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In Feynman’s Operational Calculi, a function of indeterminates in a commutative
space is mapped to an operator expression in a space of (generally) noncommuting
operators; the image of the map is determined by a choice of measures associated
with the operators, by which the operators are ‘disentangled’. Results in this area
of research include formulas for disentangling in particular cases of operators and
measures. We consider two ways in which this process might be facilitated. First, we
develop a set of notations and operations for handling the combinatorial arguments
that tend to arise. Second, we develop an intermediate space for the disentangling

map, where commutativity might be exploited more extensively.
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Chapter 1

Overview of Feynman’s
Operational Calculi. Motivation

for the present work

In a 1951 paper, “An Operator Calculus Having Applications in Quantum Electrody-
namics” [10], physicist Richard Feynman introduced a new notation for multiplying
noncommuting operators, with the intent that this notation would make operator
manipulation easier and would, in appropriate cases, make more transparent the un-
derlying physical theory that the operators represent. His approach was the following
(this is a paraphrase of Gerald Johnson and Michel Lapidus’ description of “Feyn-

man’s heuristic ‘Rules,” ” [24, p. 377]):

(1) Express the order of operation of a product of noncommuting operators not by
means of conventional right-to-left order of operation, but instead by attaching

time indices to the operators (an earlier time means earlier operation).

(2) Form functions of the operators, with the indices attached, and then manipulate



the operators as though they were commuting.

(3) Finally, ‘disentangle’ the resulting expressions; that is, restore the conventional

ordering of the operators.

We will illustrate with a very simple example: Suppose A and B are two non-
commuting operators, and say we want to look at their product. The product AB
in conventional notation means that B operates first, then A, whereas BA means A
operates before B. The idea of working with operators that occur in a certain order
may be motivated by physics, in which earlier operation may correspond to an actual,
physical time sequence of two events, or it may have mathematical motivation (see
for example [20]).

In Feynman’s notation, the order of operation is not denoted by the right-to-left
order on the page. Instead, using his system we might represent the product AB as
Ao By, where the fact that the subscript 1 is smaller than the subscript 2 is the means
by which we indicate that B operates before A. Were we to exchange the order of the
operators in Feynman’s notation, keeping the indices attached, we would get By As,
and then the indices would still tell us (because 1 < 2) that B operates first, and
A operates second. Hence A;B; = B;As; both expressions represent what in con-
ventional notation is BA, so operators with Feynman time indices are commutative.
After manipulating these expressions in ways that interest us, taking advantage of
that commutativity, we eventually restore the conventional notation in the resulting
expressions, so that, for example Ay B; becomes AB and A; By becomes BA (and AB
is not the same as BA).

The result of the above rules is a functional calculus, in the sense that functions of
the operators are manipulated as though they were functions of commuting indeter-

minates, and in the expressions that result after these manipulations they are again



treated like noncommuting operators. Feynman did not formalize the mathematics
of his ideas in the article; other individuals have since then developed formalizations
of a number of his ideas.

Here we will work in the context of Feynman’s Operational Calculi (FOCi) as
initiated by B. Jefferies and G. W. Johnson [13], [15], [16], [14] (and also developed
especially by L. Nielsen, B. S. Kim, and M. Lapidus). Instead of Feynman’s heuristic
approach of attaching indices to noncommuting operators and then acting as though
the operators commute, the approach here is to begin in a commutative space of
indeterminates, each of which is associated with one of the noncommuting operators,
then to map from there to the space of operators. For example, noncommuting
operators A and B will be related to indeterminates A and B that are elements of
a space D where AB = BA. We will also associate ‘time indices’ s1, S9 which take
values in [0, 1] to the operators A, B, respectively (we will on occasion work in another
interval, such as [0,7]). Thus A(s;) is thought of as referring to the indeterminate A
operating at the time s, and consequently, A(s;)B(s,) is thought of as representing
that the indeterminate A operates before B if s; < s, or that B operates before A
if s5 < s1. (Truth be told, since indeterminates commute, the results are the same.
However, we will map AB to expressions involving the operators A and B that also
have time indices s; and sy, where if s; < s we will have B(sy)A(s1) = BA, and if
sy < s1 we will have A(s1)B(se) = AB, and those are not equal.)

A significant difference in this approach from Feynman’s is that in his, a given
expression involving operators with time indices results in a unique operator ex-
pression after disentangling. For the example above, if the beginning expression is
fol A(s)ds fol B(t)dt, it can only result in the operator  BA+3AB. However, whereas
Feynman only used, in effect, Lebesgue measure, in the Jefferies-Johnson approach

each operator (together with its associated indeterminate and time index) is assigned



a Borel measure. The measure tells (roughly speaking) which relation s; < sg or
S9 < s1 occurs more often. This association produces the different weights for the
terms AB and BA after disentangling. For example, if continuous probability mea-
sures p and v are associated with A and B, respectively, then the expression AB will

map to

/ BAd(,usz%—/ ABd(p x v)
{(s1,82): 0<s1<s2<1} {(s1,82): 0<s2<s1<1}

= (ux v)({(s1,80) : 0 <8 <sy<1})BA

+ (uxv)({(s1,82) : 0<s9<s1<1})AB.  (1.1)

In the case when p and v are both Lebesgue measure on [0, 1], this will equal %BA +
%AB, as before. However, we can choose probability measures p and v to produce
any linear combination of the terms AB and BA with total probability equal to 1.
We will not limit our attention to probability measures, but the intuition of relative
weights is still helpful in other cases. (Recall, a probability measure is a measure for
which the measure of the entire space is 1. A continuous Borel measure is a Borel
measure for which the measure of any set consisting of a single point is zero.) If we
choose a different set of measures, then the resulting operator expression will possibly
be different, a different linear combination, which is why we speak of Feynman’s
Operational Calculi in the plural.

(For other work on and approaches to functional calculi for noncommuting oper-
ators, see for example [4], [5], [6], [21], [28], [29], [30], [31], [33], [35], [36], [41], [42],
and [43]. Most of the other works in the bibliography regard FOCi and are cited
elsewhere in this thesis; those not cited elsewhere are [25] and [23].)

In the disentangling process we often move from an expression in commuting

indeterminates to a formula involving noncommuting operators (rather than indeter-



minates), and at that point we like to further simplify the operator formula if we
can, and where possible to write out a completely disentangled expression in terms
of operators.

Perhaps a good question at this point is what use it is to relate noncommuting
objects to commuting objects, or why one would associate measures to operators
and to time indices. To answer the first question, there appear to be at least two
possible reasons to relate noncommuting objects to commuting objects. The first is
that it might facilitate calculations; working with commuting operators is easier in
some ways than working with noncommuting operators. The second is that there
may be physical relevance for doing so. In Feynman’s notation, the factors in the
expression fol A(s)ds fol B(t)dt = fol B(t)dt fol A(s)ds commute; one can represent
this way that an event symbolized by an operator A occurs sometime within a time
interval [0, 1], while the other represents the occurrence of an event B in that interval.
The product in this notation turns out to equal %BA + %AB , which combines the
event of A occurring before B with the event of B occurring before A, a combination
which may be physically meaningful. Associating time indices and measures to the
operators may correspond to increasing or decreasing the likelihood of each event A or
B within a given time interval, as though turning a physical apparatus to a higher or
lower setting. (Questions also arise of more mathematical interest, such as whether
an expression disentangled under one choice of measures can be approximated by
expressions disentangled under a “nearby” choice of measures. There are stability
theorems regarding when that is the case, see e.g. [26], [37], [38], [39], [40].)

This is the context of the current work. Part of the focus of research into FOCi is
to establish formulas that yield disentangled operator expressions in certain special
cases (such as physically and/or mathematically meaningful cases), and our objective

here is to consider ways that the process of developing and proving disentangling



operator formulas and expressions may be facilitated.

One part of the process we concentrate on is combinatorial aspects of disentan-
gling. As with the example(s) we have discussed, the definition we will give of the
disentangling map involves a sum of products of a finite set of operators in all possible
orders the operators can occur. These orders will be represented by subscripts of time
indices (as in ‘s, ..., s, ) attached to the operators; looking at all possible orders of
operation means looking at all possible permutations, or what we will call ‘orderings’,
of the subscripts. Since proofs in FOCi often rely on being able to express that set
of orderings in different ways, we develop three operations that can be performed on
sets of orderings to relate the sets to each other. The purpose of doing so is to create
a vocabulary of these operations for use in FOCi proofs, so that for simple proofs
one does not need to just appeal to the reader’s intuition about the combinatorics
involved, and for harder proofs one does not need to create entirely new terminology
for each proof separately.

After that, our other major objective is to develop a context in which Feynman’s
suggestion of treating noncommuting operators as though they commute (if they
are labeled with time indices) may be used more fully. In Feynman’s paper [10,
p. 216, abstract] he wrote, “An alteration in the notation used to indicate the order
of operation of noncommuting quantities is suggested. Instead of the order being
defined by the position on the page, an ordering subscript is introduced so that A;B,
means AB or BA depending on whether s exceeds s’ or wice versa. . . . An

b

increase in ease of manipulating some operator expressions results.” In Feynman’s
system, attaching time indices provided the freedom to treat operators as though
they commute; once he reached the desired form in that context, he would return

immediately to the noncommuting context (again we note Feynman did not make this

process rigorous). That particular feature of his system is reflected to some extent in



the Jefferies-Johnson approach, but we would like to extend it. We will consider how
a space may be added to the Jefferies-Johnson approach, intermediate between the
commuting and noncommuting spaces, so that calculations in the intermediate space
may both make use of commutativity to reach a desired form (time-ordered form),
and be able to map readily to the desired form in the noncommuting space.

In addition, prior to addressing those two objectives, we will develop two or so
small results that will be useful in proofs and examples to follow (and may be useful
more generally), namely a theorem about permuting factors of a product measure
within an integral, and a disentangling theorem for use when a measure in a monomial

is replaced by a sum of two measures.



Chapter 2

The definition of the disentangling

map

Feynman’s Operational Calculi involves mapping elements of a particular commuta-
tive function space (D) into a noncommutative space of operators (£(X)), where the
actions of the maps depend on a choice of measures. We start, after a preliminary

definition, by defining D.

Definition 2.0.1. Let rq,...,r, be positive real numbers, and let A = A(ry,...,7,)

be the space of complex-valued functions (z1,...,2,) — f(z1,...,2,) of n complex
variables which are analytic at (0,...,0), and have power series
flzr, oo zn) = Z Cimy o 21 2™ (2.1)

=1 = D fempmalr™ o (2.2)



can be defined on A, making A into a commutative Banach algebra with identity under

pointwise multiplication. (We can say this because “A(ry,...,r,) can be identified

mn .
n )

with the weighted [;-space, where the weight on the index (mq,...,m,)isr{" ---r

see [13, p. 5, Proposition 1.1].)

Definition 2.0.2 (The disentangling algebra D). Given a Banach space X and
nonzero operators Ay, ..., A, € L(X) (where £(X) is the space of all bounded linear
operators from X into X), we define the disentangling algebra D = D(A,,..., A,)
to be the space A(ry, ..., r,), where we stipulate that r; = || A;]| for all j. We will com-
monly use the symbols Ay, ..., A, to represent the formal indeterminates 21, ..., z,,
in order to make an association between the indeterminates fll, o ,fln € D and the
operators Ay,..., A, € L(X), respectively.

(A remark on notation here: The space denoted ‘D(Ay, ..., A,)" has at times
been denoted ‘D(A;,...,A,)"; the literature appears not to be settled about which
is better. The parameters in the expression D(Ay, ..., A,) seem to indicate both
the convergence radii, r; = [|A4;|| for all j, and the operators Ay,..., A, associated
with the indeterminates zq,...,z2,. However, since the parameters are operators,
expressions such as D(A; ||pll,-- -, An||ftn]]) might be allowed, where multiplying
an operator by the total value of a measure (or by some other scalar) is also an
operator, in which case it is not clear whether, for example, an indeterminate A;
should be associated with the operator A; or the operator A, ||u||. For that reason,
the present author has chosen to include the tildes in the expression D([ll, e An), in
order to be completely unambiguous how indeterminates and operators are associated;
whatever operator the tilde is applied to, whether A; or (A ||1]])™, is the operator
associated with the corresponding indeterminate, and its norm is the convergence

radius—technically, then, we should probably write E [with a wide tilde] to show
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that A; is the operator and not just A, but let us just say that that will be understood
and we will be more careful when we need to be. Additionally, keeping the tildes
reminds us what the members of the space ]DD(fll, e ,fln) look like. Should we want
to associate an operator with an indeterminate, but also to incorporate both the
operator and a measure in the radius of convergence of the indeterminate, we can
refer to each parameter as (A;, y;)~ to say that the indeterminate is associated with
A; and that the radius is r; = || 4;]| [|1]].)

Therefore, D is a commutative Banach algebra with identity, where the norm is

given by

[e.e]

£ (s, A = 1A Al = D femma AL ™ - [ A ™ < o0
mi,...,mn=0

(2.3)
(see [13, p. 5, Proposition 1.2]).

Functions in D are thus infinite sums of monomials, but in this thesis we will
focus only on polynomials, though there may not be great difficulty in applying
similar results to infinite series. Mostly we will work with monomials, and it is useful
to implement a special notation for monomials. Specifically, given any nonnegative

integers my, ..., m, we define
P (o 2y) = e 2 (2.4)
or alternatively,
P (A A) = AT A e D, (2.5)

The disentangling maps we will define momentarily will map such a monomial
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Pml""’m”(;ll, ..., A,) € D to an operator in £(X) that is a function of the operators
Ay, ..., A,. More specifically, it is mapped to a linear combination of products that
consist of my factors of the operator A;, mo factors of the operator A,, etc., in some
order. For example, a disentangling map will take the monomial A2B' = ABA = BA?
to some linear combination of A?B, ABA, and BA?.

In fact, there will be more than one disentangling map (and therefore more than
one operational calculus), yielding possibly different linear combinations from the
same monomial. For instance, although one disentangling map might take the mono-
mial AB to the operator SAB+ $BA, another will take it to a different linear combi-
nation, say, %AB + %BA, for example. The values of the coefficients assigned to the
different terms will be determined by a selected set of measures, each of which is asso-
ciated with an operator. In this example, we might choose to associate the continuous
Borel probability measure p with the operator A and the continuous Borel probability
measure v with the operator B. The effect is that the times in an interval where the
measure is larger will produce a greater contribution of the associated operator at
that time. For example, if p has its entire support in the lower half of the interval
[0,1] and v has its support in the upper half of the interval [0, 1], then that will force
the operator A (associated with u) to occur before the operator B (associated with
v), which means that the monomial AB will map under the disentangling map 7,,,
with those respective measures to the operator BA, without any contribution from
an AB term. (As a possible model of a physical situation, this could represent that
apparatus A is turned on for the first half of an interval, and apparatus B is turned
on for the second half of the interval.) In all that follows here, we will consider only
continuous, finite positive Borel measures, usually on the interval [0, 1].

Given a monomial of several factors, some possibly repeated, we will want to

distinguish the different instances of each operator. Thus when dealing with the
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monomial P™ ™ (A, ... A,) € D, which has m; copies of A;, my copies of As,
etc., we will rename the operators as follows: Let m :=mq + mo + -+ 4+ m,, and let

BI(1),...,Bl(n) denote blocks of integers

BI(1) := {1,...,m}, (2.6)

BI(2) := {mi + 1,...,m1 + ms},

Bl(n) :={mi+---+m,_1+1,...,m}.

Then define
(A, keBI)
C, Ay, ke Bl(2) 21
\ A,, ke Bl(n).
The monomial Pml""’m"(fll, o ,fln) will be mapped to a sum of products of
copies of the operators Ay, ..., A,, or as we have now renamed the operators, a sum

of products of the operators Ci,...,C,,. To discuss the order in which C4,...,C,,
operate, we will think of them as operating at different times sy, ..., s,,, respectively,
with these times lying in the (time) interval [0, 1], with earlier time corresponding to
earlier operation. (Starting from the case of the interval [0, 1] it is not difficult to
generalize to an interval [0, 7] for an arbitrary time 7. However, we will stay with

the case [0,1].) That is, we assign to each operator C; a time index s; that takes

m

values in [0, 1], giving us a set of time-indexed operators {C;(s;)}/;.

For example, if an expression includes time-indexed operators C(s1), Ca(s2), and
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C3(s3) with sy < 51 < s3, then Cy(s2) operates before C(s;), which operates before
C3(s3). These time-indexed operators are naturally taken to be time-dependent for
certain kinds of problems; however, we will always limit ourselves here to the case of
time-independent operators: C;(s;) = C}, j = 1,...,m. Thus, each operator is still
viewed as possibly operating at various times, but it remains the same operator at
all times. Moreover, we will consider only operators that are bounded.

The last step before defining the disentangling maps is to introduce a notation
to represent the different possible orders in which the time-indices in the m-tuple
(S1,.-+,8m) € [0,1]™ can occur. We will usually want to arrange operators so that
their time indices s1,...,Ss,, are in increasing time order from right to left. As the
various indices range throughout [0, 1]™, their time order relative to each other will
change. (For example, sometimes s; < s9, and other times sy < s1.) With that in
mind, we let S,, be the set of permutations of the set of numbers {1,...,m} (that
is, bijections from the set {1,...,m} to itself), and for each permutation = € S,, we

define the set

Am(ﬁ) = {(sl,...,sm) € [O, 1]m 0 < Sp1) <0 < Spim) < 1}.

Each permutation, then, gives us one ordering of the time indices, and different
permutations give us different orderings of the time indices. We will sometimes ab-

breviate the above set as

{870) < 8r@) <00 < Sxmyt = Am(m) O {Sx(m) >0 > Sp2) > Sx)} 1= Ap(7T).

It may be noticed that under this definition of A,,(7), the union of all such sets

will include nearly all, but not quite all of the points in the set [0, 1]™, because points
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in [0,1]™ for which two time indices s;, s; are equal to each other or are equal to 0
or 1 are omitted from the union. For example, in the case m = 2, the the union of
the sets {(s1,52) : 0 < s1 < s9 <1} and {(s1,52) : 0 < s9 < s < 1} will not be all
of [0,1] x [0, 1], because the points (s1,$2) with s1 = s9, 1 =0, 51 =1, 59 = 0, or
s9 = 1 are omitted. For our purposes those particular points are unimportant, so this
definition will suffice. The reason they are unimportant is that the sets A,,(7) will
serve as regions of integration with respect to some product measure p7"* X - -« x g,
where fi1, ..., p, are continuous Borel measures and >, m; = m. As noted in [13,
p. 7, Lemma 2.1], since the measures are continuous, this has the consequence that
any subset of [0, 1]™ having two or more coordinates equal, or having a fixed value
(such as 0 or 1) for some particular coordinate, has measure zero.

Since in what follows the measures we will deal with will exclusively be finite,

continuous, positive Borel measures on a finite interval (usually [0, 1]), we will define

Mla, b] := {all finite, continuous, positive Borel measures on the interval [a, b]}.

(It is possible in FOCi to consider more than just continuous measures; see e.g. [27],
[3].) We will often deal with product measures that have as factors a set of these Borel
measures. It may be worth noting here that given two topological spaces X and Y
and their Borel classes B(X),B(Y), it is not in general true that B(X) ® B(Y) =
B(X xY) (see [8, p. 240]). Thus, given Borel measures ¢ on X and v on Y, and
their product measure p x v defined on B(X) ® B(Y), the product measure might
not be defined on the entire Borel class B(X x Y'). However, for the cases we will
be dealing with, the measures and their products will always be Borel measures.
(That the component spaces are separable metric spaces is sufficent to establish that

B(X)®B(Y) = B(X xY); see [11, p. 23], Proposition 1.5.)
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Often it will be useful for the measures we use to be probability measures, and
whether we are working with time indices in the interval [0, 1] or more generally [0, 77,
we are able to scale the measures to yield probability measures. If we ever intend to
use probability measures in this thesis, we will say so explicitly. (For a discussion of
the relationship between disentangling using probability measures and disentangling
using other measures, see [15, Section 3].)

The last thing we will do in preparation for defining the disentangling map is to do

a calculation in the disentangling algebra ID that motivates the definition of the map.

Let us consider for a moment the case when the measures p, ..., u, are continuous
Borel probability measures. We define indeterminates C, . . ., C,, in much the same
way as the operators C1, ..., C,, were defined:
( ~
Ay, ke BI(1)
. Ay, ke BI(?2)
Ck = < ' (28)
A,, k€ Bl(n).

\

We attach time indices, say Cj(s;) = Cy for k = 1,...,m. It can then be shown (using

commutativity, [13, Proposition 2.2, p. 8]) that the monomial P™ " (A, ... A,) €

D can be rewritten as

Pm1,...,mn(A1’ o ,An) — A’lnl .. AZL” = 0102 . Cm

= Z A ( ) éﬁ(m)(sﬂ(m)) e éﬂ—(l)(sﬂ'(l)) (/’LTI X« X /,L?n>(d81, e 7d8m), (29)

7T€Sm

Remark 1. Related to (2.9) we have, for example, A; = fol Ay (s1)pi(dsy). Tt is also

the case that A; = fol Aq(s1)p(dsy), given Aq(s1) = A; (since py is a probability
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measure). In these expressions it is clear that if uy is zero over some region within
the interval [0, 1], then the associated operator A;(s;) has no effect at values of s
within that region; it can be viewed as not operating there; A;(s;) operates only for
values of s; within the support of the measure y;. A similar statement can be made for
multiple time-indexed operators and their associated measures; the measures affect
the times at which the operators operate, so we speak of “using measures to attach

time indices to operators.”

Imitating the form of the expression (2.9), we make the following definition for

any set of finite, continuous Borel measures on [0, 1] (not only probability measures):

Definition 2.0.3 (The disentangling map). Given D = D(A4,,. .. ,fln), and given
W1y 2y - -« iy € M[0, 1] together with nonnegative integers my, ..., m,, the disen-

tangling map

is defined on monomials by

T [P (Ar A

Z / Oy (™ X o™ )(dsy, ..., dsy,), (2.10)

TESm

also denoted

PRt Ay A) = Ty [P (AL A (2.11)
Ifm =0 (e, m =--- =m, =0), we interpret P> =""(A;,..., A,) to be the

identity operator I € £(X). In (2.16) and throughout this thesis, the integral of a

product of operators is defined by equating it to the same expression but with the
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operators factored out of the integral:

/ Cﬂ'(m)cﬂ'(l) (//1711 XX :u;nn)(dslw'-udsm)
A ()

= Crm) - Crq) / (u™ X o ) (dsyy .. dSy). (2.12)
A ()

It is the fact that the operators are time-independent that allows us to use this
definition, pulling the operators outside the integral. (It is, however, possible to make
sense of the integral and the disentangling map in the time-dependent case as well.

See for example [19], and especially the work of Byung Moo Ahn et al., [1], [2], [3].)

Theorem 2.0.4. Let Ay,..., A, € L(X) be associated with measures pi, ..., [, €
M0, 1], let mq,...,m, be nonnegative integers and m := my + -+ + my, and let

blocks of integers Bl(1),..., Bl(n) be as in (2.6) and operators C,...,Cp, be as in

(2.7). Moveover, define the measures vy, ..., Uy, by
(
M1, ke Bl(l)
, ke BI2
P @ (2.13)

| ttn, k€ Bi(n).

Then
P Ay, Ag) = Bl (GG, (2.14)

Proof. The case m = 0 is immediate. Otherwise, by Definition 2.0.3 we have

P (AL Ay) = Z/A ()Cﬂ(m)---cﬂ(l) (U X - % ™) (dsy, . ., dsp)

-----
TESm
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= Z / Cw(m)--'cﬁ(l) (V1 X XVm)(dsl,...,dSm)
A ()

TESm
= Bk, (Cr, .. O, (2.15)
O
The disentangling map therefore maps the monomial P m"(fll, e ,An) to a

sum of integrals, each integral involving a product of all of the operators in a different
order. Whatever product we began with, the integrals we have mapped to are in

‘disentangled’ form; that is, they are time-ordered. To see this, we write the definition

in terms of the time-indexed operators we defined earlier, C;(s;) = Cj, j=1,...,m:
77!1,---,,1% [Pml ..... mn(Ah 7An)]

= Z /A Crim)(Srm)) -+ - Cry(Se)) (™ X -+ x ™) (dsq, . .. dsy).  (2.16)

Here, when integrating over the set A,,(7), in which s;q) < sr@2) < -+ < Sx(m),
the operators appear in the corresponding order Cr(m)(Sx(m)) - - - Cr(1)(5x(1)), with the
lowest time index on the far right and the highest time index on the far left.

That is the usual pattern for introducing the disentangling map (a similar develop-
ment is given in, for example, [13],[15], and [24]), and it is patterned after Feynman’s
description of an operator calculus given in [10]: Beginning with a product of com-
muting objects, each object is assigned a time index taking values in [0, 1], and the
expression is manipulated into time-ordered form (as in Equation (2.9)). Then the
expression is, in a manner of speaking, converted to an operator expression that has
operators in the corresponding order (as in Equation (2.16)); it is as though the tildes
have been erased.

However, the reader should be cautioned about one element of this process which
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may be somewhat misleading (though our mathematics here is valid). Specifically, it
relates to ‘erasing’ the tildes. By what we have said in Equations (2.9) and (2.16), it is
entirely correct for us to say in the case of probability measures py, . .., p, € Mg4|0, 1]

that

Tttt [Z /A Cortm) (Sn(m)) -+ Cory (1)) (™ X -+ X ) (dsy, .., dsp)
TES,

= Z /A Crim) =+ Cray (™ X oo x ™) (dsy, . .. dsy). (2.17)

The difference in appearance between the inside of the left-hand expression and the
entire right-hand expression is that in the latter, the time indices have been removed

is linear, and since there is

n

and the tildes have been erased. Since the map 7,,
such a similarity between the two expressions—in fact, the map was defined to create
this similarity—one might expect the map to hold not only for the entire sum, but
also term-by-term. However, that is not the case. That is, generally speaking,

T, [ /A  Crtfstn) -+ Crtnloetn) (8 X - )l )

)
%/A ( )C’W(m) o Cry (U™ X X ™) (dsy, .. dsy)  (2.18)

for the various choices of ™ € S,,,.
Let us take a simple example. Given operators A, B € L(X) associated with
continuous Borel probability measures pu, v, respectively, on [0, 1], and letting 121(3) =

A and B(s) = B on [0, 1], we have that

.., [AB} -7, { /{ » B)A(s)(ju x v)(ds, dt) + / A(s)B(t) (1 x v)(ds, dt)

{t<s}
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= / BA(u x v)(ds, dt) —|—/ AB(p x v)(ds,dt). (2.19)
{s<t}

{t<s}

However, often

T, [ /{ , BOAG) V)(ds,dt)] 4 /{ BA (ux v)ds,dt)  (2.20)

s<t}

and

A(s)B(t) (p x V)(ds,dt)} # AB (p x v)(ds, dt). (2.21)

{t<s}

{t<s}

We will calculate a specific example in Section 6.1. (One exception, when equality
does hold, is when the operators commute.)
On the other hand, in Feynman’s notation (where A(s) and B(t) commute), the

time-ordered expression

1,1 11
/ / B(t)A(s) dtds does become / / BA dtds, (2.22)
0 s 0 s

while

1 s 1 s
/ / A(s)B(t) dtds becomes / / AB dtds. (2.23)
o Jo o Jo

Seeing this distinction between the definitions we are using and Feynman’s no-
tation, the present author believes it may be beneficial to have a process in which
expressions in a commutative space (similar to D) and in £(X) that have the same
form can be mapped term-by-term as in Feynman’s process, and that were we to
have this, we could possibly take greater advantage of commutativity. This possibil-
ity will be discussed in Chapter 6, where we consider another way of performing the

disentangling procedure. The definition of the disentangling map as we have stated
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it (Definition 2.0.3) remains the same, though, and we will continue to use the same
definition throughout this thesis.

Having defined the disentangling maps—which may well be different maps if the
measures are chosen differently—we have laid enough groundwork to start focusing
on specific techniques in the theory of Feynman’s Operational Calculi. We begin with

simple examples.

Example 1. Let A, B € L(X) be operators, let u,v be finite, continuous Borel
measures on the interval [0, 1] associated with the operators A and B, respectively, and
let my := my := 1. We wish to disentangle the monomial P**(A, B). The definition

gives us

%7V[P171<A7 B)] = Pj:; (A’ B)

= / A(s1)B(s2)(p x v)(dsy, dss) —|—/ B(s9)A(s1)(p x v)(dsy, dss)
{( {(

51,82): 0<s1<sa<1} 51,82): 0<sa<s1<1}

= AB/ (1 x v)(dsy,dss) + BA/ (1 x v)(dsy,dss)
{(s1,82) {(s1,82)

1 0<sa<si<1} 1 0<sa<si<1}
= (X v){(s1,82): 0<s9<s1 < 1}AB + (1 x v){(s1,82): 0<s2<s; <1}BA.
(2.24)

The result is a linear combination of products of the operators A and B with coeffi-
cients that depend on the measures p and v associated with A and B, respectively.
In particular, if g and v are both Lebesgue measure on [0, 1], then the result of the

disentangling is %AB + %BA.

Example 2. For a second example, let Ay, Ay € L(X) be operators, let py, s be
finite, continuous Borel measures on the interval [0, 1] associated with the operators

Ay, Ay, respectively, and let my := 2,my := 1. Let D := D(Al,ANQ). Then assigning
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the names C;:= A, Cy:=A;, C3:= Ay, we have that

ZLLM [PZI(AM AQ)]

= / Cr(3)Cr)Crir) (17 X p13)(dsy, dsy, dss)
A ()

TES3

= Z / Crn(3)Cr(2)Cr1y (17 X p3)(ds1, dsa, ds3)
{(

r€Ss 51,82,53)€[0,1]3: 0<m(s1)<m(s2)<m(s3)<1}

= / 030201 (ﬂ% X u%)(dsl, dSQ, ng) +/ 020301 (ILL% X u%)(dsl, dSQ, ng)
{

81<82<S3} {81<53<82}

+/ C301Cy (12 x p3)(dsy, dso, dss) +/ C1C5Cy (12 x p3)(dsy, dsy, dss)
{

82<81<83} {82<53<sl}

+ [ Co0,C3 (] x ph)(dsy, dsa,ds3) + | C1CoCs (13 X pig)(dsy, dsa, ds3)

{s3<s1<s2} {s3<sa<s1}

= IU% X ILLQ({S]_ < 892 < S&})AQA% -+ ,U% X ,UZ({Sl < 83 < SQ})AlAQAl
—{—ILL% X /,62({82 < 51 < Sg})AQA% + u% X ILLQ({SQ < 83 < 81})A1A2A1

‘|’,LL% X /,62({83 <851 < SQ})A%AQ + ,U% X /LQ({Sg < 89 < 51})14%142

= (,u% X ,LLQ)({Sg <81 < 82} U {53 < §y < 81}) A%AQ
—I—(,u% X ,LLQ)({Sl < 83 < 82} U {52 < 83 < 81}) A1A2A1

+(,u% X ,ug)({sl < 8§y < 83} U {82 < 8§51 < 83}) AQA% (225)

In the case where p; and ps are both Lebesgue measure, the result will equal %A%Ag +

LA AA, + 14,42,

Example 3. The examples so far have yielded mostly symmetric-looking results (in

the sense that the form of the result does not clearly favor one order of the operators
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versus another order). Next we do an example with specific measures, where the
choice of measures clearly affects the outcome and produces something less symmetric.
Let A, B € L(X) be operators, and let py := l|[0’%},,u2 = l|[%’1} be Borel measures
on [0,1], where [ denotes Lebesgue measure. (That is, (E) = I(E N[0, 3]) and
p2(E) = I(E N [35,1]) for any Lebesgue measurable set £ C [0,1]. These are not
probability measures, and the coefficients will not add to 1 when we are finished.)

