈ N ∪ {0}; A,C1, C2, . . . , Cm ∈ L(X); and µ, ν1, ν2, . . . , νm ∈ Mcb[0, 1]. Let

E1, E2 ⊆ [0, 1] be disjoint Borel sets, and F ⊆ [0, 1]m be a Borel set. Then for any

n ∈ N ∪ {0}, we have

TG′
[(

(χE1 + χE2)Ã(s)dµ(s)
)n
χF C̃1(t1) · · · C̃m(tm)(dν1 × · · · × dνm)(t1, . . . , tm)

]
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=
n∑
k=0

n
k

 TG′[(χE1Ã(s)dµ(s)
)k (

χE2Ã(s)dµ(s)
)n−k

· χF C̃1(t1) · · · C̃m(tm)(dν1 × · · · × dνm)(t1, . . . , tm)

]
. (6.61)

Proof. (Note that the theorem is expressed using notation as in Definition 6.2.6, so

arguments of characteristic functions are omitted.) If n = 0, then the zeroth-power

factors on both sides of the expression above equal 1, and the result is immediate.

Suppose, then, that n ≥ 1 (in which case we may use Theorem 6.3.1). We observe

first that given any s1, . . . , sn, t1, . . . , tm ∈ [0, 1], we have

χ(E1 ·∪E2)n×F (s1, . . . , sn, t1, . . . , tm)

= (χE1 + χE2)(s1) · · · (χE1 + χE2)(sn)χF (t1, . . . , tm)

= [χE1(s1) + χE2(s1)] · · · [χE1(sn) + χE2(sn)]χF (t1, . . . , tm)

=
2∑

q1,...,qn=1

χEq1 (s1)χEq2 (s2) · · ·χEqn (sn)χF (t1, . . . , tm)

=
2∑

q1,...,qn=1

χEq1×Eq2×···×Eqn×F (s1, s2, . . . , sn, t1, . . . , tm), (6.62)

where the sets Eq1 ×Eq2 × · · · ×Eqn × F in the last summation are pairwise disjoint

for different terms in the sum.

Consequently, by Theorem 6.3.1,

TG′
[(

(χE1 + χE2)Ã(s)dµ(s)
)n
χF C̃1(t1) · · · C̃m(tm)(dν1 × · · · × dνm)(t1, . . . , tm)

]
= TG′

[(
(χE1 + χE2)(s

˙1
)Ã(s1)dµ(s1)

)
· · ·
(

(χE1 + χE2)(s
˙n

)Ã(sn)dµ(sn)
)

· χF (t
˙1
, . . . , t

˙m
)C̃1(t1) · · · C̃m(tm)dν1(t1) · · · dνm(tm)

]



177

= TG′
[
(χE1 + χE2)(s

˙1
) · · · (χE1 + χE2)(s

˙n
)χF (t

˙1
, . . . , t

˙m
)

· Ã(s1)dµ(s1) · · · Ã(sn)dµ(sn)C̃1(t1) · · · C̃m(tm)dν1(t1) · · · dνm(tm)

]
=

2∑
q1,...,qn=1

TG′
[
χEq1×Eq2×···×Eqn×F (s

˙1
, s

˙2
, . . . , s

˙n
, t
˙1
, . . . , t

˙m
)

· Ã(s1)dµ(s1) · · · Ã(sn)dµ(sn)C̃1(t1) · · · C̃m(tm)dν1(t1) · · · dνm(tm)

]
=

2∑
q1,...,qn=1

TG′
[(
χEq1 (s

˙1
)Ã(s1)dµ(s1)

)
· · ·
(
χEqn (s

˙n
)Ã(sn)dµ(sn)

)
· χF (t

˙1
, . . . , t

˙m
)C̃1(t1) · · · C̃m(tm)dν1(t1) · · · dνm(tm)

]
=

2∑
q1,...,qn=1

TG′
[(
χEq1 Ã(s)dµ(s)

)
· · ·
(
χEqn Ã(s)dµ(s)

)
· χF C̃1(t1) · · · C̃m(tm)(dν1 × · · · × dνm)(t1, . . . , tm)

]
.

(6.63)

We then group the factors of
(
χEq1 Ã(s)dµ(s)

)
· · ·
(
χEqn Ã(s)dµ(s)

)
according to

whether they include χE1 or χE2 . Note that these factors do commute, because

the factors are made up of commuting indeterminates and characteristic functions,

which by Definition 6.2.5 are allowed to commute with each other and with the inde-

terminates. (Be aware, however, that we have not defined a multiplication on G ′; the

factors of

(
χEq1 Ã(s)dµ(s)

)
· · ·
(
χEqn Ã(s)dµ(s)

)
=
(
χEq1 (s

˙1
)Ã(s1)dµ(s1)

)
· · ·
(
χEqn (s

˙n
)Ã(sn)dµ(sn)

)
(6.64)

are not being viewed as separate elements of G ′ that are joined by multiplication;
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they are viewed collectively as a product of the characteristic function

χ{(s1,...,sn): s1∈Eq1 , ..., sn∈Eqn}(s˙1
, . . . , s

˙n
) (6.65)

and the commuting indeterminates Ã(s1), . . . , Ã(sn), dµ(s1), . . . dµ(sn), whose prod-

uct forms an element of G ′.) Counting terms that are identical, we note that for each

integer k = 0, . . . , n there are
(
n
k

)
terms in the sum that have k factors of χE1 and

n− k factors of χE2 . (We enumerate those by considering the n labels q1, . . . , qn and

asking how many ways we can choose k of them to equal 1 and n−k of them to equal

2, hence
(
n
k

)
.) The result is

TG′
[(

(χE1 + χE2)Ã(s)dµ(s)
)n
χF C̃1(t1) · · · C̃m(tm)(dν1 × · · · × dνm)(t1, . . . , tm)

]
=

n∑
k=0

n
k

 TG′[(χE1Ã(s)dµ(s)
)k (

χE2Ã(s)dµ(s)
)n−k

· χF C̃1(t1) · · · C̃m(tm)(dν1 × · · · × dνm)(t1, . . . , tm)

]
, (6.66)

as we claimed.

Recalling our discussion above that motivated the use of an intermediate disen-

tangling space E—or for right now, the use of the set G ′—between D and L(X), we

hope to be able to exploit commutativity in the intermediate space, manipulating an

expression there until it is in the desired form, before mapping it finally into L(X).

Specifically, we want to perform the final mapping after the expression is in a form

which we consider to be time-ordered. We will now consider three theorems to that

effect, one in which the expression in G ′ is time-ordered, and two in which it is partly

time-ordered. The most fundamental of the three theorems is the first.
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Theorem 6.3.3 (Applying TG′ to a time-ordered expression). Let C1, . . . , Cm ∈

L(X), let ν1, . . . , νm ∈ Mcb[0, 1], and let E ⊆ [0, 1]m be a Borel set with E ⊆ ∆m(σ)

for some fixed σ ∈ Sm, m ≥ 1. Then

TG′
[
χE(s

˙ 1
, . . . , s

˙ m
)C̃σ(m)(sσ(m)) · · · C̃σ(1)(sσ(1))dν1(s1) · · · dνm(sm)

]
=

∫
E

Cσ(m) · · ·Cσ(1)(ν1 × · · · × νm)(ds1, . . . , dsm). (6.67)

Proof. By definition of TG′ (and using Theorem 3.1.7) we have

TG′
[
χE(s

˙1
, . . . , s

˙m
)C̃σ(m)(sσ(m)) · · · C̃σ(1)(sσ(1))dν1(s1) · · · dνm(sm)

]
= TG′

[
χE(s

˙1
, . . . , s

˙m
)C̃m(sm) · · · C̃1(s1)dν1(s1) · · · dνm(sm)

]
=
∑
π∈Sm

∫
∆m(π)

χE(s1, . . . , sm)Cπ(m) · · ·Cπ(1)(ν1 × · · · × νm)(ds1, . . . , dsm). (6.68)

Since E ⊆ ∆m(σ), and since the sets ∆m(π) are pairwise disjoint, the integrals will

integrate to zero except possibly when π = σ, yielding

TG′
[
χE(s

˙1
, . . . , s

˙m
)C̃σ(m)(sσ(m)) · · · C̃σ(1)(sσ(1))dν1(s1) · · · dνm(sm)

]
=

∫
∆m(σ)

χE(s1, . . . , sm)Cσ(m) · · ·Cσ(1)(ν1 × · · · × νm)(ds1, . . . , dsm)

=

∫
E

Cσ(m) · · ·Cσ(1)(ν1 × · · · × νm)(ds1, . . . , dsm). (6.69)

Example 27. Let χ{0<r<s<t<1}(r
˙
, s

˙
, t
˙
)Ã(r)B̃(s)C̃(t)dµ(r)dν(s)dη(t) ∈ G ′. Then us-

ing commutativity of indeterminates and applying Theorem 6.3.3, we have that

TG′
[
χ{0<r<s<t<1}(r

˙
, s

˙
, t
˙
)Ã(r)B̃(s)C̃(t)dµ(r)dν(s)dη(t)

]
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= TG′
[
χ{0<r<s<t<1}(r

˙
, s

˙
, t
˙
)C̃(t)B̃(s)Ã(r)dµ(r)dν(s)dη(t)

]
=

∫
{1>t>s>r>0}

CBA (µ× ν × η)(dr, ds, dt). (6.70)

The second time-ordering theorem involves two characteristic functions, one over

a set whose elements are smaller than a given fixed value, and the other over a set

whose elements are larger than that value.

Theorem 6.3.4 (Applying TG′ to an expression with two sets time-ordered relative

to each other). Let integer m ≥ 0, let C1, · · ·Cm ∈ L(X), let ν1, . . . , νm ∈ Mcb[0, 1],

let a ∈ (0, 1) be fixed, and let k ∈ {1, 2, . . . ,m−1}. If E1 ⊆ (0, a)k and E2 ⊆ (a, 1)m−k

are Borel sets, then

TG′
[
χE2(s

˙ k+1
, . . . , s

˙ m
)C̃k+1(sk+1) · · · C̃m(sm)dνk+1(sk+1) · · · dνm(sm)

· χE1(s
˙ 1
, . . . , s

˙ k
)C̃1(s1) · · · C̃k(sk)dν1(s1) · · · dνk(sk)

]
= TG′

[
χE2(s

˙ k+1
, . . . , s

˙ m
)C̃k+1(sk+1) · · · C̃m(sm)dνk+1(sk+1) · · · dνm(sm)

]
× TG′

[
χE1(s

˙ 1
, . . . , s

˙ k
)C̃1(s1) · · · C̃k(sk)dν1(s1) · · · dνk(sk)

]
. (6.71)

(Note that the statement (6.71) also holds if either χE1(s
˙ 1
, . . . , s

˙ k
)C̃1(s1) · · · C̃k(sk)

dν1(s1) · · · dνk(sk) or χE2(s
˙ k+1

, . . . , s
˙ m

)C̃k+1(sk+1) · · · C̃m(sm)dνk+1(sk+1) · · · dνm(sm)

is replaced by the element 1 ∈ G ′, so the statement holds in that sense for k = 0 or

k = m, provided the corresponding hypothesis, E1 ⊆ (0, a)k or E2 ⊆ (a, 1)m−k, or both

if m = 0, is omitted.)

Proof. The method of proof is to partition the sets E1 and E2 (up to sets of measure

zero). For τ ∈ O{k+1,...,m} we define ∆k+1,m(τ) := {(sk+1, . . . , sm) : 0 < sτ(1) < . . . <
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sτ(m−k) < 1}. Then under the given assumptions we have by Theorem 6.3.1 that

TG′
[
χE2(s

˙k+1
, . . . , s

˙m
)C̃k+1(sk+1) · · · C̃m(sm)dνk+1(sk+1) · · · dνm(sm)

· χE1(s
˙1
, . . . , s

˙k
)C̃1(s1) · · · C̃k(sk)dν1(s1) · · · dνk(sk)

]
= TG′

[
χE1×E2(s

˙1
, . . . , s

˙k
, s

˙k+1
, . . . , s

˙m
)C̃k+1(sk+1) · · · C̃m(sm)C̃1(s1) · · · C̃k(sk)

· dν1(s1) · · · dνk(sk)dνk+1(sk+1) · · · dνm(sm)
]

=
∑

σ∈O{1,...,k}
τ∈O{k+1,...,m}

TG′
[
χ[E1∩∆k(σ)]×[E2∩∆k+1,m(τ)](s

˙1
, . . . , s

˙k
, s

˙k+1
, . . . , s

˙m
)

· C̃k+1(sk+1) · · · C̃m(sm)C̃1(s1) · · · C̃k(sk)dν1(s1) · · · dνk(sk)dνk+1(sk+1) · · · dνm(sm)
]

=
∑

σ∈O{1,...,k}
τ∈O{k+1,...,m}

TG′
[
χ[E1∩∆k(σ)]×[E2∩∆k+1,m(τ)](s

˙1
, . . . , s

˙k
, s

˙k+1
, . . . , s

˙m
)

· C̃τ(m−k)(sτ(m−k)) · · · C̃τ(1)(sτ(1))C̃σ(k)(sσ(k)) · · · C̃σ(1)(sσ(1))

· dν1(s1) · · · dνk(sk)dνk+1(sk+1) · · · dνm(sm)
]
. (6.72)

Here we may apply Theorem 6.3.3, since [E1∩∆k(σ)]×[E2∩∆k+1,m(τ)] ⊆ {(s1, . . . , sk,

sk+1, . . . , sm) : 0 < sσ(1) < · · · < sσ(k) < a < sτ(1) < · · · < sτ(m−k) < 1}. The result is

that

TG′
[
χE2(s

˙k+1
, . . . , s

˙m
)C̃k+1(sk+1) · · · C̃m(sm)dνk+1(sk+1) · · · dνm(sm)

· χE1(s
˙1
, . . . , s

˙k
)C̃1(s1) · · · C̃k(sk)dν1(s1) · · · dνk(sk)

]
=

∑
σ∈O{1,...,k}

τ∈O{k+1,...,m}

∫
[E1∩∆k(σ)]×[E2∩∆k+1,m(τ)]

Cτ(m−k) · · ·Cτ(1)Cσ(k) · · ·Cσ(1)

× (ν1 × · · · × νk × νk+1 × · · · × νm)(ds1, . . . , dsk, dsk+1, . . . , dsm),

(6.73)
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which by Fubini-Tonelli is

∑
σ∈O{1,...,k}

τ∈O{k+1,...,m}

∫
E2∩∆k+1,m(τ)

(∫
E1∩∆k(σ)

Cτ(m−k) · · ·Cτ(1)Cσ(k) · · ·Cσ(1)

× (ν1 × · · · × νk)(ds1, . . . , dsk)

)
× (νk+1 × · · · × νm)(dsk+1, . . . , dsm)

=

 ∑
τ∈O{k+1,...,m}

∫
E2∩∆k+1,m(τ)

Cτ(m−k) · · ·Cτ(1)(νk+1 × · · · × νm)(dsk+1, . . . , dsm)


×

 ∑
σ∈O{1,...,k}

∫
E1∩∆k(σ)

Cσ(k) · · ·Cσ(1)(ν1 × · · · × νk)(ds1, . . . , dsk)


=

( ∑
τ∈O{k+1,...,m}

∫
∆k+1,m(τ)

χE2(sk+1, . . . , sm)Cτ(m−k) · · ·Cτ(1)

× (νk+1 × · · · × νm)(dsk+1, . . . , dsm)

)

×

 ∑
σ∈O{1,...,k}

∫
∆k(σ)

χE1(s1, . . . , sk)Cσ(k) · · ·Cσ(1)(ν1 × · · · × νk)(ds1, . . . , dsk)


= TG′

[
χE2(s

˙k+1
, . . . , s

˙m
)C̃k+1(sk+1) · · · C̃m(sm)dνk+1(sk+1) · · · dνm(sm)

]
× TG′

[
χE1(s

˙1
, . . . , s

˙k
)C̃1(s1) · · · C̃k(sk)dν1(s1) · · · dνk(sk)

]
.