We will also choose exponents m, := 1, my := 1. Then defining C; := A, Cs := B we

have

:/ CgC’l(ul X Mg)(dsl,dSQ) +/ Cng(ul X ILLQ)(dS]_,dSQ)
{82>S1}

{81 >52}

1 S2 1 1
= 0201/ / ul(dsl)ug(dSQ) + 0102/ / [Ll(dsl)[l,g(dSQ)
0 Jo 0 Jsa

1 S2 1 1
00, /O /O U3y (sl 3.y (d52) + C1Co /0 / oy (5113 (ds2)
52
1 1
:CQCI/ min{sz,%}lh%’u(dsz)%—Cng/ max{%—sz,O}lh%’l](dsQ)
0 0

1 1
= (Y [ min{ss, %} dsy + ClCQ[ max{% — 59,0} dsg

2

1 1 1
== 0201[ 5 d82 + 0102[ OdSQ
2

2

1 1



24

Chapter 3

Useful properties for disentangling

monomials

3.1 Permuting factors of a product measure

Before we begin to develop ways of manipulating operators and disentangling maps,
it would be helpful to establish a few properties of product measures. The first of
these ensures what one might expect, that under quite general hypotheses, if we have
a complex-valued p X v-integrable function f defined on a space X xY', and a function
g defined on Y x X, where g(y,z) = f(x,y), and if F' is a 1 X v-measurable subset of
X xY, then G :={(y,z) : (z,y) € F'} is a v x u-measurable subset of ¥ x X, and

we may write

/F F(y) d(p x v)(x,y) = /G 9(y,2) d(v % 1) (y, ). (3.1)

Moreover, this generalizes to product measures with any finite number of factors.

Essentially all we are saying is that if we look at two product spaces that are the same
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except for the order of the factors, then we can in effect do all the same integrating
and get the same results on the two different product spaces, provided we make the
corresponding changes in the orders of the coordinates and of the measures. We
will prove this using a change of variables theorem, but we first need to describe the
relationship between measurable sets in the two product spaces of interest; specifically,
we will show that there is a measurable bijection between them which preserves
measures.

We consider a product measure space (X = X; x -+ X X, M= M;®---®
M, o= g X -+ X pp,) formed from measure spaces (X;, M, ;) for j =1,...,n,
where pi1, . .., i1, are o-finite positive Borel measures on the respective spaces Xj, .. .,
X,. (The proof of the main theorem of this section does not require that the measures
be Borel measures, but generally we will be considering Borel measures throughout
this thesis.) Let o € S, (that is, o : {1,2,...,n} — {1,2,...,n} is a bijection)
be fixed. Given o, we will use the letter h to represent various relations involving
0. (The effect of h depends on the choice of o, but for our purposes we are dealing
with only one o, and hence only one h.) We want to define a map h from the space
(X, M, 1) to a space we will call (h(X), M\, ft), where the measure [ is a product of
the same measures as p, but the factors are permuted. (Note, the ‘hat’ notation here
[‘./\//T "and ‘/1’] has nothing to do with Fourier transforms.) Specifically, we define the

following;:
o Let h(X) = Xo‘(l) X X Xg(n).

e Forany v = (21,...,2,) € X, define h(z) := (To01), - - -, Tom)) € A(X). It is not

difficult to show that this map A is a bijection from X to h(X).

e For any subset £ C X, define (as usual) h(F) := {h(x): x € E}.
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Because h is a bijection, this implies that h and h™! preserve subsets and dis-
tribute set differences of sets and over arbitrary intersections and unions of

subsets of X and h(X), respectively. (See [34, p. 20, Problems 2, 3].)

e Define M = Moy ® -+ ® Myn). (Later we will establish that the collection
M is the same as the collection h(M) :={h(E): E € M}.)

o Define the measure fi := piy1) X - -+ X fig(n). (Later we will argue that ji(F) =
wu(h™1(F)) for all sets F € ./\//T, implying that i = ph™', where ph ™! is the image

measure of p under h.)

Under those definitions, we will show that (h(X),/\//Y, i) = (M(X), h(M), uh™1)

(as noted parenthetically above), in order to establish the following:

Theorem 3.1.1. If 4= py X -+ X u,, where py, ..., 1, are o-finite Borel measures
on Xy,...,X,, respectively, and if f : X = X1 x ... x X,, — C s a p-integrable

function, then foh™' is uh™'-integrable, and

/Xf dp = /h(X) foh™td(uh™). (3.2)

Remark 2. Note that since puq,...,u, are o-finite, the product of the measures is

associative, and is also o-finite.

Proof. We offer only a sketch of the actual proof.

Our main objective in this proof is to establish that the bijection h : X — h(X)
is a measurable map and preserves measures. We will do so using the definition of a
product measure space, as applied to both (X, M, u) and (h(X), J\//T, ).

Ezamining the definition of the measure space (h(X), M\, ft). To recall the defini-

tion of a product measure, we quote Folland [11, p. 65], where he has just defined the
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product of two measures p and v:

“The same construction works for any finite number of factors. That is, suppose
(X, M, ;) are measure spaces for j = 1,...,n. If we define a rectangle to be a set of
the form Ay x --- x A,, with A; € M, then the collection A of finite disjoint unions of
rectangles is an algebra, and the same procedure as above produces a measure 1 X - -+ X fiy

on M; ® --- ® M,, such that
pa X (Ar e x An) = [T (A).

Moreover, if the p;’s are o-finite so that the extension from A to Q) M; is uniquely deter-

mined, the obvious associativity properties hold.”

We use Folland’s definition of the algebra A (from which M is generated), and
then we construct the measure space (h(X), M, ) similarly to (X, M, ). We start
by defining A to be the collection of all finite disjoint unions of ‘measurable rectangles’
in M of the form A,y x -+ X Ay, with sets A; € M; for all j. The collection A
is then an algebra.

Let h(A) := {h(F) : E € A}. Since (one can show) each measurable rectangle
Ag() X -+ X Ag(ny In A is the image under h of a measurable rectangle A; x --- x A,
in A, and h preserves disjoint unions, we have that A C h(A). Similar reasoning
gives us the reverse inclusion, and thus A= h(A), so in what follows we will use the
designation h(.A) for this collection of sets.

The collection h(A) is thus an algebra, which by the process described above

produces the measure ji 1= fi5(1) X -+ X fly(n) On the space M\ = Mo1)®- - @My,
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where

Ho() X X o) (Ao X -+ X Ao) = [ [ 1ot (Aor) (3:3)
1

for every measurable rectangle A,y X - -+ X Aym) € Moy X - X M.
Comparing the measures p and i on their respective algebras, and comparing their
related outer measures. With this definition of the measure fi, given any measurable

rectangle B = By x --- x B, € A, with B; € M, for j =1,...,n, we have

((B) = i X -+ X pip(By X -+ X By)

= a(h(B)). (3.4)

The measures p and fi therefore agree on corresponding measurable rectangles in
their respective algebras A and h(A), and therefore on each pair of corresponding
sets in the two algebras (since h and h~! preserve unions and by finite additivity of
the measures). The extension of the algebra h(A) to the o-algebra M is uniquely
determined, because the measures p, ..., u, here are taken to be o-finite (and so
we may refer to “the” o-algebra //\/\l) We now intend to show that the product
measure [ applied to sets in that o-algebra M agrees with the product measure p
applied to corresponding sets in the o-algebra M. That is, we will show that for
any p-measurable set E (that is, for any £ € M) we have that h(E) € M and
w(E) = (h(E)). We will use the method for extending a pre-measure to a measure

that is described in Folland [11, pp.30-31].
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Using the measures g on X and fi on h(X) as pre-measures on the algebras A

and .Z, respectively, they induce outer measures " on X and 4" on h(X), given by
p*(E) = inf {Z w(C): Cie A EC U@} (3.5)
1 1

and

i (F) = inf {i A(D;): D; € h(A), F C GDZ} (3.6)

for all subsets £ C X and F' C h(X). One can show that set relationships involving
the map h together with the equalities we have established for corresponding sets in
the algebras A and A imply that for any E C X we have 2*(h(E)) = p*(E).

Now, the restriction of the outer measure p* to the o-algebra M generated by A
and the restriction of the outer measure ji* to the o-algebra M generated by h(.A)
are measures ([11, Theorem 1.14, p. 31]), which we have called p and fi, respectively.
Therefore, the measures p on M and [ on M agree on corresponding sets F and
h(E) provided E € M and h(E) € M. To finally establish the truth of Theorem
3.1.1, we would like to be able to say that a set in M always corresponds to a set in

M under the map h—both that h(M) C M\) and that h_l(/T/l\) C M-—-equivalently,
that h(M) = M.

Demonstrating the equality of o-algebras h(M) = M. We claim that a set E cX
is in the o-algebra M = M; ® --- ® M, if and only if A(F) is in the o-algebra

M = Mgy ® -+ @ Myn). Since M is the o-algebra generated by A, M is the

intersection of all o-algebras containing A;

M = ﬂ{S : S is a o-algebra on X with 4 C S}. (3.7)
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Similarly, M is the o-algebra generated by h(A);
M = ﬂ{S’ : 8 is a o-algebra on h(X) with h(A) C S} (3.8)

We hope to show that £ € M if and only if h(E) € M, and for that we first
note that any collection S is a o-algebra on X if and only if h(S) is a o-algebra on
h(X). Similarly, S’ is a o-algebra on h(X) if and only if h~*(S’) is a o-algebra on
h~'(h(X)) = X. (We will not demonstrate these; they follow from the preservation
of set relationships by h and h™'.)

We may therefore rewrite the definition of M , the o-algebra generated by h(A),
letting S := h™'(S') (so h(S) = h(h () = &), as

M = ﬂ{h(S) : h(S) is a o-algebra on h(X) with h(A) C h(S)}

= ﬂ{h(S) : S is a o-algebra on X with A C S}, (3.9)

because h(A) C h(S) is equivalent to A C S, and then, taking h outside the

intersection,

M=h (ﬂ{S : S is a o-algebra on X with A C S}>

= h(M). (3.10)

This yields M = h(M), as we claimed. Moreover, h™'(M) = k™ (h(M)) = M.
Measurability of b and h™"', demonstration that i is an image measure, and inte-

gration. Because of this result, we may now refer to (h(X), M, i) as (h(X), h(M), 1).

Also as a consequence, given any set E € M we have that h(FE) € h(M), so h™ ! is a

measurable function. Similarly, A is a measurable function.
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Therefore, we have the agreement of measures that we wanted, namely that given
any set £ € M, we have h(E) € M, and hence u(E) = p*(E) = i*(W(E)) = a(h(E)),
so u(E) = i(h(E)); moreover, given any set F' € h(M), we have that F' = h(FE) for
some £ € M, and therefore i(F) = ja(h(E)) = u(E) = u(h™*(F)). The latter fact
tells us that ji is the image measure of p under h, as we claimed earlier. That is,
fi = ph™'. Thus we may write h : (X, M,u) — (h(X),h(M),uh™"). (We will
therefore refer to ph~! rather than i in what follows.)

Now we are ready to address integration. We will appeal to the following change-

of-variable theorem [8, p. 82], where ph~! refers to the image measure of y under h:

Theorem 3.1.2 (Change of variables). Let (X, M, u) be a measure space, let (Y, N)
be a measurable space, and let h : (X, M) — (Y,N) be measurable. Let g be an
extended real-valued N -measurable function on'Y. Then g is uh™'-integrable if and

only if g o h 1s p-integrable. If these functions are integrable, then

Jaomydu= [ gan, (3.11)

Continuing the proof of Theorem 3.1.1, we consider a pu-integrable function f :
X — R, and we look at the integral fX f dp. In order to apply Theorem 3.1.2, we let
Y := h(X), and N := h(M). We observe that (X, M, p) is a measure space. We have
shown that (h(X), h(M)) is a measurable space and that h : (X, M) — (h(X), h(M))
is a measurable function. Now define the function g : Y = h(X) = Rby g= foh™".
Then given any Borel-measurable set F' € R, we have f~'(F) € M (since f is
assumed integrable on X, and hence measurable). Thus h(f ' (F)) € h(M); that is,
(fo ")™Y (F) € h(M), and therefore g = f o h™! is h(M)-measurable. Also, by

hypothesis, goh = foh™' o h = f is u-integrable.
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We may therefore apply Theorem 3.1.2, and the result is that

/ fdp= / foh td(uh™). (3.12)
X h(X)

We therefore have the desired result in the case f is real-valued. The case of complex-
valued f follows from that without much difficulty, establishing Theorem 3.1.1. [

Corollary 3.1.3. Using the same notation as in the previous theorem for a given
o €S, if u=py X+ X by, where pq, ..., @, are o-finite measures on Xq,...,X,,
respectively, if E C X is a p-measurable subset of X = X1 x---xX,,, andif f: X — C

is a p-integrable function, then f o h™' is ph™'-integrable, and

/fduz/ foh™td(uh™). (3.13)
E h(E)

(Again, because py, ..., i, are o-finite, the product of the measures is associative.)

Proof. We note first that since F is a p-measurable set and h ™' is measurable (as
shown in the proof of Theorem 3.1.1), h(E) is a ph~'-measurable set, so we may
integrate over it. Second, we can say of the product function fyxg (recall xg is the

characteristic function of the set E) that for all z € X,

[(fx) o B (h(x)) = (fxp)(z) = fz)xE(2)

= (f o h™H)(A(@))xney (h(@) = [(f o B~ )xuep) ) (h(@)), (3.14)

and hence (fxgp)oh ™t = (fo h_l)xh(E). Therefore, applying Theorem 3.1.1 to fxg,

[Efduz/xfx:sdu
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— [ () on dgu
h(X)
— [ (b e dit )
h(X)
_/ foh td(uh™), (3.15)
h(E)
establishing the corollary. O]

We will now define a convenient notation for using the above theorems in connec-

tion with Feynman’s Operational Calculi.

Definition 3.1.4. Given the product measure space (X = X; x --- x X;,, M =
M ® - @My, p = py X -+ X p1,) formed from measure spaces (X;, M, ;) for
j=1,...,n, where ui,...,u, are o-finite (positive) Borel measures on X7, ..., X,

respectively, and given a fixed permutation o € 5,,,, we make the following definitions:
e We define the product space X7 := X,y X -+ X X5 ().

e Given z = (xy,...,x,) € X, we define a map from the space X to the space

X by x? = (ma(l), . ,xg(n)).
e Given any subset £ C X we define E? := {27 : z € E} C X°.

o We define ;17 := fig(1) X * -+ X fig(n). (Thus p is identical to i and ph™" defined

earlier.)

e Given a function f : X — C, we define the function f: X7 — C by f7(y) :=
f(y“ ). (Thus we have f7(z7) = f((27) ) = f(z) for all z € X. Note that

this f7 is identical to f o h™' that was defined earlier.)

Using this notation, we may write Corollary 3.1.3 in the following form:
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Corollary 3.1.5 (Integration in a permuted product space). Given any product mea-
sure space (X = X1 X -+ X X, M=M;® - @ My, p = pg X -+ X i), where
Wiy, [y are o-finite Borel measures on X1, ..., X,, respectively, and given any per-
mutation o € Sy, if E C X is a u-measurable set, and if f : X — C is a p-integrable

function, then f° is u°-integrable, and

[rau={ o ar (3.16)
E Eo
or equivalently,
[ #a) dnte) = [ 1) dueta), (317
E Eo
(Again, because py, ..., u, are o-finite, the product of the measures is associative.)

Proof. To prove this, we simply define the function h : X — X7 as before. This gives
h(z) = 2° for all z € X, h(E) = E°, foh™' = f7, and ph~' = u°. Making these

substitutions establishes Equation (3.16) directly. From there we have

[ 1@ aua) = [ 77 aw = [ ey are) = [ r@ dee) e

and the corollary is proved. O

Remark 3. For the applications we will have for Corollary 3.1.5, we will be integrating
operators. Since, however, the operators are time-independent, they may be factored
out of the integral, and then back in, for a similar result. That is, given any operator

A € L(Y) for a Banach space Y and the conditions of Corollary 3.1.5, we have that

[ r@Adua) = [ 1) dua)a

= [ 1) dur (o)A
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= - fz)A dp’ (). (3.19)

Example 4. Consider the set £ := {(s1,2) : 1 > 51 > s5 > 0}. Let the permutation
o € Sy be given by o(1) = 2,0(2) = 1. We then have that (s1,2)7 = (89, 1) for all

s1, 82 € [0, 1], and hence

E? ={(s1,82) : 1 > s1 > 59 > 0}°
= {(51,52)7 €[0,1]*: (51,52) € E}

={(s2,51) € [0,1]° : 1> 51 > 55 > 0}. (3.20)

Given an integrable function f : [0,1] x [0,1] — C and o-finite Borel measures

i, v on [0, 1], we therefore have by Corollary 3.1.5 that

/’ ﬂ&s»auxw@h@»—/ F(s1,52) d(ju % 1) (51, 52)
{s1>s2}

{(s1,82): 1>s1>52>0}

:/“ F(s1,52) d x V) (51, 52)7
{(s1,52)

€[0,1]2: 1>s1>s52>0}°

= /{( ) f(s1,82) d(v x p)(s2,51)

€[0,1]2: 1>s1>52>0}

:/{ . }f(sl,SQ) d(v x 1)(sz,s1). (3.21)

Note that in the last expression, integration is with respect to the measure v x i1, which
means the integrand should be a v x y-measurable function, whereas the function f is
defined to be u x v-measurable, not v X py-measurable. However, we can view the set
of function values f(s1, s2) as being images of a v X y-measurable function, namely the
function f7, since f(s1,82) = f7(s2, 1) for all values of sy, so; thus the last integral
makes sense. Also note that we have introduced a small change in the meaning of

“{s1 > s}’; in the first integral it refers to {(s1,52) € [0,1]* : 1 > 51 > 55 > 0},
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whereas in the last integral it refers to {(sz,s1) € [0,1]*: 1> 51 > s5 > 0}. However,
the context makes this clear, since the product measure p x v in the first integral
expression (defined on [0,1] x [0,1]) is applied to ordered pairs (sy,s2), while the
product measure v X u in the last integral expression (defined on [0, 1] x [0,1]) is

applied to ordered pairs (s, s1).

oz

Theorem 3.1.6. Given any permutations m,0 € S,,, m > 1, we have [A,,(7)]° =

™

A (o7t ). In particular, if e, € S, is the identity permutation, then [A,,(7)]" =
Ap(em).

Proof. Let m,0 € S,,, m > 1. Then

[Ap ()] = {(51,.- - 8m) €[0,1]™: 0 < 8701y < -+ < Spmy < 1}
={(51,---55m)7 €0,1]": 0 < 5701) <+ < Sr(m) < 1}

= {(Sg(l), .. 730(m)) € [0, 1]m :0< Sp1) <0 < Spim) < 1}. (3.22)

We rename the variables, replacing sq(1), . . . , Sg(m) With s1,. .., 55, respectively, which
is to say that we apply the permutation ¢! to every subscript in the last expression

above. We obtain

[Am<’/T)]U = {(81, c. ,Sm) :0< So-1(x(1) < < So-1(n(m)) < 1}

= A, (o7 (7). (3.23)
This gives us the first statement of the theorem, and the second statement follows
immediately. O

Theorem 3.1.7 (Composing permutations of a product measure). Given any per-

mutations m,0 € Sp,,m > 1, and given any measures vy, ...,Vy € Mygl0,1], we
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have
(1/0(1) X oo X I/U(m))7r = V(1) X =+ X Vgn(m); (3_24)
that s,

(1 X oo X )] = (1 X oo X 1) (3.25)

Proof. Letting pi; := v,(;) for j =1,...,m, we have

™

(Vg(l) X oo X l/g(m))ﬂ- = (,ul X oo X Mm)

= Hn(1) X+ X fa(m)

= Vor(1) X =+ X Vgr(m)- (326)
O
By similar reasoning we can establish for points x € X; x --- x X, and sets

E C Xy x -+ x X, that (z7)" = 27" and (E°)" = E".
One thing Corollary 3.1.3 allows us to do is to rewrite the definition of the disen-

tangling of a monomial (Definition 2.0.3) in another useful way:

Theorem 3.1.8 (Alternate definition of disentangling a monomial). Given D =
D(Ay, ..., Ay), and given py, o, ...,y € Mupl0,1] together with nonnegative in-
tegers my, . .., my, let blocks of integers Bl(1), ..., Bl(n) and operators Cy,...,C,, be

defined in the usual way, as well as measures

(
u, ke BI(1)

, ke BI2
P @ (3.27)

[ tn, Kk € Bl(n),
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so that the measures v, ...,V are associated with the operators C,...,C,,, respec-

tively. We then have

= Z /A Cw(m) s Cﬂ(l) (Vw(l) X X Vﬂ(m))(dsw(l), . ,dSﬂ(m)), (328)

where e, € Sy, is the identity permutation, so that the set A, (en) is given by
Am(em) = {(81,...,8m) < s < <5y, < 1} = {(SW(I),...,SW(m)) : 0<

Sp) < v < Spim) < 1}.

Proof. Under the given hypotheses, we have by Corollary 3.1.5 that

= Z /A Cﬂ(m) cee Cﬂ(l) (Vﬂ(l) X X Vﬂ(m))(dsﬂ(l), ce ,dSW(m)). (3.29)

O
A result of this theorem is the following corollary, which we will have use for later:

Corollary 3.1.9. Given D = D(Ay,..., A,), where Ay,..., A, € L(X), and given

finite, continuous Borel measures i1, . .., i, on the interval [0,1], together with non-
negative integers myq, ..., my, we have for any permutation o € S,, that
P$}77/L?n (Al, C.. ,An) = Pua?l()lﬁ'_;,;a{:f)n) (Ag(l), e ,Ag(n)). (330)
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Remark 4. The result in Corollary 3.1.9 is given in [13, Proposition 2.11, p. 14] for
the case of probability measures. The proposition is stated there without proof, intro-
duced by the statement that it follows directly from the definition of the disentangling
map. Were the article’s definition the one we have just discussed here in Theorem
3.1.8, it would indeed follow directly, but it does not seem to follow so directly from
the original definition of the disentangling map, which our Definition 2.0.3 matches.
Perhaps the authors simply recognized Corollary 3.1.5 intuitively as an application
of a change of variables theorem. Nevertheless, it seems good in the current section

of this thesis to attempt to outline a justification of this proposition.

Proof. Assigning the same names as before for C4,...,C,, and vy,...,v,,, we may
take any fixed permutation 7 € S, and, letting e € S, be the identity permutation,
say using Theorems 3.1.7 and 3.1.8 (and then just changing the index of summation)
that

PI/T(l),‘..,uT(m) (C‘F(l)) BRI CT(m))

= Z A Cﬂr(m) T CTTF(].) (Vﬂr(l) XX Vﬂr(m))(dsﬂr(l)y B adSTfr(m))

TES, m(em)
= Z / C1’r7r(m) T CTTI’(l) (V7'7r(1) XX VTW(m))<dST7T(1)7 s 7d8'r7r(m))- (331)
TTESm Am(em)

Letting p := 77 each time we select 77w € 5, gives

plol (Cr1), - -y Crimy)

VT(l)?"':’/T(m)
=) / Coim) = o1y (Wp(1) X+ X Vp(am) )(dSp(1), - - -, dSp(m))
PESm, Am(em)

In particular, any rearrangement of the A;’s corresponds to a rearrangement of the
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Cy’s, so for any permutation o € S, there is some permutation 7 € 5, for which the
list Cr1), ..., Crom) has every A,y preceding every A, ), preceding every A, s), etc.,
and similarly for the measures. We can then say

P (Alu o 7An) _ Pl,...,l (Cl, ceey Cm)

H1seeesfin V1, Vm

=Pt (Crys - -+ Cr(my)

Vr(1)s-Vr(m)

= Pt Ay, -y Aony)- (3.33)

(Note: The way permutations are handled in this proof is a technique that will be

used again, such as in Remark 24, Section 6.2.) O

3.2 Disentangling a monomial that involves a
sum of two measures

Besides the sort of “commutativity” properties we have just shown for product mea-
sures, we would like to establish what is effectively a distributive law for measures
in the context of disentangling a monomial. For example, we would like to calculate
disentanglings of the form PI,IJ’Z,Q/;'Q';"TZ”(Al, ..., A,). (Later, in Theorem 4.3.7, we will
consider a distributive law for disentangling a monomial involving a sum of operators,
Pﬁl”z:’}; (B+C,As, ..., Ay).)

To do so, we begin by noting two straightforward results. The first is that the sum
of two measures is a measure: If g and v are (positive) measures on the measurable
space (X, M), and the function g+ v : M — [0,00] is defined by (1 + v)(E) =
w(E) 4+ v(E) for all E € M, then u + v is a measure on (X, M).

The second is a distributive law that holds for product measures: If x is a o-finite

(positive) measure on (X7, M) and v, n are o-finite (positive) measures on (X, Ms),
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then

ux (v4+n)=pxv + puxn. (3.34)

For the rest of this thesis we will assume X is a Banach space unless otherwise
stated. Using the above facts, we are able to prove the following disentangling theo-

rem:

Theorem 3.2.1 (Distributive law for disentangling a monomial that involves a sum
of two measures). Let Ay, As, ..., A, € L(X), and let may,...,m, be non-negative
integers. Then given finite, continuous Borel measures v,n, g, i3, - - ., b, 0N the in-
terval [0, 1] associated with the operators Ay, Ay, Aa, As, ..., Ay, respectively, we have
that

PR (A AL = Phm2eema (AL ALY Phmzeemn (A ALY (3.35)

VAN, U2, hn V4255 n, T2, hn

Remark 5. Since, when disentangling a monomial, we may by Corollary 3.1.9 per-
mute the operators and correspondingly permute the measures and exponents with-
out changing the value of the expression, the theorem will hold as well if the sum of
measures appears later in the list of measures, with an exponent 1 corresponding to

them.

Proof. We start by assigning blocks of integers almost the same as before: Let m :=

1+my+mg+---+m,, and let

BI(1) = {1},
BI(2) :={2,3,...,1+ma},

Bl(n) :={l+mo+---+mu_1+1,...,m}. (3.36)
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We again assign names of operators by Cy := A; for k € Bl(j), where j =1,...,n
k=1,...,m. Then

Pl,m27---»mn (Al, e ,An)

VA1, 4250005

= > / Crimy* Cry (v +m) X pg XX pg)(ds1, dsa, - ..., dsim)
A

7T€Sm m (ﬂ—)

= Z / Cﬂ'(m) o 'Oﬂ'(l)(y X “72”12 X X u?n>(dslvd827' .- adsm)
A

ﬂ'ESm m (ﬂ')

+ Z / Cﬂ'(m) o 'Cfr(l)(n X Mgm X X :unmn)(dsladS% cee ad3m>

— Pl (AL A) + PRmemn (AL A,). (3:37)

V4255 n, K255 hn

Although the finiteness of the measures may not have been needed in these steps, o-
finiteness was used both in applying the distributive law established in the previous

theorem, and in guaranteeing that the product of the measures is associative. O
We may extend this result using Corollary 3.1.9:

Theorem 3.2.2 (Disentangling a monomial that involves a sum of two measures).
Given a Banach space X, together with operators Ay, ..., A, € L(X), non-negative
integers mq, ..., my, and finite, continuous Borel measures v,n, g, [13, - - - , fbn 0N the
interval [0, 1] associated with Ay, Ay, Aa, As, ..., Ay, respectively, we have that

Pml’mz,...,mn (A17 AQ, A?” e 7An>

V+777N27~-»Hn

Vi1 2, 43 -5 n

mi my
= Z Pk,m1fk,mz,m3,...,mn (Al, Ah AQ, Ag, e ,An) (338)
k=0 \ k

Remark 6. Although the theorem here introduces a summation while making changes

in the first argument of the monomial being disentangled, Corollary 3.1.9 allows us to
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apply the theorem to other arguments, and of course we may also apply the theorem
repeatedly if there is more than one sum of measures appearing among the subscripts

of P.
Proof. (A later result, Theorem 4.3.8, will be proved in much the same way.) We
observe first that if m; = 0, then both sides of Equation (3.38) reduce to

Przema (A, ALY

K255 hn

Let us therefore assume that m; > 0.
We observe next that

Pl (A Ay A = PRI (A A Ay A) (3.39)

V1,425 i VA1, V40,0425

for any j = 0,...,my. (The reason we can say this is that when we rename the copies
of the operators Ay,..., A, with the names C,...,C,,, the names C,...,C,,, all
refer to the operator A;, whether we are calculating the disentangling on the left-
hand side of Equation (3.39) or the disentangling on the right-hand side. Moreover,
the operator u + v is associated with each of those operators. Thus the definition of
the disentangling map will yield the same expression for both. In effect this argument
is Proposition 3.6 of [13], applied more generally than to probability measures.) We

will show by mathematical induction that, for any 7 =0,...,mq,

Pmm2,.mn (Ab A27 . ,An)

V+777M27---»Hn

Pyl —amematin () Ay, Ay, Ag, As, ., Ag). (3.40)

UV 1,42, 43 - s,
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For the case j = 0, we have that the right-hand side of Equation (3.40) is just the
one term

0,0,m1—0,ma,m3....,m
P n(A17A17A17A27A37"‘7An)

VY40, 42,435 n

= Pml,mQ,mSm,mn(A17 A27 A37 s 7A"7«)7 (341)

VA1, 142,43 o5 i

which is identical to the left-hand side.
Let us now suppose that Equation (3.40) holds for each j = 0,1,...,h, where
h < mj. Then applying Corollary 3.1.9 and Theorem 3.2.1 in various ways (as well

as splitting and combining exponents), we have

Pml’mQ"“’mn(Al, Ao, ... ,An)

V+77»M27---7Mn
" h
_ Pk,h—k,ml—h,mz,mg...,mn (A A A A A A )
- VU1, 2, 1S 1,411, 411, 412, £13, .. ., Llp
k=0 \ k

h
§ : 1,k,h—k,mi;—h—1,ma2,ms3....,m
= P, ! n(AlaAlaAlaAhA?)A?n"'aAn)

VANV VN, 42,43 s

"o h
_ 1,k,h—k,m1—h—1,ma,m3...,m
- § PZ/,V,n,qur],ug,ug...,,un " (Ah Ala Ala A17 A27 A37 R An)
k
"R
z : 1,k,h—k,m1—h—1,ma,ms....,mn,
+ (k P777V7777V+777M27M3---7M77« (A17 Al’ Al’ Al’ A27 Ag’ e An)

ho[h
. k+1,h—k,m1—h—1,ma,m3....m
- E : Pvmw-&-mumu?,---,un n(Alv A1, Ay Ay, As, 7An)
k

h [ h
k,h+1—k,mi—h—1,ma,m3...,m
+ § : ( Pz/m,z/+n7uz,u3...,un "(Ar, Ar, Ar, Az, As, L Ag)
k
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h+1 h
o k,h+1—k,mi1—h—1,ma,ms....,my,
- PV7777V+777/'LQ7/1’3"'7/'L” (A17 A17 A17 A27 A3) ] An)
k=1 \ k—1
o[k
k,h+1—k,mi1—h—1mo,ms...,mn
+ E T SO (A1, Ay, A Ag  Agy L Ay (3.42)
k=0 \ k

Applying the properties of binomial coefficients that

h h+1 . h h+1
0 0 h h+1
and for 0 < k < h,
h h h+1
+ = :
k—1 k k

we get

Pml,m2 ~~~~~ lTn"<A17A27...,ATL)

vn, 42,

_ Pk,h+1—k,m1—h—l,mz,mg...,mn(Ab Ay, A Ay Asy AL, (3.43)

vV, 2,43 i
k=0 k

By mathematical induction, this proves Equation (3.40) for j = 0,1,...,my. The
case j = m; yields

M1,M2,.., My
PVJFT?:N%NS ~~~~~ Hn (

Ay, Asy o AL

. k,m1—k,0,ma2,m3....,m
— P, n(A17A17A17A27A37"'7An>

U,V 402,143 fon
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- mi k,mi1—k,mo,ms...,mnp
=> Pl —kmamsmn (A Ay Ay, Ag, . Ay), (3.44)
k=0 \ K
which establishes Equation (3.38). O

An example of the use of Theorem 3.2.2 will be given below, in Section 4.3,

Example 15.
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Chapter 4

Orderings and operations on

orderings

4.1 Orderings

As we have discussed, in Feynman’s Operational Calculi one finds products of time-

indexed operators, and thus expressions such as:

Crim) (Sx(m)) * + * Cr2) (S2(2)) Cr(1) (57(1)),

m
j=1

where {C;}L, are operators, {s;}L, are time indices that we are taking to have
values in the interval [0,1], and 7 € S,, = Perm{1,2,...,m} (that is, S, is the
collection of all bijections from {1,...,m} to {1,...,m}). For our purposes here we
will handle only the time-independent operator case, C;(s;) = Cj, allowing us to drop
the time indices:

Crm) - Cr2)Cr(1)-

We find this, for example, in our definition of the disentangling map of a monomial,
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Definition 2.0.3:

T i [P (Ar, A
-y / ) - Cory (X - 5 ™) (dsy, - . dsyy). (4.1)
TESm

Since, in expressions like this, we deal with all the permutations of the subscripts
on the operators (4, ..., C,,, the proofs of various FOCi results often involve combi-
natorial arguments about the order in which the subscripts 1,2,...,m appear. For
example, it is useful at times to regard the permutation 7w that specifies that order
as the joining of two shorter permutations o and 7 in some way. In order to handle
such concepts more easily, we would like to develop a way to express relationships
among permutations of different lengths, which we will do in terms of operations on

‘orderings’.

Definition 4.1.1 (Orderings). Given any finite set P, the set of orderings of P is the
set Op := {all bijections o : {1,2,...,card(P)} — P}. We represent an individual
ordering 0 € Op as 0 = [0(1),0(2),...,0(card(P))], and we say that o orders the
set P. The length of an ordering o € Op is defined to be length(o) := card(P). Two
orderings of two sets are said to be disjoint if the sets they order are disjoint.

(By card(P) we mean the cardinality of the set P.)

Note that this definition includes the case of an empty set P = (), in which case
there is only one ordering, namely the empty map from P = () to P = (). Thinking
of maps as sets of ordered pairs, the empty map is the set consisting of no ordered
pairs; that is, it is the empty set. So we will represent the empty map by the empty
set symbol, @ : § — (. The empty map @ : § — @ is trivially a bijection, so we are

indeed able to say that () € Oy, and we will call it the null ordering (or sometimes
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the empty ordering); in fact, Oy = {0}.

Example 5. Let P = {2,3,5}. Then the map o given by o(1) = 3,0(2) =2,0(3) =5
is an ordering of P; that is, o = [0(1),0(2),0(3)] = [3,2,5] € Op. In fact, Op =
{[2,3,5],[2,5,3],[3,2,5], [3,5,2],[5, 2, 3], [5, 3, 2] }. Since Op is a set, we may of course

list its elements in any order.

Remark 7. The notation [sq, Sa, . . ., 8] gives the full description of an ordering map.

It implies the associated domain {1,2,...,m} and range {s1, sa,...,Sm}

Remark 8. Orderings are the same as permutations in the case when the set to be
ordered or permuted is the set {1,2,...,m} for some nonnegative integer m. That is,

Oqi2,....m} = Sm. (We will therefore at times apply ordering notation to permutations.)

Remark 9. Since Op := {all bijections o : {1,2,...,card(P)} — P}, we have that

the number of those bijections is

card(Op) = card(P)!.

This holds even in the case P = (), where we have card(Op) = card({0}) =1 = 0! =
card(()!.

Remark 10. One caution about the notation for orderings: In other, contexts, per-
mutations are often represented in ‘cycle notation’, involving a string of elements
in which each maps to the next. For example, in cycle notation the expression
‘m = [1 3 2" would refer to the map 1 + 3 +— 2 + 1. This is not what we
mean here by the expression m = [1,3,2]. Instead, for us ‘[1,3,2] is simply an or-
dered list of the images of 1,2, 3, respectively, under the map; that is, ‘mr = [1, 3,2/’

means 7(1) = 1,7(2) = 3,7(3) = 2. In general, ‘T = [p1,p2,...,Pm) will mean

(1) =p1, 7(2) =po, ..., T(M) = pp.
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Before we discuss the ‘merge’ operation on orderings, it may be helpful to note
the following: Suppose that we have an ordering m € Op, where P is a finite
set, and suppose that z,y € P. Then x and y appear in the representation m =
[7(1),m(2),...,7m(card(P))]. The element x is to the left of y if and only if there exist
gk e{l,2,...,card(P)}, j < k, with m(j) = x and 7(k) = y. Equivalently, x is to the
left of y if and only if 7~ () < 7~ '(y); that expression will appear in the definition

of the merge operation. (Also, ¥ and y are the same if and only if 7 *(z) = 77! (y).)

4.2 The merge operation

Our next objective is to express relationships among orderings, such as expressing
a set of orderings of several objects in terms of sets of orderings of fewer objects.
For example we might want to think of the orderings of five objects as a kind of
combination of the orderings of three of those objects and the orderings of the other
two objects. Our reason for wanting to think this way is that if we are working with
five linear operators Ay, ..., A; and their associated measures p, ..., us, it may be
that two of the operators are distinguished from the other three in some way. For
example, maybe A; and As commute with all the others, but As, A4, A5 do not. Or
maybe uy and po have their support in a proper subinterval of [0, 1], while g, u4
and ps have their support in the rest of the interval. (The latter situation allows
disentangling to occur in two steps, first in the subinterval, and then over the whole
interval using the operator that results from the first step, as described in Theorem 2.1
of [22], which is related to the ‘autonomous bracket’ concept of V. Maslov, described
in [35, p. 15].) In order to handle a variety of relationships, we will use operations on
orderings that are defined below.

We will start by defining the ‘merge’ operation ® on sets of orderings. Two other
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operations will be defined later, but the merge operation is the main operation we
will deal with. We will also provide examples of how these operations may be applied

to FOCi.

Definition 4.2.1 (The merge operation). Given disjoint, finite sets P and () and
orderings 0 € Op, T € Og, we define {o} ® {7} to be the set of all orderings 7 € Opyq

with the two properties that
(i) 7 '(z) < 77 (y) if and only if o' (z) < o~ (y) for all z,y € P, and
(ii) 7Y (x) < 7 '(y) if and only if 77 (z) < 7 (y) for all z,y € Q.

Given sets of orderings U C Op,V C Og, we define Y ® V (‘U merge V’) by

UOV = U {o}o{7}). (4.2)

oceU,TeV

(We will show in Theorem 4.2.5 that the union in Equation 4.2 is disjoint. The symbol

4

‘W, as in “m € Opug” above, represents a disjoint union of sets.)

Often P and @ will be sets of positive integers.

Remark 11. The definition is interpreted so that if either &/ = @) or V = 0 or both,

then the union (J, ¢, ,ep{o} © {7} is empty, hence U ©V = 0.

Remark 12. The merge operation can be regarded as a special case of the ‘shuffle’
of two languages in the theory of formal languages—see [12, pp. 292-293]—as was
pointed out to the author by a colleague, Scott Dyer. The statement of the definition
of the shuffle is much like part (iii) of Theorem 4.3.5 below. This special case in effect
applies the shuffle to disjoint languages, each of which has equal-length strings of

exactly the same distinct symbols. The ‘concatenation’ and ‘excerption’ operations
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defined below similarly have counterparts in that field; the excerption operation se-
lects a subword. Our focus for all three operations is on developing propositions that

may be applied to the subscripts of operators in FOCi.

To clarify Definition 4.2.1, we repeat a comment from the end of Section 4.1.
Given an ordering o = [0(1),0(2),...,0(card(P))] € Op and elements z,y € P,
the statement that o '(x) < o~ '(y) means that x is to the left of y in the explicit
representation o = [0(1),0(2),...,0(card(P))]. When we say then in property (i) of
the definition that 7! (x) < 7~ '(y) if and only if 0~ (2) < o~ !(y) for all 2,y € P, we
are saying that the order of the two elements x and y is the same in 7 as in . We may
therefore think of the merge operation as an order-preserving operation; when applied
to the singleton sets {c} and {7}, {0} ® {7}, it produces all possible orderings of the
objects that o and 7 together order that preserve the relative order of the objects o
orders and that preserve the relative order of the objects that 7 orders.

Properties (i) and (ii) in the definition of the merge operation both use the phrase
“if and only if,” which makes them useful properties to apply when we have a set
of orderings that satisfies the definition. However, it happens that when we want to
prove that a set of orderings satisfies the definition of a merging of two sets, proving

weaker statements is enough:

Theorem 4.2.2 (Equivalent statements for the merge definition). Property (i) in

Definition 4.2.1 may be replaced by either of these equivalent statements:

(i') If 7 (z) < 7 *(y) then o *(x) < o (y) for all z,y € P.

(i") If o~ (x) < 0~ (y) then n ' (x) < 7~ '(y) for all z,y € P.

Property (ii) in the definition may be replaced by either of these equivalent statements:

(i) If = (x) < 7 (y) then 771 (z) < 771 (y) for all z,y € Q.
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(i") If ' (z) < 77 y) then 7= (x) < 7' (y) for all x,y € Q.

Proof. All of these equivalences follow from the fact that o, 7, and 7 are bijections.
We will show that (i) is equivalent to (i').

Comparing (i) and (i'), we note first that (i) clearly implies (i'). We can see that
(i) implies (i) by contraposition: If (') is true, that is, if 7 *(z) < 7 '(y) implies
that o~ !(x) < ¢~ (y) for all z,y € P, then the supposition that for some x,y € P we
have 771 (z) > 77! (y) gives us either that 77 '(2) = 7~ '(y), in which case z = y and
therefore o~ !(x) = o~ !(y), or else that 7' (z) > 7 (y), in which case (by (i') itself)
o '(z) > o7 (y). Hence, 7~ () > 7 '(y) implies that ¢ *(z) > o '(y), and by
contraposition, o' (x) < o' (y) implies 7~ *(z) < 7~ *(y). Therefore, (i) is equivalent

to (i'). We omit proofs of the other equivalences, as they are similar. H

Example 6. Let P := {1,2}, @Q := {3,4}. Then we have Op := {[1,2],[2,1]},Oq :=
{[3,4],[4,3]}. Letting o := [1,2],7 := [3,4], we have

{e}o{r} ={[1,2,3,4],[1,3,2,4],[3,1,2,4],[1,3,4,2],[3,1,4,2],[3,4,1,2]}. (4.3)

Note that the elements of {¢} ® {7} all preserve the relative order of the entries in
o and the relative order of the entries in 7, while allowing any other variation in the
order.

To apply this example of the merge operation, consider a situation in which we
would like to find the sum of products of four operators A;, A,, A3, A4 in all possible
orders, except that A; always operates before Ay, and Az always operates before Ay.

(This is similar to what we might do in FOCi, but greatly simplified.) The sum of
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the operators in all orders without restriction would be

Z AryAr3)Ar2)Ar)- (4.4)

7€0(1,2,3,4}

The sum of the operators with the restriction listed above would be

Y A A A An)- (4.5)
me{[12]}o{[3.4]}
Another possible situation in which to apply the merging of two (singleton) sets
of orderings would be if we want to add up the possible products of two copies of
the operator A and two copies of the operator B. More specifically, let us say that

Ci:=Cy:= A and C3 := (4 := B, and that we are interested in the sum

Z Cra)Cr3)Cr2)Cra)- (4.6)

m€0(1,2,3,4}

As the reader may verify, the set Oy 234y can be rewritten as

Opzan ={L2, 21} o {B.4, 43} = | {o}oi{r}. @7
oe{[1,2)[2,1]}
re{(341 (43}

We can therefore write the sum as

Y CrwCrsCrCry = Y > CrwCrsCrCry.  (4.8)

71'60{172374} UG%[l,ﬂ,[ s %WG{J}Q{T}

At this point we note that the sum over o and 7 will be the same whether we choose
o = 1[1,2] or 0 = [2,1], because C; = Cy = A. Also the sum over ¢ and 7 will be

the same whether we choose 7 = [3,4] or 7 = [4, 3], because C3 = Cy = B. We will
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therefore rewrite the sum by choosing one of each (0 = [1,2] and 7 = [3,4]) and

multiplying by the number of duplicate choices:

> CrwCrsCr@Cry =2x 2% > Y Ca@Cr3CrCrr)

m€0(,2,3,4} o=[1,2| re{o}O{T}

T7=[3,4

=4 X Z Cﬂ(4)cﬂ(3)0ﬂ(2)cﬂ(1). (4.9)
me{[1,2]}o{[3.4]}

This reduces the number of terms in the sum. In the example here, the number of
terms is reduced from 4! = 24 to 212! = 4. (The set {[1,2]} ® {[3,4]} is given the
designation Poo in [24, p. 575], where it is used as an index set in an application

similar to this. We will give the general definition of P,,, ., below. This notation

-----

simplifies expressions in FOCi in, for example, the context of evolution equations—see

9, pp.24ff|—where the number of terms in a sum can be significantly reduced.)

Example 7. Let
P:={1,3,5},Q :={6,9}.

Then Op = {[1,3,5],[1,5,3],[3,1,5],[3,5,1],[5, 1, 3], [5,3, 1]}, Og = {[6,9], [9, 6] }. Let
o:=1[3,5,1 € O0p, 7:=16,9 € Og.
Then

{ec} o {7} ={[3,5,1,6,9],[3,5,6,1,9],[3,6,5,1,9],16,3,5,1,9],[3,5,6,9, 1],

3,6,5,9,1],[6,3,5,9,1],[3,6,9,5,1],[6,3,9,5,1],6,9,3,5,1]}. (4.10)

(Again, the elements of a set may of course be listed in any order, but we will use

the same order in each of our examples, according to the order they are generated
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by Theorem 4.3.6, below.) At this point we will not demonstrate that {o} ® {7}
is exactly the set shown in Equation (4.10). We will however, by choosing 7 :=
6,3,5,9,1] € Op135609), indicate the validity of (4.10) using Theorem 4.2.2. We

claim that 7 € {o} ® {7}. By the definition of {¢} ® {7}, ™ needs to satisfy both
(i) If o7 (z) < o' (y) then 7' (x) < 7 (y) for all 2,y € P, and
(i) If 71 (z) < 7' (y) then 771 (x) < 7~ (y) for all 7,y € Q.

Theorem 4.2.2 says in effect, “An ordering 7w will be in the set {o} ® {7} if and
only if when we look at 7, the elements it has in common with o (the elements of P)
appear in the same relative (left-to-right) order in 7 as in o, and the elements it has
in common with 7 (the elements of ()) appear in the same relative order in 7 as in
7.” We will do this below.

We first note that by the notation we are using,

0= [37 9, 1] = [0(1)7 U(2>7 0<3)]7 T = [67 9] = [T(1>7T(2>]7

T =106,3,5,9,1] = [r(1),7(2), 7(3),7(4), 7(5)].

Consider first the elements of P = {1,3,5}, which are ordered by o. Taking them
in the order specified by o, we see that 0 '(3) = 1,07 (5) = 2 and ¢~ '(1) = 3. The
pairs z,y € P for which 07! (2) < 07 '(y) arethenz =3,y =5; 2 =3,y = l; and z =

5,y = 1. For these pairs we have:
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For 7, which orders @ = {6,9}, there is only the pair z = 6,y = 9, for which:
r=6y=9: 71 6)=1<2=7"9) and 7 '(6)=1<4=7"(9).

This confirms that 7 € {o} ® {7}.
In some cases an easier method for checking whether an ordering 7 is an element of
the merging of two singleton sets of orderings {o} ® {7} is contained in the following

theorem:

Theorem 4.2.3 (Alternate definition of merge). Let P and Q) be disjoint, finite sets
and o € Op, 7 € Og be orderings. Let p1,pa, ..., Deard(P): @15 42, - - - s deard(Q) be defined

by

(D1, D2s - - - Deararp)) := [0(1),0(2),...,0(card(P))] = o, and

[qh q2, ... 7QCard(Q)] = [7-(1)7 7-<2)7 s ,T(C&I‘d(@))] =T.
(This will imply that P = {p1, D2, . .. Dearap)} and Q = {q1,q2,- .., Geara(@)}-) Then
{o} © {71} is the set of all m € Opuq for which both
(i) 7 (p1) <7 ' (p2) <+ <7 Pewrarp))  and
(i) 7 ) <7 M) << Wﬁl(Qcard(Q)»

Note that property (i) will be vacuously satisfied if card(P) = 0 or 1, and property

(i) will be vacuously satisfied if card(Q) = 0 or 1.

Proof. With the hypotheses as stated, let us suppose that 7 € {0} @ {7}. Since

pi = o(i) for all i € {1,2,...,card(P)}, we have that o ~*(p;) = i for all i. Therefore,

ol (p1)=1<0""(p2) =2<... <0 " (Peara(p)) = card(P).
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Consequently, by definition of the merge operation,

7T71(p1> < 7T71<p2) < ... < Wﬁl(pcard(p)).

Similarly we may establish that 7' (¢1) < 7" (¢2) < ... < 7 '(qeard(q)) and therefore
(i) and (ii) of the theorem hold.

On the other hand, with the given hypotheses, let us suppose that (i) and (ii) hold.
Then taking any x,y € P with 07! (z) < o7 (y) we let j := o '(z) and k := 07 (y).
But then z = o(j) = p; and y = o (k) = py with j < k, so by property (i) we have that
7' (z) = 7 (p;) < 7 '(pr) = 7 (y). This establishes property (i) of the definition
of the merge operation applied to 7 € {oc} ® {7}. Property (ii) of the definition is

established similarly. Therefore, 7 € {o} ® {7}. O
Example 8. Continuing Example 7, but now using Theorem 4.2.3, we are claiming

for o = [3,5,1] and 7 = [6,9] that

{ec} o {7} ={[3,5,1,6,9],[3,5,6,1,9],[3,6,5,1,9],16,3,5,1,9],[3,5,6,9, 1],

3,6,5,9,1],[6,3,5,9,1],[3,6,9,5,1],[6,3,9,5,1],[6,9,3,5,1]}. (4.11)

Although the sets are in fact equal, for now we will only show the inclusion

{e}o{r} 2{[3,5,1,6,9],[3,5,6,1,9],[3,6,5,1,9],1[6,3,5,1,9],[3,5,6,9, 1],

3,6,5,9,1],[6,3,5,9,1],[3,6,9,5,1],[6,3,9,5,1],[6,9,3,5, 1]}, (4.12)

and equality will then follow from a cardinality argument once we have proved The-
orem 4.2.9.

Defining p1, p2, p3, q1, g2 as in Theorem 4.2.3, we have [py, pa, p3] :== [3,5,1] = o
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and [q1,q2] = [6,9] := 7. We first look at each of the orderings 7 on the right-hand
side of Equation (4.12) to see whether 7! (p;) < 7 '(ps) < m *(p3); that is, whether
713) < 771(5) < 77 !(1). In the first ordering listed, [3,5,1,6,9], we have that
713) =1 < 75 =2 < 7 !(1) = 3, so that satisfies the desired property
(property (i) of Theorem 4.2.3). It is easy to see in the remaining orderings that 3
precedes 5, which precedes 1. Similarly, checking whether 7 '(q;) < 7 '(gz)—that
is, whether 77(6) < 7~ '(9)—we see that in all of the orderings 7, 6 is in fact to the

left of 9. Therefore, all of these orderings are in {o} ® {7} as claimed.

Example 9. We have given an example of the merge operation applied to singleton

sets. For an example using more general sets, let
U:={[1,5,3],[3,5,1]} C Op, ¥V :={[6,9]} C Og,.

The set U ®V is defined to be the union of all sets of the form {o} ® {7} where ¢ € U

and 7 € V. Hence,

UV = ({[1,5,3]} ® {[6,9]}) U ({[3, 51} ® {[6,9]})
={[1,5,3,6,9],[1,5,6,3,9],[1,6,5,3,9],[6,1,5,3,9],[1,5,6,9,3],
1,6,5,9,3],[6,1,5,9,3],[1,6,9,5,3],[6,1,9,5,3],[6,9, 1,5, 3],
3,5,1,6,9],[3,5,6,1,9],[3,6,5,1,9],[6,3,5,1,9],[3,5,6,9, 1],

3,6,5,9,1],[6,3,5,9,1],[3,6,9,5,1],[6,3,9,5,1],[6,9,3,5,1]}.

We now go on to state theorems involving the merge operation. We begin by
showing the effect of the merge operation when one of the sets consists of the empty

ordering.
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Theorem 4.2.4 (Merging with the empty ordering). If P is a finite set andUU C Op,
then U © {0} ={0}oU =U.

Proof. Since we have already established that the merge of the empty set and any
set is empty, we will assume throughout this proof that ¢ is nonempty. In order to
apply the definition of merging (Definition 4.2.1), we will name the empty set @ = 00,
which yields that Og = Oy = {0}.

First we will consider the case P = (). In this case, Y C Op implies that U = {(}
(since we are assuming U is nonempty), so we want to look at U ® {0} = {0} © {0},
and we claim {0} ® {0} = {0}.

To show the inclusion {0} ® {0} C {0} is straightforward, since given any m €
{0} ® {0}, the definition of merging tells us that 7 € Ogp = Oy = {0}. To show
the reverse inclusion, {0} ® {0} D {0}, we consider any = € {(}}, which is to say
that 7 = (0, the null ordering. Let us also say o := 7 := (). Using the definition of
merging, we will be able to say that 7 € {0} © {0} = {0} ® {7} if we can show that
7 € Opuyp = Oy = {0}, which we already know, and that conditions (i) and (ii) in the
definition of merging hold, namely (i) 7' (z) < 7 '(y) if and only if o' (z) < 07 (y)
for all 7,y € P, and (ii) 7 '(z) < 7 '(y) if and only if 7 '(z) < 77 '(y) for all
x,y € Q. In fact, both of these conditions are vacuously satisfied since P and @) are
both empty sets. Thus 7w € {o} © {7} = {0} © {0}, and {0} ® {0} D {0}. Therefore,
{0} © {0} = {0}, so for the case P = () we have U ® {0} = U. Tt follows also that
{0y ou = {0} © {0} = {0}.

Second, we consider the case card(P) = 1, say P = {a}. Then card(Op) = 1! =1
and Op = {[a]}. Consequently, since Y C Op we have that U = {[a]} (because we are
assuming U is nonempty). We are therefore interested in the set U ©{0} = {[a]} ©{0},
and we claim {[a]} © {0} = {[a]}. Let 0 :=[a] €U, 7 :=0 € Og = Oy.
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To show the includion {[a]} ® {0} C {[a]} is straightforward, since given any
7 € {[a]} ® {0}, the definition of merging tells us that 7 € Oy = Oyay = {[al}. To
show the reverse inclusion, {[a]} ® {0} D {[a]}, we consider an arbitrary 7 € {[a]},
which can only be 7 = [a]. We wish to show that 7 € {[a]} ® {0} = {¢} ® {7} using
the definition of merging. We already have that m € O, = Oyayup, 50 We have only
to demonstrate that 7 satisfies properties (i) and (ii) of the definition of merging,
namely (i) 7' (z) < 7 '(y) if and only if o' (z) < o '(y) for all z,y € P, and (ii)
71 (z) < 7 '(y) if and omly if 7' (z) < 77! (y) for all x,y € Q. This time, P has
only one element, and () is empty, so again both conditions are vacuously satisfied,
telling us that 7 € {o} ® {7} = {[a]} ® {@}. Thus {[a]} © {0} D {[a]}, and hence
{la]} ®{0} = {[a]}. Therefore, we again have Y ® {0} = U. Establishing {0} oU =U
is similar.

Finally, consider the case card(P) > 2. We are trying to prove U @ {0} = U,
which we will again break up into two subset relationships, first 4 @ {0} C U. Choose
any m € U ® {0}. This implies that 7 € {o} ® {0} for some 0 € U C Op. Again
let 7 := 0 € Op = Og. Then by the definition of merging and Theorem 4.2.2,

m € Opyg = Op, and
(i) if 77 (z) < 7 '(y) then o' (x) < 07 (y) for all 2,y € P, and
(ii) if 7 (z) < 7 (y) then 771 (x) < 77 (y) for all 2,y € Q.
Since () is empty, the second condition provides us with nothing. But define

[P1: D25 - -+ s Peara(py) := 7 = [m(1),7(2), ..., m(card(P))], so that

T p) =1 < 7 (p2) =2 < o0 < T (Peararr)) = card(P),
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and the first condition will then give us that

o (p1) < o' (p2) < o0 < 0 H(Peara(p))-

Since the domain of o is the set {1,2,...,card(P)}, this implies that

0_1(p1) = 17 0_1(p2) - 27 ) U_l(pCard(P)) = Cal'd(P).

Consequently o(i) = p; = w(i) for all i € {1,2,...,card(P)}, and thus 7 = 0 € U.
Therefore, U © {0} CU.

For the reverse inclusion, U @ {0} 2 U, choose an arbitrary 7= € U. Say o =
7 and let 7 := (). We claim that 7 € {o} ® {7}, which we will prove using the
definition of the merge operation. Certainly we know that m € Op = Opyg. The
two remaining conditions we need to satisfy are that (i) 7 '(z) < 7 '(y) if and
only if o7 (x) < o !(y) for all x,y € P, and (ii) 7 *(z) < 7 '(y) if and only if
7 Hx) < 77 (y) for all 2,y € Q. But (i) holds since 7 = o, and (ii) holds vacuously
because @ is empty. Therefore, 7 € {0} ® {7} = {0} ® {0}, and consequently
T € Usareyio} @ {7} = U © {0}. Therefore, U ® {#} 2 U. Thus we have both
inclusions, and hence U ® {0} = U. Similarly, {0} U =U. O

Theorem 4.2.5. For finite, disjoint sets P and Q, let 01,09 € Op and 1,72 €
Ogq. If either o1 # o2 or 11 # T2 or both, then {01} © {m} and {02} ® {2} are
disjoint. Consequently, for any sets of orderings U C Op and V C Oy, the union

Userrevior @ {7} is a disjoint union, \J ey repio} © {7}

Proof. We will prove this by the contrapositive. Let P, be finite, disjoint sets, let
01,05 € Op and 1,7 € O, and suppose that m € ({01} © {r1}) N ({02} © {m}).

We will show that 01 = 09 and 7 = 7.
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Using the definition of the merge operation (Definition 4.2.1) twice, for any =,y €
P, o' (z) < oy (y) is equivalent to 7 *(z) < 7 '(y), which in turn is equivalent
to 0, ' (z) < 05 (y). Now, for any j,k € {1,2,...,card(P)} with j < k we have
01(j),01(k) € P, so clearly oy '(01(j)) = j < k = oy ' (01(k)). This will imply that

05 (01(7)) < 05 (01(k)). Consequently,

0y (01(1)) < 03'(01(2)) < 037(04(3)) < -+ < oy (ou(card(P))).

Since o5 ' (01(7)) are elements of the domain of o, which is the set {1,2,..., card(P)},

we obtain

oy (01(1)) =1, 055(01(2)) =2, 05 (01(3)) =3, ..., 05 (o1(card(P))) = card P,

hence 01(i) = 09(i) for all x € {1,2,...,card(P)}, i.e., 01 = 09. Similarly 7 = 7.

Hence o1 = 09 and 7 = 7o, as required. O

Theorem 4.2.6 (Merging subsets of two sets). If P and Q) are disjoint, finite sets,
and ifU CW COp andV C Z C Og, thenU GV C WO Z.

Proof. Let m € U © V. Then, by Definition 4.2.1, there exist ¢ € U, 7 € V with
7 €{o}®{r}. But then c e W, 7 € Z,som € {0} ® {7} C W Z. Therefore,
UOVCWE Z. O

Theorem 4.2.7 (Set relations and merge). Let P and Q) be disjoint, finite sets, and
let U C Op and V,W C Og. Then

() U VUW)=UOV)UUOGW),
(i) UG VNIW)=UOYV)NUOW),

(iii) UO (VW) = UOV)~ (UOW), and
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fVNW =0, then U © (VUW) = U V)UUOW).

Proof. (i) Claim: Y © (WUW)=UOV)UUOW).

(iii)

(Proof of C) Let m € U ® (V UW). Then there exist 0 € U, 7 € VU W with
mne{ot@{r}. Butthent e Vorre W, someld ®V orm € Y ®W. Thus
TeUOV)UUOW).

(Proof of D) Since VW C VUW, we have Y ©V C U © (VU W) and
UOW CUG (VUW). Therefore, UOV)UUOW) CUG (VUW).

Claim: U © (VNW)=UOV)N(UOW).

(Proof of C) Since VNW C V, W we have U (VW) C UGV and UG (VNW) C
U OW. Therefore, U © (VNW) C UOV)NUOW).

(Proof of D) Let 7 € (UOV)N(UOGW). Then m €e UGV and 7 € UOW, so there
exist 0 € U, 7 € V with 7 € {0} ® {7}, and there exist ¢’ € U, 7" € W with
m € {0’} ®{r'}. By Theorem 4.2.5, 0 = ¢’ and 7 = 7/, so 7 € VNW. Therefore,
re{o}o{r} CUSVNW),and hence UOV)NUOW)CUG (VNW).

Claim: UGV W)=UOV)NUOGW).

Let e U ® (V). There exist c € U, 7 € VW such that 7 € {c} © {7}.
Then 7 € V and 7 ¢ W. It follows that 7 € {o} ©® {7} C U ®V, and we
claim that 7 ¢ U © W. Assume to the contrary, i.e. that 71 € U © W. It
then follows that there are o' € U, 7" € W with © € {¢'} ® {r'}. But then
{oro{rhn{o' o {r'}) # 0, s0 0 = o', 7 = 7’ by Theorem 4.2.5, and so
7 =7 € W, which is a contradiction. Therefore, 7 ¢ U ©® W, and therefore
TeUOV)NUOW). ThusU O (VW) CUOGV)N (UOGW).

On the other hand, suppose that 7 € (U O V) (U O W). Then 7 € U ©V, but

T ¢ UGW. Sincem € UOV, let ussay m € {o}©{7} for some o € U, T € V, and
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we claim that 7 ¢ W. If we suppose that 7 € W, thenr € {o}o {7} CUOGW, a
contradiction. Therefore 7 ¢ W, and we see that 7 € {o} O {7} CUO (V. W).
Hence U OV)NUOW)CUO (VNW).

(iv) Claim: If VNW =0, then U © (VUW) = (U © V)U(U ©W).

Let VNW = (. Then by (i) we have Y © (VUW) = (U O V)U (U O W), so all
we need to show is that the union on the right-hand side is disjoint. But by (ii)
we have UOV)NUOW)=UO (VNW)=U 0 =0, so the union on the
right-hand side is a disjoint union.

]

Theorem 4.2.8. If P and Q) are disjoint, finite sets, and if U, W C Op and V, Z C

Oq are nonempty sets of orderings withd ©V =W © Z, thenU =W and V = Z.

Proof. Choose an arbitrary ¢ € U. Because V is nonempty, there exists an ordering
7 €V.Choose any m € {c} © {7}. Thent € {o} {7} CUOGV =W O Z, so there
exist o' € W, 7' € Z with 7 € {¢'} ® {7'}. Then 7 € ({c} ® {r}) N ({o'} ® {r'}).
It follows from Theorem 4.2.5 that 0 = ¢’ and 7 = 7’. Therefore, o € W. Hence,
U C W. A similar argument gives that ¥V C Z. The reverse inclusions follow in the

same way, and therefore, Y =W and V = Z. O

Theorem 4.2.9 (Cardinality of merged sets). For finite, disjoint sets P, Q) and sets
of orderings U C Op,V C Og, the cardinality of U ®V is given by

[card(P) + card(Q)]!

cardU © V) = card (P card(Q)] - card(U) card (V). (4.13)

Proof. For arbitrary o € Op, 7 € Og, we know that the length of o is card(P),
and that of 7 is card(Q)). The orderings in {o} ® {7} will therefore have length

card(P) + card(Q). Since the elements of ¢ remain in a fixed relative order for all
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m € {o} ®{7}, as do the elements of 7, each such 7 can be specified by simply stating
which positions in 7 are occupied by elements from o. That is, we can specify 7 by
choosing card(P) of the card(P) + card(Q) positions to be occupied by elements of

0. Consequently, the cardinality of {c} ® {7} is given by

[card(P) + card(Q)]!
card(P)! card(Q)!

card({c} © {7}) =

We know that U ©V =, -ep{0} ©{7}, and each {o} © {7} has the same cardinal-
ity. The union (U, ,ep {0} ©{7} is disjoint by Theorem 4.2.5, so card(U, ¢y ,ep{0}©
{r}) = card({o} ® {7}) - card(Uf) - card(V), i.e.,

[card(P) + card(Q)]!
card(P)! card(Q)!

card(U O V) = card(U) card(V).