(6.74)

Example 28. Now we are able to work with decomposing disentanglings (discussed

earlier, Example 15) using the intermediate set G ′. This example is based on the

heuristic ‘derivation’ of decomposing disentanglings of a monomial in two indetermi-

nates found in [17, p. 4]. The referenced article also includes a proof of the formula;

we will provide a different proof here using the set G ′, and in Example 36 below we

will extend the formula to a third measure.
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Let A,B ∈ L(X), let µ, ν ∈ Mcb[0, 1] be probability measures, let m1,m2 be

nonnegative integers, and let a ∈ (0, 1). Then by Theorems 6.3.2 and 6.3.4 we have

Pm1,m2
µ,ν (A,B)

= TG′
[(
χ(0,1)Ã(r)dµ(r)

)m1
(
χ(0,1)B̃(s)dν(s)

)m2
]

= TG′
[(

[χ(0,a) + χ(a,1)]Ã(r)dµ(r)
)m1

(
[χ(0,a) + χ(a,1)]B̃(s)dν(s)

)m2
]

=
∑

i1+j1=m1
i2+j2=m2

m1!

i1!j1!

m2!

i2!j2!
TG′
[(
χ(0,a)Ã(r)dµ(r)

)i1 (
χ(a,1)Ã(r)dµ(r)

)j1
·
(
χ(0,a)B̃(s)dν(s)

)i2 (
χ(a,1)B̃(s)dν(s)

)j2]

=
∑

i1+j1=m1
i2+j2=m2

m1!

i1!j1!

m2!

i2!j2!
TG′
[(
χ(a,1)Ã(r)dµ(r)

)j1 (
χ(a,1)B̃(s)dν(s)

)j2
·
(
χ(0,a)Ã(r)dµ(r)

)i1 (
χ(0,a)B̃(s)dν(s)

)i2]

=
∑

i1+j1=m1
i2+j2=m2

m1!

i1!j1!

m2!

i2!j2!
TG′
[(
χ(a,1)Ã(r)dµ(r)

)j1 (
χ(a,1)B̃(s)dν(s)

)j2]

× TG′
[(
χ(0,a)Ã(r)dµ(r)

)i1 (
χ(0,a)B̃(s)dν(s)

)i2]

=
∑

i1+j1=m1
i2+j2=m2

m1!

i1!j1!

m2!

i2!j2!
P j1,j2
µ|(a,1),ν|(a,1)

(A,B)P i1,i2
µ|(0,a),ν|(0,a)

(A,B). (6.75)

We see here that the set G ′ and the map TG′ enable us to perform certain calculations

much as we would do with the ordinary binomial theorem.

The third time-ordering theorem involves characteristic function sets that depend

on the argument of another characteristic function. (The sets are E1(t) and E2(t),
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which depend on the argument t of the characteristic function χF (t
˙
).) It is similar to

Theorem 6.3.4, in which the image of the map TG′ is split into two factors to the left

and right of a fixed value a ∈ (0, 1); here, however, the split occurs at a variable t,

which is associated with an operator. In the final expression, that operator is between

the split factors. (This theorem is closely related to a special case of [17, Theorem

3.6, p. 15].)

Theorem 6.3.5 (Third time-ordering theorem in G ′). Let B,C1, C2, . . . , Cm ∈ L(X)

be operators associated with measures µ, ν1, ν2, . . . , νm ∈Mcb[0, 1] for an integer m ≥

0, let F ⊆ (0, 1) be a Borel set, and let k ∈ {1, 2, . . . ,m−1}. Further, for all t ∈ [0, 1]

let E1(t) ⊆ (0, t)k, E2(t) ⊆ (t, 1)m−k be Borel sets. Then

TG′
[
χF (t

˙
)
(
χE2(t)(s

˙ k+1
, . . . , s

˙ m
)C̃k+1(sk+1) · · · C̃m(sm)dνk+1(sk+1) · · · dνm(sm)

)
B̃(t)

·
(
χE1(t)(s

˙ 1
, . . . , s

˙ k
)C̃1(s1) · · · C̃k(sk)dν1(s1) · · · dνk(sk)

)
dµ(t)

]
=

∫
F

TG′
[
χE2(t)(s

˙ k+1
, . . . , s

˙ m
)C̃k+1(sk+1) · · · C̃m(sm)dνk+1(sk+1) · · · dνm(sm)

]
B(t)

×TG′
[
χE1(t)(s

˙ 1
, . . . , s

˙ k
)C̃1(s1) · · · C̃k(sk)dν1(s1) · · · dνk(sk)

]
µ(dt). (6.76)

(The statement will hold as well if k = 0 and no set E1(t) is hypothesized, or if k = m

and no set E2(t) is hypothesized, or both.)

Proof. The method of proof is similar to that of Theorem 6.3.4. Under the given

assumptions we let G := {(s1, . . . , sk, sk+1, . . . , sm, t) ∈ (0, 1)m+1 : (s1, . . . , sk) ∈

E1(t), (sk+1, . . . , sm) ∈ E2(t), and t ∈ F}. Then

TG′
[
χF (t

˙
)
(
χE2(t)(s

˙k+1
, . . . , s

˙m
)C̃k+1(sk+1) · · · C̃m(sm)dνk+1(sk+1) · · · dνm(sm)

)
B̃(t)

·
(
χE1(t)(s

˙1
, . . . , s

˙k
)C̃1(s1) · · · C̃k(sk)dν1(s1) · · · dνk(sk)

)
dµ(t)

]
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= TG′
[
χG(s

˙1
, . . . , s

˙k
, s

˙k+1
, . . . , s

˙m
, t
˙
)C̃k+1(sk+1) · · · C̃m(sm)B̃(t)C̃1(s1) · · · C̃k(sk)

· dν1(s1) · · · dνk(sk)dνk+1(sk+1) · · · dνm(sm)dµ(t)
]
. (6.77)

Given any τ ∈ O{k+1,...,m}, define as before ∆k+1,m(τ) := {(sk+1, . . . , sm) : 0 <

sτ(1) < . . . < sτ(m−k) < 1}. Then up to a set of ν1×· · ·×νk×νk+1×· · ·×νm×µ-measure

zero we have

G = G ∩
[
(0, 1)m+1

]
= G ∩

 ·⋃
σ∈O{1,...,k}

∆k(σ)

×
 ·⋃
τ∈O{k+1,...,m}

∆k+1,m(τ)

× (0, 1)



= ·⋃
σ∈O{1,...,k}
τ∈O{k+1,...,m}

[
G ∩

(
∆k(σ)×∆k+1,m(τ)× (0, 1)

)]
. (6.78)

Consequently, by Theorem 6.3.1 we have

TG′
[
χF (t

˙
)
(
χE2(t

˙
)(s

˙k+1
, . . . , s

˙m
)C̃k+1(sk+1) · · · C̃m(sm)dνk+1(sk+1) · · · dνm(sm)

)
B̃(t)

·
(
χE1(t

˙
)(s

˙1
, . . . , s

˙k
)C̃1(s1) · · · C̃k(sk)dν1(s1) · · · dνk(sk)

)
dµ(t)

]
=

∑
σ∈O{1,...,k}
τ∈O{k+1,...,m}

TG′
[
χG∩[∆k(σ)×∆k+1,m(τ)×(0,1)](s

˙1
, . . . , s

˙k
, s

˙k+1
, . . . , s

˙m
, t
˙
)

· C̃k+1(sk+1) · · · C̃m(sm)B̃(t)C̃1(s1) · · · C̃k(sk)

· dν1(s1) · · · dνk(sk)dνk+1(sk+1) · · · dνm(sm)dµ(t)
]

=
∑

σ∈O{1,...,k}
τ∈O{k+1,...,m}

TG′
[
χG∩[∆k(σ)×∆k+1,m(τ)×(0,1)](s

˙1
, . . . , s

˙k
, s

˙k+1
, . . . , s

˙m
, t
˙
)

· C̃τ(m−k)(sτ(m−k)) · · · C̃τ(1)(sτ(1))B̃(t)C̃σ(k)(sσ(k)) · · · C̃σ(1)(sσ(1))

· dν1(s1) · · · dνk(sk)dνk+1(sk+1) · · · dνm(sm)dµ(t)
]
.

(6.79)
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Now, if (s1, . . . , sk, sk+1, . . . , sm, t) ∈ G ∩ [∆k(σ) × ∆k+1,m(τ) × (0, 1)] for some

σ ∈ O{1,...,k}, τ ∈ O{k+1,...,m}, then by definition of G,

(s1, . . . , sk) ∈ E1(t) ⊆ (0, t), and (sk+1, . . . , sm) ∈ E2(t) ⊆ (t, 1); (6.80)

thus si < t for i = 1, . . . , k, and t < si for i = k + 1, . . . ,m. Furthermore, 0 <

sσ(1) < · · · < sσ(k) < 1 and 0 < sτ(1) < · · · < sτ(m−k) < 1. Together these yield that

0 < sσ(1) < · · · < sσ(k) < t < sτ(1) < · · · < sτ(m−k) < 1. Hence we may apply Theorem

6.3.3 to obtain that

TG′
[
χF (t

˙
)
(
χE2(t

˙
)(s

˙k+1
, . . . , s

˙m
)C̃k+1(sk+1) · · · C̃m(sm)dνk+1(sk+1) · · · dνm(sm)

)
B̃(t)

·
(
χE1(t

˙
)(s

˙1
, . . . , s

˙k
)C̃1(s1) · · · C̃k(sk)dν1(s1) · · · dνk(sk)

)
dµ(t)

]
=

∑
σ∈O{1,...,k}
τ∈O{k+1,...,m}

∫
G∩[∆k(σ)×∆k+1,m(τ)×(0,1)]

Cτ(m−k) · · ·Cτ(1)BCσ(k) · · ·Cσ(1)

× (ν1 × · · · × νk × νk+1 × · · · × νm × µ)(ds1, . . . , dsk, dsk+1, . . . , dsm, dt)

=
∑

σ∈O{1,...,k}
τ∈O{k+1,...,m}

∫
∆k(σ)×∆k+1,m(τ)×(0,1)

χG(s1, . . . , sk, sk+1, . . . , sm, t)Cτ(m−k) · · ·Cτ(1)BCσ(k) · · ·Cσ(1)

× (ν1 × · · · × νk × νk+1 × · · · × νm × µ)(ds1, . . . , dsk, dsk+1, . . . , dsm, dt)

=
∑

σ∈O{1,...,k}
τ∈O{k+1,...,m}

∫
∆k(σ)×∆k+1,m(τ)×(0,1)

χE1(t)(s1, . . . , sk)χE2(t)(sk+1, . . . , sm)χF (t)

× Cτ(m−k) · · ·Cτ(1)BCσ(k) · · ·Cσ(1)

× (ν1 × · · · × νk × νk+1 × · · · × νm × µ)(ds1, . . . , dsk, dsk+1, . . . , dsm, dt). (6.81)

Applying Fubini-Tonelli gives

TG′
[
χF (t

˙
)
(
χE2(t)(s

˙k+1
, . . . , s

˙m
)C̃k+1(sk+1) · · · C̃m(sm)dνk+1(sk+1) · · · dνm(sm)

)
B̃(t)
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·
(
χE1(t)(s

˙1
, . . . , s

˙k
)C̃1(s1) · · · C̃k(sk)dν1(s1) · · · dνk(sk)

)
dµ(t)

]
=

∑
σ∈O{1,...,k}
τ∈O{k+1,...,m}

∫
(0,1)

∫
∆k+1,m(τ)

∫
∆k(σ)

χE1(t)(s1, . . . , sk)χE2(t)(sk+1, . . . , sm)χF (t)

× Cτ(m−k) · · ·Cτ(1)BCσ(k) · · ·Cσ(1)

× (ν1 × · · · × νk)(ds1, . . . , dsk)(νk+1 × · · · × νm)(dsk+1, . . . , dsm)µ(dt)

=
∑

σ∈O{1,...,k}
τ∈O{k+1,...,m}

∫
(0,1)

χF (t)

∫
∆k+1,m(τ)

χE2(t)(sk+1, . . . , sm)Cτ(m−k) · · ·Cτ(1)B

×
∫

∆k(σ)

χE1(t)(s1, . . . , sk)Cσ(k) · · ·Cσ(1)

× (ν1 × · · · × νk)(ds1, . . . , dsk)(νk+1 × · · · × νm)(dsk+1, . . . , dsm)µ(dt)

=

∫
F

( ∑
τ∈O{k+1,...,m}

∫
∆k+1,m(τ)

χE2(t)(sk+1, . . . , sm)Cτ(m−k) · · ·Cτ(1)

× (νk+1 × · · · × νm)(dsk+1, . . . , dsm)

)
B

×

( ∑
σ∈O{1,...,k}

∫
∆k(σ)

χE1(t)(s1, . . . , sk)Cσ(k) · · ·Cσ(1)

× (ν1 × · · · × νk)(ds1, . . . , dsk)

)
µ(dt)

=

∫
F

TG′
[
χE2(t)(s

˙k+1
, . . . , s

˙m
)C̃k+1(sk+1) · · · C̃m(sm)dνk+1(sk+1) · · · dνm(sm)

]
B

×TG′
[
χE1(t)(s

˙1
, . . . , s

˙k
)C̃1(s1) · · · C̃k(sk)dν1(s1) · · · dνk(sk)

]
µ(dt), (6.82)

concluding the proof for 1 ≤ k ≤ m. The cases k = 0 and k = m can be proved by a

similar treatment.