]

Remark 13. The cardinality formula in the preceding theorem holds when either P or
@ is empty, or when U/ or V is empty. For example, if i/ or V is empty, then both sides
of the formula are zero. If both I/ and V are nonempty but Q = (), then Y ®V = U, so

the left-hand side is card (i), and the right-hand side is zzﬁgg: (card(U))(1) = card(U).

Example 10. Continuing with the sets in Example 9 above, we have

U=1{[1,53],[3,51]} C Op, V= {[6,9]} C Og,

where P = {1,3,5},Q = {6,9}. The cardinality of «/ ® V is therefore

(3+42)!

cardd © V) = 3191

(2)(1) = 20,
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which agrees with the set U ® V found in Example 9.

Remark 14. Johnson and Lapidus [24] have used the notation P, m,, to refer to
the set of permutations of the integers {1,2,...,m; + mo} for which the first m4
integers {1,2,...,m;} retain their canonical order relative to each other, and the last
me integers {my + 1,my + 2,...,my + my} retain their canonical order relative to
each other also. Using the merge notation, we are now able to represent that set as
Pryms = {[L,...,m1]} ©{[m1+1,...,my+mo|}. The cardinality of the set Py, m, 18
then card(Pp, m,) = card({[1,...,m1|}O{[mi+1,...,mi+ms]}) = (mtma)l (9y(1) =

m1!ma!

(mrma)l - The definition can be extended: P, . = {1,...,m}o{mi+1,...,mi+

mi!mo!

.....

mot @ O{my+-+mu_1+1,...,m 4 +my,}.
Theorem 4.2.10. The merge operation ® s commutative and associative.

Proof. Commutativity is immediate from the fact that the definition of U ® V is
symmetric with respect to the sets U and V.

We will prove associativity first for merged singleton sets, and then for merged
sets in general. To begin, we claim that given pairwise disjoint, finite sets P, Q, R

and orderings 1 € Op, v € Og, w € Og, we have

({ny © {v}) ©{w) = {n} © ({r} ©{w}). (4.14)

Let p = card(P), q = card(Q), r = card(R).
It will be helpful to define an auxiliary set. Let 3(u, P; v, Q; w, R) be defined by

S, P v, Q5 w, R)
= {all A € Opugur such that

(1) A (z) < A Yy) if and only if p~(x) < u~(y) for all 2,y € P,
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(I) A Y(z) < A7 (y) if and only if v~ '(x) < v '(y) for all 7,y € Q, and

(IT1) XY (x) < A (y) if and only if w™'(z) < w ' (y) for all 2,y € R}.

We will prove associativity of singleton sets by showing that both sides of Equa-
tion (4.14) equal this auxiliary set. We start by proving that ({u} ® {v}) ® {w} =
Y(p, P; v,Q; w, R).

First we show that ({u} © {v}) © {w} C (i, P; v,Q; w, R). Let

re({wo{vholwr= |J {mo{s

re{pntofv}

Then A € {r} ® {w} for some 7 € {u} ® {v}. Note by the definition of the merge
operation (Definition 4.2.1) we have 7 € Opug, A € Opugur-

The definition of the merge operation for A € {r} ® {w} also implies that
(i) A Hx) < A7Y(y) if and only if 71 (x) < 7! (y) for all 7,y € PUQ, and
(ii) A7'(z) < A (y) if and only if w™!(x) < w ' (y) for all 2,y € R,
and the definition of the merge operation for 7 € {u} ® {v} implies that
(iii) 7 *(z) < 7 *(y) if and only if p~"(x) < u~'(y) for all 2,y € P, and
(iv) 7 Hx) < 7 Yy) if and only if v (z) < v~ (y) for all 7,y € Q.

Parts (i) and (iii) give us (I); parts (i) and (iv) give us (II), and part (ii) gives
us (IIT). Therefore, A\ € X(u, P; v,Q; w, R), and consequently, ({u} ® {v}) ® {w} C
Y(p, P; v, Q; w, R).
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To show the reverse inclusion ({u} © {v}) ® {w} D X(u, P; v,Q; w, R), let

A€ X(u, P;v,Q; w,R).

Then A is a bijection; A : {1,2,p+ ¢+ r} — PUQUR.

Choose distinct iy, o, ..., 0+ € {1,2,...,p+ ¢ + r} (the domain of \) so that
Aiq) € PUQ for each a € {1,2,...,p+ q}. Without loss of generality, assume that
i1 <y < ... < lpyq Define m:{1,2,....,p+q} — PUQ by m(a) = A(i,) for all a.
Then 7 is a bijection (because \ is bijective and each i, is distinct for distinct a/), so
7 € Opug. We would like to show that 7 € {u} © {v}.

To show this, we look first at property (i) in the definition of the merge operation
as it pertains to m € {u} ® {v}. We select any x,y € P. Let j := 7~ '(x), k := 7 *(y).
Then

T x) <7 (y)

if and only if Jj<k

if and only if 1y < g

if and only if A7) < A (k)

if and only if A Hx) < A Hy)

if and only if p i (z) < (y) (4.15)

by (I). Thus part (i) of the merge definition holds. A similar argument replacing P
with @ and p with v gives us part (ii). Therefore, 7 € {u} © {v}.
We also claim that A € {7} ® {w}. In order to check property (i) of the merge

definition applied to A € {7}®{w}, we take any 2,y € PUQ and let j := 7~ (), k :=



70

7' (y). Then
7 () <7 (y)
if and only if Jj<k
if and only if 1 < iy
if and only if A7 (5) < A= (k)
if and only if A Hz) < A Hy), (4.16)

establishing property (i) of the definition of the merge operation (the definition of
A € {r} ®{w}). As for property (ii) of the same definition, that is identical to (III)

and therefore also holds. Consequently,

Ae{rrofw € ({u) o {v}) o{w},

and hence, X(u, P; v,@Q; w, R) C ({u} © {v}) © {w}.
Therefore,

{n} o {v}) ©{w} =X(p, P; v,Q; w, R). (4.17)

Now we will use this fact to prove associativity of the merge operation for singleton

sets. To do this, note that if we relabel the variables, Equation (4.17) can be written

{v} ofwh) ©{u} =2, Q; w, R; p, P). (4.18)

Second, note that the set 3X(u, P; v, Q; w, R) is defined symmetrically with respect to

the three pairs (u, P), (v, @), (w, R), meaning that any rearrangement of those pairs
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will produce the same set. In particular,
X(p, Py v, Q; w, R) = E(v, Q; w, B p, P). (4.19)
Combining Equations (4.17)—(4.19), we have that

({1} © (1)) © {w} "2 S, P; v, Q; w, R)

“29 Y(v,Q; w, Ry p, P)

" () o {w) @ (i)
— {u} o ({1} o {w}), (4.20)

where an appeal to commutativity of merging gives that last step, and this establishes
associativity of the merge operation for singleton sets.

To prove associativity for general finite sets, we start with the observation that
given any disjoint, finite sets P, (), and any set of orderings Y C Op, and any ordering

7 € Og, we have

vo{rt= |J foro{rt=Ulolr (4.21)

ceU,m'e{r} ol

Now, let P, Q, R be pairwise disjoint, finite sets, and let &/ C Op, V C Og, W C
Og. We claim that U/ O V)OW =UOG (VO W).

Beginning from the left-hand side, we have:

Uoview=J U {rto{w}

weW eV

=J U U {moefvy

weW peU,veV me{u}o{v}
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=UJ U dwe{vhoiwh (4.22)

weW pel,veV

where the index change in the next-to-last step is valid because U ©V = U {n}o

HeEUveY
{v}, and the last step is due to the observation we just made (Equation (4.21)).

Continuing from Equation (4.22), adjusting the indices and applying associativity for

singleton sets, we have

ueoviow= U {o{rhoiw

peU veV,wew

=UJ U ool

pneU veV,wew

-UJ U U e

neU veV,weW pe{v}o{w}

-UJ U ol

peEU peVOW
=UOVoOW). (4.23)
This establishes associativity of the merge operation. O]

Theorem 4.2.11. If P and Q) are disjoint, finite sets, then Op © Og = Opyg.

Proof. By the definition of merging (Definition 4.2.1), if 7 € Op ® Oy, then 7 €
{o} ® {7} for some 0 € Op, 7 € Op. But then by the same definition, 7 € Opyyq.
Therefore, Op ©® Og C Opug.
For the reverse inclusion, let 7 € Opyg. Say m = [71(1),7(2),...,7(m+n)], where
card(P)=:m, card(Q)=:n. The range of 7 is then PUQ={n(1),7(2),...,m(m + n)}.
We now split up PUQ as P ={7(j1),...,7(Jm)}, @ = {7(k1),...,
7(kn)} with {j1,jo, -+, Jm, k1, k2, ..., kn} = {1,...,m + n} (the elements of the set

on the left and the set on the right are not necessarily in the same order). Without
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loss of generality, 71 < jo <+ < jm and ky < ko < -+ < k.

Define o : {1,...,m} - Pand 7:{1,...,n} — Q by

o(l) = (), 0(2) = 7(52), - -, a(m) = 7(jm),

7(1) = w(ky), 7(2) = w(ks), ..., 7(n) = 7w(ky,).

Then 0 = [o(1),...,0(m)] € Op, and 7 = [7(1),...,7(n)] € Og. We show that
7 € {0} ® {7} using the definition of the merge operation and Theorem 4.2.2. To do
so, suppose that z,y € P with o~ !(x) < ¢ '(y). The way we have defined o gives us

that 7 (0(i)) = j; for all i € {1,2,...,m}. Thus

"

We therefore have that property (i”) of Theorem 4.2.2 holds, and thus that property
(i) of Definition 4.2.1 is satisfied. Similarly, if x,y € P with 7'(z) < 77(y), then
71 (z) < 7 (y), satisfying property (ii) of Definition 4.2.1. Therefore, by definition,
m € {o} ® {7}, and therefore 7 € Op ® Og.

[

Corollary 4.2.12. For any positive integer m we have that Sp,11 = Sm © {[m + 1]},

and therefore for any positive integer m, S, = {[1]} @ {[2]} ® --- © {[m]}.

Proof. Using the relationship between permutations and orderings (Remark 8) and

.....
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= Smi1, establishing the first statement.

We prove the second part by induction: Certainly S1 = Oy = {[1]} ([1] is just
the map 1 — 1). Suppose that for some positive integer k we have S, = {[1]} ®
{2} ©---o{[k}. Then {[1]} O{2]} ©--- O {[K} O{[k + 1]} = S O{[k + 1]} = Sk

by what was just shown. By induction this establishes the desired result. O

Theorem 4.2.13. Let P, P, ..., P, be pairunse disjoint, finite sets, and let Uy C

Op,,Us C Op,,...,.U, T Op_ be sets of orderings. Then

U OUy @ OUy, = ) {o1} 0 {o} @ 0 {on}. (4.24)

o1€EUy
o2€U2

O'n.éun
Proof. That the union on the right-hand side of Equation (4.24) is disjoint is a di-
rect consequence of Theorem 4.2.5 (every different choice of o7 will change all of the
elements of the merge, and similarly for different choices of oy, ..., 0,). It will there-
fore suffice to prove the statement rewritten as a union (without specifying that it is

disjoint):

Uy OUy @ OUy = | {o1} 0 {o2} @ 0 {on}. (4.25)

o1€UL

o9 €U
To use induction on n, we begin by noting that for the case n = 1 we have the

claim that U = U {o}, which is true by definition of union. For the case n = 2 we

o€l
have, by definition of the merge operation,

U oty = | {o1} ©{om}. (4.26)

o1 €U
o2€U2

Now we suppose that Equation (4.25) holds for n = k, where k > 2. Looking at
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the case when n = k& + 1 we have

UWOU O OUOUppr = | | o} @ {02} 0 0 {on} | ©Urss

o1 €Uy
og2€Us

o €Uy,

- U {1} © {orer)

€U ety {0130{02}0--0fon}, opy1€Uita
o2€U2

o €Uy,

= U U {7} ©{ok1}

o1€Us Te{o1}0{02}O--O{o}
o2€U2 Okt1 EZ/’}C+1

Uk.él/{k

= U U ({o1} ©{o2} © - ©{ok}) © {041}

o1€EUL Ofy1E€UR 1
o2€U>

oK EUy

= U {o1} ©{o2} © - ©{or} ©{op1}.  (427)

o1€EUy
o2€U2

o €Uy,
Ok+1€UE+1

By induction, Equation 4.25 holds, and therefore so does Equation 4.24. O]

We now want to give a few examples using the merge operation. These examples
have appeared in the work of other authors (without the merge operation), and in
presenting them here in terms of merging we will not necessarily use all the properties
of merging (such as commutativity and associativity), but these examples give some
idea of the possible benefits of writing disentangling expressions in terms of the merge
operation. The benefits may sometimes be in terms of clarity more than efficiency,
but conceivably there could be applications where efficiency would be improved by
use of the merge operation.

In the following example and thereafter, the notation ‘M[0,1]” will be used to
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represent the set of all finite, continuous Borel measures on the interval [0, 1].

Example 11. (A result from [13], extended beyond probability measures.) Con-
sider operators Ay, ..., A, € L(X) associated with measures p, ..., 1, € My[0, 1],
respectively. Let my, ..., m,, be nonnegative integers and m := ", m;.

Define blocks of integers Bl(1),...,Bl(n) by

BI(1) :={1,2,...,my}

BI(2) :={mi+1,mi +2,...,m; +may}

(4.28)
Bl(n) :={mi+---+m,_1+1,...,m},
and define operators (', ..., C,, and measures v, ..., v, by
(
Ay, j€BI1) pi, J € BI(1)
As, 7 €BI2 , J€BI2

Cj = | > @ and vj = Hor @) (4.29)

| An, J € Bl(n), WLIRAS Bl(n),

or briefly, C; = A; and v; = p; whenever j € Bl(i), fori=1,...,n, j=1,...,m.

We would like to prove the following formula for disentangling a monomial:

=mqlma! ... my! Z / Crim) - - Cry(u™ X - x ) (dsy, ..., dsp,).
{s

7r€’Pm1 ,,,,, mn w(m) > >87r<1



The proof, which relies on Corollary 3.1.5, is as follows: By definition,

Pt (Ary A= Y [ Gy oo Gy (™ % == % ) (dsa .

H1yeesiin
7€S Y 1Sm(m)>>sn1)}

The index of summation is

T € Sm = 0Opga,..my = Osi1) © Opi2) © - -+ © Opyp)

= |J {mre{nio--ofnk

T1€0B1(1)
T2 GOBI(Q)

Tn€O0BI(n)

Hence,
m bA 7
Pm,l e (A, Ap)
Mn

= > > / Cry (™ X o X ™) (dsy, - ..
TleoBl(l) re{r}O{r}@O{m} WSl SM) 57r(m)> >57r(1)}
72€0g1(2)
T €O0RI(n)

= E E / Cray(vn X -+ X ) (ds1, . . .,
T1€0R 1) TE{n}O{ra}OO{ra} 5m> S«<m)> >sr(1)}
m2€0g(2)
TnGOBl(n)

7

,dSm).

(4.30)

(4.31)

,dSm)

dSm)-

(4.32)

In the latter expression, consider what the integral is when an ordering 7, is chosen

from Ogy(1), compared with what it will be if a different ordering 7, is chosen from

Ogi1). Let us say (regarding the index of the inner sum) that 7’ is identical to =,

except that 7 corresponds to the choice 71, and 7’ corresponds to the choice ;. We

can express m as a composition of m and another permutation, say 7’ = om for some
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o €S, Then

/ Cﬂ"(m) - Cﬂ'/(l)(yl X X Vn)<d81, e ,dSm)
{

(815-38m)t St () >"">87r (1)}

= / Cﬂ/(m) e Cﬂ-/(l)(l/l X oo X I/m)(dsl, Ce ,dsm). (433)
{(

51ye58m): So‘ﬂ'(m)>"'>sdﬂ'(1)}

Since both 7 and 7] order only the elements in the block BI(1), the only operators
they affect are those C; with subscripts j € Bl(1), all of which are equal to A;.
Rearranging the copies of the operator A; has no effect on the product of operators—

that is, Crrgm) - .. Cr(1) = Crm) - - - Cr(1)——s0 the right-hand expression becomes

/ Cﬂ.(m) e Cﬂ-(l)(ljl X X Vm)(dsl, e ,dSm)
{(

517“'73"71): Sa‘ﬂ'(m)>"'>so'7r(1)}

= / Cﬂ(m) Ce C’W(l)(yl X X l/m>a(d81, . ,dsm)a
{(30(1)7"'730(771)): 50'7r(m)>"'>50'7'r(1)}
= / Cﬂ(m) C. Cw(l)(vg(l) X oo X I/U(m))(dsa(l), e ,dsg(m)) (4.34)
{(80(1)7"'750(777,)): 807r(m)>'“>50'7'r(1)}
by Corollary 3.1.5. Next we rename variables, s,(;) +— s; for j =1,...,m, and get
/ Cw(m) R Cw(l)(vg(l) X X l/g(m))(dsl, . ,dsm). (435)
{(517"'75771): S7r(m)>“'>37r(1)}

Finally, we note that the permutation o, given by 7’ = o, affects only the indices in

BI(1), and so changes only the order of the m; copies of the measure p;, thus having

no effect. We may therefore write v,y X -+ X Vg() = 11 X -++ X Uy, yielding the
expression
/ Cw(m) e Cw(l)(Vl X oo X I/m)(dsl, e ,dsm). (436)
{(81,---y8m): 57r(m)>"'>37r(1)}

In other words, the change from 7; to 77, and the resulting change from 7 to 7', have

no effect on the integral.
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Consequently, the inner sum on the right-hand side of Equation (4.32) is the
same for all m;! orderings 7, that we can select from Og;). We can therefore just
choose one such ordering and multiply the result by m;!. We will choose the ordering

71 =[1,2,...,my] and then rewrite the sum as

praemn (AL AL

L1 geeesfbn
= Z my! Z Crim) - - Cry(™ X -+ x ™) (dsq, ..., dsp,).
—[1,2,m1]  wE{m YO )00} L Snm) > >sm (1)}
TQEOB](Q)
TnEOBl(n)
(4.37)

The same argument works for the other blocks, enabling us to rewrite the sum as

(AL A

M1y hn

= Z mylme! - ~mn!z Crim) - - Cry ("% - xpn'™) (dsy, . . ., dsyy)

m1=[1,2,...,m1] re{n}o{n}too{m} Y Brm>>sm)}
72:[m1+1,...,m1+m2}

n=[mi+-+mp—_1+1,....,m]

:ml!mQ!' / 71- C ( )(Iuml X - XM;nn)(dsl"“’dSm)
We{[l 27 7m1 {sﬂ'(m)> >87T(1)}
O{[m1+1,...,m1+mo]}
{[m1+- ern 14+1,...,m]}

=mqlma!...my! Z / Crtmy - - Cray(u™ X oo X pm)(dsy, - .. dspy,).
{87 (m)>" >57r(1)}

(4.38)
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4.3 The concatenation operation

A second operation we can define relative to orderings is concatenation. The effect is
to take two orderings and place them next to each other to make a longer ordering,
or in the case of two sets, the effect is to form the set of all orderings that can be
formed by taking one ordering from the first set and one ordering from the second
set and placing them next to each other the same way.

Concatenation is therefore a less complicated operation than the merge opera-
tion. However, the concept is useful; we will show that the merging of orderings can
be expressed in terms of concatenations, and several proofs will rely on arguments

involving concatenation.

Definition 4.3.1 (The concatenation operation). Given disjoint, finite sets P, ) with
card(P) = m and card(Q) = n and orderings o = [0(1),0(2),...,0(m)] € Op, T =

[7(1),7(2),...,7(n)] € Og, we define the ordering concatenation 0.7 € Op by
o1 :=[0(1),0(2),...,0(m),7(1),7(2),...,7(n)]. (4.39)

That is,

o7 if 1<3<m
o) =4 7Y == (4.40)
T(j—m) if m+1<j<m+n.

Given sets of orderings U C Op,V C Og, we define the set concatenation
uv:= J {o7}. (4.41)

oel,reV

(In fact the union is disjoint, which is straightforward to establish.)

Remark 15. Concatenation also makes sense in the case when one or both of the
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orderings are the null ordering. In either case, the definition is interpreted to say that
if 0 € Op is an ordering of a finite set P, then 0.0 = .0 = o € Op.

If P is a finite set and U C Op, then

u{ty= J H{ort=J{o0} = Jlo} =u. (4.42)
oeU,re{d} ocU oeU
Similarly, {0}.U = U.
It ought to be remarked that, in constrast to (4.42), for P a finite set and U C Op

we have U.0) = | {o} {7} =0, and similarly for 0.U, i.e., U.0 = .U = 0.

ocU, el
(The reader might find reason for concern here, since the statement ‘0.0 = ()’
could be a statement about null orderings or a statement about empty sets. However,

happily, the statement is true in both interpretations. The context should stipulate

which is intended.)

Example 12. Let 0 = [1,2,3],7 = [6,7,8,9] be orderings. Then their concatenation
is 0.7 = [1,2,3].[6,7.8,9] = [1,2,3.6,7,8,9].

Let U = {[1,2,3],[3,2,1]},V = {[4,5,6],[5,6,4],[6,4,5]} be sets of orderings.
Then

Uuy =1{[1,2,3,4,5,6,[1,2,3,5,6,4],[1,2,3,6,4, 5],

3,2,1,4,5,6],[3,2,1,5,6,4],[3,2,1,6,4, 5]}

It is relatively straightforward to see that the length of 0.7 is the length of o plus
the length of 7. The cardinality of the set concatenation U.V for sets of orderings

U C Op,V C Og is given by card(U.V) = card(U) card(V).

Remark 16. Both concatenation operations (concatenation of orderings and concate-

nation of sets of orderings) are associative but not commutative. Non-commutativity
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is simple: [1].[2] = [1,2] # [2,1] = [2].[1], and similarly for sets. For associativity of
ordering concatenation, giving orderings o € Op, 7 € O, p € O of pairwise disjoint,

finite sets P, @, R, we have

For set concatenation, say U € Op,V C Og, W C Op, we have

uvw= J {rp

TeU.V,peW

= U {r.p}

ﬂ-GLJv:J'EZ/{,TEV{o.'T}? pEW

- U U =

oeU,reV we{o.r}, peW

- U {enn

cceU, eV, peW

- U et

oceU, eV, peW

= U A{on}

TEV,p0EW ol ne{r.p}

= U {o.n}

UEM7 nGUTGV,pGW{T'p}
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- U

ceUneV.WwW
=U.(YVW). (4.44)
Theorem 4.3.2. Given pairwise disjoint, finite sets Py, ..., P, and sets of orderings

U, € Op,,...,.U, C Og,, we have

Z/{l.uz."' Z/{n = U {0'1.0'2."' .O'n}. (445)

o1€UL

o2€Ur

Un’éun

Proof. That the union on the right-hand side of Equation (4.45) is disjoint is seen
directly, since the concatenation oy.05.--- .0, can be written as one long string of
elements, and any different choice of some o; will change the order of the elements
within that part of the larger ordering o;.05.--- .0,, which means it is a different
ordering. It will therefore suffice to prove the statement as a union (without specifying
that it is disjoint):

Uty Uy = | {o1.00.+ 0n}. (4.46)
o1€EU
o2€lUz
on€Un
To use mathematical induction on n, we begin by noting that for the case n =1

we have the claim that U; = U {o}, which is true by the definition of a union. For

ocEU
the case n = 2 we claim
Uy = | {o1.00}, (4.47)
o1 €Uy
o2E€U2

and in fact that is true by the definition of set concatenation.

Now we suppose that Equation (4.46) holds for n = k, where k > 2. Then looking
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at the case when n = k + 1 we have

ul.Z/{g."' .Z/{k.ukﬂ == U {0’1.0’2."' .O'k} .L{kH
o1 €Uy
oo€U>
o €Uy,

= U {T.o811}

TEUUIEul {0'1.0'2.~~~ .O’k}, O’k+1euk+1
o2€Us

o €Uy,

= U U {T.ok41}

o1€Ur T€{01.02.+ .0k}
o2€Us gy EU1

orEU

= U U {(01.02.-“ .Jk).0k+1}

01E€UL Okt1€UK11

= U {o1.09.++ .O).0k+1}. (4.48)

R €U
Ok+1€UR 11

By mathematical induction, therefore, Equation 4.46 holds, and therefore so does

Equation 4.45. O

Theorem 4.3.3 (Concatenating subsets of two sets). If P and Q are disjoint, finite
sets, and if U CW C Op and V C Z C O, thenUU.V CW.Z.

Proof. Let m € U.V. Then by definition of set concatenation, 7 = o.7 for some

ceU,7eV. But theno e W, 7 € Z,sonm € W.Z. Therefore, U.V CW.Z. n

Theorem 4.3.4. If P and QQ are disjoint, finite sets, and if U, W C Op and V,Z C

Oq are nonempty sets of orderings withUU.V = W.Z, thenUd =W and V = Z.
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Proof. Let m := card(P),n := card(Q). Choose an arbitrary ordering o € U. Because
V is nonempty, there exists an ordering 7 € V. Let 7 := o.7. Then 1 e UV = W.Z.
Som = o'.7’ for some o' € W, 7' € Z. But then 7 = [0(1),...,0(m),7(1),...,7(n)] =
0'(1),...,0'(m),7'(1),...,7'(n)], and equating these term-by-term, o = ¢’ and 7 =
7'. Therefore, ¢ € W. Hence, Y C W. A similar argument gives ¥V C Z. Similarly,

the reverse inclusions follow, and therefore, Y = W and V = Z. n

The following theorem will be useful for proving several subsequent results in this
section (Theorems 4.3.6, 4.3.9, 4.3.11, and 4.3.13 appeal to it directly, and other

results in the section follow from those):

Theorem 4.3.5 (Merging in terms of concatenation). Let P and @ be disjoint, finite

sets, let m := card(P), and let 0 € Op, 7 € Og. Then the following are equivalent:

(i) me{o} O {r},

(i) m = 1.[0(1)].72.[0(2)]. - .Tm.[o(m)].Tins1 for some pairwise disjoint orderings

T, Toy .-y Tma1 Of subsets of QQ with 7 = T1.T9. -+ .Tjpa1, and

(1ii) ™ = 01.71.09.T9. -+ - .0}.Tg for some k > 1, where 01,09, ..., 0% are pairwise dis-
joint orderings of subsets of P and 11, Ty, ..., T are pairwise disjoint orderings

of subsets of QQ with 0 = 01.09.+++ .0 and T = T1.To. -+ + .Tj.

[Note that the expression T = 01.71.02.Ta. * =+ .O%. Ty, in (144) is not unique for a given T,

and some of the orderings above, especially in (ii) and (iii), can be the null ordering.]

Proof. Define n := card(Q).
(i)=(ii): Let m € {o} ® {7}. Then 7 = [7(1),7(2),...,

m(m 4+ n)] € Opug- Let [p1,pa,...,0m) == 0 = [0(1),0(2),...,0(m)], so that P =
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{p1,p2, -, Pm}. Since the elements of P are images of m, we may define

jl = 71-71(]?1)7 .j? = Tril(pQ)a R ]m = ﬂ-il(pm%

and so

o =[p1.p2, - om] = [7(G1), 7(2), -, ()]

Since o' (p1) < o7 Hpa) < -+ < 0 ' (pm), it follows from Definition 4.2.1 that
7 (p1) <7 N (p2) < -0 <@ H(pm), which is to say, j1 < jo <+ < i

The remaining entries in 7 = [w(1),7(2),...,7(m + n)] make up the set

Q=A{r(1),7(2),...;7(j1 — 1), 7(j1 + 1), ..., 7(jo — 1), 7(jo + 1),

vy T(Gm = 1,7+ 1),...;m(m+n—1),7(m+n)}; (4.49)

the set of images of 7. Working with 7 as we just did with o, we let [¢1, 2, ..., qn] =
7 =[r(1),7(2),...,7(n)]. Then 7' (q1) < 77 (q2)--- < 7~ (q,), so by the definition

of merging, 7' (q1) < 7 *(q2) < --- < 7 (g,). That is,

(1) <7 N7 (2) < - <7 Y7 (n)). (4.50)

Since the pre-images of () under the map 7 are the set

(1,2, ji—Lji+1,..ja—1,ga+1, ..., jm—1jm+1,....,m+n}, (4.51)

we see that the elements in the set shown in (4.51) are identical in the given order to

the order given in (4.50); hence,
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(1) =x(1), 7(2) = 7(2), ..., 7(h = 1) = 7(j1 — 1),
() =70 +1), . T2 —2) = 7(j2 — 1)
T2 —1) =7(j2+ 1), T(m —m) = 7(jm — 1)
T(Jm—m+1) =7(m+1), ..., 7(n) =7(m+n). (4.52)

T=[r(1),7(2),..., (= 1), 7 +1),..., w(j2 — 1)
(2 +1),..., T(Jm — 1)y 7+ 1), .. -, w(m+n)]
=[r(1),7(2),...., 7L = VLG + 1), w(e = DL [r(2 + 1), -]
[ T(Jm — D7 (G + 1), .., m(m +n)] (4.53)
Choosing 7, := [r(1),..., (=1, m=[m0Gi+1), ..., 7= 1)], -+, Tina1 =
T(Jm +1),.. -, m(m + n)| (which are pairwise disjoint) gives
T =T1.T9. " Tra1- (4.54)
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(ii)=(iii): Given that 7 = 7y.[0(1)].72.[0(2)]. - -+ .Tm.[0(M)].Tin41 fOr some pairwise
disjoint orderings 7y, 7o, ..., Ta1, With 7 = 7.9, -+ g, welet k:i=m + 1 >1
(we know m > 0 because m = card(P)), and we let o1 := (),09 := [0(1)],03 =
[0(2)],...,0m+1 := [o(m)] (these singleton orderings are pairwise disjoint). Then
T =10.00.71.09.T2. " ** .Opi1.Tms1 = O1.T1.09.Ta. * =+ .Op.T, With o = 0.[c(1)].[¢(2)]. - - -

Jo(m)] = 01.09.+ -+ .op and T = 113, - -+ T

(iii)=(1): Let m = 01.71.02.79.+ -+ .0%.T, for some k > 1, where oy, 09,...,04 are
pairwise disjoint orderings of subsets of P with o = ¢1.05.- -+ .0}, and 7, 79, ..., 7} are
pairwise disjoint orderings of subsets of () with 7 = 7.79.- -+ .7,. Define myq, ..., my,
ni,...,n to be the lengths of the orderings o¢,09,...,0k, 71, T, ..., Tk, respectively.

Then my +mo+---4+mp=m, ny+ng+---+ni =n, and

mw=01.7T1.02.T72." " .Ok.Tk
= [0'1<1),O'1(2), e ,al(ml), 7'1(1),7'1(2), . ,Tl(nl),

0a2(1),02(2),...,00(m2), 72(1),2(2), ..., 72(n2), (4.56)

ak(l),ak(Z), ce ,ak(mk), Tk(l),Tk<2), R ,Tk(nk)].

We will show that 7 € {0} ® {7} using the definition of the merge operation and
Theorem 4.2.2. We observe first that the entries in the representation of 7 above are
exactly the elements of the set PUQ), so m € Opug.

Second, we suppose that z,y € P with 77 (z) < 7 '(y). Then z = 0,(j) and
y = og(l) for some o, € {1,2,...,k}, 5 € {1,2,...,my}, and | € {1,2,...,mg}.

Looking at (4.56), the fact that 77! (2) < 7 '(y) (so x is to the left of y) tells us that
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either a < B or else a = ($ and j < [. Since

o=lo(l),...,o(m)] =[o1(1),...,01(m1),02(1),...,00(m2),05(1), ... or(mg)l,

this will imply that o~ *(0,(5)) < ¢ *(05(1)), in other words, that o~ '(x) < o~ (y).
A similar demonstration tells us that if 2,y € @ and 7 '(z) < 7 '(y), then
77 Hx) < 77 (y). Together these facts and the definition of the merge operation show

that 7 € {0} © {7}. O

In order to list all the elements of the merging of two orderings, the following
theorem is useful (and it is what we have been using up to this point for listing

orderings, though we have not said so):

Theorem 4.3.6 (Recursive expression for merging singletons). If P and Q) are dis-
joint, finite sets with card(P) =m > 1 and card(Q) =n > 0, and if o € Op and

7 € O, then

{o} O {7}

n

=|° (({[0(1), o om=D]}e{[r(1),... ,T(k)]}) Llo(m)].[r(k+1),... ,T(n)]})

k=0

(4.57)

Before we prove this theorem, a few words are appropriate about how to interpret
the theorem. As indicated by the left-hand side of Equation (4.57), we are merging
og=lo(l),...,0(m)] and 7 = [7(1),...,7(n)]. We want to list all orderings in that

merging, and to do so we will use the last entry in the ordering o, namely o(m), as
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a “pivot,” meaning simply that we will interpret the terms on the right-hand side of
(4.57) by considering separately the parts to the left of o(m) and the parts to the
right of o(m). Since o(m) is the last entry in o, the entries to the right of o(m) are
the end of the ordering 7. We work through all possible orderings by starting with the
entire ordering 7 to the right of o(m), then all but the first entry of 7, then all but
the first two entries of 7, etc. To the left of o(m) will then be all orderings we can
construct with the rest of the entries of o and the rest of the entries of 7, preserving
the relative orders of o entries among themselves and 7 entries among themselves.
Moreover, we can view the expression (4.57) as being recursive; it expresses a merging
of two orderings as a union of terms that involve merging smaller orderings.

It is worth noting that we could perform the recursion in the opposite direction,

using o(1) as the pivot. This would give the formula

Proof of Theorem /.3.6. First we will show that Equation (4.57) holds if we replace

the disjoint union symbol with simply a union symbol; that is, we will first show
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To show the left-hand side of (4.59) is a subset of the right-hand side, we let 7 €
{o} ® {7}. By Theorem 4.3.5, 7 = 7y.[0(1)].72.[0(2)]. - .Tin.[o(M)].Ty+1 for some
pairwise disjoint orderings 7y, 7o, . . ., Tma1 Of subsets of Q with 7 = 7179, - -+ .Tp41.
But then 7,41 = [7(k + 1),...,7(n)] for some k € {0,1,...,n}. The fact that part

(ii) of that theorem implies part (i) of the theorem gives us

1. lo(D)].me[o(2)].- - Jo(m = 1)].7, € {[o(1),..., cm-=1D]}o{[r1),..., T(k)|}.

Therefore,

giving the desired inclusion.
For the reverse inclusion, consider any element 7 in the right-hand side of Equation
(4.59). For this 7, there exist & € {0,1,..., n} and p € {[o(1),..., om—1)]} o

{[7(1),...,7(k)]} for which 7 = p.[o(m)].[T(k+1),...,7(n)]. But then the implication
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(i)=(ii) of Theorem 4.3.5 gives us, when applied to p, that

p=m.l0(1)].ml[c(2)]. - .Jo(m—1)].7,

for some pairwise disjoint orderings 71, 7o, . .., T, of subsets of {7(1),7(2),...,7(k)}

with [7(1),...,7(k)] = 71.72.- -+ .7,. Then

where 7,11 = [7(k+1),...,7(n)] (which is disjoint with each of 7,...,7,), and so
T ="T....,Tm+1. Thus (by Theorem 4.3.5) m € {c} ® {7}. Therefore, the union of
the elements on the right-hand side of Equation (4.59) is contained in the left-hand
side. Therefore, the two sides of (4.59) are equal.

All that remains is to note the the union on the right-hand side of (4.59) is in
fact disjoint: Suppose that two different terms of the union—that is, terms with
different values of k, say k = k; and &k = ko—contain a common ordering, call it
m. The first of these ends with [o(m)].[7(k1 + 1),...,7(n)], and the other ends with
lo(m)].[T(ke+1),...,7(n)]. For that same ordering to be in both of these terms of the
sum, then, it is necessary that endings match entry-by-entry starting at some entry
(since these endings appear in every ordering in that term). Because o(m) is the
furthest-right element of P in each of the orderings for these two terms, the entries
must match from there to the end. Thus [7(k; +1),...,7(n)] = [7(k2 +1),...,7(n)].
But then k; = ko, which implies that these orderings are in the same term of the
union. Consequently, different choices of k give disjoint terms of the union. Thus

(4.59) becomes (4.57). O

Example 13. We apply the preceding theorem to two examples. The first is merging
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a singleton with another ordering, say {[2]} ® {[4,5,6,7]}. Here m = 1 and n = 4, so
k runs from 0 to 4. For the various values of k, the right-hand side of Equation (4.57)

will be as follows:

k=0: ({0} o{0}).{[2].14,5,6,7]} ={[2,4,5,6,7]},
k=1: ({0} o{[4]}){[2][56,7} ={[4,2,5,6,7]},
k=2: ({0} o{4,5]}){[21.06,7]} = {[4,5,2,6,7]},
k=3: ({0} o{4,56]}){2].[7} = {[4,5,6,2,7]},
k=4: ({0} o {[4.5.6.7}).{[2.0} = {[4,5.6,7,2]}. (4.60)

Second is an example we have already discussed: We claim

{13.5,1]}0{[6,9]} = {[3,5,1,6,9],[3,5,6,1,9],[3,6,5,1,9],6,3,5,1,9], 3,5,6,9, 1].

3,6,5,9,1],[6,3,5,9,1],[3,6,9,5,1],[6,3,9,5,1],[6,9,3,5,1]}.

Applying the theorem, the second ordering has length 2, so k& runs from 0 to 2. The

different values of k give us the following:

k=0: ({[3,5}e{0}).{[1].6,9]}
k=1: ({3,5]} @ {l6]}){[1].[9]}
k=2: ({3,5]} @ {[6,9]}).{[1].0}

3,5,1,6,9]},

{
{[3,5,6,1,9],(3,6,5,1,9],(6,3,5,1,9]},
{

3,5,6,9,1],
3,6,5,9,1],[6,3,5,9,1],

3,6,9,5,1],16,3,9,5,1],[6,9,3,5, 1]}.

We can use the preceding results to prove the following:



94

Theorem 4.3.7 (Distributive law for disentangling a monomial that involves a sum of

two operators). Given operators B,C, As, As, ..., A, € L(X), non-negative integers

M, ..., My, and Measures iy, ..., iy € Mg(0,1] (finite, continuous Borel measures
on [0,1]), where uy is associated with B and C, and ps, ..., p, are associated with
Ag, ..., Ay, respectively, we have

plma,... mn<B+C’A2’...,An>

K142, Hn

Proof. First we note that given any operators A, B,C, D € L(X) we have

A(B+ C)D = A(BD + CD) = ABD + ACD.

Second, we let m := 14+mg+- - -+m,, and define blocks of integers B1(2), ..., Bl(n)
by

BI(1) := {1} (4.62)
BI(2) :={2,...,1+ms},

BI(3) :={1+mgo+1,...,1+my+ ms},

Bl(n) :={l+ma+---+mu_1+1,...,m},
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( B+ C, keBI(1) (that is, k = 1)
As, k € Bl(2)
As, k € BI(3) (4.63)

A,, k € Bl(n).

Pl,m2 ----- m (B—i—C’AQ,,An)

n
/"‘17.“27“"“71/

= C17r m
Z Am(ﬂ') (

TESm

Yoo Cray (U™ X o X ) (dsy, ..., dspy,). (4.64)

Working with S,,, we apply the definition of the merging of sets and then Theorem

4.3.6 to get

-----

— U U {[r(0),...,7(k), 1, 7(k+1),...,7(m — 1)]}

T7€0(2,....m} k=0
= UG = D LGl = 1)), (4.65)

We therefore have

plma,. Z‘:(B +C, Ay, ... ,An)

1,255
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= Z Z/ T(m 1 : T(j CIC -C 7(1) (Ml - X M:Lnn)(dsla s >d3m)

T€O 2, .m} J=1 1>ST(m 1> >ST(7)>51>57(1 1> >57(1)>0}

—Z Z/ T(m— 1 ’ T(j BC T(j—1) C()(Ml Xu?n)(dsla--wdSm)

T7€0s, .. my J=1 {(s1,008m): 1>ST(m 1> >57<7>>51>57(1 1> >57(1)>0}

+ Z Z/ T(m— 1 : T(j CO 7(j—1) -C 7(1) (,Ul X:unmn)(dsla---?dsm)

{(81y-+58m): 1>57(m 1> >57(])>51>57(] 1> >ST(1)>0}

T7€0¢2, .. my J=1
Pliltrl?z’, o (B A27 ce ,A ) + ]311177;227 T (O AZ’ T ’A ) (466>

Extending this result, we have the following theorem:

Theorem 4.3.8 (Disentangling a monomial that involves a sum of two operators).
Given operators B,C, Ay, As, ..., A, € L(X), non-negative integers my, ..., my, and
Measures fii, . . ., fn € M0, 1], where uy is associated with B and C, and g, . . ., fin

are associated with As, ..., A,, respectively, we have

Pm17m27 L (B+C AQ,A,?);"' A)

H1,H42,-

_ Z km1 —k,ma,m3.. ,mn(B7 07 AQ, A3, . 7An)7 (467)

H1,u17#2,u3 ©sHn

my . . . . mi ml!
where is the binomial coefficient, =

k k

Proof. We observe first that if m; = 0, then both sides of Equation (4.67) reduce to

P (A, AL,

M2y 50

Let us therefore assume that m; > 0.
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We observe next that

Prumemn (B 4 O Ay, Ay) = P Imaeemn (B OB 4O Ay, Ay) (4.68)

P12 50005 hn I TRy 15y - e 129

for any 7 =0,...,mq, and we will show by induction that for any 7 =0,...,mq,

P (B4 O Ay A

1525 Hn

j .
J j—k,m1—3j,ma2,m m
- Z Pﬁlf{{ﬂllflll71‘273;143.?.’,#3.“7 n<B? C,B+C, Ay, 43, ... 7An)' (4'69)
k=0 \ k
For the case j = 0, we see that the right-hand side of Equation (4.69) is just the
one term

PpOOma=0.mams..mn (B B 4 C, Ay, As, ..., Ay)

101 015 02,43 -5 om,

— pmimams. .,mn(B + C’ AQ, A3, .. ,An), (470)

T 1,2, 43

which is identical to the left-hand side.
Let us now suppose that Equation (4.69) holds for each j = 0,1,...,h, where

h<m1:

plibtem bz (B OB+ C, Ag, Ag, ..., Ay).

K11 501502543 -5 oy

EalS
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We split the third exponent and apply Corollary 3.1.9:

2

h
Pyt b vmzmstn (B4 C, B, C, B+ C, Ay, As, ..., Ap).
k=0

10150151 52543 -5 iy

h
k

Apply Theorem 4.3.7:

h
Z h Pl,k,h—kz,ml—h—l,mg,mg...,m"(B B.C B—|—C As A A )
BT 501 54 542,143 s i i) ) 432, £33y - -+ LAn
k=0 \ k
"o h
4 Pl,k,h—k,ml—h—l,mg,mg‘..,mn(C B C B+C A A A )
i B 55T 542543 5 A 12 M » 432, L3y - - Hn -
k=0

Apply Corollary 3.1.9 and combine B terms, C' terms:

E

pk+1,h7k,m17h71,m2,m3...,mn (B, C, B 4 C, AQ, A37 o >An>

1,151 5253 - -5 o

h
k

>
Il

0

h
111 542,43 e
k=0

h
Y prbti—kmi—h-Lmayms..mn(B O B 4 C, Ay, As, . .., Ap).
k

Finally, we adjust the first summation index to get

Prsme,..mn (B —+ C’ AQ, R ,An)

K142, 50

>

+1 [
_ phrhti-kmi—h—lmamsmn(B OB 4+ C, Ay, As, ..., Ay)

151501, 2,543 -5 m
k=1 \ k

-1
h
h
- Z k‘) Pj{?ﬁi?@%ﬁ?,hgh;};m%m?j’mn (B7 C,B+C, Ay, A3, ... 7An)' (4'71)
k=0
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Applying the properties of binomial coefficients that

h h+1 . h h+1
0 0 h h+1
and for 0 < k < h,
h h h+1
+ = )
k—1 k k

AR g R

_ k,h+1—k,m1—h—1mo,m3...,mn

= ) B s i 2 (B,C,B+C, Ay, As,..., A,). (4.72)
k=0

By induction, this proves Equation (4.69) for 7 = 0,1,...,my. The case j = my

yields
primes (B G Ay, ., Ay)
. m k,m1—k,0,ma,ms...,mn
- Z PM{’“LMI’I;Qﬁ;’"?Mf; (B7 O’ B + C) A27 A37 S ;An)
k=0 \ k
_ mi ml Pk7m1—k,m2,m3...,m" B C A A A 4 7
= Z B2, 3 s fd (B,C, A, A3, ..., A,), (4.73)
k=0 \ k
which establishes Equation (4.67). -

An alternate characterization of the concatenation of two orderings is possible, as

follows:
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Theorem 4.3.9 (A concatenation as a particular element of a merging). If P and Q

are disjoint, finite sets, then

(i) If o € Op and 7 € Og, then 0.7 € {0} ® {7}, and (0.7) "' (a) < (o.7)7(b) for
alla € P,be Q. Conversely, if o € Op and T € Og, and if m € {oc} ® {7} and

7 Ya) <7 (b) foralla € P, b€ Q, then 7 = 0.7

(ii) IfU C Op, V C O, then w € UV if and only if both 7 € U ©V and 7 (a) <
7 1(b) for alla € P, b€ Q.

Proof. (Proof of (i)) Let card(P) = m, card(Q) = n.

Let 1 = 0.7, and let a € P,b € Q. Then by Theorem 4.3.5 parts (iii) and (i),
m € {o} ® {r}. Secondly, there exist j € {1,2,...,m}, k € {1,2,...,n} with o(j) =
a,7(k) = b. But then by the definition of concatenation (Definition 4.3.1), w(j) =

o(j) =a and 1(m+ k) = 7(k) = b, so

T a)=j<m+k=n(b).

On the other hand, suppose that p € {o} ® {7} and that for every a € P,b € Q
we have that p~'(a) < p~'(b). Then the same theorem tells us (part (i) implies (ii))
that p = 7.[0(1)].72.[0(2)]. -+ .T.[o(m)]. Ty for some pairwise disjoint orderings
T1, T2y - - - s Tms1 Of subsets of Q with 7 = 71.75. -+ .Tjpq1. As a result, if 7,,, # 0, then
Tm(1l) € @Q and o(m) € P with 7,(1) to the left of o(m) in the ordering p, that is,
p N (7n(1)) < p~t(o(m)); this contradicts our assumption that for every a € P,b € Q
we have p~'(a) < p~'(b). Therefore, 7, = (), and similarly, 7, = -+ = 7, = 0,
leaving us with 7,41 = 7. Consequently, p = [0(1)].[0(2)]. -+ .[o(Mm)].Tms1 = 0.T.

(Proof of (ii)) Suppose m € U.V. Then 7 = 0.7 for some orderings ¢ € U, T € V,

som=07€{o}O{r} CUGV, and for all a € P, b € Q we have 7 '(a) < 7 *(b),
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both by part (i).
On the other hand, suppose that 7 € 4 ® V and that 7~ '(a) < 7 *(b) for all a €
P, be@. Then 7 € {o} ® {7} for some 0 € U, T € V, and therefore 7 = o.71 CU.V

by part (i). ]

Example 14 (Disentangling with ordered supports). We can apply the above the-
orem to prove a result for ordered supports [22, Corollary 2.7]; the proof here is
substantially different from that in [22], where it involves probability measures, and
where it is a corollary of a theorem on disentangling by means of the ‘extraction of
a linear factor’ (which can be applied if a number of measures have their support in
a subinterval [a, b] of [0, 7] and the rest have their supports in [0, a] U [b,T].). Also,
to simplify the exposition, the result below is proved first in the case of disentangling
when every exponent equals 1, after which we prove a theorem involving general ex-
ponents. The technique used in the early steps of the proof relies on expressing the
supports of the measures in terms of characteristic functions.

Let Cy,...,C,, € L(X), and associate measures vy, ..., vy, € Myl0,1] to Cy, .. .,
C'n, respectively. Suppose further that there is an a € (0,1) for which supplw4], ...,
supp[vk] C [0,a] and supp[vki1],...,supp[vm] C [a,1] for some k& € {0,1,...,m}.
Then

Py (O C) = Pt (G, C) Py (Cri o ), (474)

Vk+4+1y--Vm

where if £ = 0 we understand Pj{;::j}yk(cl, ..., Cp) to refer to the identity operator
I € L(X), and if k = m we understand P,,l,;;'l’,l,“,,,m(okﬂ, ..., Cp) to refer to the
identity operator I € L£(X).

The reasoning behind Equation (4.74) is as follows: The cases k = 0 and k = m are

immediate. For the others, we note first that for j = 1,...,k we have v; = v}|(0,q =
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Vjl(0,0) by hypothesis and because the measures are continuous, and similarly for
j=k+1,...,m, we have v; = vj|js1] = V}|(a1).- By the definition of the disentangling

map we have

Pyl (O, Z / Oy (1 X - X V) (ds1, ... dSy)

TESM
= Z /C (m) " 1)(V1|(0a 'XVk|(0,a)XVk+1|(a,1)X"'XVm|(a,1))(d31;-”7d5m)
TESm
= Z / 0,0)¢x (a,1)m—k (815 -+ -5 8m ) Cr(my) =+ Oy (V1 X -+ X v (ds1, .. ., dsp)
TESm m(ﬂ
=> / Cotmy - Coy(1 X -+ X ) (ds1, ..., dsp). (4.75)
7E€Sm A (1)N[(0,a)% % (a,1)™—F]

The terms of the sum will survive only if the region of integration A,,(7) N [(0,a)*
(a,1)™*] is nonempty. That region is the set of all points (si,...,s,,) for which
Sx(1) < Sr2) <+ + < Sz(m) and for which sq,..., s, € (0,a) and sp11,..., 5, € (a,1).
The latter two facts tell us that for all ¢ € {1,...,k} and for all j € {k+1,...,m}
we have s; < a < s;. Combining this with the string of inequalities s;1) < sz(2) <

- < Sax(m), We can say of the subscripts that {#(1),...,7(k)} = {1,...,k} and

{n(k +1),...,7(m)} = {k+1,...,m}. Therefore, 7' (z) < 7 !(y) for all z €

{17 SR k}ay € {k + 17 m} Hence since S - O{l ..... m} — 0{1 ..... k} © O{k—i—l ..... m}s
by Theorem 4.3.9(ii) we have for the nonzero terms in (4.75) that
T € Op, k- O, my = U {o.1}, (4.76)

and thus
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= Z / C’T(m—k) s CT(l)Cg(k) s Cg(l)(vl X X I/m)(dsl, ce ,dsm).

m(o.7)N[(0,a)k x (a,1)™ k]

o€01,.. 1}
TEO(k41,...;m}
(4.77)
(Note since 0.7 is a permutation, we have A, (0.7) = {(s1,...,5m) : 0 < 55(1) < -++ <
So(k) < Sr(1) <0< Sr(m—k) < 1})
The region of integration in (4.77) is
AWL(O-‘T) n [(07 a)k X (Cl, 1)m*k]
= {(515---58m) 1 0 < 8oy <+ < Son) <A< Sp1) <0 < Spimeky < 1}
= {(51,---,8K) 1 0<5,0) <+ < 8o < a}
X {(Skg1y -y 8m) 0 @ < Sray <0 < Spamei) < 1} (4.78)
For 7 € Opey1,..my we define Apypy (7)== {(Skg15---55m) : 0 < 870y < -+ <

Srim—k) < 1}, and then up to a set of vy X -+ X v,,-measure zero, we have

A (o.7) N [(0,a)" x (a,1)™ %] = Ap(0) X Apy1m(T).

Therefore, using the equality just above and applying the Fubini-Tonelli Theorem,

we have
Pi;;::i,l (Ci, ..
/ Cr(m—k) 07(1)00(@ o Coy(vn X - X ) (dse, ... dsi)
er{l ,,,,, k} Ax( J)XAka

Teo{k+1 ..... m}
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= / / Crim=i) " Cr()Cory - - Cor)
Agy1,m( Ag(0)

X (g X oo X yg)(dsq, . .. ,dsk)] (Vg1 X oo X U )(dSka1, - - -, dSp)

= Z Crim—t) == Cr) (Vg1 X == X Up)(dSps1, - - ., dsp,)

x|y Cotiy -+ Coy (11 X -+ X 1) (ds1, .. ., dsy,)
€01, k} Ak(o)
= Pll L (Crnvee s Cu) PR (G, C). (4.79)

This establishes Equation (4.74).

From the result in the preceding example, we may immediately state the following
theorem, which is found in [22, Corollary 2.7] (there, it is a corollary of a theorem on

the ‘extraction of a linear factor’, a concept pursued further in [18]):

Theorem 4.3.10 (Disentangling with ordered supports). Let Ay,..., A, € L(X)
be operators to which we associate finite, continuous Borel measures p, ..., i, on
0, 1], and suppose that there is an a € (0,1) and anl € {1,...,n} with supp[u1], ...,
suppl] C [0, a] and supp|uii1], - - -, supplun] C [a, 1]. Let mq, ..., m, be nonnegative
integers. Then

Pl (Ab...aAn) =Pyt (Al+1>"'7A )th 7ml<A1""’AZ)' (480)

M1y sMn Hl415--54n H1y-ee5 0

Proof. The theorem is proved by making the same assignment of names of operators
as in Equation 4.29, as well as assignments of the names vy, ..., v, to the measures
M1, - - -, by corresponding to the way C4,...,C,, are assigned to Aq,..., A,, letting

k:=my+ .-+ my, and then applying Equation (4.74). a
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Example 15. With Theorem 4.3.10 in hand, we are now able to illustrate Theorem
3.2.2, as promised above, employing it to reproduce a ‘decomposing disentanglings’
result from [17, p. 4]. Let A;, Ay € L£(X) be associated with measures py,us €

M [0, 1], respectively, let my, ms be nonnegative integers, and let a € (0,1). Define

P = paljo,a]s 1,2 i= Hilja]s M2 2= M2ljoq), and fig2 = paf,1]- Then we claim that

mq!l mo! . -
Prm2( AL Ay = Z 2 pin (A AP (Ay A,). (4.81)

B1,p2 F g Vs la T M1,2,02,2 H1,1,H2,1
.= 11711121 )9!
intjmmi 1 J1-12:J2
12+J2=m2

To see this, first note that 11y = p11 + p12 and p1g = po1 + f12.2. Then using Theorem

3.2.2 twice, we have

m1,1M9 _ m1,m2
Pﬂlvl@ <A1’A2) - PM1,1+M1,27#2,1+M2,2 (AlvAQ)

_ < m Pil7m1*il,m2 (A A A )

- ) H1,1,001,2,02,1+p2,2 \F 11y 4315 432
i1=0 \ 71
o [ 7] [ M2 i1,m1—i1,i2,ma—i

_E E 1,M1—11,12,m2—12

- ) ) PM1,17M1,27M2,17M2,2 (Al’Al’AQ’AQ)
11=0 11 i9=0 19

mi1 ma

ml! m2! . . .
:E § Pllﬂz,ml—h,mz—m(Al A2 Al A2)
11 (me — 1) 3ol (1o — 7o) HLLH2,1,H1,2,12,2 ) ’ ’
H=045—0 1H(my — i) gl (mg — i)
m1! m2! 10071
— [ —— 1,22,71,J2
N Z i1 g1 o) By in hom 2.2 (A1, Az, Ay, Ap). (4.82)
i1+ji=m1
t2+j2=m2

We then apply theorem Theorem 4.3.10 to arrive at Equation (4.81).

We continue our discussion of the relationship of concatenation operation and the

merge operation with the following theorem:

Theorem 4.3.11. If P, P,, ..., P, are pairwise disjoint, finite sets, and o1 € Op,,

o9 € Opy, ..., 0, € Op,, then 01.09.++ .0, € {01} © {02} ©---©{0,}. (For the case



106

n =1 we will interpret {o1} © {02} @ --- © {o,} to equal {o1}.)

Proof. We will prove this by induction. The case n = 1 is immediate, since it merely
claims o1 € {o1}. The case n = 2, is immediate from Theorem 4.3.5 (using (iii)=-(i),
letting 7 := 09,k = 1). To prove the rest, we suppose that the conclusion of the
theorem holds for some n = k > 2; that is, 0y.09. - .o € {01} © {02} © --- {0} }.

Then

01.09. "+ .O).Os1 = (01.09. -+ .0%).(0p11) (4.83)
€ {o1.09.- - .0p} © {Oks1} (4.84)
C ({1} 0 {o2} © -0 {or}) © {ok41} (4.85)

by the case n = 2, by the induction hypothesis, and by Theorem 4.2.6. Thus
01.09. + .Opy1 € {01} @ {02} ® -+ @ {0oks1}, and the theorem follows by induc-

tion. O

Part of the usefulness of the merge and concatenation operations is that they
enable us to express a set of orderings in two or more ways. In particular, if we use a
set of orderings as the index set for a summation, then we can express the summation
in more than one way. We are therefore interested in stating a few theorems which

equate sets of orderings.

Theorem 4.3.12 (Set relations and concatenation). If P and Q are disjoint, finite

sets, and if U C Op and V,W C Og, then
(i) U.WUW) = UV)UUW),
(i) U.(VNW) = UV)N (UWV),

(iii) UV~ W) = UV) ~ UW) and (V ~ W)U = (V.U) ~ (WU), and
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VAW =0, then U.(VOW) = UV)UUW).

Proof. (i) Claim: U.(VUW) = (U.V)U (UW).

(i)

(Proof of C.) Let m € U.(VUW). Then there exist 0 € U, 7 € VUW with 7 =
or.Butthent € Vorr e W, somr e UV orm € UW. Thus w € (U.V)UUIWV).

(Proof of D.) Since V,WW C VUW, we have Y.V C U.(VUW) and U.W C
U.(VUW). Therefore, (U.V)U UW) CU.(VUW).

Claim: U.(VNW) = (UV) N (UIWV).
(Proof of C.) Since VNW C VYV, W we have U.(VNW) CU.V and U.(VNW) C
UW. Therefore, U.(VNIW) C (UV)N (UW).

(Proof of 2.) Let m € (UV)N (UW). Then 7 € UV and 7 € U, so
there exist 0 € U,7 € V with 7 = 0.7, and there exist ¢/ € U, 7 € W
with 7 = ¢o’.7". But then 7 = [0(1),...,0(card(P)),7(1),...,7(card(Q))] =
0’ (1),...,0'(card(P)),7'(1), ..., 7 (card(Q))], and equating these expressions
term-by-term gives 0 = ¢’ and 7 = 7/, so 7 € VN W. Therefore, 7 = 0.7 €

U.(VNW), and hence (U.V) N (UW) CU.(VNW).

Claim: U.(V W) = (U.V) N (UW).

(Proof of C.) Let m € U.(V~W). Then there exist 0 € U, 7 € VW such that
m=o0.7. Then 7 € V and 7 ¢ W. It is clear that 7 = 0.7 € Y.V, and we claim
that m ¢ U.W. Supposing on the contrary that = € Y.}V implies that there are
o eU,7 € W with 7 = ¢’.7/. But then 0.7 = 0'.7/, s0 0 = ¢/, 7 = 7/, and
then 7 = 7" € W, which is a contradiction. Therefore, m ¢ U. W, and therefore
TeUYV)NUW). ThusU.(V W) C (UV)~ (UW).

(Proof of D.) Conversely, suppose that 7 € (U.V) . (UIWW). Then 7 € U.V, but

T & UW. For m € UV, write m = 0.7 for some 0 € U, 7 € V. We claim that
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7 ¢ W. If on the contrary we suppose that 7 € W, then 7 = 0.7 € UW, a
contradiction. Therefore 7 ¢ W, and it follows that 7 = o.7 € U.(V N~ W). We
conclude (UV) ~ (UW) CU.(V~W).

The proof that (V ~ W).U = (V.U) ~ (W.U) is completely analogous.

(iv) Claim: If VNW = (), then U.(VUW) = (UV)JUIWV).

Let VNW = (. Then by (i) we have that U.(VUW) = (U.V)U (U W), so all we
need to show is that the union on the right-hand side is disjoint. But in fact,
by (ii) we have that (U V)N (UW) =U.(VNW) =U.0 = ), so the union on
the right-hand side is a disjoint union.

]

Theorem 4.3.13. If 0 € Op and 7 € Og for disjoint, finite sets P and @) with
m = card(P), n = card(Q), then

{c}o{r} = U {r.lo(D)].72.[0(2)]. - T [o(M)].Trs1}

T1.T2. 0 T 1=T

= Y {[7(1),7(2),....7(j1), o(1),
I (G4 1,70+ 2, (i 2) o (2),
T+ Jo+ 1), 701+ 2 +2), ... T(1 + jo + j3), 0(3),  (4.86)
T+ F ), 0(m),

TGi+ -+ jm+ 1), ()]}

where U7 indicates a disjoint union, and where Ty, ..., Tyl are disjoint orderings of

finite subsets of subsets of Q.
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Proof. Theorem 4.3.5 parts (i) and (ii) immediately give

{c}o{r} = U {r.lo(D)].7.[0(2)]. -+ .Tp.[o(Mm)]. Tis1}, (4.87)

T1.T2. Tm4+1=T

so for the first equality it remains to show only that the union is disjoint.

Suppose that

1. Jo(D)].7.[0(2)]. -+ T [o(m)]. T = 11.[0(1)].75.[0(2)]. - -+ .7y, [0 (m)]. 700 q
(4.88)
for some 7.79. -+ Typy1 = 7T{.7y.- -+ .75, = 7. The two orderings on the two sides

of Equation (4.88) must match entry-by-entry. Since o(1) on one side equals o(1)
on the other, o(1) must appear at the same position in the two orderings, so we
must have that length(7) = length(7), and hence, 71 = 7{. Similarly 7 = 7, 73 =
Thy ey Tmal = T;nH. But then as indices for the union, 7.75. -+ 7,41 = 7 and
T|.Ty.-++ Ty = T are the same index; they correspond to the same term of the
union. Therefore, distinct indices correspond to distinct terms of the union, which
are therefore disjoint sets (since the sets are singletons). Thus the union is disjoint.

The second equality in (4.86) holds because

1) {mleWnlo@) - s lo(m)].mma}

T1.T2. Tm+41=T
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{[r(1),7(2),...,7()]lo (V)]

= U G+ 1,71 +2), . 7 + G2))[o(2)
T1.T2. " . Tm+41=T
;;jgggggg;; It +jo+ 1), 71 + joa +2), ..., 7(j1 + Jo + 73)].[0(3)]

Jm1:=length(rm 1)
Lot + )l [o(m)]
TG+ m 1), ()]}
{[T(l)v 7_(2)7 T 77—<jl)7 0(1)7
Y,

Jittimp1=n T(jl + 1),T(j1 + 2), R ,T(jl +j2), 0'(2),

J1ses Jm+1>0

T+ go+ 1), 7(h + G2 +2)s o T(h + Go+ ), 0(3),  (489)
T(jl + - +jm)70(m)7
T(jl + e +.7m + 1)’ .. 7T(n)]}7

where in the second step we have the unions applying to the same terms, so we merely
have to note that the index sets are the same. That is true because on the left side of
the equation we use the orderings 7y, ..., 7,11 only to find their lengths to determine
the values of ji,...,jms1 (they do not appear elsewhere in the expression), which
must therefore take all possible nonnegative values having a sum of length(7) = n,

and that is exactly the index set specified on the right side of the equation. O

Example 16. Let 0 := [1,7] (P = {1,7}) and 7 := [8,9] (@ = {8,9}). Using
Theorem 4.3.13, we note that m = 2,n = 2, so the second union in the theorem is
taken over sums j; + jo + j3 = 2, where j1, j2, j3 are nonnegative integers. The only
possibilities are (71, j2,7j3) = (2,0,0),(0,2,0),(0,0,2),(1,1,0),(1,0,1), and (0,1,1).
Each choice gives us one term of the union shown in the theorem. For example,
(1,0,1) gives us the ordering [7(1),0(1),0(2),7(2)] = [8,1,7,9].