Example 29. We will consider a simple example using Theorem 6.3.5. (We will

achieve the same effect by a somewhat different means in Example 38 below.) Con-

sider operators A,B ∈ L(X) and measures µ, ν ∈ Mcb[0, 1]. We are interested in
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calculating

P 2,1
µ,ν(A,B) = TG′

[(
χ(0,1)Ã(s)dµ(s)

)2

χ(0,1)B̃(t)dν(t)

]
= TG′

[
χ(0,1)3(r

˙
, s

˙
, t
˙
)Ã(r)Ã(s)B̃(t)dµ(r)dµ(s)dν(t)

]
. (6.83)

We note that

χ(0,1)3
a.e.-µ2×ν

= χ{(r,s,t)∈(0,1): r∈(0,t)∪(t,1) and s∈(0,t)∪(t,1)}

= χ{(r,s,t)∈(0,1): r∈(0,t) and s∈(0,t)} + χ{(r,s,t)∈(0,1): r∈(0,t) and s∈(t,1)}

+ χ{(r,s,t)∈(0,1): r∈(t,1) and s∈(0,t)} + χ{(r,s,t)∈(0,1): r∈(t,1) and s∈(t,1)}, (6.84)

so for (r, s, t) ∈ (0, 1)3 a.e.-µ2 × ν,

χ(0,1)3(r, s, t) = χ(0,t)(r)χ(0,t)(s)χ(0,1)(t) + χ(0,t)(r)χ(t,1)(s)χ(0,1)(t)

+ χ(t,1)(r)χ(0,t)(s)χ(0,1)(t) + χ(t,1)(r)χ(t,1)(s)χ(0,1)(t). (6.85)

Hence by Theorems 6.3.1 and 6.3.5,

P 2,1
µ,ν(A,B) = TG′

[
χ(0,t)(r

˙
)χ(0,t)(s

˙
)χ(0,1)(t

˙
)Ã(r)Ã(s)B̃(t)dµ(r)dµ(s)dν(t)

]
+ TG′

[
χ(0,t)(r

˙
)χ(t,1)(s

˙
)χ(0,1)(t

˙
)Ã(r)Ã(s)B̃(t)dµ(r)dµ(s)dν(t)

]
+ TG′

[
χ(t,1)(r

˙
)χ(0,t)(s

˙
)χ(0,1)(t

˙
)Ã(r)Ã(s)B̃(t)dµ(r)dµ(s)dν(t)

]
+ TG′

[
χ(t,1)(r

˙
)χ(t,1)(s

˙
)χ(0,1)(t

˙
)Ã(r)Ã(s)B̃(t)dµ(r)dµ(s)dν(t)

]

= TG′
[
χ(0,1)(t

˙
)B̃(t)

(
χ(0,t)2(r

˙
, s

˙
)Ã(r)Ã(s)dµ(r)dµ(s)

)
dν(t)

]
+ TG′

[
χ(0,1)(t

˙
)
(
χ(t,1)(s

˙
)Ã(s)dµ(s)

)
B̃(t)

(
χ(0,t)(r

˙
)Ã(r)dµ(r)

)
dν(t)

]
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+ TG′
[
χ(0,1)(t

˙
)
(
χ(t,1)(r

˙
)Ã(r)dµ(r)

)
B̃(t)

(
χ(0,t)(s

˙
)Ã(s)dµ(s)

)
dν(t)

]
+ TG′

[
χ(0,1)(t

˙
)
(
χ(t,1)2(r

˙
, s

˙
)Ã(r)Ã(s)dµ(r)dµ(s)

)
B̃(t)dν(t)

]

=

∫
(0,1)

B TG′
[
χ(0,t)2(r

˙
, s

˙
)Ã(r)Ã(s)dµ(r)dµ(s)

]
ν(dt)

+

∫
(0,1)

TG′
[
χ(t,1)(s

˙
)Ã(s)dµ(s)

]
B TG′

[
χ(0,t)(r

˙
)Ã(r)dµ(r)

]
ν(dt)

+

∫
(0,1)

TG′
[
χ(t,1)(r

˙
)Ã(r)dµ(r)

]
B TG′

[
χ(0,t)(s

˙
)Ã(s)dµ(s)

]
ν(dt)

+

∫
(0,1)

TG′
[
χ(t,1)2(r

˙
, s

˙
)Ã(r)Ã(s)dµ(r)dµ(s)

]
B ν(dt). (6.86)

6.4 The intermediate disentangling space E

We are now almost prepared to use elements of the set G ′ to define the space E, after

which we will define the intermediate disentangling map TE on E that corresponds to

the map TG′ on G ′. However, we will define E as a quotient space, so we need to first

define the vector space V and the subspace V ′ that will form the quotient. Also, we

will define V using only some, not all, of the elements of G ′.

Definition 6.4.1 (The set G and the space V). Let G ⊆ G ′ be the set of elements of

G ′ of the form

χF (s
˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm) (6.87)

for all nonnegative integers m, and all selections of nonzero operators C1, . . . , Cm ∈

L(X) and measures ν1, . . . , νm ∈ Mcb[0, 1], for which F is a Borel set with F ⊆

∆m(em), where ‘em’ here (and in what follows) refers to the identity permutation

em ∈ Sm (so ∆m(em) = {(s1, . . . , sm) : 0 < s1 < · · · < sm < 1}). (Again, for m = 0



190

the expression (6.87) is taken to equal 1.)

We then define V to be the free module over C (and hence free vector space)

having basis G. (For the definition and introductory concepts of free modules, see

[32, p. 135].)

Remark 26. When dealing with the set G ′, we have avoided expressing elements of G ′

as sums of other elements, since G ′ is a set and does not have any operations defined

on it. We did that even though we might have been inclined to think of certain

elements as sums. For example, because we can split up a characteristic function

and write χ(0,1)(s
˙
)Ã(s)dµ(s) ∈ G ′ as [χ(0, 1

2
) + χ( 1

2
,0)](s

˙
)Ã(s)dµ(s) ∈ G ′, we might have

wanted to write that element as χ(0, 1
2

)(s
˙
)Ã(s)dµ(s) +χ( 1

2
,0)(s

˙
)Ã(s)dµ(s), but we have

avoided doing so. The reason is that we wanted to put off speaking of the sum of

two elements until we have a vector space in which a sum is defined. Now that

we have the vector space V , if we write a sum of two elements, then we will always

interpret it as the vector space sum. Consequently, the expression χ(0, 1
2

)(s
˙
)Ã(s)dµ(s)+

χ( 1
2
,0)(s

˙
)Ã(s)dµ(s) ∈ V does not refer to the single vector χ(0,1)(s

˙
)Ã(s)dµ(s) ∈ V ; it

refers to a sum of two other vectors. (Eventually we will want to consider those to be

equal in the space E, which we will accomplish by defining certain equivalence classes

of elements of V as cosets of a subspace V ′, and defining E to be the quotient space

V/V ′.)

A second important thing to note about the sum of two vectors, or more generally

about a linear combination of vectors in V , is that the arguments of variables and

the corresponding labels attached to indeterminates are independent from one term

to the next. Thus, for example, if we write

2χ(0,1)(t
˙
)Ã(t)dµ(t) + 3χ(0,1)(t

˙
)B̃(t)dν(t), (6.88)
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then the occurrences of ‘t’ and ‘t
˙
’ in the first term are unrelated to the occurrences

in the second term.

Also using this example we observe that as we have defined the elements of V ,

the scalar coefficients 2 and 3 in the expression (6.88) are multiplied by the entire

element of G, not just by the respective characteristic functions (since V is a space of

linear combinations of elements of G). However, it is easy to make sense of a scalar

multiple of a characteristic function, and later our definition of E will be designed in

a way that makes the two such scalar multiplications equivalent.

Although V has been defined so that the characteristic functions sets are subsets

of ∆m(em) for some m ≥ 0, since V was generated by G ⊆ G ′, we may still permute

arguments as before, so that if

χF (s
˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm) ∈ G ⊆ V (6.89)

with F ⊆ ∆m(em), then we may still say for any σ ∈ Sm that

χF (s
˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm)

= χFσ(s
˙σ(1)

, . . . , s
˙σ(m)

)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm) ∈ G ⊆ V . (6.90)

This means that the characteristic function sets for elements of V will always be

subsets of ∆m(σ) for some σ ∈ Sm. We would like to expand these expressions to

include characteristic function sets that are arbitrary Borel subsets of [0, 1]m for any

m ≥ 0. (This does not add elements to V ; it just adds to the expressions allowed for

representing elements of V .)

Definition 6.4.2 (Denoting elements of V using more general characteristic func-

tions). Let E ⊆ [0, 1]m be a Borel set for some m ≥ 0, let C1, . . . , Cm ∈ L(X), and
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let ν1, . . . , νm ∈Mcb[0, 1]. Then we define

χE(s
˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm) ∈ V (6.91)

by

χE(s
˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm)

:=
∑
π∈Sm

[
χEπ∩∆m(em)(s

˙1
, . . . , s

˙m
)πC̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm)

]
=
∑
π∈Sm

[
χEπ∩∆m(em)(s

˙π(1)
, . . . , s

˙π(m)
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm)

]
.

(6.92)

(For m = 0 there is a single summand, regarded as equal to 1.)

Remark 27. We need to verify that the above is well-defined, where our concern is

that the arguments of the characteristic function could be permuted by some σ ∈ Sm

without changing the expression on the left, and we want to make sure it doesn’t

change the expression on the right. In fact, using Definition 6.4.2 in that case, we

would have in V that

χEσ(s
˙σ(1)

, . . . , s
˙σ(m)

)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm)

=
∑
π∈Sm

[
χ(Eσ)π∩∆m(em)(s

˙σ(1)
, . . . , s

˙σ(m)
)πC̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm)

]
=
∑
σπ∈Sm

[
χEσπ∩∆m(em)(s

˙σπ(1)
, . . . , s

˙σπ(m)
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm)

]
=
∑
ρ∈Sm

[
χEρ∩∆m(em)(s

˙ρ(1)
, . . . , s

˙ρ(m)
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm)

]
= χE(s

˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm). (6.93)
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Hence the defined expression is well-defined.

As a consequence of this definition, we are able to use all of the valid expressions

in G ′ as valid expressions for single terms in V , and they are equal in G ′ if and only

if they are equal in V . (That is true because the allowed differences in expression be-

tween single terms that are equal, in either space, consist of changing a characteristic

function set by a set of measure zero or permuting indices. So equivalent expressions

in one are equivalent expressions in the other.)

Example 30. Let A,B ∈ L(X), and let µ, ν ∈Mcb[0, 1]. then

χ(0,1)2(s
˙
, t
˙
)Ã(s)B̃(t)dµ(s)dν(t)

= χ{0<s<t<1}(s
˙
, t
˙
)Ã(s)B̃(t)dµ(s)dν(t) + χ{0<t<s<1}(t

˙
, s

˙
)Ã(s)B̃(t)dµ(s)dν(t) ∈ V .

(6.94)

Note that in the case where E ⊆ ∆m(σ) for some σ ∈ Sm, the definition is

consistent with itself, saying nothing new.

Before we go on, we will define a multiplication on V (because we need a multi-

plication on E, and it is easier to define here first). This will make V an algebra.

Definition 6.4.3 (Multiplication in V). Let v, w ∈ V . In the case that v, w are basis

vectors, that is, when v, w ∈ G, let us say that

v = χF1(s
˙1
, . . . , s

˙m
)Ã(s1) · · · Ã(sm)dµ1(s1) · · · dµm(sm),

w = χF2(t
˙1
, . . . , t

˙n
)B̃(t1) · · · B̃(tm)dν1(t1) · · · dνn(tn), (6.95)

where A1, . . . , Am, B1, . . . , Bn ∈ L(X) are operators, µ1, . . . , µm, ν1, . . . , νn ∈

Mcb[0, 1] are measures, and F1 ⊆ ∆m(em), F2 ⊆ ∆n(en) are Borel sets. Then we
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define the product vw ∈ V to be

vw := χF1(s
˙1
, . . . , s

˙m
)Ã(s1) · · · Ã(sm)dµ1(s1) · · · dµm(sm)

· χF2(t
˙1
, . . . , t

˙n
)B(t1) · · · B̃(tm)dν1(t1) · · · dνn(tn)

= χF1×F2(s
˙1
, . . . , s

˙m
, t
˙1
, . . . , t

˙n
)Ã(s1) · · · Ã(sm)B(t1) · · · B̃(tm)

· dµ1(s1) · · · dµm(sm)dν1(t1) · · · dνn(tn). (6.96)

In particular, the element 1 ∈ V acts as a multiplicative identity.

On the other hand, in the case v and w are not necessarily basis vectors, then say

they are expressed in terms of the basis vectors G of V as

v =
M∑
i=1

aigi, w =
N∑
j=1

bjhj (6.97)

where a1, . . . , aM , b1, . . . , bN ∈ C, where g1, . . . , gM ∈ G are distinct, and where

h1, . . . , hN ∈ G are distinct. Then we define the product vw to be

vw :=
M∑
i=1

N∑
j=1

aibj(gihj). (6.98)

Remark 28. It is necessary to show that multiplication in V is well-defined. In fact,

the only ambiguity here, in the second part of the definition, is in how v and w are

expressed as linear combinations of basis vectors, because we have not ruled out the

possibility that some coefficients ai or bj might equal zero. But in fact, if any did

equal zero, then the terms they multiply in the double summation would simply drop

out, meaning they have no effect on the value assigned to vw. Thus multiplication in

V is well-defined.

Theorem 6.4.4. Multiplication in V is commutative.
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Proof. Given v, w ∈ V , we want to show vw = wv. Let us first take the case where v

and w are single terms (v, w ∈ G), say

v = χF1(s
˙1
, . . . , s

˙m
)Ã(s1) · · · Ã(sm)dµ1(s1) · · · dµm(sm),

w = χF2(t
˙1
, . . . , t

˙n
)B̃(t1) · · · B̃(tm)dν1(t1) · · · dνn(tn), (6.99)

as in the definition (Definition 6.4.3) above (with F1 ⊆ ∆m(em) and F2 ⊆ ∆n(en)).

Then by that definition and by the fact that we may commute characteristic functions

and indeterminates in expressions in G ⊆ G ′, we have

vw := χF1(s
˙1
, . . . , s

˙m
)Ã(s1) · · · Ã(sm)dµ1(s1) · · · dµm(sm)

· χF2(t
˙1
, . . . , t

˙n
)B(t1) · · · B̃(tm)dν1(t1) · · · dνn(tn)

= χF2(t
˙1
, . . . , t

˙n
)B(t1) · · · B̃(tm)dν1(t1) · · · dνn(tn)

· χF1(s
˙1
, . . . , s

˙m
)Ã(s1) · · · Ã(sm)dµ1(s1) · · · dµm(sm)

= wv. (6.100)

For the general case, where arbitrary v, w ∈ V are expressed in terms of the basis

vectors G of V as

v =
M∑
i=1

aigi, w =
N∑
j=1

bjhj (6.101)

where a1, . . . , aM , b1, . . . , bN ∈ C, where g1, . . . , gM ∈ G are distinct, and where

h1, . . . , hN ∈ G are distinct, we then have

vw :=
M∑
i=1

N∑
j=1

aibj(gihj) =
N∑
j=1

M∑
i=1

bjai(hjgi) = wv. (6.102)
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Theorem 6.4.5. In V, scalar multiplication associates with vector multiplication, and

vector multiplication distributes over addition; that is: Given c ∈ C and v, w ∈ V, we

have c(vw) = (cv)w. Given u, v, w ∈ V, we have u(v + w) = uv + uw.

Proof. For associativity of scalar multiplication with vector multiplication, let c ∈ C

and v, w ∈ V . Say v =
∑M

i=1 aigi and w =
∑N

j=1 bjhj, where g1, . . . , gm ∈ G are

distinct and h1, . . . , hn ∈ G are distinct. Then by the definition of multiplication in

V (twice) we have

c(vw) = c

[(
M∑
i=1

aigi

)(
N∑
j=1

bjhj

)]
= c

[
M∑
i=1

N∑
j=1

aibj(gihj)

]

=
M∑
i=1

N∑
j=1

c aibj(gihj) =

(
M∑
i=1

c aigi

)(
N∑
j=1

bjhj

)

= (cv)w. (6.103)

We may therefore write c(vw) = (cv)w =: cvw. By commutativity we may also say

v(cw) = (cw)v = c(wv) = c(vw) = cvw.

For the distributive law, let u, v, w ∈ V . Let us say u =
∑M

i=1 aigi, and without

loss of generality we may say v =
∑N

j=1 bjhj and w =
∑N

j=1 cjhj, where g1, . . . , gm ∈ G

are distinct and h1, . . . , hn ∈ G are distinct. Then applying vector space properties

and the definition of multiplication in V (twice again) we have

u(v + w) =

(
M∑
i=1

aigi

)(
N∑
j=1

bjhj +
N∑
j=1

cjhj

)
=

(
M∑
i=1

aigi

)[
N∑
j=1

(bj + cj)hj

]

=
M∑
i=1

N∑
j=1

ai(bj + cj)gihj =
M∑
i=1

N∑
j=1

aibjgihj +
M∑
i=1

N∑
j=1

aicjgihj

=

(
M∑
i=1

aigi

)(
N∑
j=1

bjhj

)
+

(
M∑
i=1

aigi

)(
N∑
j=1

cjhj

)
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= uv + uw. (6.104)

We insert here an additional result about multiplication in V to make it more useful

in the context in which we will be working, namely, when characteristic functions are

arbitrary Borel subsets of [0, 1]m for some m ≥ 0.

Theorem 6.4.6 (Multiplication in V involving more general characteristic functions).

Let v, w ∈ V be given by

v = χE1(s
˙ 1
, . . . , s

˙ m
)Ã1(s1) · · · Ãm(sm)dµ1(s1) · · · dµm(sm),

w = χE2(t
˙ 1
, . . . , t

˙ n
)B̃1(t1) · · · B̃n(tn)dν1(t1) · · · dνn(tn), (6.105)

where E1 ⊆ [0, 1]m and E2 ⊆ [0, 1]n are Borel sets, A1, . . . , Am, B1, . . . , Bn ∈ L(X)

are operators, and µ1, . . . , µm, ν1, . . . , νn ∈Mcb[0, 1] are measures. Then

vw = χE1(s
˙ 1
, . . . , s

˙ m
)Ã1(s1) · · · Ãm(sm)dµ1(s1) · · · dµm(sm)

· χE2(t
˙ 1
, . . . , t

˙ n
)B̃1(t1) · · · B̃n(tn)dν1(t1) · · · dνn(tn)

= χE1×E2(s
˙ 1
, . . . , s

˙ m
, t
˙ 1
, . . . , t

˙ n
)Ã1(s1) · · · Ãm(sm)B̃1(t1) · · · B̃n(tn)

· dµ1(s1) · · · dµm(sm)dν1(t1) · · · dνn(tn). (6.106)

Proof. To avoid a little confusion, we will temporarily represent the multiplication

operation in V by an asterisk (∗). Given the hypotheses as stated, we have that

v ∗ w =
[
χE1(s

˙1
, . . . , s

˙m
)Ã1(s1) · · · Ãm(sm)dµ1(s1) · · · dµm(sm)

]
∗
[
χE2(t

˙1
, . . . , t

˙n
)B̃1(t1) · · · B̃n(tn)dν1(t1) · · · dνn(tn)

]
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=

[∑
σ∈Sm

χEσ1 ∩∆m(em)(s
˙σ(1)

, . . . , s
˙σ(m)

)Ã1(s1) · · · Ãm(sm)dµ1(s1) · · · dµm(sm)

]

∗

[∑
τ∈Sn

χEτ2∩∆n(en)(t
˙τ(1)

, . . . , t
˙τ(n)

)B̃1(t1) · · · B̃n(tn)dν1(t1) · · · dνn(tn)

]
.

(6.107)

Applying Definition 6.4.3 yields

v ∗ w =
∑
σ∈Sm

∑
τ∈Sn

[
χ(Eσ1 ∩∆m(em))×(Eτ2∩∆n(en))(s

˙σ(1)
, . . . , s

˙σ(m)
, t
˙τ(1)

, . . . , t
˙τ(n)

)

· Ã1(s1) · · · Ãm(sm)B̃1(t1) · · · B̃n(tn)dµ1(s1) · · · dµm(sm)dν1(t1) · · · dνn(tn)
]

=
∑
σ∈Sm

∑
τ∈Sn

[
χ(E1∩∆m(σ))σ×(E2∩∆n(τ))τ (s

˙σ(1)
, . . . , s

˙σ(m)
, t
˙τ(1)

, . . . , t
˙τ(n)

)

· Ã1(s1) · · · Ãm(sm)B̃1(t1) · · · B̃n(tn)dµ1(s1) · · · dµm(sm)dν1(t1) · · · dνn(tn)
]

=
∑
σ∈Sm

∑
τ∈Sn

[
χ(E1∩∆m(σ))×(E2∩∆n(τ))(s

˙1
, . . . , s

˙m
, t
˙1
, . . . , t

˙n
)

· Ã1(s1) · · · Ãm(sm)B̃1(t1) · · · B̃n(tn)dµ1(s1) · · · dµm(sm)dν1(t1) · · · dνn(tn)
]

=
∑
σ∈Sm

∑
τ∈Sn

[
χ(E1×E2)∩(∆m(σ)×∆n(τ))(s

˙1
, . . . , s

˙m
, t
˙1
, . . . , t

˙n
)

· Ã1(s1) · · · Ãm(sm)B̃1(t1) · · · B̃n(tn)dµ1(s1) · · · dµm(sm)dν1(t1) · · · dνn(tn)
]
.

(6.108)

We rename the variables t1, . . . , tn as sm+1, . . . , sm+n, respectively, rewrite the index

sets, and apply Definition 6.4.2, and the expression becomes

v ∗ w =
∑

σ∈O{1,...,m}

∑
ρ∈O{m+1,...,m+n}

[
χ(E1×E2)∩(∆m(σ)×∆m+1,m+n(ρ))(s

˙1
, . . . , s

˙m+n
)

· Ã1(s1) · · · Ãm(sm)B̃1(sm+1) · · · B̃n(sm+n)

· dµ1(s1) · · · dµm(sm)dν1(sm+1) · · · dνn(sm+n)
]
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=
∑

σ∈O{1,...,m}
ρ∈O{m+1,...,m+n}

∑
π∈Sm+n

[
χ[(E1×E2)∩(∆m(σ)×∆m+1,m+n(ρ))]π∩∆m+n(em+n)(s

˙1
, . . . , s

˙m+n
)π

· Ã1(s1) · · · Ãm(sm)B̃1(sm+1) · · · B̃n(sm+n)

· dµ1(s1) · · · dµm(sm)dν1(sm+1) · · · dνn(sm+n)
]
, (6.109)

where ∆m+1,m+n(ρ) := {(sm+1, . . . , sm+n) : 0 < sρ(1) < . . . < sρ(n) < 1}. But then we

notice that for all σ ∈ O{1,...,m}, ρ ∈ O{m+1,...,m+n}, up to a set of µ1× · · · × µm× ν1×

· · · × νn-measure zero,

∆m(σ)×∆m+1,m+n(ρ)

= {(s1, . . . , sm+n) : 0 < sσ(1) < · · · < sσ(m) < 1 and 0 < sρ(1) < · · · < sρ(n) < 1}

= ·⋃
η∈{σ}�{ρ}

{(s1, . . . , sm+n) : 0 < sη(1) < · · · < sη(m+n) < 1}

= ·⋃
η∈{σ}�{ρ}

∆m+n(η). (6.110)

This implies that

[∆m(σ)×∆m+1,m+n(ρ)]π ∩∆m+n(em+n) = [∆m(σ)×∆m+1,m+n(ρ) ∩∆m+n(π)]π

=

 ·⋃
η∈{σ}�{ρ}

∆m+n(η)

 ∩∆m+n(π)

π
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=

 [∆m+n(π)]π if π ∈ {σ} � {ρ},

∅ (the empty set) otherwise.

(6.111)

Hence,

v ∗ w =
∑

σ∈O{1,...,m}
ρ∈O{m+1,...,m+n}

∑
π∈{σ}�{ρ}

[
χ[(E1×E2)∩∆m+n(π)]π(s

˙1
, . . . , s

˙m+n
)πÃ1(s1) · · · Ãm(sm)

· B̃1(sm+1) · · · B̃n(sm+n)dµ1(s1) · · · dµm(sm)dν1(sm+1) · · · dνn(sm+n)
]

=
∑

π∈Sm+n

[
χ(E1×E2)π∩∆m+n(em+n)(s

˙1
, . . . , s

˙m+n
)πÃ1(s1) · · · Ãm(sm)

· B̃1(sm+1) · · · B̃n(sm+n)dµ1(s1) · · · dµm(sm)dν1(sm+1) · · · dνn(sm+n)
]

= χE1×E2(s
˙1
, . . . , s

˙m+n
)Ã1(s1) · · · Ãm(sm)B̃1(sm+1) · · · B̃n(sm+n)

· dµ1(s1) · · · dµm(sm)dν1(sm+1) · · · dνn(sm+n)

= χE1×E2(s
˙1
, . . . , s

˙m
, t
˙1
, . . . , t

˙n
)Ã1(s1) · · · Ãm(sm)B̃1(t1) · · · B̃n(tn)

· dµ1(s1) · · · dµm(sm)dν1(t1) · · · dνn(tn)

= χE1(s
˙1
, . . . , s

˙m
)Ã1(s1) · · · Ãm(sm)dµ1(s1) · · · dµm(sm)

· χE2(t
˙1
, . . . , t

˙n
)B̃1(t1) · · · B̃n(tn)dν1(t1) · · · dνn(tn). (6.112)

Theorem 6.4.7. Multiplication in V is associative.

Proof. Let u, v, w ∈ V . First we consider the case where each is a basis vector,
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u, v, w ∈ G, say

u = χF1(r1, . . . , rm)Ã1(r1) · · · Ãm(rm)dµ1(r1) · · · dµm(rm),

v = χF2(s1, . . . , sn)B̃1(s1) · · · B̃n(sn)dν1(s1) · · · dνn(sn),

w = χF3(t1, . . . , tp)C̃1(t1) · · · C̃p(tp)dη1(t1) · · · dηp(tp), (6.113)

where m,n, p ≥ 0, F1 ⊆ ∆m(em), F2 ⊆ ∆n(en), F3 ⊆ ∆p(ep) are Borel sets, A1, . . . ,

Am, B1, . . . , Bn, C1, . . . , Cp ∈ L(X) are operators, and µ1, . . . , µm, ν1, . . . , νn, η1, . . . , ηp

∈ Mcb[0, 1] are measures. Then by Theorem 6.4.6 we have (again temporarily using

an asterisk ‘∗’ to represent multiplication in V):

(u ∗ v) ∗ w =
[(
χF1(r1, . . . , rm)Ã1(r1) · · · Ãm(rm)dµ1(r1) · · · dµm(rm)

)
∗
(
χF2(s1, . . . , sn)B̃1(s1) · · · B̃n(sn)dν1(s1) · · · dνn(sn)

)]
∗
(
χF3(t1, . . . , tp)C̃1(t1) · · · C̃p(tp)dη1(t1) · · · dηp(tp)

)
=
(
χF1×F2(r1, . . . , rm, s1, . . . , sn)Ã1(r1) · · · Ãm(rm)

· B̃1(s1) · · · B̃n(sn)dµ1(r1) · · · dµm(rm)dν1(s1) · · · dνn(sn)
)

∗
(
χF3(t1, . . . , tp)C̃1(t1) · · · C̃p(tp)dη1(t1) · · · dηp(tp)

)
= χF1×F2×F3(r1, . . . , rm, s1, . . . , sn, t1, . . . , tp)

· Ã1(r1) · · · Ãm(rm)B̃1(s1) · · · B̃n(sn)C̃1(t1) · · · C̃p(tp)

· dµ1(r1) · · · dµm(rm)dν1(s1) · · · dνn(sn)dη1(t1) · · · dηp(tp)

=
(
χF1(r1, . . . , rm)Ã1(r1) · · · Ãm(rm)dµ1(r1) · · · dµm(rm)

)
∗
(
χF2×F3(s1, . . . , sn, t1, . . . , tp)B̃1(s1) · · · B̃n(sn)

C̃1(t1) · · · C̃p(tp)dν1(s1) · · · dνn(sn)dη1(t1) · · · dηp(tp)
)

=
(
χF1(r1, . . . , rm)Ã1(r1) · · · Ãm(rm)dµ1(r1) · · · dµm(rm)

)
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∗
[(
χF2(s1, . . . , sn)B̃1(s1) · · · B̃n(sn)dν1(s1) · · · dνn(sn)

)
∗
(
χF3(t1, . . . , tp)C̃1(t1) · · · C̃p(tp)dη1(t1) · · · dηp(tp)

)]
= u ∗ (v ∗ w). (6.114)

Therefore, we have associativity for the case of single terms, and we may write

(uv)w = u(vw) =: uvw.