Another way to look at this is that we are splitting 7 into a concatenation of

m+1 =2+ 1 = 3 pieces in all possible ways and inserting the entries of ¢ in
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between, one at a time. (That is essentially what the first union in the theorem does.)
The choice of indices (71, j2,73) = (1,0, 1) means 7 is a concatenation of orderings of
lengths 1,0, and 1, in that order, thus 7 := [8,9] = [8].0.[9]. This contributes the
ordering [8].[¢(1)].0.[0(2)].[9] = [8].[1].0.[7].[9] = [8,1,7,9] to the union. Similarly,
(41, J2,j3) = (2,0,0) contributes the ordering [8,9].[1].0.[7].0 = [8,9,1,7].

Continuing with the other choices of indices we obtain the set of orderings
{[8,9,1,7],]1,8,9,7],[1,7,8,9],[8,1,9,7],[8,1,7,9],[1,8,7,9]},

which we can verify is exactly {o} ® {7}.

Theorem 4.3.14. Let P and Q be finite, disjoint sets with m = card(P). If o € Op,

then

{o}o0o= | Oq, {lo(D]}Oq, {le(2)]}. -+ {lo(m)]}.Oq,.,,-  (4.90)
QU UQm+1=Q

Proof. By Theorem 4.3.13 we have

{0}0 0= [ {o} o}

TEOQ

— U U {r.[o(D)].7m.[0(2)]. -+ T lo(m)]. Trngr (4.91)

T7€0Q T1.T2. . Tm+1=T

where 7, ..., T4 are disjoint orderings of subsets of Q).
We examine the index set for the last union. Given any choice of 7 € Og and
concatenation of disjoint orderings 71.73. -+ .T,,41 = T, We may assign the disjoint

subsets of () ordered by 7, ..., 741 the names Qq, ..., Q,.11, respectively. Note that
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this yields exactly one possible ordered choice of the sets @1, ..., Q,11, since each
7; is an ordering of exactly one set. This implies 7 = 7.71. -+ .Tiq1 € OQuuQumis s
and since 7 orders (), this implies ) = Q1U---UQ,,11. On the other hand, given
any partition ) = Q1U---UQ,,41 and choices 71 € Oq,, ..., Tms1 € Og,,,, there is
a unique ordering 7 = 7y.73. -+ .Tp41; Dote 7 € O u..vg,.; = Og. We therefore
have a bijection between the set of all (m + 2)-tuples of the form (7,71,..., Tni1)
with 7 € Og and 71.73. -+ .Tys1 = 7 (where 74, ..., 741 are disjoint) and the set of
all (2m + 2)-tuples of the form (Q1, ..., Qmi1, 1, Tme1) With Q = Q1Y+ - UQ i1

and 71 € Og,, ..., Tmt1 € Og,,.,. Consequently, we may re-index the union:

{0} ©Og = 1 1) {rle@))mlo@)]. - Tolo(m)] 7}

Q1U~~~UQm+1:Q T1€OQ1
m2€0q,

Tm+1 GOQ"H—I

= Oq, {lo(D]}-0q, {lo(2)]}. - {lo(m)]}.Oq,,p0, - (4.92)

Q1Y UQm41=Q

where the last step follows from the definition of concatenating sets. m

Corollary 4.3.15. If P and Q) are finite, disjoint sets and m = card(P), then

Opug = Op © O ={*) Og, {lo()]}.0q,{[0(2)]}.- -+ {lo(m)]}.Oq,.,,-  (4.93)
QIU"(‘TUECS)75+1:Q

Proof. The first equality was established earlier (Theorem 4.2.11), and it is included
here only to draw attention to the relationship between the expression Op © Og

and the right-hand side. The proof below will be of the second equality. Using the
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definition of merging and Theorem 4.3.14,

Opug = 0p © O

=J Yol

0c€0p 7€0qg

= ) {e} 0 0q

ce€Op

=Y U OadloW}-0q,{l02)]}. - {lo(m)]}.0q,.,

0€0p QU UQm+1=Q

= ) o {le(M]} 00, {[c2)1}. -+ {lo(m)]}.Oq,.,.. (4.94)
Q1U“?Uegnf+1=Q
]

Example 17. (This example is motivated by Section 19.4 of [24].) Consider the
same operators Ay,...,A,,C1,...,C,,, nonnegative integers mq, ..., m,, and mea-
sures fi1,...,M, as in Example 11 above, together with an operator B € L(X)
associated with the finite, continuous Borel measure v on [0,1] and a nonnega-
tive integer k. We want to find an expression for Pﬁ}.’j;ﬁf;’k(z‘lh ooy An, B). Let

Cmy1 = Chpyg == -+ := Cpur = B. Then by the definition of the disentangling

map,

P mT;’k<A1, LA, B)

H1yeeey Hn,

= Z / Cﬂ(m+k) s C«W(l)(uqm X oo X ,unm" X I/k)(dsl, ce ,dSerk). (4.95)

TE€Sman  Srmtk)>>8x(1)}
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Using the second equality in the conclusion of Theorem 4.3.13, the summation is over

Stk = Op,omdyfmtt,mikt = Ogm) © Opmgt,.mk)

= |J H{gen

- U U {[7—(1)7'"7T(Q1)70(1),T(q1‘|‘1),...,T(q1+q2)7g(2)’

060{1 ..... m} q1+qe+-+gm+1=k
TEO (mi1,...,m+k} qise-sqm+120

oot 4t gm),o(m), (g 4+ g+ 1), T(R)]} (4.96)
With (4.96), the disentangling becomes

premnk(A AL B)

H1yeeosfin sV

= > / Cry -+ Crigttam+1) Cotm) * * * Criq+1)Co(1)Criq) - - - Cr()

0€01,...;m} TE€EO(m+1,..., m+k}{s"'(k)>m>5"’(‘11+"‘+‘1m+1)>80(m)>m>87(q1+1)>SU(1)>ST(‘11)>“'>ST(1)}
q1+q2++qm+1=k

q1;---,gm+120
X (™ X e X ot X Vk)(dsl, oy dSmak)
P > / B4 Co () BT+ + - Cy(2) B Co 1y B

o€01,...m} TEO(m1,....m+k} {87(0)>>87 (g1 4 tam+1) >S50 (m) > >87(q1 +1) >0 (1) >Sr(q) > >57(1) }
q1+qe++qmi1=F

q1s--,qm—+12>0
X Uy X - X VR (dsy, . ds), (4.97)
since every image of 7 isin {m+1,...,m+k}, and Cp,y1 = Cpyo =+ = Cpur = B.

As it happens, any choice of 7 in the summation index will produce the same
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summand, since every s, corresponds to the same operator B and to the same
measure v. We can therefore rewrite the summation by choosing a single ordering
7 and multiplying by the number of choices for 7, which is k!. We will choose the
ordering 7 = [m+1,m+2,...,m+k|. (This means that the symbol 7 will disappear

from the expression, leaving that specific ordering in is place.)

Pgllla---vmmk(Al, ey A'rm B)

_ E ' E q q2 q
= k! / Bim+t Og(m) s CO-(Q)B Oo(l)B !
0ESm Qi tqattgma1=k Y SmAR> > Smpqy e tam 41> 80 (m) > > Smet g +1>80(1) >Smeqy > >SmA1}
q1,qm+12>0

X (U X - ™ x VY (dsy, . dSpag)-
Using the method of Example 11, we can express this as

Pm17"'7mn7k(Al, e ,An7 B)

H1yeeesfin,V

=mq!ma! - my! k! Z / B4 Cy(my -+ + » Co(2) B Cy1y B

Uepml mn
C s > >s 1>5 >...
q+g2++qm+1=k {smetn m4q1+-+gm+ o(m)

91 eestm 120 >Smta1 41> 90(1)>Smtay > >Sme1}

X (M X x o™ x UMY (dsy, . dSmag).

Theorem 4.3.16. Given any finite set P, we have Op = J ,cp Op-yay-{[2]}-

Proof. (Proof of C.) Let m € Op, let m := card(P), and let x := w(m). Then 7 =
(m(1),...,m(m—1)].[x] with [7(1),...,7(m—1)] € Op(s}. Hence, m € Op_yu}.{[2]},
and Op C Y ,cp Op-ya}-1[z]}. (That the union is disjoint for distinct choices of x is
clear.)

(Proof of D.) Conversely, let 7 € (J,cp Op-yay-{[]}. Then 7 = 0.7 for some

0 € Op g}, T € {[z]} = Oyyy. But then by the definition of concatenation, 7 = 0.7 €

O(P\{:):})U{z} = Op. Hence, U:ceP Op\{m}.{[ﬂﬁ]} g Op, SO Op = UxeP Op\{x}.{[x]}.
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]

Example 18. We have previously defined the disentangling map 7, ,,. : D =
D(Ay,...,A,) — L(X) for finite, continuous Borel measures py, ..., u, defined on
the interval [0, 1]. Strictly for purposes of this example, we will define a similar dis-

entangling map Tt :D — L(X) for finite, continuous Borel measures py, . . ., i,

- Hn
defined on the interval 0,7, where ¢t € [0,7]. (This has been done more gener-
ally in [19] on time-dependent operators; we continue to restrict our attention to
time-independent operators.) As before, we associate the measures py, ..., i, with
the operators Aj,..., A, € L(X), respectively; mq,...,m, are nonnegative inte-
gers, with m := 3 m;; we have blocks of integers Bl(1) := {1,2,...,m1}, Bl(2) :=
{mi+1,...,my+mo},....Bl(n) :={mi+--+mu_1+1,...,m}; as well as inde-
terminates Cj := flj and operators Cj := A; and measures v, := p; for k € Bl(j),

where 7 = 1,...,n; k=1,...,m. We further define, for any permutation = € S,,,

the set
Ain(ﬂ) = {(81, ce ,Sm) c [O,t]m :0< Sr1) < Sp2) <t < Sp(m) < t}. (4.98)

Then the disentangling map applied to a monomial is defined by

Tt [Prmn(Ay A

M1, uun

Z / e C"/1'(1) (:u;nl X X Nzln)(dsh s 7d8m>' (499)

TESm

With these definitions, we have, for ¢t € (0,7,
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7;}1 ----- un[Pml 7777 mn(Ab ’An)]
= Z/ Cortmy -+ Cory (" X === X ™) (dsy, - . ., dsp). (4.101)
r€S,, Y Ah(m)

.....

=+ j=10€0yq,
which tells us that
Tty ooy P (A, ]

‘>S(,.(m_1)>"'>80.(1)>0}

= Z Z / Cj Com-1y -+ Co(1)
; p m) {t>5>85(m—1)>"">55(1)>0}

.....

= Z Z / Cj Cg(mfl) cee Co‘(l)(l/l X X l/m)(dsl, Ce ,dSm)
; ) {t>s;
m}

X (V1 X - X Vjog X Vjpq X o X Uy X Vj)(dsy, ... dsj_1,dSjt1,. .., dSm,ds;),

(4.102)

by Corollary 3.1.3. Next we change the region of integration into a characteristic

function and factor the characteristic function.
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Tt [P (AL A)]

H1yeeesfin

J=10€01, . j-1,j+1,...m} 0™
X X{t>sj>s[,(m,1)>--~>sa(1>>0}(81; e 85-1, 841y - - -5 Smy Sj)
X (l/l Xooee XVj1 XVjpp Xoor XV X Vj)(dsl, e 7d3j—17 d8j+1, R ,dSm, de)

X X{t>8j>Sa(m,1)>~“>sg(1)>0}(817 ey 8515 8541y - Sm)X{t>Sj>0}<Sj)

X (1/1 Xooee XVj1 XVjp1 Xoon XUy X Vj)(dsh. .. ,de_l,de+1, R ,dSm,de).

We are then able to apply the Fubini-Tonelli Theorem, which allows us to change the
integral into an iterated integral and guarantees that the inner integral is a measurable

function with respect to the measure used in the outer integration. This yields

Tt [Pmeemn(AyL LAY

M1y fin

2 DIEED VRN NN Y cT T
] . . m} ( 7t) (Ovt)m71

X X{sj>sg<m,1>>m>sa(1)>o}(817 R e P S PR 75m)

X (Vl X o XVj_ 1 XVjpp XX l/m)(dsl, R ,defl, d8j+1, RN ,dSm):| X{t>sj>0}(5j>yj<d5j)

=D 2. / & [/ Cotm-1)+ Co)
, 125,20} {

J=10€0q1, i 1,j+1,..m 8j>S0(m—1)>">80(1)>0}
X (1/1 Xooer XVj1 XVjpp X0 X l/m)(dsl, cee de,l, deJrl7 R ,dSm):| Vj<d8])

(4.103)

We now rename s; as s, we change the outer region of integration from (0,¢) to [0, ¢]

(which we may do since v; is a continuous measure), we move the inner summation
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into the outer integral, and we apply the definition of the disentangling map:

Tt P4y AY)]

H1yeesibin
—Z/ 2 Co
[0:4] 0€01, .. j—1,+1,..., {s>s“(m 1)> >s”(1)>0}
X (Vl Xoorr XVj1 X Vjpp Xoo0 X Vm)(dSl, R ,de_l, d8j+1, R ,d8m> Vj(dS)

=Z/CMiMMWMW”@w%ZJﬁw%MM%)@m)
0.

Jj=1

In the last expression, the m; terms of the sum for which C; = A, are all identical, as
are the my terms having C; = A, etc. For each of these, the disentangling expression
in the integrand has one less factor of, respectively, A;, As, etc. We may therefore

rewrite the expression as

=Y [ AT [P (A ) ds)

i—1 [0,]
:E:/a1422,MVWFWMMM1mrMMme%Ab~wAU“MuQ
i—=1 7 [0,]
- s 0 m1,. A 1
=> [ AT =P (AL A | a(ds). (4.105)
= /10 0A;

Linearity of partial derivatives, linear operators, integrals, finite sums, and the disen-
tangling map give that a similar property will hold if P™»"" (1211, e fln) is replaced

by an arbitrary polynomial f(A;,..., A,).
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4.4 The excerption operation

So far in this chapter we have defined orderings and two operations on orderings,
namely the merge and concatenation operations. Concatenation of two orderings
places them side-by-side to give another ordering, whereas merging two orderings,
or rather merging two sets that consist of one ordering each, produces longer order-
ings that mix the two orderings together (while preserving the relative order of the
elements of each). Both operations yield longer orderings. Next we consider the ‘ex-
cerption’ operation, which takes orderings and yields shorter orderings, one might say
‘suborderings’. In a sense, the excerption operation can recover items that have been
merged, and therefore plays a role something like an inverse of the merge operation
(but not exactly), as we will discuss. First we will show that what we will define as

an excerption from an ordering actually exists.

Theorem 4.4.1. Let P be a finite set, let 0 € Op, and let Q C P. Then there exists
a unique ordering m € Og that satisfies each of the following properties, which are

equivalent:
(i) 7 (x) < 7 (y) if and only if o~ (z) < o~ (y) for all z,y € Q.
(ii) If m= (x) < 77 (y) then o~ (x) < o~ (y) for all 7,y € Q.
(iii) If o~ (z) < o (y) then 7 (z) < 7~ (y) for all 2,y € Q.
(iv) o~} (n(1)) <o (7(2)) < -+ <o (m(card(Q))).

Proof. First we will show the existence and uniqueness of an ordering satisfying (i),
and then we will show that (i)—(iv) are equivalent.
The first case to consider is if card(Q) = 0, that is, @ = (). In that case, the only

possible ordering m € Og = Oy = {0} is m = ), giving us the uniqueness of 7. There
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are no z,y € @, so property (i) is in fact vacuously satisfied for the ordering = = 0,
giving us existence.

Second, we consider the case when card(Q)) = 1; say @ = {a}. Then there is only
one ordering 7 € Og = Oyqy = {[a]}, namely 7 = [a], giving us the uniqueness of 7.
Since there is only one element a € @, we cannot have z,y € Q with o (z) < o~ (y),
so property (i) is vacuously satisfied for the ordering = = [a], giving us existence.

If card(Q) > 1, let m := card(P),n := card(Q), so for 0 € Op we have 0 =
[0(1),0(2),...,0(m)]. Since Q is a subset of P = {o(1),0(2),...,0(m)}, we may

choose iy,1g,...,4, € {1,2,...,m} with

{0<i1>7 U<i2)> s 7U<in)} = Qa

and without loss of generality, i; < iy < -+ < i,. Let m := [0(i1),0(ia),...,0(in)];
that is, m(j) = o(i;) for j=1,2,...,n.
It follows that 7 € Og. Let z,y € Q with 7 '(z) < 7 '(y), and let j :=

7 Hx), k=7 (y), so j < k. Hence

o l(z) =07 (7(j)) = ail(a(ij)) =1 <ip = o No(iy)) = o (m(k) = o (y).

If, on the other hand, 2,y € Q are such that 7~ *(z) = 7~ '(y) then o' (2) = 07 (y),
or if z,y € Q with 77! (x) > 7 '(y) then (by what was just done), o~ (z) > o~ *(y).
Therefore, for any x,y € Q we have that 7 '(z) < 7 '(y) if and only if o~ '(z) <
o' (y), which is property (i).

For uniqueness, consider a possibly different 7’ € Og with the property (i) that
if v,y € Q, then 7'~ !(x) < 7' (y) if and only if o~ (x) < 07 '(y). We already know

that o' (x) < 0(y) if and only if 7' (x) < 7 '(y), and together these imply that
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71 (z) < 7 (y) if and only if 77! (x) < 7~ '(y). But then since clearly

we must have

and then

Therefore, m = 7', and we have established uniqueness.

As for the equivalence of (i)—(iv), we will show that (i) is equivalent to each of
the others. If card(Q)) = 0 or card(Q)) = 1, then the statements (i)—(iv) are all
vacuously satisfied for the ordering = we have identified above, and thus they are
equivalent. (It may not be as clear that property (iv) is vacuously satisfied, but we
may regard that as equivalent to the statement that o~ (7 (j)) < o }(x(j + 1)) for
all j,7+1 € {1,2,...,card(Q)}, and that statement is vacuously satisfied in these
cases.)

For the remaining case, if card(Q)) > 1, suppose that (i) holds. Then clearly (ii)

and (iii) hold. It is also clear that

so (i) implies that

o (m(1) <o M (x(2) < -+ < o Ym(card(Q))),
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which means that (iv) holds.

Conversely, assume (ii); i.e., 7' (z) < 7 '(y) implies that o~ '(z) < o~ !(y) for
all 2,y € Q. If we take x,y € Q with 7 '(z) = 7 '(y), we obtain z = y, so that
o ' (x) = o (y). If we take z,y € Q with 7' (x) > 7 '(y), then we get by (ii) that
o (z) < o ! (y). Therefore, 7' (z) < 7 '(y) if and only if o' (x) < o *(y) for all
x,y € @, which is property (iii). Similarly, letting (iii) hold instead also implies (i).

Now suppose that (iv) holds: o *(7(1)) < o '(7(2)) < --- < ¢ }(n(card(Q))).
Let z,y € Q. Then we can find j, k € {1,2,...,card(Q)} with 7(j) =z, (k) = y. If
71 x) < 7 (y), then j < k, so (iv) gives that o~ (7 (j)) < o' (n(k)), which is to say

o '(z) < o7 (y). Thus (ii) holds, so (i) holds. Therefore, (i)-(iv) are equivalent. [
We are now prepared to define the excerption operation on orderings:

Definition 4.4.2 (The excerption operation). Let P be a finite set, and let @) be
any set. Given any ordering o € Op, we define ol (‘o excerpt ()’) to be the unique

ordering m € Opng that satisfies the following property:
(i) 7 '(z) < 7 (y) if and only if 07 (z) < o7 (y) for all 7,y € PN Q.

We call 00 the excerption of the set ) from the ordering o. (Note that if PNQ
is the empty set, then og is the null ordering, and if P N () has only one element,
PN@Q = {a}, then ol = [a].)

We define a related map on a set of orderings: Given any set Y C Op and any
set (Q, we define Ulg, the excerption of the set () from the set of orderings U

to be the set

Ug = U {0}

oeU
(Note that if U is empty, then Ug is empty, whereas if ¢ is nonempty and PNQ = 0,

then Uy = {0}, the set consisting of only the null ordering.)
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[Although the symbol 90" is borrowed from algebra, where it indicates a “wreath
product,” the usage here is entirely unrelated to that. Here it is meant to suggest

something like a restriction map.]

The excerption of a set () from an ordering o € Op is thought of as pulling the

elements of () out of ¢ and keeping those elements, preserving their order.

Remark 17. As established by Theorem 4.4.1, we may replace property (i) in Defini-

tion 4.4.2 by one of the following three statements:
(ii) If 7~ 4(x) < 77 (y) then o~ (x) < o~ (y) for all 2,y € PN Q.
(iii) If o *(z) < 07 (y) then 7' (z) < 7 (y) for all z,y € PN Q.
(iv) o7 Hx(1) <o H7(2)) < -+ < o} (m(card(P N Q))).

Remark 18. If o € Op for some finite set P, then excerpting the empty set from the
ordering o gives us o)y = ) (the null ordering). As for sets of orderings, we have
Mg = 0 (empty set excerpt @ is the empty set) for any set @), since the union over
the empty set is empty. If & C Op for a finite set P with U # ), then Uy = {0}
(the set consisting of the null ordering). [The reader might again have reason for
concern here, since the statement ‘D = ()" could be a statement about null orderings
or a statement about empty sets. But again, happily, the statement is true in both
interpretations. Context should indicate which is intended.]

It is immediate from Definition 4.4.2 that if P is a finite set, if () is any set, and
if o € Op, then 0lg = olpng, since PNQ =P N(PNQ).

It also follows readily from the definition and the preceding theorem that for
any finite set P and ordering 0 € Op we can say that olp = o (because certainly

o1 (o(1)) <o (0(2)) < --- < o7 (o(card(P))) ), and from that we can say that if
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U C Op then Up = U. In fact, if U C Op, then Ulg = U for any set R with P C R
(because Ulgp = Ulpnr = Ulp = U).

Example 19. Let P := {1,2,3,4,5}, Q := {2,4,5,7,8}, 0 := [3,4,1,5,2] € Op,
and U = {[3,5,4,1,2],[2,3,4,5,1],[3,2,4,1,5]} C Op. Then PN Q = {2,4,5}, so
alg = [4,5,2], and Ulg = {[5,4,2],[2,4,5]}.

Theorem 4.4.3 (Relationship between excerption and merging). Let P, Q be disjoint,

finite sets. Then the following hold:

(1) Ifo € Op and T € Og, thenm € {c}@{r} if and only if T € Opyg and o = mp

and T = mg. (In particular, given any ™ € Opug, we have T € {mip} ©{mg}.)

(i1) If U C Opug, then U CUlp © Ulg. Consequently, Ulp © Ulg =U if and only
if card(Ulp © Uly) = card(U).

(111) If U C Opug, and both V C Op and W C Oq are nonempty, then VoW =U
if and only if V =Ulp, W =Ulg, and card(V © W) = card(U).

Proof. To prove claim (i), let ¢ € Op and 7 € Og, and let 7 € {¢} ® {7}. By
the definition of the merge operation (Definition 4.2.1) we have m € Opyq with the
properties that 7! (x) < 7 (y) if and only if 0 *(z) < o~ !(y) for all z,y € P, and
that 7~ (x) < 7~ '(y) if and only if 77! (x) < 77*(y) for all 7,y € Q. But then by
definition of excerption, o = mp and 7 = 7.

Conversely, let 0 € Op and 7 € Og, let 7 € Opyg, and let 0 = mp and 7 = 7Y.
Then for every z,y € P with 7 '(z) < 77 '(y) we have o '(z) < o '(y), and for
every z,y € Q with 7 '(z) < 7 '(y) we have 7 '(x) < 77*(y). The definition of
merging yields that 7 € {c} ® {7}.

To prove claim (ii), let U C Opyg. By what was just established, given any = € U

we have m € {mlp} © {mig} CUILP ©Uly, so U CUlp ©Ulgy. Because Y CUlp ©Ulp
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and because U and U p ©Up are finite, we have equality if and only if the cardinalities
are the same. Thus, we have established the desired result.

The proof of (ii) established the “if” part of claim (iii). To prove the “only if” part
of (iii), let U € Opug, V C Op, and W C Og, with V, W nonempty, and suppose
that V © W = U. Then card(V © W) = card(U). All we need to show, then, is that
V=Ulpand W =Uy.

To show that V = Up, we begin by showing that V C U1p. Consider an arbitrary
o € V. Since W # (), we can find an ordering 7 € W. We now select any 7™ €
{c} {7} CVOW =U, and then we have by (i) that 0 = mlp € Ulp. Therefore,
VY C Ulp. Similarly, W C Ulg.

Next we show that V O Ulp. Consider an arbitrary element o' € Ulp. Then
o' = 7'ip for some 7’ € U =V © W. But then 7’ € {0"} ® {7"} for some ¢” € V
and 7" € W. By (i) this implies that ¢” = 7'lp. Therefore, ¢’ = 7'1p = 0" € V, and

hence, Utp C V. Similarly, Utg C W. Therefore, V = Ulp and W = U n

Example 20. Let Aj, Ay, A3 € L£(X), and associate measures i1, iz, 3 to these
operators, respectively. Let mq, msy, m3 be nonnegative integers with m := my +mq +
ms. The definitions of blocks of integers Bl(1), Bl(2), BI(3) and operators C1,...,C,,

are, as before, given by

Bl(1) := {1,2,...,m1} A, if ke BI(1)
BI(2) :={mi+1,mi +2,...,my} Cr:=9 Ay if keBIl?2) (4.106)
BI(3) :={m1 +ma+1,...,m}, As if ke BI(3).
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The disentangling of the monomial P™™2™3 (A A, As) is

Pymams (Ay, Ay, Ag) = /A . Cortm =~ Cr(y (1™ X 132 X ) (dsy, . . ., dsy).
TESy, ¥ omiT

(4.107)

Let us suppose we are dealing with a situation in which we know that every operator

Ay occurs before every As. Thus for each
7 € S = Op12,..m} = OBi(n)uBi2)uB13) = OB11) © OBI(2) © OBI(3) (4.108)

we have 7 '(z) < 7 '(y) for all # € BI(1),y € BI(2). If we excerpt the set
BI(1)UBI(2) from 7 we then have (Mpiusie)  (2) < (Meinueie)  (y) for all
x € Bl(1),y € Bl(2), and therefore since mpiayupi2) € Opi) © Opiz), we have

meiuBle) € Opi)-Opiz). Consequently,

7 € {memusi2)} © {Twie)} € (Osi1)-Osi2)) © Oris).-

Since we have not placed any further restrictions on the choice of 7, we may therefore
rewrite the sum as the sum over all such terms:

Pm17m27m3 (A17 A27 AS)

H1,02,143

= Z Crim) - Cry (™ X iy X pg®)(dsy, ..., dsp,).
7€(OB1(1)-OB1(2)) ©O0B1(3) Am(m)

(4.109)

We have therefore expressed the sum with fewer terms, using both the merge and

concatenation operations in the summation index.

Corollary 4.4.4 (Excerption recovers merged sets). Let P, Q) be disjoint, finite sets.
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If U COp andV C Og are nonempty, thenUtd = (U O V)ip and V = (U © V).
Proof. This follows immediately from Theorem 4.4.3 part (iii). ]

Corollary 4.4.4 enables us to go from the merging of two sets of orderings down to
one of the two sets that are ‘factors’ of the merge operation. This suggests that we
can use excerption in settings where we might want a kind of ‘inverse’ of the merge
operation, and this was a primary motivation for defining the excerption operation.

One place this use of excerption is especially apparent is in Theorem 4.4.12, below.

Example 21. Let P := {2,3}, Q :={5,6}. Let 0 :=[2,3], 7 := [6,5], 7 :== [6,2,5, 3]
Then we can see both that 7 € {o} ® {7} (that is, [6,2,5,3] € {[2,3]} ® {[6,5]})
and that o = mp, 7 = mg (that is, [2,3] = [6,2,5, 3|23 and [6,5] = [6,2,5, 356,

respectively).

Example 22. Let P := {3,7},Q := {2,4}, and let Y C Opy be the set

U:={3,742),[4,2,3,7,[3,4,2,7,[3,4,7,2],[4,3,7,2]}. (4.110)

Then Up = {[3,7]} and Uy = {[4,2]}. Does U = Ulp ® Ulp? Certainly U C

Ulp ©® Ulg, but they are not equal, because card(U) = 5, whereas

[card(P) + card(Q)]!
card(P)! card(Q)!

card(Ulp ©Ug) = card(Ulp) card(Ulg) = 5191 “(1)(1) = 6.

The missing ordering is [4, 3,2, 7].

Theorem 4.4.5. If P and Q) are sets with P C @, if R is a finite set, and if o0 € Ogp,

then olp = (00)lp.
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Proof. Let m = 0lg. Then m € O and

oM (r(1)) < oM (1(2)) < - - < o~ Y(m(card(R N Q))). (4.112)

Also, (0o)tp = mMp € Orng)np = Ornp. By the definition of the excerption opera-

tion,

1< Y mp(1) <7 M (mp(2)) < - < 7 H(mip(card(R N P))) < card(RN Q),
(4.113)
and combining the information in (4.112) and (4.113) (applying the first to the ele-

ments of the second), we have

o N r(x N (mp(1))) < o H(m(m Hmp(2))) < -+ < o Ha(x H(mp(card(R N P)))));

that is,

o 1 (mp(1)) < o M (mp(2)) < - -+ < o Hmp(card(R N P))).
Hence by the definition of the excerption operation (of oip), olp = mip = (olg)lp. O
Corollary 4.4.6. Let P be a finite set, and let ) be any set. Then Opng = (Op)lg-

Proof. Observe that Op = Opng © Op\g, with both Op~g and Op\g nonempty. By
Corollary 4.4.4, Opng = (Opng © Op\o)teno = (Op)lpng = (Op)lg. The very last
step there comes from a careful reading of the definition of excerption, where we see
that excerpting a set () from an ordering of elements of P results in an ordering of
the elements of their intersection. Since PN (PNQ) = (PNQ), there is no distinction
between excerpting () from a set of orderings of P and excerpting P N ¢ from a set

of orderings of P. O
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The excerption and concatenation operations interact well, in that excerption

distributes over concatenation, as the next theorem and its corollary state.

Theorem 4.4.7 (Distribution of excerption over ordering concatenation). Let P, ()
be disjoint, finite sets, and let R be any set. If 0 € Op and 7 € Og, then (0.7)lg =

U?R.TZR.

Remark 19. To clarify the order of operations, we will stipulate that excerption is

performed prior to concatenating or merging.

Proof. Let P, () be disjoint, finite sets; let R be any set, and let 0 € Op, 7 € Og. Let
7 = (0.7)lg. We wish to show that 7 = olg.Tlg.

We start by noting that 7 orders the correct objects: Since 0.7 € Opyg, we have
m = (0.7TNr € Owpruginr = Owpnryu@nr), While 0l € Opng and 71z € Ogng, SO
alr-TR € O(PAR)U(QNR)-

Moreover, m € Oparyu@nr) = Oprnr @ Ognr, and so there exist orderings p €
Opng, v € Ognp for which 7 € {u} ® {vr}. We would like to show that 7 = p.r and
that p = olg and v = T1R.

To show that m = p.v, we will use Theorem 4.3.9. We already have 7 € Opnr ©
Oonr, o we only need to show that for all a € PN R, b € Q N R we have 7 '(a) <
7 1(b). In fact, we have (0.7)"!(a) < (0.7) "' (b) by Theorem 4.3.9, which implies that
(0.7 (a) < (0.7)15 (b) by the definition of excerption, that is, 7~ '(a) < 7 *(b).
Thus ™ = p.v.

It remains to show that © = olg and v = 1. To show the first of these using
the definition of excerption (Definition 4.4.2), we already have that o € Op and
1 € Opng, so it suffices to show that for every ,y € PN R we have u~(x) < u~'(y)
if and only if o™ '(z) < 07'(y). Let z,y € PN R. Then p ' (z) < p'(y) if and

only if 7 '(z) < 7~ '(y) (by definition of 7 € {u} ® {v}), if and only if (o.7);' (x) <
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(0.7 (v) (by how we defined 7), if and only if (0.7) ™" (z) < (0.7) 7 (y) (by definition
of excerption), if and only if o~ (2) < 0 (y) (by definition of the concatenation o.7).
Hence y = olg, and similarly, v = T{g, giving us that m = oiz.7lg, and completing

the proof. O

Corollary 4.4.8 (Distribution of excerption over set concatenation). Let P, be
disjoint, finite sets, and let R be any set. If U C Op and V C Og, then (U.V)ir =

U} R-VZ R
Proof. By definition of excerption for a set of orderings, using Theorem 4.4.7,

U= | (et = U (ot 2 | {owrmt=  |J (o'}

TeEU.Y oceU,rey oceU, eV o' er,T"EVIR

=Ug Vg.

Distributive properties also hold for excerption over merging.

Theorem 4.4.9. [Distribution of excerption over merged singletons] Let P, Q) be dis-

joint, finite sets, let R be any set, and let o € Op, 7 € Og. Then

({o} ©{mhir = {0t} © {7lx}.

Proof. (Proof of C.) Let m € ({c} ® {7})ig. Then m = ply for some p € {c} © {7},
and 7 € Opug)nr = O(PnR)W(QNR)-

But by Theorem 4.4.3(i), 0 = plp, and thus by Theorem 4.4.5, mpnr = (plr)lPnR
= plpnr = (Pp)lpAr = Olpnr = Olg, and similarly, Monr = Tignr = Tlr. Theorem
4.4.3(1) then shows that m € {mpnr} © {mgnr} = {or} © {Tr}. Hence ({¢} ®

{THhr C {0z} © {Tr}.
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(Proof of D.) Let m € {olg} ® {7lr}. Our objective is to find an ordering p €
{o} ® {7} with plg = 7. To do so we will write 7,0, and 7 as concatenations of
several orderings in the style of Theorem 4.3.5, then piece them together to form p,
and finally demonstrate that p has the desired properties.

First, we let

Q= UZRv ﬁ = TZR,

so we can say m € {a} ® {f}, where a € Opng and § € Ognr. We note that

T E O(POR)U(QOR) = O(PUQ)OR~ By Theorem 4.3.5 we have

™ = Oél.ﬁl.O{Q.BQ. ce .Oék.ﬁk

for some concatenations

a=a.an. ., [=p01.0a.--- .0 with k> 1.

Because « is an excerption from o, all the elements of o appear in the ordering
o, with order preserved. In particular, the initial elements in each of the orderings
a1,...,0q, appear in « and thus in o, in order. We may thus break up o just before

each of those elements, defining

oo :=[o(1), 0(2), ..., o(c (e (1)) — 1)],
o1 = lo(o~ an(D) = (1), oo an(1) + 1), ..., (o~ (az(1)) — 1),
72 = lo(o~ {an(1))) =az(1), oo an(1) + 1), ..., (o~ (as(1)) — 1),

o = [o(c™Har(1)) =ar(1), o(c (ar(1)) + 1), ..., o(card(P))], (4.114)
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and similarly for § and 7,

0= [r(1), 7(2), ..., T(r (A1) = D),
m=[r(rTH(Bu(1) =41 (1), T(rTH(BU(L) + 1), e T(TTH(B(1) = 1)),
m = [ (B =B(1), T (B(1) £ 1), ., 7 (G(1) — 1)

m= [ (G =BD), 7 (GD) 1), . Tleard(@)) (4115)

Then 0 = 0¢.01.- -+ .0, T = To, T1. - -+ .Tx. Define p := 0¢.79.01.71. - -+ .Ok.Tg.
We claim that m = plg. Note that by the definition of excerption (or rather, the

equivalent statement (iv) following the definition) applied to o = oz we have
o (a(l) <o Ha(2) < - < o (alcard(P N R))), (4.116)
and therefore (recalling that o = ayj.c0. -+ - .ay.),

o Hen(1)) < o7 H(an(2)) < -+ < o7 (ar(length(an)))

<o Hap(1)) < 07 az(2)) < -+ < o (az(length(ay)))

<o ap(1)) < o Har(2)) < --- < o (ar(length(ayg))). (4.117)

Now, for each o;, j = 1,2,...,k, we have by inspection that o;(z) = o(x + ;) for
all z in the domain of ¢;, where v; = length(oy) + length(oy) + - - - + length(o;_1).

Consequently, if i = 0;(z) = o(x +7;), then 0~ '(i) = x 4+ ~; = 0; ' (i) + ;. Looking
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at each row j = 1,2,... k of the inequality (4.117) will then give us that

o7 (ay(1)) +75 < 07 (@(2)) +75 < -+ < 05 (o (length(ay)) + 5, (4.118)

and therefore canceling every -;,

o (oy(1)) < o5 ((2) < -+ < o5 ' (a;(length(ay)). (4.119)

J

Hence, ojlg = o for j = 1,2,...,k, and since there are no elements of R in the
image of oo we have oglg = 0. (The first part of the previous sentence may not be
so obvious. The orderings o, 01, ..., 0, together order the entire set that o orders,
which is the set P. This includes the set P N R, which together aq, ..., a; order.
The ordering o; was specifically defined so that of those elements of P N R, it orders
exactly those that a; orders—mnot those of any other a;. All other elements ordered
by o; are still in P but outside of R. Thus the intersection of R with the set ordered
by o; is the set ordered by «;, so if we excerpt the set R from o, we end up with
an ordering that orders exactly what o; orders. The string of inequalities then yields
that ol = a;.) Similarly, 7l = 0, T0r = 5 for j =1,2,... k.

Thus by Theorem 4.4.7, plg = 00lr-Tolr-O1UR-T1 R -+ * -OklR-Tklr =
0.0.c1.01.02.05. - - - .ap.0p = w. Hence, 1 = plg with p € {6} © {7}, so 7 € ({o} ®
{7})g. Therefore, {oig} ® {1z} C {¢} © {7})&. O

Corollary 4.4.10 (Distribution of excerption over merged sets). If P and Q) are

disjoint, finite sets, if U C Op and V C Ogq, and if R is any set, then

(UOV)Ig =UlLr © Vg
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Proof. With the hypotheses as stated, using the definitions of excerption and merging

and Theorem 4.4.9,

Uovie= {J {mat= U U {met= U {oto{rhuw

TeEUROV oeU,7eV me{o}o{r} oceU,TeV

= U Howtofmeh= |J (re{ry
oeU,rey o' eNlg, T EVIR

=UlR © Vg.

]

Viewing the merge operation as something like a multiplication, we might wonder
whether it is possible to factor a given set of orderings nontrivially, and furthermore,
whether there is some kind of canonical factorization for a set of orderings. With
that in mind, to conclude this section, we begin by defining irreducibility of a set of

orderings.

Definition 4.4.11 (Irreducible set of orderings). Let P be a finite set. A set of
orderings U C Op is called irreducible if P # (), U # (), and there are no pairs of
disjoint, nonempty subsets ), R C P with QUR = P and nonempty sets of orderings
VYV C Og, W C Op for which VOW = U. (Note that irreducibility of i/ C Op requires

that P is nonempty, and hence U is not the set consisting of the null ordering.)

Remark 20. The negation of irreducibility is useful to know for proving the next
theorem. If P is a finite set and &4 C Op is a nonempty set of orderings that is
not irreducible, then this definition implies that there are disjoint, nonempty subsets
Q,R C P with QUR = P and nonempty sets of orderings V C Og, W C Op for
which V © W = U. By Theorem 4.4.3(iii) this implies that V = Uy and W = Ul.
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Hence, U = Ulg ® Ulg, with both factors nonempty and not consisting of just the

null ordering.

Theorem 4.4.12. [Unique merge factorization into irreducibles] If P is a finite,
nonempty set, and there is a nonempty set of orderings W C Op, then there exist
nonempty, pairwise disjoint subsets Py, Py, ..., P, C P with Ule P, = P, and there
exist sets of orderings Wi C Op,, Wa C Op,, ..., Wi, C Op,, for which W; is ir-
reducible for each v = 1,2,....k, and W = Wy © Wy ® -+ © Wy. Moreover, this

factorization into irreducibles is unique up to order of the factors.

Proof. We will prove both statements of the theorem using induction. For the first
we use strong induction on the cardinality of the set P. For the anchor step, let
P be a finite, nonempty set, let YW C Op be nonempty, and suppose card(P) = 1,
say, P = {a}. The fact that W C Op is nonempty tells us that W = {[a]}. But
then P cannot be expressed as a disjoint union of nonempty sets, and therefore W is
irreducible. Our factorization is W = W.

For the induction step, let P be a finite, nonempty set with cardinality card(P) >
1, and suppose that factorization into irreducibles is possible for every nonempty set
W' of orderings of nonempty finite sets P’ having card(P’) < card(P). Let W C Op
be nonempty. If W is irreducible, then again we have the factorization we sought,
W = W. If, on the other hand, WV is not irreducible, then there exist nonempty,
disjoint subsets ), R C P with QUR = P and nonempty sets of orderings U C
Og, V C Og withUd ©V = W. Since ) and R are nonempty, and their union is P,
their cardinalities must be strictly less than card(P), which implies by the induction
hypothesis that & and V can be factored into irreducibles.

We therefore have nonempty, pairwise disjoint subsets ()1, Qs, ..., @, C @ with

m

J,—; Qi = Q, and sets of orderings Uy C Oq,, Uy C Og,, ..., Uy C Og,,, for which
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U; is irreducible for each i = 1,2,... . m,and U =U; O©Us @ - -+ ©® U,,. We also have
nonempty, pairwise disjoint subsets Ry, R, ..., R, C R with U?zl R; = R, and sets
of orderings V1 C Og,, Vo C Og,, ..., V, C Og,,, for which V; is irreducible for each
1=1,2....n,and ¥V =V, © Vo ®--- ® V,. But then since () and R are disjoint,
the entire collection Q1,...,Qm, Ry, ..., R, is pairwise disjoint, and W =U OV =
U1 O - OU, OV O - ®V,, so we have found a factorization of W into irreducibles.

Therefore, by strong mathematical induction, we know that any nonempty W C
Op for a finite, nonempty set P can be factored into irreducibles as described. It
remains to show that the factorization into irreducibles is unique up to the order of
the factors.

Suppose for this W that
W=U O OU,=V1O OV, (4.120)

where Uy, ..., Uy, V1,. .., V), are irreducible, with U; C Og,, ..., U, € Og,., Vi C
ORryy .-y Vo € Og,, where @4, ...,Q,, are pairwise disjoint with UZl Q; = P, and
Ry, ..., R, are pairwise disjoint with U?Zl R; = P. (Note that except for P and W,
the names we are using here represent completely different entities than they did in
the proof a moment ago that W factors into irreducibles.)

Consider Wig,. By Corollary 4.4.10 we have Wig, = Uilg, © - © Unlg, =
U © {0} ®---© {0} =U,. But then

Uy =W, = Vilg, @ -+~ O Valo,- (4.121)

Note that for all 7 = 1,...,n we know Vjig, orders the set Q1 N R;. If Q1 N R; is

nonempty for at least two values of j € {1,2,...,n}, then the right-hand side gives a
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nontrivial factorization for U, which cannot be the case, since U; is irreducible. So at
most one R7; has nonempty intersection with ;. But at least one R; has nonempty
intersection with @ (since ) # @, C P and R;U---UR,, = P), so we can say that
exactly one has; without loss of generality, Q; N Ry # (), and in fact @ € R;. We can
use the same reasoning (looking at V) to show that R; has nonempty intersection
with exactly one @);, where j € {1,2,...,m}, and we know in particular that must

be Q1. So Ry C @1. Therefore, )1 = R;. But then

Uy =MW, =Wig, =Vilg, © - OWVlg, = V1 0 {0} 0 -0 {0} =V,. (4.122)

By similar reasoning we can say without loss of generality that Us = Vy. (We
know that U, must equal one of the factors on the right-hand expression in Equation
(4.120), and that it orders a different set from what V; orders.) Continuing the
process tells us that the middle expression and right-hand expression in Equation
(4.120) must have an equal number of factors, and that those two sets of factors are

identical. Therefore, factorization is unique up to the order of the factors. n
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Chapter 5

Further properties of the merge,
concatenation, and excerption

operations

5.1 Set relationships and excerption

We would like to express more relationships involving the merging and concatenating
of sets, but to do so, we first need to prove a few more facts involving excerption,

such as set relations.

Theorem 5.1.1 (Set relations and excerption). If P is a finite set, if U,V C Op,

and if R is any set, then the following hold:
(i) (UUV g =URU V.

(it) UNVNRr C Ug N WVig. In particular, if Ulg N Vg = 0, then (UNVNg = 0,
and therefore, U NV = .

(iii) (U~ Vg 2 Ulg ~ V.
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Proof.

(i) Claim: (L{ U V)ZR =Ugr UViR.
We prove this using a string of equivalences: We have m € (U U V)ir if and only
if m = ol for some 0 € U or 0 € V, which in turn is true if and only if 7 € Ulg or

7 € Vg, which is to say m € Ulgr U ViR.

(ii) Claim: (U NV)ig CUIR N WVg.
Let 1 € UNV)g. Then m = oy for some o € UNV. But then 0 € U and 0 € V,
so ™ € Ulr and m € Vig; that is, m € Ulgr N Vg.
(The proof of the “in particular” statement is in the statement itself. The last

part is due to the contrapositive of the existence statement given in Theorem 4.4.1.)
(iii) Claim: (U N~ V)Iir 2 Ulr ~ Vg.

Let m € Ulg ~ Vig. Then m € Uiy, so there exists ¢ € U with m = olg. If we

suppose that o € V also, then m € Vg, which is a contradiction. Therefore, o ¢ V,

implying o € U ~ V. Hence, © € (U ~ V)ii. H

Incidentally, it is easy to show that statements (ii) and (iii) cannot be changed to
equality. For (ii), if P := {1,2} is ordered by the sets U := {[1,2]} and V := {[2, 1]},
and if R := {1}, then (U N V)ig = Mg = 0, while g N Vg = {[1]} N {[1]} = {[1]}.
For (iii), using the same sets, (U ~ V)ir = {[1,2]}tg = {[1]}, whereas Ulx ~ Vg =
{0}~ {[1]} = 0.

For some of the manipulations we will be doing in the next section, the following

theorem will be useful:

Theorem 5.1.2. If P and () are disjoint, finite sets, if U C Op and V C Og, and if

R is any set, then

(UOV)N (UVr 2 (Ulg @ Vg) N (g WVR). (5.1)
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Proof. By Theorem 5.1.1 we have

(UOV)N UV 2 UV~ UV

= (Ul ©Vir) \ (Utr- Vig). (5.2)

Of these two theorems, Theorems 5.1.1 and 5.1.2, the most useful properties for
us will be parts (i) and (ii) of Theorem 5.1.1. Another useful fact occurs in a case

when equality holds for Equation (5.1), as follows:

Theorem 5.1.3. Let L, P,(Q), and R be pairwise disjoint, finite sets, and let U C
OL,V Q OP,W Q OQ, and Z g OR. Then

([(L{.V) O W.2)~ [(L{.V).(W.Z)])Zqu =Vow)Yw). (5.3)
Proof. By Theorem 5.1.2,

([(L{.V) O W.2)] \ [(U.V).(W.Z)])ZPUQ

2 [(UIVNpug © W.2Z)pug] N (U pug-WV.2)pug)

=[({0}.V) o WADD] N [{03. V). W {0} = (VoWw) N (VW). (54)

For inclusion in the forward direction, let [ := card(L), p := card(P), ¢ :=

card(Q), r := card(R), and let
TE <[(UV) OW.2Z)] [(Z/{.V).(W.Z)])zqu. (5.5)

By definition of excerption, m = plpug for some ordering p € [(U.V) © (W.Z)] \
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[(UV).W.2)]. Since p € (UV) ® W.Z), but p ¢ (U.V).(W.Z), there must be an
r € LUP and y € QUR with p~'(x) £ p~'(y) by Theorem 4.3.9, so p~'(y) < p'(x)

(since x # y).
Let 0 := plrup, T := Plour, so o orders LUP, and 7 orders QUR, and

o=l0(1),02),...,0(l+p)], 7=[7(1),7(2),...,7(q +7)]. (5.6)

But then in this explicit representation for o we have o(l + p) appearing to the right
of every other element of LWUP, and therefore o' (z) < ¢ *(c(l + p)), and similarly,
7 Y7r(1)) < 7 y), where o(l + p) € P and 7(1) € Q. By the definition of the
excerptions o = plpup, T = plour, this tells us that p~'(z) < p~'(o(l + p)) and

p~(1(1)) < p~'(y); hence
pH(T(1) < p7Hy) < p () < p (ol +p)). (5.7)

The definition of the excerption plpug and the facts o(l + p) € P and 7(1) € @) then

say that

Ppug(T(1) < Plpug((l+p)). (5-8)
The fact that p € (U.V) ©® (W.Z) implies that
plrug € [(UV) © W.Z)tpug
= (Ulpug Vipug) © WMWpug-Zlpug)

= {0rv)o W{0})

—Vow. (5.9)

But we just said that pZIZIUQ(T(l)) < pZIZIUQ(J(l +p)) with o(l+p) € P and 7(1) € Q,
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so by Theorem 4.3.9, plpug € V.W. Therefore, m = plpug € (V © W) ~ (V.W). This

establishes Equation (5.3). O

5.2 Combining sets of orderings

Next we offer two theorems about the intersection of sets formed by both merging

and concatenating.

Theorem 5.2.1. If P, and R are pairwise disjoint, finite sets, with sets of orderings
UCOp,VCOp, and W C Og, then

UVEOW) = [UY) o WIN[UW) O V). (5.10)

Proof. We note first that if any of U, V, or W is empty, then both sides of (5.10)
are the empty set, and thus they are equal. For the remainder of the proof we will

therefore assume the sets to be nonempty.

(Proof of C.) Since U.(V © W) C O(pugyur, we have by Theorem 4.4.3(ii) that

UVEOW) CU(VOW)pug © U.(VEOW)r
= [uZqu.(VZPuQ ® WZPU@)] ® [UZR.(VzR ® W?R)]
=Wu.(vo{h)] o [{0}.({0row)

=UV)OW. (5.11)
Similarly (excerpting by PUR and by @), we have U.(VOW) C (U W)®V. Therefore,

UV OW) C[UY)OWIN[UW) V. (5.12)
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(Proof of D.) Using this technique again, and applying Theorem 5.1.1,

[(UYV)oWIN[UW)O V]
c <[(u.v> oWIN[UW) e V]) lp© ([(u.v) OWIN[(UW) G V]) 1QuR
< ([(u.v) OWlRpN[UW) © V]zp) ® ([(u.v) O WlqurN[UW) © V]zQUR)

=UnU)e[(VoWw)n(Woe V)

—UOVOW). (5.13)

Furthermore, for any = € [(U.V) © W] N [(UIWV) © V] we have that mipug € UV, so
for any z € P, y € Q we have WZ}&Q(x) < WZE&Q(y), so m H(z) < 7 (y). Similarly,
for any z € P, y € R we have 7' (x) < 7 '(y). Therefore, for any z € P, y € QUR
we have 7 '(z) < 7 *(y). Combining this with the fact that 7 € U ©® (V © W) tells
us by Theorem 4.3.9 that

TeU.(VoOW). (5.14)

]

Roughly speaking, Theorem 5.2.1 says that if & precedes V and W, then U pre-
cedes V), and U precedes W .

Theorem 5.2.2. If P, () and R are pairwise disjoint, finite sets, with sets of orderings
UCO0p,VC0Oq, and W C Og, then

(UV)oWINTUG VIV =UVWY (5.15)

holds.
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Proof. Starting from the left-hand side,

(UYV)oWINU (VI

([(U.V).W]U[((U.V) OW) N ((u.V).W)}) nueYw))

((U.V.W) Ny e (V.W)]) U < [(UY) o W)~ (UVW)] N U (V.W)]) .

(5.16)

Applying excerption properties (including Theorem 5.1.3) to the right-hand term, we

have
([((U.V) OW) N (U)W NU (V.W)])zQuR
C [(UY) W)~ (UV) W) iqur N U VIV gur
=[(VoWw)~ WM NV.W)
= (. (5.17)
Consequently,
(UV)oW) (UV)IW)]NU VW) =0. (5.18)

That process eliminates the last parenthetical expression in Equation (5.16), leav-

ing

(UYV) oW N UG (VW)
— UV W) N UG (VW)

=UYIW)N ([L{.(V.W)]U[(Z/{ © (VW) \ (Z/l.(V.W))])



146

= [UYWV)N (U.V.W)]U((M.V.W) N[U e VIV) N (u.v.W)])

= UV IWV)ID

—UVW. (5.19)

]

Roughly speaking, the statement of the theorem is that if U precedes V, and
V precedes W, then U precedes V precedes VWW. The interpretation of the theorem
is that while merging several sets of orderings produces a larger set of orderings,
concatenating produces fewer orderings from that same larger set, so if we take a
number of sets of orderings that are combined by merging or concatenating or both,
and intersect that result with a different combination of mergings or concatenatings
of the same sets where the sets appear in the same order, then the intersection will
be a combination of the same sets that tends to preserve the concatenations. (To
express a general theorem of this sort is beyond the scope of this dissertation, but the

process used in proving the last theorem can be applied in more general situations.)
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Chapter 6

Disentangling through an

intermediate space

6.1 Issues that arise in different approaches to
disentangling

We would like to consider another approach to Feynman’s Operational Calculi and

to the disentangling map 7, ., : D — L£(X) defined by Jefferies and Johnson ([13],

[15], [16], [14]; see Chapter 2 above). In particular, we would like to consider how the
process of evaluating the map might be simplified by a further use of commutativity.

Before we do so, let us first review the disentangling process as Feynman described
it (but we will adjust his notation slightly) and then compare his process to the
Jefferies-Johnson system. Consider noncommuting, time-independent operators A
and B. In Feynman’s paper introducing his operational calculus [10], as we have

discussed earlier, he created a notation for describing the operator product AB by

means of indices attached to the operators to show which operator operates first. For
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example, A(1)B(0) in his notation means that B operates before A, because 0 < 1.
(The indices can be viewed as indicating the “time” of operation, with the lower time
happening first.) This gives A(1)B(0) = AB. That product can also be written as
B(0)A(1) = AB; we are allowed to exchange the order of A(1) and B(0) on the page
because the indices tell us in which order they operate. Therefore, although A(1)B(0)
equals the product of two operators A and B that do not commute with each other,
we can manipulate A(1) and B(0) as though they did in fact commute. We might
say that the notation commutes, even though the operators do not.

Feynman was interested in certain formulas involving products of noncommuting
operators, with the products potentially including the operator factors in all possible
orders. He would begin with a product expressed in his time-indexed notation and
then rearrange it until he could write it in the conventional right-to-left notation (the
operator on the right acting first), and this he called ‘disentangling.’

Let us again summarize Feynman’s ‘rules’ as we did in Chapter 1:

(1) Express the order of operation of a product of noncommuting operators not by
means of conventional right-to-left order of operation, but instead by attaching

time indices to the operators (an earlier time means earlier operation).

(2) Form functions of the operators, with the indices attached, and then manipulate

the operators as though they were commuting.

(3) Finally, ‘disentangle’ the resulting expressions; that is, restore the conventional

ordering of the operators.

For example, Feynman would start with operators A and B and attach indices as
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just described, then express their product as

/01 A(s) ds/ol B(s) ds, (6.1)
/ / b dt ds, (6.2)

where A(s)B(t) :== AB if t < s and A(s)B(t) := BA if s < t. (The expression

which equals

‘A(s)B(t)’ is undefined for s = t). The next step is to break the integration into the
region where ¢t < s and the region where s < t (ignoring regions where s = t since

those together have zero measure). That gives

/OlA(S)dS/OlB(S)ds:/Ol/OSA(s) dtds+/ / s)dtds.  (6.3)

The terms on the right-hand side are time-ordered (¢ < s in the first integral, and

s < t in the second), so now he returns to conventional notation, yielding

1 s 1 1 1 s 1 1
/ / ABdtd8+/ / BAdtds:AB/ / dtds+BA/ / dt ds
0 0 0 s 0 0 0 s

1 1
— AB + - BA. 6.4
5AB + 5 (6.4)

We want to notice two things here. First of all, the process begins with a somewhat
vague notion of a ‘product of two operators A and B’, not specifying whether the

product is AB or BA or something else, from which it then it jumps to the expression

f s)ds fo s) ds. Secondly, as Feynman stated, the two factors of this expression
are not to be evaluated independently. Even though fo s)ds = A and fo s)ds =
B, making those replacements in the expression fo s)ds fo s)ds is not allowed,;

that would yield AB, which we see does not equal the final result, %AB + %BA.
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This also holds for the simpler expression A(s)B(t), where A(s) = A and B(t) = B;
substitution is not allowed unless it is known whether s < t or ¢ < s and unless
the factors have been put in their proper order. These two facts about Feynman’s
approach might be considered weaknesses from a mathematical standpoint—a vague
definition and the failure of substitution.

A benefit of the approach of Jefferies and Johnson, which we have been using
throughout this thesis, is that they do not run into those difficulties. The reason
is that in their approach, they perform commutative operations in a space (D) that
is different from the noncommutative space of operators (£(X)). The disentangled,
noncommutative expression at the end of the process is not equal to the original,
commutative expression; it is instead the image of a map from the commutative
space into the noncommutative space. (Feynman was aware that he had not made his
notation completely rigorous, but it is not clear from his article whether he viewed
the particular issues mentioned here as being genuinely problematic, as far as the
present author can tell.)

In the Jefferies-Johnson approach, recall, they map from the ‘disentangling alge-
bra’ D, which is a commutative space of complex functions of complex indetermi-
nates, to the generally noncommutative space £(X) of bounded, linear operators on
the Banach space X. Taking A, B € £L(X) to be noncommuting, time-independent
operators, they associate to them complex indeterminates called fl, B e D, respec-
tively (these could just as well be called z; and 25, but using the same letters A
and B serves as a reminder of the association between the indeterminates and the
operators). They use those indeterminates to express the function they want to dis-
entangle. Continuing the example from the previous paragraphs, the function to be
disentangled is the product AB € D. Since the indeterminates A and B commute,

their product can be expressed without implying which operator operates first; this
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overcomes the first difficulty in Feynman’s system of how to refer to a product of A
and B in some sense without having to commit to one of the two orders AB or BA.

To perform the disentangling process for this example in the Jefferies and Johnson
approach—still reflecting the three ‘rules’ that Feynman used but did not state—
they would first attach time indices s; and ss, using Lebesgue measure [ on [0, 1], to
the two indeterminates A and B, giving A(s;) = A and B(s;) = B (and similarly
for the operators, A(s;) = A and B(sy) = B € L(X)). (Recall, in general the
Jefferies-Johnson approach can use other measures besides Lebesgue measure, and
the operators A(s;), B(se) are viewed as operating or not operating depending on
whether s; and sy lie within the supports of their respective measures—so the time
indices are said to be “attached using measures.”) Following the second rule, to
disentangle AB, it is first noted—because Lebesgue measure is a probability measure

on [0, 1]—that

AB - / " A(sy) ds, / ' Blsy) dsy

/ / A 51 82 d52d51+/ / A 81 52 d52 dSl

_ /{ A(s1)B(ss) (I x 1)(dsy, dss) + /{ Blss)As:) (I x )(dsy,dsy),  (6.5)

1>s1>s2>0} 1>s9>51>0}

in which commutativity has been used to help separate the terms where s; > s5 from
those where s; < s,. Note here that the second issue of Feynman’s notation, the
failure of direct substitution, is resolved; A may be freely substituted for fol A(sy) ds;
and B for fo (s2) dsy in the product fo (s1) dsy fo (s3) dsy = AB, because the
work is done in a commutative space, namely .

Based on the form of the last expression in Equation (6.5), the Jefferies-Johnson

definition of the disentangling of the product AB under the disentangling map T is
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a reasonable one. They define it to be

T.[AB] = T, { A(s1)B(s3) (I x 1)(dsy, dss) + /{B(sg)fl(sl) (I x 1)(dsy,dss)

{1>s1>52>0} 1>s9>51>0}

= /A(S]_)B(Sg) (I x 1)(dsy,dss) + /B(sz)A(sl) (I x 1)(ds1,ds2)
{ {

1>s1>s2>0} 1>s2>51>0}

= AB/{ (I x 1)(dsy,dss) + BA/{ (I x 1)(dsy, dss)

1>51>52>0} 1>s59>51>0}

1 1
= -AB+ -BA 6.6
5AB + 5 B4, (6.6)

where the disentangling map seems to have the effect of simply removing the tildes.
This map thereby reflects the third rule, returning a time-ordered expression to con-
ventional operator notation. Be careful to note that in these expressions in the
Jefferies-Johnson approach, a product of time-indexed operators does not have the
same meaning as in the Feynman system, so here ‘A(s;)B(s2)’ means only AB—mnever
BA—whereas for Feynman ‘A(s;)B(s2)’ means AB if s; > sy or BA if s1 < ss.

As shown, then, the approach of Jefferies and Johnson improves on the two per-
ceived weaknesses of the Feynman notation by defining the commutative space D,
which the disentangling map 7 maps into the noncommutative space £(X). Now we
would like to take an additional step, motivated by a somewhat different interpreta-
tion of Feynman’s ‘rules’ than the one used in the Jefferies-Johnson approach. The
effect will be that while we continue to use the map defined by Jefferies and Johnson,
we will consider another process by which the image of the map may be calculated,
a process in which commutativity may be further exploited.

To motivate the new process, we return to a claim made in Chapter 2 above
(shortly after Theorem 2.0.4), namely that though the definition of the disentangling

map takes a sum of terms involving indeterminates to a sum of terms in the same
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form but involving the corresponding operators,

Lo i [Z A )é'w(m)(sn(m)) o Cry (Sey) (I X - X ™) (dsy, -, dSi)
TESm m{m

Z /A Crmy - Cry (7™ X - X pp™)(dsy, ..., dsy,)  (6.7)

TFESm m(ﬂ-)

in the case of probability measures pi1, ..., t, € Mg|0, 1] (shown earlier as Equation
(2.17)), the corresponding terms of this sum do not necessarily map to each other.
We will do an example to show this.