Now consider arbitrary u, v, w ∈ V ; let us say that they are given by

u =
L∑
i=1

aiui, v =
M∑
j=1

bjvj, and w =
N∑
k=1

ckwk, (6.115)

where a1, . . . , aL, b1, . . . , bM , c1, . . . , cN ∈ C and u1, . . . , uL, v1, . . . , vM , w1, . . . , wN ∈

G. Then by Theorem 6.4.5 and by the associativity for elements of G that we have

just established, we have

(uv)w =

[(
L∑
i=1

aiui

)(
M∑
j=1

bjvj

)](
N∑
k=1

ckwk

)
=

(
L∑
i=1

M∑
j=1

aibjuivj

)(
N∑
k=1

ckwk

)

=
L∑
i=1

M∑
j=1

N∑
k=1

aibjckuivjwk =

(
L∑
i=1

aiui

)(
M∑
j=1

N∑
k=1

bjckvjwk

)

=

(
L∑
i=1

aiui

)[(
M∑
j=1

bjvj

)(
N∑
k=1

ckwk

)]

= u(vw). (6.116)

We now know all that we need to know about the vector space V . After briefly

defining the subspace V ′ ⊆ V , we will be able to define E as the quotient of the

two. There are two effects we would like to accomplish in E by means of our defini-
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tion of V ′. Roughly speaking, the first is that for vectors in V having all the same

indeterminates (with time indices in the same order), we would like to relate their

characteristic functions ‘linearly’ in the way one would expect (for example, if two

of the characteristic functions add to a third, then we want the three corresponding

vectors to have the same relationship). The second is that we would like a vector in

V to represent the zero vector in E if the measures associated with the vector give

measure zero when applied to the characteristic function set as a product measure.

We can accomplish this in one step. We will define V ′ by means of a generating set U .

Theorem 6.4.8. Define a subset U ⊆ V to be the set of all linear combinations

n∑
i=1

ai

[
χFi(s

˙ 1
, . . . , s

˙ m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm)

]
(6.117)

for all possible integers m,n ≥ 1, all complex numbers a1, . . . , an, all Borel sets

F1, . . . , Fn ⊆ ∆m(em), all nonzero operators C1, . . . , Cm ∈ L(X), and all measures

ν1, . . . , νm ∈Mcb[0, 1] for which
∑n

i=1 aiχFi ≡ 0 up to a set of ν1 × · · · × νm-measure

zero.

Then the set V ′ of all (finite) linear combinations of elements from U , that is,

V ′ :=

{
v ∈ V : v =

N∑
j=1

cjuj, where N ∈ N, c1, . . . , cN ∈ C, and u1, . . . , uN ∈ U

}
,

(6.118)

is a subspace of V.

Remark 29. Note that under the definition of U stated in Theorem 6.4.8, given

m ≥ 1, Borel set F ⊆ ∆m(em), nonzero operators C1, . . . , Cm ∈ L(X) and measures

ν1, . . . , νm ∈ Mcb[0, 1] with (ν1 × · · · × νm)(F ) = 0 we have that χF ≡ 0 up to a set

of measure zero, and thus χF (s
˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm) ∈ U .
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Proof of Theorem 6.4.8. The set of linear combinations of elements of a subset of a

vector space always form a subspace (algebraically). (See [32, p. 129] on submodules.)

Example 31. Let A,B ∈ L(X) and µ, ν ∈Mcb[0, 1]. Then

χ{0<s<t<1}(s
˙
, t
˙
)Ã(s)B̃(t)dµ(s)dν(t)− χ{0<1−t<s<t<1}(s

˙
, t
˙
)Ã(s)B̃(t)dµ(s)dν(t)

− χ{0<s<t<1−s<1}(s
˙
, t
˙
)Ã(s)B̃(t)dµ(s)dν(t) ∈ V ′, (6.119)

since χ{0<s<t<1}(s
˙
, t
˙
)−χ{{0<1−t<s<t<1}}(s

˙
, t
˙
)−χ{{0<s<t<1−s<1}}(s

˙
, t
˙
) = 0 (µ×ν)-a.e.

Definition 6.4.9 (The intermediate disentangling space E). Using V ′ as in Theorem

6.4.8, we now define E to be the quotient vector space E := V/V ′. (In general, taking

the quotient of a vector space with respect to a subspace yields a vector space, as

module quotients by submodules yield modules, see [7, p. 452].) As usual for quotient

spaces, in that E is a space of cosets of V ′ in V , elements of V are representatives of

those cosets, and we will therefore often use elements of V to represent elements of E.

Example 32. Let A,B ∈ L(X) and µ, ν ∈ Mcb[0, 1]. As noted in the previous

example,

χ{0<s<t<1}(s
˙
, t
˙
)Ã(s)B̃(t)dµ(s)dν(t)− χ{0<1−t<s<t<1}(s

˙
, t
˙
)Ã(s)B̃(t)dµ(s)dν(t)

− χ{0<s<t<1−s<1}(s
˙
, t
˙
)Ã(s)B̃(t)dµ(s)dν(t) ∈ V ′. (6.120)

Therefore, in the space E we have

χ{0<s<t<1}(s
˙
, t
˙
)Ã(s)B̃(t)dµ(s)dν(t)
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= χ{0<1−t<s<t<1}(s
˙
, t
˙
)Ã(s)B̃(t)dµ(s)dν(t)+χ{0<s<t<1−s<1}(s

˙
, t
˙
)Ã(s)B̃(t)dµ(s)dν(t),

(6.121)

since the right-hand side of Equation (6.121) differs from the left-hand side by the

element of V ′ shown in the previous expression, (6.120).

Although we have defined all the elements of E as well as its addition and scalar

multiplication (which are implied by its definition as a quotient vector space), we

need to show how multiplication in E can be carried out using coset representatives

from V .

Definition 6.4.10 (Multiplication in E). Let x, y ∈ E. Then given any representa-

tives v, w ∈ V , respectively, so x = v+V ′ and y = w+V ′, we define the product of x

and y in E by xy := vw + V ′, where the expression ‘vw’ on the right is the product

of v and w in V .

Remark 30. It is necessary for us to show that this product for E is well-defined. For

purposes of this demonstration, we will use ‘∗E’ to mean multiplication in E and ‘∗V ’

to mean multiplication in V .

As stated in the definition, let x, y ∈ E, and take any representatives v, w ∈ V ,

respectively, so x = v + V ′ and y = w + V ′. Now consider any other representative

of x, which we may write as v + v′ for some v′ ∈ V ′, so we have x = v + v′ + V ′.

Then the definition of multiplication in E gives that both x ∗E y = v ∗V w + V ′ and

x ∗E y = (v + v′) ∗V w + V ′; we claim that those are equal. It suffices to show that

(v + v′) ∗V w − v ∗V w ∈ V ′; that is, that v′ ∗V w ∈ V ′.

Since v′ ∈ V ′, we may write v′ =
∑N

j=1 bjuj, where N ∈ N, b1, . . . , bN ∈ C, and

u1, . . . , uN ∈ U , with U defined as in Theorem 6.4.8. Since w ∈ V , we may write
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w =
∑M

i=1 aigi with a1, . . . , aM ∈ C and g1, . . . , gM ∈ G. Therefore, we claim

v′ ∗V w =

(
N∑
j=1

bjuj

)
∗V

(
M∑
i=1

aigi

)
=

N∑
j=1

M∑
i=1

bjai(uj ∗V gi) ∈ V ′. (6.122)

Since V ′ is a vector space, it will suffice to show that each uj ∗V gi ∈ V ′, or in general,

that u ∗V g ∈ V ′ for all u ∈ U , g ∈ G.

Let u ∈ U . Then

u =

p∑
i=1

αi

[
χEi(s

˙1
, . . . , s

˙m
)Ã1(s1) · · · Ãm(sm)dµ1(s1) · · · dµm(sm)

]
∈ V (6.123)

with m, p ≥ 1, α1, . . . , αm ∈ C, Borel sets E1, . . . , Ep ⊆ ∆m(em), operators A1, . . . ,

Am ∈ L(X), and measures µ1, . . . , µm ∈Mcb[0, 1], having
∑p

i=1 αiχEi ≡ 0 up to a set

of µ1 × · · · × µm-measure zero. Let g ∈ G; say

g = χF (t
˙1
, . . . , t

˙n
)B̃1(t1) · · · B̃n(tn)dν1(t1) · · · dνn(tn) (6.124)

with n ≥ 0, with operators B1, . . . , Bn ∈ L(X), with measures ν1, . . . , νn ∈Mcb[0, 1],

and with F ⊆ ∆n(en) a Borel set. Then

u ∗V g

=

[
p∑
i=1

αi

(
χEi(s

˙1
, . . . , s

˙m
)Ã1(s1) · · · Ãm(sm)dµ1(s1) · · · dµm(sm)

)]

∗V
[
χF (t

˙1
, . . . , t

˙n
)B̃1(t1) · · · B̃n(tn)dν1(t1) · · · dνn(tn)

]
=

p∑
i=1

αi

[
χEi×F (s

˙1
, . . . , s

˙m
, t
˙1
, . . . , t

˙n
)Ã1(s1) · · · Ãm(sm)B̃1(t1) · · · B̃n(tn)

· dµ1(s1) · · · dµm(sm)dν1(t1) · · · dνn(tn)
]
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=

p∑
i=1

αi

[
χEi×F (s

˙1
, . . . , s

˙m
, s

˙m+1
, . . . , s

˙m+n
)Ã1(s1) · · · Ãm(sm)

· B̃1(sm+1) · · · B̃n(sm+n)dµ1(s1) · · · dµm(sm)dν1(sm+1) · · · dνn(sm+n)
]

=

p∑
i=1

αi
∑

π∈Sm+n

[
χ(Ei×F )π∩∆m+n(em+n)(s

˙1
, . . . , s

˙m+n
)πÃ1(s1) · · · Ãm(sm)

· B̃1(sm+1) · · · B̃n(sm+n)dµ1(s1) · · · dµm(sm)dν1(sm+1) · · · dνn(sm+n)
]

=
∑

π∈Sm+n

p∑
i=1

αi

[
χ(Ei×F )π∩∆m+n(em+n)(s

˙1
, . . . , s

˙m+n
)πÃ1(s1) · · · Ãm(sm)

· B̃1(sm+1) · · · B̃n(sm+n)dµ1(s1) · · · dµm(sm)dν1(sm+1) · · · dνn(sm+n)
]
.

(6.125)

To show that the above expression is in V ′, it suffices to show that it is a sum of

elements from U , which we will do by demonstrating that for each fixed π ∈ Sm+n,

p∑
i=1

αiχ(Ei×F )π∩∆m+n(em+n) ≡ 0 (6.126)

up to a set of (µ1 × · · · × µm × ν1 × · · · × νn)π-measure zero. But in fact, for fixed

π ∈ Sm+n, for all values of s1, . . . , sm+n, we have

p∑
i=1

αiχ(Ei×F )π∩∆m+n(em+n)(s1, . . . , sm+n)π

=

p∑
i=1

αiχ[(Ei×F )∩∆m+n(π)]π(s1, . . . , sm+n)π

=

[
p∑
i=1

αiχ(Ei×F )∩∆m+n(π)(s1, . . . , sm+n)

]π

=

[
p∑
i=1

αiχEi(s1, . . . , sm)χF (sm+1, . . . , sm+n)χ∆m+n(π)(s1, . . . , sm+n)

]π

=

[
χF (sm+1, . . . , sm+n)χ∆m+n(π)(s1, . . . , sm+n)

p∑
i=1

αiχEi(s1, . . . , sm)

]π
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= 0 (6.127)

a.e.-(µ1×· · ·×µm×ν1×· · ·×νn)π as a function of (s1, . . . , sm+n)π, since
∑p

i=1 αiχEi = 0

a.e.-µ1 × · · · × µm (as function of (s1, . . . , sm)). This gives us the condition (6.126)

we sought, meaning that u ∗V g ∈ V ′.

Therefore, using a different representative for x will yield the same product in E.

By commutativity in V , the same fact will hold for choosing a different representative

for the other factor y in the product as well (or changing representatives ofboth x

and y). Hence the product in E is well-defined, making E an algebra.

We should note as a result that multiplication in E inherits commutative, asso-

ciative, and distributive properties from V : Let c ∈ C, x, y, z ∈ E, and u, v, w ∈ V

with x = u+ V ′, y = v + V ′, z = w + V ′. Then

xy = (u+ V ′)(v + V ′) = (uv + V ′) = (vu+ V ′) = (v + V ′)(u+ V ′) = yx,

c(xy) = c[(u+ V ′)(v + V ′)] = c(uv + V ′) = c(uv) + V ′ = (cu)v + V ′

= (cu+ V ′)(v + V ′) = (cx)y,

(xy)z = [(u+ V ′)(v + V ′)](w + V ′) = (uv + V ′)(w + V ′) = (uv)w + V ′ = u(vw) + V ′

= (u+ V ′)(vw + V ′) = (u+ V ′)[(v + V ′)(w + V ′)] = x(yz),

(6.128)

and

x(y + z) = (u+ V ′)[(v + V ′) + (w + V ′)] = (u+ V ′)[(v + w) + V ′] = u(v + w) + V ′

= (uv + uw) + V ′ = (uv + V ′) + (uw + V ′)

= (u+ V ′)(v + V ′) + (u+ V ′)(w + V ′) = xy + xz. (6.129)
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Although we now have the space E entirely in hand, with all its operations, we

cannot yet use it as freely as we would like. For example, we would like to replace

the characteristic functions that appear in expressions with (general) simple functions

(linear combinations of measurable characteristic functions). With that in mind, we

will not change the space E, but we will expand the notation used.

Remark 31. At times a characteristic function can be written as a linear combination

of other characteristic functions. Consider one such, say
∑n

i=1 aiχEi = χE0 for con-

stants a1, . . . , an ∈ C and Borel sets E0, E1, . . . , En ⊆ [0, 1]m for some m,n ≥ 1. In

this case, given operators C1, . . . , Cm ∈ L(X) and measures ν1, . . . , νm ∈ Mcb[0, 1],

we can say that in E (as we will show momentarily),

[
n∑
i=1

aiχEi

]
(s
˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm)

=
n∑
i=1

ai

[
χEi(s

˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm)

]
. (6.130)

The rationale is as follows: By hypothesis, the left-hand side is defined to equal

χE0(s
˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm). (6.131)

Subtracting this from the right-hand side and letting a0 := −1 gives the expression

n∑
i=0

ai

[
χEi(s

˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm)

]
=

n∑
i=0

ai
∑
π∈Sm

[
χEπi ∩∆m(em)(s

˙1
, . . . , s

˙m
)πC̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm)

]
=
∑
π∈Sm

(
n∑
i=0

ai

[
χEπi ∩∆m(em)(s

˙1
, . . . , s

˙m
)πC̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm)

])
,

(6.132)
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and we would like to show that this equals the zero vector in E, which is to say, as a

vector in V we want to show it is in the subspace V ′.

By hypothesis,
∑n

i=1 aiχEi = χE0 , or equivalently,
∑n

i=0 aiχEi ≡ 0. But then for

any π ∈ Sm we have that

0 ≡

(
n∑
i=0

aiχEi

)π

=
n∑
i=0

aiχEπi , (6.133)

so

0 ≡

(
n∑
i=0

aiχEπi

)
χ∆m(em) =

n∑
i=0

ai
(
χEπi χ∆m(em)

)
=

n∑
i=0

ai
(
χEπi ∩∆m(em)

)
. (6.134)

Consequently, the expression (6.132) is a linear combination of elements of U and

therefore is an element of V ′, establishing our claim.

Equation (6.130) is therefore true in the case when
∑
i=1

aiχEi is a characteristic

function on [0, 1]m. If
∑
i=1

aiχEi is not a characteristic function, then the left-hand

expression in (6.130) is not defined. We would therefore like to define it, in such a

way that the equation will hold in that case also.

Definition 6.4.11. Given any simple function
∑N

j=1 bjχEj on [0, 1]m for m ≥ 1 an

integer, where b1, . . . , bN ∈ C, and E1, . . . , EN ⊆ [0, 1]m are Borel sets, and given any

operators C1, . . . , Cm ∈ L(X) and measures ν1, . . . , νm ∈Mcb[0, 1], we define

[
N∑
j=1

bjχEj

]
(s
˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm) ∈ E (6.135)

by
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[
N∑
j=1

bjχEj

]
(s
˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm)

:=
N∑
j=1

bj

[
χEj(s

˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm)

]
. (6.136)

Example 33. Let A,B ∈ L(X) and µ, ν ∈Mcb[0, 1]. Then we have

[
2χ{s<t} + 3χ{s>t}

]
(s
˙
, t
˙
)Ã(s)B̃(t)dµ(s)dν(t) ∈ E, (6.137)

and

[
2χ{s<t} + 3χ{s>t}

]
(s
˙
, t
˙
)Ã(s)B̃(t)dµ(s)dν(t)

= 2
[
χ{s<t}(s

˙
, t
˙
)Ã(s)B̃(t)dµ(s)dν(t)

]
+ 3

[
χ{s>t}(s

˙
, t
˙
)Ã(s)B̃(t)dµ(s)dν(t)

]
. (6.138)

Remark 32. Note that the definition is consistent with what we said in the remark

above in the case that
∑N

j=1 bjχEj equals a single characteristic function. However,

we still need to show in general that the definition is well-defined. That is, if we

have two linear combinations that are equal to each other almost everywhere, say∑N
j=1 bjχEj =

∑n
i=1 aiχFi a.e.-ν1× · · · × νm on [0, 1]m, with a1, . . . , an ∈ C and Borel

sets F1, . . . , Fn ⊆ [0, 1]m, then we claim that the definition will produce the same

member of the space E. In fact, examining this we see that
N∑
j=1

bjχEj −
n∑
i=1

aiχFi

equals χ∅ (the characteristic function that is identically zero) a.e.-ν1 × · · · × νm on

[0, 1]m. Thus in V we have

[
N∑
j=1

bjχEj −
n∑
i=1

aiχFi

]
(s
˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm) ∈ V ′,

(6.139)
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and then by Remark 31 we have in E that

0 =

[
N∑
j=1

bjχEj −
n∑
i=1

aiχFi

]
(s
˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm)

=
N∑
j=1

bj

[
χEj(s

˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm)

]
−

n∑
i=1

ai

[
χFi(s

˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm)

]
, (6.140)

and therefore

N∑
j=1

bj

[
χEj(s

˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm)

]
=

n∑
i=1

ai

[
χFi(s

˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm)

]
. (6.141)

Hence Definition 6.4.11 is well-defined.

Consequently, we can be less careful about our use of parentheses; the expression

N∑
j=1

bjχEj(s
˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm) (6.142)

could be interpreted with parentheses (or brackets) as on either side of Equation

6.136, or even as

N∑
j=1

[(
bjχEj

)
(s
˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm)

]
, (6.143)

but the definition implies that these are all equal.

Having sufficiently defined the intermediate disentangling space E, we come at

last to the intermediate disentangling map TE, in two steps.
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Definition 6.4.12. We define φ : V → L(X) to be the unique linear map given by

φ(g) := TG′ [g] (6.144)

for all g ∈ G. (Note under this definition φ(1) = I, the identity operator.)

The fact that V is a free vector space with basis G implies that there exists such

a unique linear map φ ([32, p. 135, Theorem 4.1]).

Lemma 6.4.13. Given any integer m ≥ 0, any operators C1, . . . , Cm ∈ L(X) and

measures ν1, . . . , νm ∈Mcb[0, 1], and, if m > 0, any Borel set E ⊆ [0, 1]m, we have

φ
(
χE(s

˙ 1
, . . . , s

˙ m
)C̃1(s1) · · · C̃(sm)dν1(s1) · · · dνm(sm)

)
= TG′

[
χE(s

˙ 1
, . . . , s

˙ m
)C̃1(s1) · · · C̃(sm)dν1(s1) · · · dνm(sm)

]
. (6.145)

(Note that on the left, ‘χE(s
˙ 1
, . . . , s

˙ m
)C̃1(s1) · · · C̃(sm)dν1(s1) · · · dνm(sm)’ is inter-

preted as an element of the space V, whereas on the right it is interpreted as an

element of the set G ′.)

Proof. For m = 0 we have φ(1) = I = TG′ [1]. Suppose m ≥ 1. By linearity of φ we

have that

φ
(
χE(s

˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃(sm)dν1(s1) · · · dνm(sm)

)
= φ

(∑
π∈Sm

χEπ∩∆m(em)(s
˙1
, . . . , s

˙m
)πC̃1(s1) · · · C̃(sm)dν1(s1) · · · dνm(sm)

)

=
∑
π∈Sm

φ
(
χEπ∩∆m(em)(s

˙1
, . . . , s

˙m
)πC̃1(s1) · · · C̃(sm)dν1(s1) · · · dνm(sm)

)
=
∑
π∈Sm

TG′
[
χEπ∩∆m(em)(s

˙1
, . . . , s

˙m
)πC̃1(s1) · · · C̃(sm)dν1(s1) · · · dνm(sm)

]
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=
∑
π∈Sm

TG′
[
χE∩∆m(π)(s

˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃(sm)dν1(s1) · · · dνm(sm)

]
=
∑
π∈Sm

∑
ρ∈Sm

∫
∆m(ρ)

χE∩∆m(π)(s1, . . . , sm)Cρ(m) · · ·Cρ(1)(ν1 × · · · × νm)(s1, . . . , sm)

=
∑
π∈Sm

∫
∆m(π)

χE(s1, . . . , sm)Cπ(m) · · ·Cπ(1)(ν1 × · · · × νm)(s1, . . . , sm)

= TG′
[
χE(s

˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃(sm)dν1(s1) · · · dνm(sm)

]
. (6.146)

Remark 33. To be clear, we must note that even though we have used the expression

χE(s
˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃(sm)dν1(s1) · · · dνm(sm) for an element of G ′—all elements

of G ′ are in this form—and we have used it for an element of V , we have never

established that G ′ is a subset of V , nor will we (though we regard G as a subset of

both). However, the expression is valid in both spaces, and the above lemma says

that its images under the corresponding maps agree. We will say more about this in

a later remark, after we have defined the map TE.

Lemma 6.4.14. Given the space V ′ ⊆ V as defined in Theorem 6.4.8, we have

V ′ ⊆ ker(φ).

Proof. Recalling that we defined a subset U ⊆ V in Theorem 6.4.8, and that U

generates V ′, let u ∈ U . Then

u =
n∑
i=1

aiχFi(s
˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm) (6.147)

for some m,n ≥ 1, a1, . . . , an ∈ C, Borel sets F1, . . . , Fn ⊆ ∆m(em) (em ∈ Sm is the

identity permutation), and measures ν1, . . . , νm ∈ Mcb[0, 1], and
∑n

i=1 aiχFi ≡ 0 up

to a set of ν1×· · ·×νm-measure zero. We apply the map φ to u (we may since u ∈ V)
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to get

φ(u) =
n∑
i=1

aiTG′
[
χFi(s

˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃m(sm)dν1(s1) · · · dνm(sm)

]
=

n∑
i=1

ai
∑
π∈Sm

∫
∆m(π)

χFi(s1, . . . , sm)Cπ(m) · · ·Cπ(1)(ν1 × · · · × νm)(ds1, . . . , dsm)

=
∑
π∈Sm

∫
∆m(π)

n∑
i=1

aiχFi(s1, . . . , sm)Cπ(m) · · ·Cπ(1)(ν1 × · · · × νm)(ds1, . . . , dsm)

= 0, (6.148)

since
∑n

i=1 aiχFi = 0 a.e. Thus u ∈ ker(φ) and U ⊆ ker(φ). Moreover, since V ′

consists of linear combinations of elements of U , and the map φ is linear on all of V ,

we have that V ′ ⊆ ker(φ).

Theorem 6.4.15 (The map TE). There exists a unique linear map TE : E → L(X)

given by TE[x] := φ(v), where v ∈ V is any coset representative in V of x ∈ E (that is,

x = v+V ′). Moreover, given any χE(s
˙ 1
, . . . , s

˙ m
)C̃1(s1) · · · C̃(sm)dν1(s1) · · · dνm(sm) ∈

G ′ (where E ⊆ [0, 1]m), m ≥ 0, we have that

TE

[
χE(s

˙ 1
, . . . , s

˙ m
)C̃1(s1) · · · C̃(sm)dν1(s1) · · · dνm(sm)

]
= TG′

[
χE(s

˙ 1
, . . . , s

˙ m
)C̃1(s1) · · · C̃(sm)dν1(s1) · · · dνm(sm)

]
. (6.149)

Proof. (The first statement of this theorem is a special case of the mapping property

for homomorphisms of modules, see [7, p. 452], but we will go through a proof anyway.)

First we need to show that TE given by TE[x] = φ(v) is well-defined. Let v, w ∈ V

be two representatives of x ∈ E, so x = v + V ′ = w + V ′. Then w = v + v′ for some

v′ ∈ V ′. Hence φ(w) = φ(v + v′) = φ(v) + φ(v′) = φ(v) since V ′ ⊆ ker(φ). Thus the

map TE is well-defined.
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To see that TE is linear, we consider any x, y ∈ E and any a, b ∈ C. Let v, w ∈ V

be coset representatives of x, y, respectively. Then

TE[ax+ by] = TE[a(v + V ′) + b(w + V ′)] = TE[(av + V ′) + (bw + V ′)]

= TE[(av + bw) + V ′] = φ(av + bw) = aφ(v) + bφ(w) = aTE[x] + bTE[y]. (6.150)

Therefore, TE is a linear map. The second statement in the theorem, (6.149), then

follows by Lemma 6.4.13.

Remark 34. As in Lemma 6.4.13, in Theorem 6.4.15 we have used the expression

χE(s
˙1
, . . . , s

˙m
)C̃1(s1) · · · C̃(sm)dν1(s1) · · · dνm(sm) both as an element of G ′, and as

an element of V representing an element of E. Although the expression is used in

both places, we do not regard it as representing the same entity, since we have never

said that G ′ is a subset of V (though perhaps it is possible to make G ′ a subset of

V ; the present author is unable to say at this time). Nevertheless, every element of

G ′ has an expression that is also valid as an element of E (as a monomial), and the

maps TG′ and TE agree on those expressions. Furthermore, in G ′ we introduced other

notations for elements (such as those used for exponentiation, involving scope rules

for variables), and where there is no danger of confusion, we will apply the same kind

of notation for terms in E as well.

Most importantly, the same time-ordering theorems that hold for the map TG′ on

G ′ hold for the map TE on monomials in E.

Example 34. Let x := χ(0,1)2(s
˙
, t
˙
)Ã(s)B̃(t)dµ(s)dν(t) ∈ E, where A,B ∈ L(X) and

µ, ν ∈Mcb[0, 1]. Then

TE [x] = TE

[
χ(0,1)2(s

˙
, t
˙
)Ã(s)B̃(t)dµ(s)dν(t)

]
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= TE

[
χ{s<t}(s

˙
, t
˙
)Ã(s)B̃(t)dµ(s)dν(t) + χ{t<s}(t

˙
, s

˙
)Ã(s)B̃(t)dµ(s)dν(t)

]
= TG′

[
χ{s<t}(s

˙
, t
˙
)Ã(s)B̃(t)dµ(s)dν(t)

]
+ TG′

[
χ{t<s}(t

˙
, s

˙
)Ã(s)B̃(t)dµ(s)dν(t)

]
.

(6.151)

We may also write

TE [x] = TE

[
χ(0,1)χ(0,t)B̃(t)Ã(s)dµ(s)dν(t) + χ(0,1)χ(t,1)Ã(s)B̃(t)dµ(s)dν(t)

]
=

∫
{s<t}

BA(µ× ν)(ds, dt) +

∫
{t<s}

AB(µ× ν)(ds, dt). (6.152)

As if all that were not enough, we can also define a norm on E, which is one reason

we chose the set U as we did earlier.

Theorem 6.4.16 (The norm ‖·‖E). Let ‖·‖E : E → [0,∞) be the map defined as

follows: Given any x ∈ E, let v ∈ V be a coset representative of x, so x = v + V ′.

Write v as

v =
N∑
j=1

nj∑
k=1

aj,k

[
χFj,k(s˙ j,1

, . . . , s
˙ j,mj

)C̃j,mj(sj,mj) · · · C̃j,1(sj,1)

dνj,1(sj,1) · · · dνj,mj(sj,mj)
]
, (6.153)

for some N ≥ 1, nj ≥ 1, mj ≥ 0, aj,k ∈ C, Borel sets Fj,k ⊆ ∆mj(emj), oper-

ators Cj,1, . . . , Cj,mj ∈ L(X), and measures νj,1, . . . , νj,mj ∈ Mcb[0, 1] for all j ∈

{1, . . . , N} and all k ∈ {1, . . . , nj}, with the additional requirement that for any

i, j ∈ {1, . . . , N} with i 6= j, the terms have (C̃i,1, . . . , C̃i,mi , dνi,1, . . . , dνi,mi) 6=
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(C̃j,1, . . . , C̃j,mj , dνj,1, . . . , dνj,mj). Define

‖x‖E :=
N∑
j=1

[∫
∆mj (emj )

∣∣∣∣∣
nj∑
k=1

aj,kχFj,k(sj,1, . . . , sj,mj)

∣∣∣∣∣ ∥∥Cj,mj∥∥ · · · ‖Cj,1‖
(νj,1 × · · · × νj,mj)(dsj,1, . . . , dsj,mj)

]
. (6.154)

Then the map ‖·‖E so defined is a norm on the space E.

Example 35. Before we prove both that the map ‖·‖E is well-defined and is a norm,

it may be helpful to look at an example. The idea of the map is that given any x ∈ E,

we choose a representative v ∈ V , giving x = v+V ′. Then we write v in terms of basis

vectors in V , which is to say, as a linear combination of expressions from G. We group

the terms according to whether they have the same sequence of indeterminates (with

the indeterminates placed in decreasing time order, first for the operators, then for

the measures, just so we can compare them). Then we replace the operator-related

indeterminates with operator norms, and integrate over the absolute value of the

linear combination of characteristic functions, grouped by matching indeterminate

terms.

For a specific example, consider

x = χ(0,1)2Ã(s)B̃(t)dµ(s)dν(t)− 2χ{s<t}Ã(s)B̃(t)dµ(s)dν(t) ∈ E, (6.155)

where A,B ∈ L(X) and µ, ν ∈Mcb[0, 1]. We can write

x = χ{t<s}Ã(s)B̃(t)dµ(s)dν(t) + χ{s<t}Ã(s)B̃(t)dµ(s)dν(t)

− 2χ{s<t}Ã(s)B̃(t)dµ(s)dν(t)

= χ{t<s}Ã(s)B̃(t)dµ(s)dν(t)− χ{s<t}Ã(s)B̃(t)dµ(s)dν(t)
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= χ{t<s}Ã(s)B̃(t)dν(t)dµ(s)− χ{s<t}B̃(t)Ã(s)dµ(s)dν(t). (6.156)

We note that the sequences of operator and measure indeterminates are different for

the different terms, so we then have

‖x‖E = (ν × µ)({(t, s) : t < s}) ‖A‖ ‖B‖+ (µ× ν)({(s, t) : s < t}) ‖B‖ ‖A‖

= (µ× ν)
(
[0, 1]2

)
‖A‖ ‖B‖ . (6.157)

Proof. First we need to show that the map ‖·‖E is well-defined. Let x ∈ E, and

let v ∈ V with x = v + V ′, expressible as in Equation (6.153). Since V is a free

vector space with basis G, there is, apart from the order of summation and terms

with coefficients aj,k equal to zero, only one way of expressing v as shown (there is

one way to express v as a linear combination of basis vectors, and then there is only

one way to group those according to indeterminates). If any coefficients are zero, then

they make no contribution to ‖x‖E, so we do not need to be concerned with them.

The only other possible ambiguity for x is in the representative chosen for it from

V . Take any other representative, which we may write as v + v′, with v′ ∈ V ′, so

x = v + V ′ = v + v′ + V ′. We can write v′ =
∑n

i=1 ciui for some n ∈ N, where

c1, . . . , cn ∈ C and u1, . . . , un ∈ U , so x = v + c1u1 + · · ·+ cnun + V ′. If we can show

that expressing x as v + c1u1 + V ′ yields the same value for ‖x‖E as when we use

x = v+V ′, then we can repeat the process to show that the expression x = v+v′+V ′

yields the same value also. In other words, without loss of generality it is enough to

take only the case v′ = cu with c ∈ C and u ∈ U .

Let u ∈ U . Then we may without loss of generality say that
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cu =

n1∑
k=1

c b1,k

[
χF1,k

(s
˙1,1

, . . . , s
˙1,m1

)C̃1,m1(s1,m1) · · · C̃1,1(s1,1)

dν1,1(s1,1) · · · dν1,m1(s1,m1)
]
, (6.158)

meaning that we are matching the term j = 1 in (6.153) except for the scalars.

Consequently, when we group terms of v + v′ = v + cu, it will affect only the j = 1

term, changing each a1,k to a1,k + cb1,k. The effect on the expression (6.154) is that

n1∑
k=1

a1,kχF1,k
(s1,1, . . . , s1,m1) (6.159)

will change to

n1∑
k=1

a1,kχF1,k
(s1,1, . . . , s1,m1) +

n1∑
k=1

c b1,kχF1,k
(s1,1, . . . , s1,m1). (6.160)

However, since u ∈ U , we have that c
∑n1

k=1 b1,kχF1,k
= 0 a.e., so that change affects

the value of (6.159) only on a set of measure zero, and changes its absolute value only

on a set of measure zero, and that change has no effect on the corresponding integral

in (6.154) in the definition of ‖x‖E.

Therefore, the map ‖·‖E is well-defined on E. In addition, we can see that it

genuinely is a function from E to [0,∞). We claim, further, that it is a norm. To

establish that, we claim first that for any a ∈ C and any x ∈ E we have ‖ax‖E =

|a| ‖x‖E. In fact that is not difficult to see from Equations (6.153) and (6.154) by

factoring the a to the inside in the first and then factoring |a| out of the absolute

values in the second.

Second, we claim that the triangle inequality holds. Let x, y ∈ E. Say they are
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represented, respectively, by v, w ∈ V , so x = v + V ′, y = w + V ′. Without loss of

generality we may write

v =
N∑
j=1

nj∑
k=1

aj,k

[
χFj,k(s˙ j,1

, . . . , s
˙ j,mj

)C̃j,mj(sj,mj) · · · C̃j,1(sj,1)

dνj,1(sj,1) · · · dνj,mj(sj,mj)
]

(6.161)

and

w =
N∑
j=1

nj∑
k=1

bj,k

[
χFj,k(s˙ j,1

, . . . , s
˙ j,mj

)C̃j,mj(sj,mj) · · · C̃j,1(sj,1)

dνj,1(sj,1) · · · dνj,mj(sj,mj)
]
, (6.162)

with each bj,k ∈ C and all other stipulations as for Equation (6.153) above. Then

x+ y is represented by

v + w =
N∑
j=1

nj∑
k=1

(aj,k + bj,k)
[
χFj,k(s˙ j,1

, . . . , s
˙ j,mj

)C̃j,mj(sj,mj) · · · C̃j,1(sj,1)

dνj,1(sj,1) · · · dνj,mj(sj,mj)
]
, (6.163)

so that

‖x+ y‖E =
N∑
j=1

[∫
∆mj (emj )

∣∣∣∣∣
nj∑
k=1

(aj,k + bj,k)χFj,k(sj,1, . . . , sj,mj)

∣∣∣∣∣ ∥∥Cj,mj∥∥ · · · ‖Cj,1‖
(νj,1 × · · · × νj,mj)(dsj,1, . . . , dsj,mj)

]

≤
N∑
j=1

[∫
∆mj (emj )

∣∣∣∣∣
nj∑
k=1

aj,kχFj,k(sj,1, . . . , sj,mj)

∣∣∣∣∣ ∥∥Cj,mj∥∥ · · · ‖Cj,1‖
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(νj,1 × · · · × νj,mj)(dsj,1, . . . , dsj,mj)

]

+
N∑
j=1

[∫
∆mj (emj )

∣∣∣∣∣
nj∑
k=1

bj,kχFj,k(sj,1, . . . , sj,mj)

∣∣∣∣∣ ∥∥Cj,mj∥∥ · · · ‖Cj,1‖
(νj,1 × · · · × νj,mj)(dsj,1, . . . , dsj,mj)

]

= ‖x‖E + ‖y‖E . (6.164)

The remaining step is to show that if x ∈ E with ‖x‖E = 0, then x is the zero vector

in E. (We already know by the statement ‖ax‖E = |a| ‖x‖E for all a ∈ C, x ∈ E that

‖0‖E = 0.) If x = v + V ′ for v ∈ V , then this is equivalent to saying that v ∈ V ′. Let

x ∈ E and v ∈ V be as described in the theorem statement, and let ‖x‖E = 0. Then

x = v + V ′,

v =
N∑
j=1

nj∑
k=1

aj,k

[
χFj,k(s˙ j,1

, . . . , s
˙ j,mj

)C̃j,mj(sj,mj) · · · C̃j,1(sj,1)

dνj,1(sj,1) · · · dνj,mj(sj,mj)
]
, (6.165)

and

‖x‖E =
N∑
j=1

[∫
∆mj (emj )

∣∣∣∣∣
nj∑
k=1

aj,kχFj,k(sj,1, . . . , sj,mj)

∣∣∣∣∣ ∥∥Cj,mj∥∥ · · · ‖Cj,1‖
(νj,1 × · · · × νj,mj)(dsj,1, . . . , dsj,mj)

]
= 0. (6.166)
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Consequently, for any fixed j ∈ {1, . . . , N} we have that

∫
∆mj (emj )

∣∣∣∣∣
nj∑
k=1

aj,kχFj,k(sj,1, . . . , sj,mj)

∣∣∣∣∣ ∥∥Cj,mj∥∥ · · · ‖Cj,1‖
(νj,1 × · · · × νj,mj)(dsj,1, . . . , dsj,mj) = 0, (6.167)

which implies that
∑nj

k=1 aj,kχFj,k(sj,1, . . . , sj,mj) = 0 almost everywhere (since we

know the operators have nonzero norms). That implies for each j,

nj∑
k=1

aj,k

[
χFj,k(s˙ j,1

, . . . , s
˙ j,mj

)C̃j,mj(sj,mj) · · · C̃j,1(sj,1)dνj,1(sj,1) · · · dνj,mj(sj,mj)
]
∈ U ,

(6.168)

and therefore v ∈ V ′, establishing the claim. Thus ‖·‖E is a norm on E.

The natural progression at this point would be to extend E to a Banach algebra,

if possible. It would be good, if possible, to be able to use the space to disentangle a

function expressible as a power series (an exponential function, for example). How-

ever, for lack of time we will not deal with any of that, and will leave it to anyone

else who is interested. Instead we will simply finish with examples.

Example 36. In Example 28 above we provided an alternate proof of a decomposing

disentangling formula from [17, p. 4]. We did so using the set G ′ and the map TG′ .

We will now extend that result to a third measure using the space E and the map TE.

Let A,B,C ∈ L(X), let µ, ν, η ∈Mcb[0, 1] be probability measures, let m1,m2,m3

be nonnegative integers, and let a ∈ (0, 1). Then, taking advantage of commutativity

and the distributive law in E (which imply that a binomial theorem holds in E), as

well as linearity of the map TE, we have
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Pm1,m2,m3
µ,ν,η (A,B,C)

= TE

[(
χ(0,1)Ã(r)dµ(r)

)m1
(
χ(0,1)B̃(s)dν(s)

)m2
(
χ(0,1)C̃(t)dη(t)

)m3
]

= TE

[(
χ(0,a)Ã(r)dµ(r) + χ(a,1)Ã(r)dµ(r)

)m1
(
χ(0,a)B̃(s)dν(s) + χ(a,1)B̃(s)dν(s)

)m2

·
(
χ(0,a)C̃(t)dη(t) + χ(a,1)C̃(t)dη(t)

)m3
]

= TE

[ ∑
i1+j1=m1
i2+j2=m2
i3+j3=m3

m1!

i1!j1!

m2!

i2!j2!

m3!

i3!j3!

(
χ(0,a)Ã(r)dµ(r)

)i1 (
χ(a,1)Ã(r)dµ(r)

)j1

·
(
χ(0,a)B̃(s)dν(s)

)i2 (
χ(a,1)B̃(s)dν(s)

)j2 (
χ(0,a)C̃(t)dη(t)

)i3 (
χ(a,1)C̃(t)dη(t)

)j3]

=
∑

i1+j1=m1
i2+j2=m2
i3+j3=m3

m1!

i1!j1!

m2!

i2!j2!

m3!

i3!j3!
TE

[(
χ(a,1)Ã(r)dµ(r)

)j1 (
χ(a,1)B̃(s)dν(s)

)j2

·
(
χ(a,1)C̃(t)dη(t)

)j3 (
χ(0,a)Ã(r)dµ(r)

)i1 (
χ(0,a)B̃(s)dν(s)

)i2 (
χ(0,a)C̃(t)dη(t)

)i3]
.

(6.169)

We now apply Theorem 6.3.4, yielding

Pm1,m2,m3
µ,ν,η (A,B,C)

=
∑

i1+j1=m1
i2+j2=m2
i3+j3=m3

m1!

i1!j1!

m2!

i2!j2!

m3!

i3!j3!
TE

[(
χ(a,1)Ã(r)dµ(r)

)j1 (
χ(a,1)B̃(s)dν(s)

)j2

·
(
χ(a,1)C̃(t)dη(t)

)j3]
TE

[(
χ(0,a)Ã(r)dµ(r)

)i1(
χ(0,a)B̃(s)dν(s)

)i2(
χ(0,a)C̃(t)dη(t)

)i3]

=
∑

i1+j1=m1
i2+j2=m2
i3+j3=m3

m1!

i1!j1!

m2!

i2!j2!

m3!

i3!j3!
P j1,j2,j3
µ|(a,1),ν|(a,1),η|(a,1)

(A,B,C)P i1,i2,i3
µ|(0,a),ν|(0,a),η|(0,a)

(A,B,C).

(6.170)
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Example 37. At the end of Section 3.2 we established Theorem 3.2.2, which we

restate here (and renumber):

Theorem 6.4.17 (Disentangling a monomial that involves a sum of two measures).

Given a Banach space X, together with operators A1, . . . , An ∈ L(X), non-negative

integers m1, . . . ,mn, and finite, continuous Borel measures ν, η, µ2, µ3, . . . , µn on the

interval [0, 1] associated with A1, A1, A2, A3, . . . , An, respectively, we have that

Pm1,m2,...,mn
ν+η,µ2,...,µn (A1, A2, A3, . . . , An)

=

m1∑
k=0

m1

k

P k,m1−k,m2,m3,...,mn
ν,η,µ2,µ3...,µn

(A1, A1, A2, A3, . . . , An). (6.171)

Using this together with the relationship we have established (by way of the map

TG′) between the disentangling map and the map TE on E, especially Theorem 6.2.7,

we have under the conditions of Theorem 6.4.17 that

TE

[(
χ(0,1)Ã(s1)d(ν + η)(s1)

)m1
(
χ(0,1)Ã(s2)dµ(s2)

)m2

· · ·
(
χ(0,1)Ã(sn)dµ(sn)

)mn]
= Pm1,m2,...,mn

ν+η,µ2,...,µn (A1, A2, A3, . . . , An)

=

m1∑
k=0

m1

k

P k,m1−k,m2,m3,...,mn
ν,η,µ2,µ3...,µn

(A1, A1, A2, A3, . . . , An)

=

m1∑
k=0

m1

k

TE

[(
χ(0,1)Ã(s1)dν(s1)

)k(
χ(0,1)Ã(s1)dη(s1)

)m1

· · ·
(
χ(0,1)Ã(sn)dµ(sn)

)mn]

=TE

 m1∑
k=0

m1

k

(χ(0,1)Ã(s1)dν(s1)
)k(

χ(0,1)Ã(s1)dη(s1)
)m1

· · ·
(
χ(0,1)Ã(sn)dµ(sn)

)mn
= TE

[(
χ(0,1)Ã(s1)dν(s1) + χ(0,1)Ã(s1)dη(s1)

)m1
(
χ(0,1)Ã(s2)dµ(s2)

)m2
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· · ·
(
χ(0,1)Ã(sn)dµ(sn)

)mn]
.

(6.172)

In effect, then, we have replaced the expression ‘χ(0,1)Ã(s1)d(ν + η)(s1)’ with the

expression ‘χ(0,1)Ã(s1)dν(s1) +χ(0,1)Ã(s1)dη(s1)’, where the measures have been split

up. A similar result can be achieved for operators using Theorem 4.3.8.

Example 38. Let A,B ∈ L(X), and let µ, ν ∈Mcb[0, 1]. Then

(
χ(0,1)Ã(s)dµ(s)

)2 (
χ(0,1)B̃(t)dν(t)

)
∈ E (6.173)

and we can write

(
χ(0,1)Ã(s)dµ(s)

)2

χ(0,1)B̃(t)dν(t)

= χ(0,1)3(r
˙
, s

˙
, t
˙
)Ã(r)Ã(s)B̃(t)dµ(r)dµ(s)dν(t)

= χ[(0,t)∪(t,1)]×[(0,t)∪(t,1)]×(0,1)(r
˙
, s

˙
, t
˙
)Ã(r)Ã(s)B̃(t)dµ(r)dµ(s)dν(t)

= χ(0,t)×(0,t)×(0,1)(r
˙
, s

˙
, t
˙
)Ã(r)Ã(s)B̃(t)dµ(r)dµ(s)dν(t)

+ χ(0,t)×(t,1)×(0,1)(r
˙
, s

˙
, t
˙
)Ã(r)Ã(s)B̃(t)dµ(r)dµ(s)dν(t)

+ χ(t,1)×(0,t)×(0,1)(r
˙
, s

˙
, t
˙
)Ã(r)Ã(s)B̃(t)dµ(r)dµ(s)dν(t)

+ χ(t,1)×(t,1)×(0,1)(r
˙
, s

˙
, t
˙
)Ã(r)Ã(s)B̃(t)dµ(r)dµ(s)dν(t)

= χ(0,t)(r
˙
)Ã(r)dµ(r)χ(0,t)(s

˙
)Ã(s)dµ(s)χ(0,1)(t

˙
)B̃(t)dν(t)

+ χ(0,t)(r
˙
)Ã(r)dµ(r)χ(t,1)(s

˙
)Ã(s)dµ(s)χ(0,1)(t

˙
)B̃(t)dν(t)

+ χ(t,1)(r
˙
)Ã(r)dµ(r)χ(0,t)(s

˙
)Ã(s)dµ(s)χ(0,1)(t

˙
)B̃(t)dν(t)
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+ χ(t,1)(r
˙
)Ã(r)dµ(r)χ(t,1)(s

˙
)Ã(s)dµ(s)χ(0,1)(t

˙
)B̃(t)dν(t)

= χ(0,1)B̃(t)
(
χ(0,t)Ã(s)dµ(s)

)2

dν(t)

+ 2χ(0,1)

(
χ(t,1)Ã(r)dµ(r)

)
B̃(t)

(
χ(0,t)Ã(s)dµ(s)

)
dν(t)

+ χ(0,1)

(
χ(t,1)Ã(s)dµ(s)

)2

B̃(t)dν(t)

=
2∑

k=0

2

k

χ(0,1)

(
χ(t,1)Ã(s)dµ(s)

)m−k
B̃(t)

(
χ(0,t)Ã(s)dµ(s)

)k
dν(t). (6.174)

Hence, using Theorems 6.3.5 and 6.2.4,

Pm,1
µ,ν (A,B)

= TE

[(
χ(0,1)Ã(s)dµ(s)

)2 (
χ(0,1)B̃(t)dν(t)

)]

= TE

 2∑
k=0

2

k

χ(0,1)

(
χ(t,1)Ã(s)dµ(s)

)m−k
B̃(t)

(
χ(0,t)Ã(s)dµ(s)

)k
dν(t)


=

2∑
k=0

2

k

∫
(0,1)

TE

[(
χ(t,1)Ã(s)dµ(s)

)m−k]
B TE

[(
χ(0,t)Ã(s)dµ(s)

)k]
ν(dt)

=
2∑

k=0

2

k

∫
(0,1)

Pm−k
µ|(t,1)

(A)B P k
µ|(0,t)(A)ν(dt). (6.175)

In these calculations we see that

(
χ(0,1)Ã(s)dµ(s)

)2 (
χ(0,1)B̃(t)dν(t)

)
(6.176)
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became

2∑
k=0

2

k

(χ(t,1)Ã(s)dµ(s)
)m−k (

χ(0,t)Ã(s)dµ(s)
)k
χ(0,1)B̃(t)dν(t). (6.177)

This hints at the possibility that we might be able to write these two expressions as

an intermediate expression

‘
(
χ(0,t)Ã(s)dµ(s) + χ(t,1)Ã(s)dµ(s)

)2 (
χ(0,1)B̃(t)dν(t)

)
’, (6.178)

and then apply a binomial theorem. However, this expression has not been defined

in E, or even in V ; our definition of multiplication in E, based on that of V (Defini-

tion 6.4.3), applies only to elements of V that have fixed characteristic function sets,

namely F1, F2 in Equation (6.95). To define (6.178) it may be necessary to define

multiplication in the case when the characteristic function sets depend on the argu-

ments of another characteristic function. For example, F1, F2 in Equation (6.95) in

that case might need to be changed to F1(t1, . . . , tn), F2(s1, . . . , sm), and one would

have to see whether it would be possible to make sense of Definition 6.4.3 then.

Example 39. We end with a few comments on how to approximately disentangle

a product ÃB̃ if B̃ is associated with a finite, continuous Borel measure νK on a

generalized Cantor set K, and Ã is associated with a finite, continuous Borel measure

µJ on the complement of that set J = [0, 1]rK in the interval [0, 1]. (Because the set

is complicated, we are not working with a general monomial in Ã and B̃.) Although

one could define a measure on the set J one interval at a time, it would be impossible

to do the same with K, since generalized Cantor sets contain no intervals. Instead we

will assume that µ and ν are finite, continuous Borel measures on the entire interval

[0, 1] and that µJ and νK are their restrictions, respectively, to J and K, respectively.
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Let us suppose that K is formed in the usual manner of generalized Cantor sets

by removing an open interval I1 from the center of the interval [0, 1], then removing

open intervals I2 and I3 from, respectively, the centers of the remaining left interval

and right interval, then removing each of the intervals I4, I5, I6, I7 from, respectively,

the centers of the remaining four subintervals (left to right again), etc. We then have

J =
∞·⋃
j=1

Ij and K = [0, 1]r J . Since the sequence of deleted intervals is infinite, and

the intervals do not overlap, the measures of the deleted intervals must approach zero

for both µ and ν.

We are going to consider unions of the intervals I1, I2, I3, . . . in two groups. For

n = 1, 2, . . . we define Ln := ·⋃ n

j=1 Ij and Rn := ·⋃∞j=n+1 Ij, so that Ln∪Rn = J . Then

K = [0, 1]rLnrRn. Disentangling the monomial ÃB̃ using the associated measures

µJ = µ|J , νK = ν|K (associating µJ with A and νK with B) gives (by Theorem 6.2.4)

P 1,1
µJ ,νK

(A,B)

= TE

[
χJ×K(s

˙
, t
˙
)Ã(s)B̃(t)dµ(s)dν(t)

]
= TE

[
χLn ·∪Rn(s

˙
)χ[0,1]rLnrRn(t

˙
)Ã(s)B̃(t)dµ(s)dν(t)

]
= TE

[
(χLn + χRn) (s

˙
)
(
χ[0,1] − χLn − χRn

)
(t
˙
)Ã(s)B̃(t)dµ(s)dν(t)

]
= TE

[
χLn(s

˙
)χ[0,1](t

˙
)Ã(s)B̃(t)dµ(s)dν(t)

]
− TE

[
χLn(s

˙
)χLn(t

˙
)Ã(s)B̃(t)dµ(s)dν(t)

]
− TE

[
χLn(s

˙
)χRn(t

˙
)Ã(s)B̃(t)dµ(s)dν(t)

]
+ TE

[
χRn(s

˙
)χ[0,1]rLnrRn(t

˙
)Ã(s)B̃(t)dµ(s)dν(t)

]
= P 1,1

µ|Ln ,ν
(A,B)− P 1,1

µ|Ln ,ν|Ln
(A,B)− TE

[
χLn(s

˙
)χRn(t

˙
)Ã(s)B̃(t)dµ(s)dν(t)

]
+ TE

[
χRn(s

˙
)χ[0,1]rLnrRn(t

˙
)Ã(s)B̃(t)dµ(s)dν(t)

]
. (6.179)

Since the set Ln is a union of disjoint intervals, the first two terms in the last expression



230

may be calculated by existing methods, and they serve as the estimate of P 1,1
µJ ,νK

(A,B).

As for the other two terms, we can say of their operator norms in L(X) that

∥∥∥TE

[
χLn(s

˙
)χRn(t

˙
)Ã(s)B̃(t)dµ(s)dν(t)

]∥∥∥
L(X)

=

∥∥∥∥∫
{s>t}
χLn(s)χRn(t)AB(µ× ν)(ds, dt) +

∫
{t>s}
χLn(s)χRn(t)BA(µ× ν)(ds, dt)

∥∥∥∥
L(X)

≤ ‖A‖L(X) ‖B‖L(X)

[∫
{s>t}
χRn(t)(µ× ν)(ds, dt) +

∫
{t>s}
χRn(t)(µ× ν)(ds, dt)

]
= ‖A‖L(X) ‖B‖L(X) µ([0, 1])ν(Rn). (6.180)

Similarly,

∥∥∥TE

[
χRn(s

˙
)χ[0,1]rLnrRn(t

˙
)Ã(s)B̃(t)dµ(s)dν(t)

]∥∥∥
L(X)

≤ ‖A‖L(X) ‖B‖L(X) µ(Rn)ν([0, 1]). (6.181)

Combining these two gives us our error estimate, so by choice of sufficiently large

n ∈ N we may force µ(Rn) and ν(Rn) to be small and get our estimated value of the

operator P 1,1
µJ ,νK

(A,B) as close to the correct value as we would like. Disentangling a

monomial exactly in the case of a generalized Cantor set and its complement might

require a different approach—something recursive, perhaps.
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A(r1, . . . , rn), 8

χE(s
˙
)C̃(s)dν(s), 159

χE C̃1(s1)C̃2(s2)(dν1 × dν2)(s1, s2), 171

., σ.τ,U .V , concatenation operation, 80

D(Ã1, . . . , Ãn), disentangling algebra, 9

∆m(π), 13

Eσ, 33

E, intermediate disentangling

space, 204

o, σoQ,UoQ, excerption operation, 123

f(x
˙
, y

˙
) function argument dot notation,

158

fσ, 33

G ′, 159

G, basis of V , 189

length(σ), 48

Mcb[a, b], finite, continuous Borel mea-

sures on [a, b], 14

�, merge operation, 51

µσ, 33

‖·‖E, norm on E, 217

∅, null ordering, 48

OP , orderings of a set P , 48

Pm1,...,mn(z1, . . . , zn), monomial, 10

Pm1,...,mn , 67

Pm1,...,mn
µ1,...,µn

(A1, . . . , An), disentangling of

a monomial, 16

TE, intermediate disentangling

map, 215

TG′ , 162

Tµ1,...,µn , disentangling map, 16

T tµ1,...,µn
, 116

U , generator of V ′ ⊆ V , 203
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V ′, a subspace of V , 203

V , free vector space with basis G, 190

Xσ, xσ, 33
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