Let noncommuting operators A, B € L(X) each be associated with Lebesgue

measure [ on [0, 1], and let A(s) = A and B(s) = B on [0,1]. We then have

T, [AB] =T, [ /{DS}B(t)fl(s) (1 x 1)(ds, dt) + / A(s)B(t) (I x 1)(ds, dt)

{s>t}
— [ BAQx)(ds,dt) + / AB (I x 1)(ds, dt). (6.8)

{t>s} {s>t}

However, we claim,

T { /{S>t}A(s)B(t) (lxl)(ds,dt)} ” /{ AB (I x 1)(ds, dt), (6.9)

s>t}

and

T, [ /{t>s}B(t)A(s) (lxl)(ds,dt)} ”: /{ BA (I x 1)(ds, dt). (6.10)

t>s}

We will show this for inequality (6.9) by calculating both sides. On the left-hand side

we have

T U{ A(s)B(t) (1 x l)(ds,dt)] =T, [AB/{(Z xl)(ds,dt)}

1>s>t>0} 1>s>t>0}
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1~ ~
- l,1 |:§AB:|

i

1/1 1
=3 (5,43 + §BA)

1 1
= “AB + - BA. 11
1P (6.11)

However, on the right-hand side we have

/ A(s)B(t) (I x 1)(ds, dt) — AB / (I x 1)(ds, dt) = ~AB, (6.12)
{ { 2

1>s>t>0} 1>s>t>0}

and these do not agree since A and B do not commute. Therefore, the individual
summands on the left side of Equation (6.7) to which the disentangling map is applied
do not necessarily map to the corresponding summands (without the tildes) on the
right side of the equation, even though the entire sum does map to the entire sum.
This suggests that we need to be careful to recognize that in applying the third
of Feynman’s ‘rules’, moving from a commutative expression to an expression of
the same form in conventional operator notation, the Jefferies-Johnson approach has
defined this in the case of a monomial P™ (A, ... A,) only if that monomial is

expressed in the particular time-ordered form

Z/A o (Snm) <+ Corcty (5200)) (4 =<+ @™ (dsr, . dsm); (6.13)

TESm m ()

only then can the tildes be freely erased. If monomials are written in a different
form, even if the form has the appearance of being time-ordered, one might not be at
liberty to erase the tildes. For example, suppose we have (as we had a moment ago)

noncommuting operators A, B € L£(X), each associated with Lebesgue measure [ on
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[0,1], and suppose A(s) = A and B(s) = B on [0,1]. Then AB € D, and it is valid

in the space D to write
AB = 2/ A(s)B(t)(I x 1)(ds, dt), (6.14)
{s>t}

but this does not map under 7;; to an expression in the same form as the right-hand

side without the tildes, which is

2 /{ . A(s)B(#)(1 x 1)(ds, dt) = 2 /{

s>t}

(I x1)(ds,dt)A(s)B(t) =2 (%) AB = AB;
(6.15)
instead it maps to 7 [AB] = 1AB + iBA.
We might find it beneficial, if we are able, to develop a space (modeled partly after
D) in which not only are indeterminates (associated with operators) commutative,
but also in which converting indeterminates to operators (‘erasing the tildes’) from
any valid form of an element of the space will yield the element’s image under the
disentangling map. For now, let us call that space E. If we had such a space, this might
allow us to apply a somewhat different interpretation of Feynman’s ‘rules’: Beginning
with a function f of indeterminates in the space D, we would first attach time indices
(as before) and then form an expression g in the space E. Second, we would freely
manipulate g according to the rules of the space E, including commutativity, until ¢
is in whichever time-ordered form we desire. Third (if we have properly defined the
space E), we would then be able to convert the indeterminates in that form of g to
operators (‘erase the tildes’) and yield the element of £(X) that is the image of f
under the disentangling map.
Our main objective of this chapter is therefore to define a space E as described,

which we will call the ‘intermediate disentangling space’ for the disentangling map.
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When we have done so, we will be able to obtain various results from existing FOCi
work, but some can be obtained more easily. In some cases we can do so much
more easily, for example, when obtaining decomposing disentangling formulas (see

Examples 28 and 36), especially when the number of measures is three or more.

6.2 An intermediate set for the disentangling
map

Let us suppose we have a monomial in D. As we have said, we would like to manipulate
its form, and then use that form to find the image of the disentangling map in £(X).
As we have also said, Feynman did something like that process; he began with the
notion of a product of operators A and B, then he manipulated the form of that prod-
uct using an unconventional operator notation (which we can summarize by saying
‘A(s)B(t)” represents the function of (s,t) given by x(s>13(5,t)AB + X{>s} (s, 1) BA),
and once he reached a form in which the operators were in proper time order, he
returned to conventional operator notation. In a sense, then, he moved from a prod-
uct to a space of forms to a space of operators. We will do similarly, by mapping a
monomial in I into a space of expressions we will call E (so called because, for one
thing, it follows D) that includes various forms in which the disentangled monomial
may be expressed, and then map from there to the disentangled operator £(X) that
has a corresponding form.

In fact, Feynman’s Operational Calculi in the Jefferies-Johnson approach already
has something like that intermediate space of forms, namely, the set of expressions of
the form ‘P-"n(Ay, ..., A,)’, which will serve as our starting point.

The reasons the set of expressions of the form Py~ (Ay, ..., A,) can be said
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to be like an intermediate space of forms are, firstly, in the disentangling process
it does appear intermediate between a monomial in D and its disentangled image
in £(X). Specifically, given operators A;,..., A, € L(X) associated with measures
Wiy pin € M0, 1], respectively, along with nonnegative integers my, ..., m,, we
have corresponding indeterminates A, ..., A, € D, and we make the usual assign-

ments of the operator names C4,...,C,,, where m = mq + --- 4+ m,,. Since D is an

algebra, A" ... A™ ¢ I, and

Trorogun AT+ A = P (A A,
=2 / (m)* Cry (g™ X o X ) (dsy, . dsy) € L(X). (6.16)
TESm
Secondly, the form of Pt--""(A;, ..., A,) can be changed in certain ways without

changing its value as an element of £(X). For example, by Corollary 3.1.9 we have
that for any permutation o € .5,,,

plieemn( Ay AL = PMU‘(’I()If’ ,,;M‘;()”)(Aa(l), co s Agmy). (6.17)

M1y ibn

That is essentially a kind of commutativity, where we commute the operators, mea-
sures, and exponents in a consistent way dictated by the permutation o. Third,
although the expression P (Ay, ..., A,) represents an element of £(.X), not el-
ements of another space, in a sense it can be considered to be a map P into £(X)
from a space of 3n-tuples of operators, measures, and exponents, each of which we
could write as (A1, ..., Ap; i1, -y fn; M1, ..., my). We will imitate this type of map
in our definition of an intermediate space for the disentangling map.

Before we define the ‘intermediate disentangling space’ that we will call E, we will

first define a set G' which contains (as a proper subset) the set of generators for a
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vector space V, of which the space E is a quotient space. The set G’ together with a
map Zg can also be made to play an intermediate role in the disentangling process,
as we will see. But to define G’, we first need to define a certain notation for the
arguments of a function.

In undergraduate mathematics when dealing with functions, instructors are some-
times careful to emphasize for their students the distinction between a function f and
the value f(z,y) of the function at a point (x,y). At times ‘dot’ notation f(-,-) is
used to emphasize that f is a function of two arguments, without having to name the
arguments. There are, however, times when it would be helpful to be able to both
refer to a function as a function (not a function value) and name its arguments at the
same time. For this purpose we will, in a manner of speaking, “name the dots” by
putting variable names above the dots, or rather, dots under variable names. For ex-
ample we will refer to the function f(-,-) as f(z,y) to indicate that in the immediate
context the names of the arguments of the function f will be ‘z’ and ‘y’. This allows
us, for example, to refer to the function g(z) = 3z + 2 or the function (r — 1)%, in
contrast to the values g(z) = 3z + 2 and (x — 1)®. (Incidentally, one place this could
make useful distinctions is with partial derivatives; given a function F(z, Y, z) with
z =z +y, we could distinguish between two partial derivatives with respect to z,
namely the derivative of the function F(z,y,z +y) and the derivative of the function
F(z,y,z+y). But we will not do any of that in this thesis.) Given a function f on
a set X x Y, the statement ‘f(z,y) = g(y, )" implies that g is a function on ¥’ x X
and that f(x,y) = g(y,x) for all values of x € X and y € Y.

We now define the set G'. (‘G” is for ‘generator’, though technically a subset G
will be used to generate V, of which E is a quotient space. It must be admitted that
it is therefore not entirely necessary to define all of G’, but we do so because it is a

good context in which to define certain notations and to become familiar with them
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before going on.) Its elements will involve characteristic functions, and often it may

be helpful to think of those as playing a role something like integral symbols.

Definition 6.2.1 (The set G'). Let G’ be the set of all functions on [0,1]™ (for all

m > 0) of the form

XE(S), -8, )O1(s1) - Om(sm)drr(s1) - - dvp(Sm) (6.18)

m

(which we will refer to as a ‘monomial’), where all of the following hold:
1. £ C|0,1]™ is a Borel set.

a) If B/ C [0,1]™ is a Borel set differing from FE by a set of vy X - - X 1,-measure
zero, then xm(s,... ,sm)é'l(sl) e Con(8m)dvi (1) - - - dvp(5) is consid-
ered to be the same as xg(s,,. .. ,sm)él(sl) . ém(sm)dyl(sl) o AU (Sm)

as elements of G .

b) If o € S, is any permutation, then

Xeo (5,058, )7C1(s1) -+ - Cru(Sm)dvi(s1) - - - AV (8m)

= XE"<<.90(1)7 cee Sg(m))cl(sl) o O(Sm)dvi(s1) -+ - dvm(sm)  (6.19)

is considered to be the same element of G as xg(s,,...,s, )Ci(s1)---

Crn(Sm)dvi(s1) -+ - dvp (Sim).

2. Cy,...Cp,dvy, ... dvy, are 2m (not necessarily distinct) commuting complex
indeterminates that are associated, respectively, with nonzero operators 1, . . .,
Cr, € L(X) and measures v, ..., 0, € Mg[0,1]. (Recall, My4[0, 1] is the set

of finite, continuous Borel measures on [0, 1].)
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3. The use of the index ‘s;’ in the expression é’j(sj) is merely a label to indicate
that the indeterminate éj is associated with the (dotted) argument 5, of the
function yg. It is not a value. (In general, we can think of C'(s) as the ordered
pair (C,‘s’).) Similarly, the ‘s;” in the expression dv;(s;) is a label to indicate
that the indeterminate dv; is associated with the argument 5, of the function

XE-

4. When m = 0, we will regard the expression xg(s,,.. .,$m)6~’1(31) o Cr(5m)
dvi(s1) - dvm(sm) € G' as being equal to 1. (One might attempt to picture
the constant function 1 as being like a degenerate characteristic function on a
single point we could call [0, 1]0 and having no arguments, but we will just say

the expression equals 1.)

It may very well be that it would be clear enough most of the time to write elements
of the set G’ without dots under the arguments of the characteristic functions, with
the reader understanding that a function is intended and not just a function value;

however, for the sake of clarity in this thesis we will keep the dots throughout.

Remark 21. At times we may choose to give the indeterminates more conventional
complex variable names such as z; and w;, and then we would have expressions such

as

XE(Sys - 8,,)21(51) - 2m(Sm)wi(s1) - - Wi (sm) € g'. (6.20)
Remark 22. In what follows, if we make a declaration of the form

XE($y,---8 )C1(s1) - Crn(Sm)dva(s1) - - - v (sm) € G, (6.21)

it will be understood that the various elements are what they should be as stipulated in

the definition of G": m > 0; E C [0,1]™ is a Borel set; the operators are represented
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by capital letters Ci,...,C, € L(X); the measures are represented by lowercase

Greek letters vy, ..., vy, € Mgl0, 1]; ete.

Remark 23. Since G’ is only a set, it does not include operations. For example,

we cannot add two elements in the set G'. In particular, even if we have disjoint

Borel sets Ei, By C [0, 1] with xgug,(s)A(s)du(s) € G', which we can express as

[XE + X&) (s)A(s)du(s) or even as [xg, (5) + X, ()] A(s)du(s), we will avoid writing

Vrwors (5)A()dpu(s) as 5, () A(3)dp(s) + X, (5) A(s)dpu(s) as an element of G’ (even
though that would be a sum of products of real-valued functions and complex inde-
terminates, which has a natural pointwise definition). However, later when we form

the space E from elements of G', we will introduce an addition operation.

In what follows we will generally consider only nonzero operators.

Example 23. The sets (0,1)% and {(s,t) : 0 < s < t < 1} are Borel sets in [0, 1]?, so

for operators A, B € £(X) and measures p, v we have
Xo12(5: ) A(s) B(t)dp(s)dv(t) € G, (6.22)
and

X{(s,0): 0<s<t<1}($7 t)A(s)B(t)d,U(s)dV(t)
= Xgs<r) (8, 1) A(s) B(t)dpa(s)dw (1)
= X{(t,s): 0<s<t<1}(t7 S)A(S)B@)dﬂ(s)dy(t)

= Xguery (1 9)As) B dp(s)du(t) € G (6.23)

(By commutativity, we could just as well write the last expression as dv(t)du(s)B(t)
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A(8)X(s<ty(t, 5), but usually we will not.) In fact, we can write

Xo.02(5, 1) A(s) B(t)du(s)du (t)

= [Xgs<ty + Xgss0r] (5, ) A(8) B(t)dpu(s)du(t) € G (6.24)
Before we state two more notational conventions in G’, we will define a map 7g/

from G into £(X) that will play a role similar to that played by the disentangling

Definition 6.2.2 (The intermediate disentangling map 7g/). Given the definitions

above, define 75/ : G’ — L(X) by 7g/[1] = I, the identity operator in £(X), and

To[xe(s), - 8,)C1(51) - Cr(sm)din(51) - - i ($m)]
Z/ 5515y 8m)Crmy - Crry(V1 X -+ X v)(dsy, ... ds,)  (6.25)
TESm

for arbitrary xg(s,,. .., $m)él(31) < Co(sm)dvi(s1) -+ - dvp(sm) € G', m > 1.

Remark 24. We need to show that the map 7g is well-defined with regard to the
commuting of indeterminates and with regard to Definition 6.2.1 parts la and 1b.
First, the fact that the indeterminates of xp(s,,. .. ,$m)C~’1(31) e C’m(sm)dul(sl)
-+ dVp,(8m) commute is not really an issue, since once we have identified the coefficient
function of the monomial as xg(s,,...,s, ), the association between the arguments
of xg and the indeterminates and the choice of permutation = € 5, will dictate
uniquely the order that the operators and measures will appear in the right-hand
expression in Equation (6.25).
Second, it is clear that if the set F is changed by a set of v; X --- X v,,-measure

zero, the value of the integral defining 7/ will remain unchanged.
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More of an issue is the fact that there are several ways that the coefficient function
can be written without changing the element of G’ to which we are referring. Suppose,

for example, we choose any ¢ € S,,, and rewrite

XE(8y, -8, )O1(s1) - Cra(sm)dvi(s1) - - AV (Sim) (6.26)

as

XE‘U($O_(1), . ,$U(m))C’1(31) o Cr(Sm)dri(s1) -+ - AU (Sim)- (6.27)

By commutativity of the indeterminates in G’ we may also write this as

XE7 (S, 5.0 )Co1)(801))  + * Coton) (So(m) ) AWo(1) (So(1)) * * * Wer(my (So(m))- (6.28)
1) (m)

Then by definition of 7g: (making use of Theorem 3.1.7 and Corollary 3.1.5, and an

argument similar to one used to prove Corollary 3.1.9) we have

Tg/[XEo (5507 So(my) C1(51) -+ Ol )d (1) - - - dvm (s )]

= Tor[X7 (35011, -+ S5 m) Ca1) (S0(1)) *++ Cortm) (Som) )W) (8a(1)) - W) (Sa(m) )]

- Z AX(E") (80(1)7 v 730(m))007r(m) T Caw(l) (VU(I) XX Va(m))(dsa(1)7 o 7d80(m))

7T€Sm
o1 o1
= Z /XE(Sb-l-wSm)Cm(m)"‘Caw<1)(va(1>><“~><va<m>) (dso1)s - - -+ dSe(m))
TI'ESm [Am(ﬂ')]"'7
= Z/ XE(515 -3 8m)Conm) =+ Conry (1 X -+ X Up)(ds1, ..., dsp). (6.29)
ﬂ'ESm m(O’T()

Changing the index of summation to o € .S, and letting p := o7 gives

Tor (X8 (55075 -+ 0y )C1(52) -~ o) (1) -~ i (5,0)]
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= Z / 81, ,Sm)Cp(m)~'-Op(1)(V1 X oo X Vm)(dsl,...,dsm)
PESm Am(P
= Tg/[xe(s,, .. ,$m)é'1(51) _ C’m(sm)dul(sl) e dup (Sm)]- (6.30)

Consequently, changing the coefficient function using ¢ as shown has no effect on the

image of 7g,. Thus 7g is well-defined.

Example 24. We will apply 75 to the elements of G’ presented in the previous
example. For the first we have (letting A(s) = A, B(t) = B)

To[X (012 (5, ) A(s) B(t)du(s)d (t)]

= / X(0,1)2 B(t)A(s) (u x v)(ds, dt) +/ X0,12(5,t)A(s)B(t) (v x v)(ds, dt)
{t>s} {s>t}

= B(t)A(s) (1 x v)(ds,dt) —i—/ A(s)B(t) (1 x v)(ds, dt)
{t>s} {s>t}

= P, (A, B)

=(uxv){(s,t):0<s<t<1})BA+ (uxv)({(s,t):0<t<s<1})AB
(6.31)

For the second we have

Tor [Xqo<s<t<ry (s, ) A(s) B(t)dp(s)dv(1)]

= /{ X(s<tj (s, 8) B(1)A(s) (u x v)(ds, dt) + /{ X(s<t} (5, 8)A(s) B(t) (u x v)(ds, dt)

t>s} s>t}

_ /{t BOAS) (pxldsd)  + 0

=(uxv)({(s,t):0<s<t<1})BA. (6.32)

In particular, if u, v are both Lebesgue measure on [0, 1], then the former result

equals %AB + %BA, and the latter result equals %BA.
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In fact, the above example, especially the first of the two parts, is the starting point
for much of what follows, which is to relate the map 75 on G’ to the disentangling

map 7, .., on D by way of the monomial disentangling P11 (Ay, ..., A,). We

.....

begin with a theorem that relates the two directly.

Theorem 6.2.3 (Disentangling a monomial of first-power factors). Given operators

Cy,...,Cy € L(X) and measures vy, ..., vy, € Mgl0,1], we have

7?_;/ [X(071)m($17 ey $m)Cl<81> s Cm(Sm)dyl(Sl) s de<Sm)] = Pyll”l (Cl, R Cm)

Proof. The result follows immediately from the definitions of both expressions. (For

the degenerate case m = 0, both sides equal the identity operator I € £(X).) ]
In fact, we can state a more general result.

Theorem 6.2.4 (Disentangling over restricted measures). Given operators Cy, .. .,
Cy, € L(X), given measures vy, ..., Vym € Mgyl0,1], and given Borel sets Fy, ..., E,

C [0,1], we have

Tg/ [XEyxx B (815 -5 8,,)C1(81) -+ - Cra(8m)dra(s1) - - - Vi (1)

= Z / C'7r(m) ©e 'Cw(l)(VI‘EH X X Vm|Em>(d817‘ .- 7d5m)
()

= Z / XE1><---><Em(817 . -73m>07r(m) o 'CW(I)(Vl X X Vm)<d817' ce 7d8m>
A
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= Tg/[XEixxBn (S5 58,,)C1(51) -+ Cr(sm)dvi(s1) « - - Vi (m)], (6.35)

m

which is the left-hand side. O]

We see, then, a relationship between the map 7g and the disentangling of a
monomial whose exponents all equal 1. We would like to address a general monomial
Pml’”"m”(fll, LAY,

To find Py (Ay, ..., Ay), we need to be able to express exponentiation of an

element of G'. For example, if xg(s)A(s)du(s) € G', we would like to be able to, in

effect, multiply it by itself. However, we cannot write that as

xe(s)A(s)du(s)]” = xp(s)A(s)du(s)xp(s)A(s)du(s)’,

because the expression on the right has more than one characteristic function (and
that is not yet defined in G'); moreover, it is unclear on the right whether each
label ‘s’ is associated with the first argument s or the second. Our solution will
be to establish two notational conventions, both of which will make manipulating
characteristic functions similar to manipulating integral symbols.

Our first convention will be that characteristic functions may be factored into
other characteristic functions in whatever way this can ordinarily be done with char-
acteristic functions. Thus, for example, if £, C [0,1)’ and E, C [0,1]* are Borel sets,
if Ch,...,Cjyp € L(X), and if v1,. ..,V € My[0,1], then we can write

Xexs (81508, C1 (1) -+ Chnlsjn)dva(sr) - - dvyia(sji)

= XB (81 8 )XE (8400085 Ca(51) - Chpn(spr)din(s1) - dvyii(sjen).

(6.36)



167

As a second example of this, if A, B € L£(X) and u,v € M0, 1], then we may write

Xto<s<t<1y (8, ) A(8) B(t)dp(s)dv(t) = x(0,1) (8)x(0. (5)A(s) B(t)du(s)dv(t).  (6.37)

We will express this more generally by means of the next definition. We make use
here of the ‘named dots’ notation in order to represent a function that is the section of
another function. (As an example of the section of a function, if f(z, Y, z) is a function
of three variables, then the z-section of f is the function on two variables that results
from setting a fixed value for z. We represent the x-section of f as ‘f (:B,y, z)’ and

the y-section of f as ‘f(z,y,z)’, etc.)

Definition 6.2.5. Let xg(s,,... ,$m)(71(31) e C(Sm)dvi (1) - - dum(sm) € G
Suppose myq,...,m, are nonnegative integers with m; + --- + m,, = m, and sup-
pose E1, ..., E, C[0,1]™ are Borel sets with 07;21 E; = E (and consequently we have

XEXE, " XE, = XE). Then we define

XE; <$17 ) $m1’ Sma+1y - 8m)XE2(817 -5 Smy $m1+1’ cee ’$m1+m2’ Smi+ma+ly - .- 7Sm)
“XE, (51, s Smyde i —1 $m1+~~-+mn71+1’ cey Sm)él (81> cee ém(sm)dyl(sl) e dym(sm)
= xe(s,,. .- ,$m)01(51) e ém(sm)dyl(sl) o AU (Sm)- (6.38)

Moreover, each characteristic function in the left-hand expression is allowed to com-
mute with the others and with the labeled indeterminates C; (s1),..., C’m(sm), dvi(s1),
oo, dUp(Sm). (For the degenerate case, the number 1 may also be placed as a factor
in the expression and allowed to commute with the other factors.)

Furthermore, we are free to replace any of the characteristic functions in (6.38)
with an equivalent expression. For example, if for some j € {1,...,n} we can write

E; = [0, 1™t x F; x [0, 1]™7"™ 7™ for some Borel set F; C [0,1]™, then we



168

may replace

XEj (517 s 75m1+'"+mj_17 $m1+~~-+m]-,1+1’ R $m1+'“+mj’ 8m1+'-'+mj+17 s 75m) (639)

with

XEj ($m1+"'+mj—1+1’ DR/ $m1+...+mj)’ (640)

since these are equal as functions of Sty 417 Sty

To interpret Definition 6.2.5, notice mainly that the arguments on the left, with

dots, match those on the right. The idea is this: We begin with a product of charac-

teristic functions; for all (si,...,s,) € (0,1)™ we have
Xy (815 Sm)XE (ST -y Sm) XE, (S1, -y Sm) = XE(S1, -+, Sm)- (6.41)
For the characteristic function over F on the right-hand side, we view sq,...,s,, as

arguments (putting dots under them). For each of the characteristic functions on the
left, we view some of sq,...,s,, as arguments and some as parameters, so each be-
comes a characteristic function with a smaller number of arguments, and together the
arguments include each of sq, ..., s, appearing exactly once. If the two sides are then
multiplied by the product of indeterminates C’l(sl) e C’m(sm)dyl(sl) oo dvp(Sm), the
result is regarded as the same element of G'. We will look at a specific example in

Example 25 below.

Remark 25. It might raise concern that the foregoing definition allows us to change a
characteristic function on one domain to a characteristic function on another domain
(the domain is a product, and we are exchanging factors, yielding a possibly different

domain), meaning it is then a different function. For example, if £y, By C [0, 1] are
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Borel sets, if A, B € L(X), and if u, v € My[0, 1], then we are able to write

XEx (5, 1) A(s) B(t)du(s)dv(t) = xp, ($)X5, (1) A(s) B(t)dp(s)dv (1)
= x5 (t) X, (5)A(s) B(t)dp(s)du (t)

= Xmox, (1 5) A(s) B(t)dp(s)du (t). (6.42)

Because in Equation (6.42) the characteristic function has changed from g, xg, to
XE,xE,, one might be concerned about whether the last expression is a different ele-
ment of G’ than the first—but in fact, the two elements are the same. By Definition
6.2.1 part 1b, an element of G’ is unchanged if we permute the arguments of its charac-
teristic function and we correspondingly permute the coordinates of its characteristic

function set; in particular,

Xexs (8, 0) A(8) B()dp(s)dv (1) = X{(s): sebr,tema) (3: ) A(s) B(t)dpa(s)dv (t)
= X{(t)s sen,tea} (£ ) A() B(t)dpu(s)dv (t)

= Xmaxin (1, $)A(s) B(t)dp(s)dv (1), (6.43)

By similar reasoning we can see that commuting characteristic functions in Equation

(6.38) is valid, and so Definition 6.2.5 is well-defined.

Example 25. Although the left-hand expression in Equation (6.38) is rather involved,
it does not always need to be so in practice. Consider (s« (s, HA(s)B(t)du(s)du(t) €
G'. Theset B :={s <t} = {(s,t) € (0,1)* : s <t} equals the intersection of the set
By = {(s,t) € (0,1)*} = (0,1)* with the set Fy := {(s,t) € (0,1)*: s <t} =E.

We could take sections of the characteristic functions xz, and xg, in two different

ways. We will take the s-section of y, and the t-section of xp,. For all (s,t) € (0,1),
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we have

XE1($>t) = X{(s,t)6(0,1)2}(sa t) = X{te(o,l)}(t) = X(O,l)(t)v (6-44)

so for any s € (0,1) we can write

XE: (8:1) = X0 (1). (6.45)
For all (s,t) € (0,1)?, we have
XE2(5,1) = X{(s:)e(0,1)2: s<t} (5:1) = X{se(0,1): s<t3(5) = X{s<t3(5) = X(0,)(5),  (6.46)
so for any ¢ € (0,1) we can write
XE (8, 1) = X(s<t1(5) = X0,9($)- (6.47)

We may therefore write

Xs<ip(5:8) A(s) B(t)dpu(s)dv (1)

The first convention, just defined, for dealing with exponentiation addresses the
issue of having multiple characteristic functions in the expression for one element of
G'. Our second convention will address the problem of trying to match the labels on
the indeterminates to the arguments of characteristic functions when there is more
than one. The solution is merely a matter of defining the ‘scope’ of each variable.

(Here we borrow a computer programming concept; the ‘scope’ of a variable refers to
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the broadest context in which a variable name has a particular meaning. A variable
name may be used in more than one context to mean different things, so these contexts
need to be clearly specified. In mathematics we see something similar when dealing
with ‘dummy variables’ in integrals; two integrals multiplied by each other may use
the same integration variable name, such as t in [, f(t)dt [,, g(t)dt, but the variables
in the two integrals have meanings that are independent of each other.) The scope

rules we choose will be like those used with integrals.

Definition 6.2.6 (Scope rules and associated notation in G'). Given an element

XE(Sys--58,)C1(51) -+ - Cou(Sm)dvi(51) - - - dvm(sm) € G, (6.49)

m

we will sometimes write it as

XE C’l(sl) . C’m(sm)(dvl X oo X dUm) (81, -+ -5 Sm)s (6.50)

where the changes here are that the arguments have been taken off of the charac-
teristic function, and the measure-related indeterminates have been combined with
product signs. This notation may also be applied to characteristic functions and
their corresponding indeterminates within a larger expression in G'. In all cases the

following rules shall apply:

e The same notation must be used for all characteristic functions (and associated

measure-related indeterminates) in the expression.

e A characteristic function and its associated measure-related indeterminates act
like left and right parentheses, in the sense that the characteristic function must

appear to the left of the measure-related indeterminate(s) that correspond(s)
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to it, and given any two pairs of characteristic functions and their associated
measure-related indeterminates, either the first pair is entirely inside (between)
the second pair, or else neither part of the first pair is inside the second pair

(that is, they nest like parentheses).

e Finally, if a variable name somewhere in the expression refers to an argument of
a given characteristic function (as an argument or as a label, for example), then
that use of the variable name must occur between the characteristic function and
the labeled measure-related indeterminate to which it is associated, inclusive;

uses outside of that are independent of uses inside.

Example 26. Drawing from our previous example, we can write

X(0,1) ()X (s<ty () A(8) B(t)dp(s)dv(t) (6.51)
X(0,)X{s<t} A(8) B(t)dp(s)dv(t) (6.52)
X0, Bt)Xs<iy A(s)du(s)dv (t). (6.53)

In both cases, x(0,1) is then understood to be a function having argument ¢, while

X{s<t} has argument s. Alternatively, we could write the same expression as

X(s<ty A(8) B(1)(du x dv)(s,1). (6.54)

Notice the similarity between the above expression and its image under the map Zg/,



173

where for purposes of illustration we will use A(s) = A and B(t) = B:

To X (s<ty Als) B(t)(dpe x dv)(s,1)]

= /{ . X{s<ty B(t)A(s)(p x v)(ds, dt) +/ Xs>t3A(s)B(t)(p x v)(ds, dt)

{s>t}

_ /{ , BOAG < V) (ds, a0 (6.55)

We see that the characteristic function has been replaced by an integral sign in its
image, while the operators have been time-ordered and the tildes have been deleted.

Furthermore, we may write

xon A = [xonAs)dus)] [onds)dns)] ¢ (6.56)

to refer to

X2, $,) As1) A(s2)dpu(s1)dp(s2), (6.57)

because the scope rules make the label s in the earlier expression a ‘dummy’ variable;
the use in the first factor X(O,l)zzl(s)du(s) is independent of its use in the second factor.
When we change back to the original notation, we need to name those independent

uses with different names, here s; and ss.

The convention we have just defined therefore allows us to write several factors
with different argument names as a single factor with an exponent, so now we may
work with exponentiation of elements of G'. (To be precise, we have not really defined
a product of elements of G'—which is still a set without operations—but we can write
some of those elements in ways that suggest products and exponentiation. In the space
E described below that is developed from part of G’, however, we will define a product

operation.) Besides what we have just defined, we will dictate that any element of G’
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taken to the zeroth power is 1.

Now we may state Theorem 6.2.3 more generally, expressing the disentangling of a

monomial P™ m”(fll, ..., A,) in terms of the intermediate disentangling map 7g.

Theorem 6.2.7. Let operators Ay, ..., A, € L(X) be associated with, respectively,

Measures [y, . .., fn € Muw[0,1], and let mq, ..., m, be nonnegative integers. Then

ZLI #n[ATIAnmn] :P:;Ll ..... mn(Ala"'aAn)

=75 | (xonAls)di(s0)) " -+ (xonAls)du(s)) "] (659

Proof. We let m = my + - -+ + m,, and assign names of blocks Bl(1),...,Bl(n), op-
erators C',...,C,,, and measures vy,...,1,, as usual. Then by Theorems 6.2.3 and

2.0.4 we have

= Plueemin(Ay) L Ay). (6.59)
Note that this also holds when m = 0, in which case the disentangling map and 7g
both yield the identity operator I € L(X). O

The map 7g, especially Theorem 6.2.7, will be our focus in the next section. After

that we will build the space E using the set G'.
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6.3 Using the intermediate set G’

The main results we wish to address now, while still working with the set G’ and
the map 7g/, are a distributive property and a binomial theorem related to sums of
characteristic functions, together with the three most important theorems for our
work with intermediate disentangling maps, which deal with applying the map 7g
to time-ordered or partially time-ordered expressions in G'. First we look at the

distributive property and binomial theorem.

Theorem 6.3.1 (7g distributes over certain sums of characteristic functions). Given
integer m > 1, Cy,...,Cy € L(X) and vy, ..., Uy € Myl0,1], and given disjoint

Borel sets Ey, Es C [0,1]™, we have

To(xm: + X8) (5155 8,)C1(51) -+ Cra(s30)dva(51) -+ - i (510)

= Tg Xz (5, -+ $,)C1(s1) - Cnlsim)din(s1) -+~ dvin(51m)]

+Tg[XE (51, -+ 8,,)C1(81) - Crn(sm)dvi(s1) -+ dvim(sm)]-
(6.60)

Proof. We will omit the proof, which involves simply applying the definition of the

map Zg and splitting the sum inside the integral. O]

Theorem 6.3.2 (A binomial theorem for certain sums of characteristic functions).
Let m e NU{0}; A,C,Cs, ..., Cp € L(X); and p,v1,va, ... Uy € Mgyl0,1]. Let
Ey, Ey C [0,1] be disjoint Borel sets, and F' C [0,1]™ be a Borel set. Then for any

n € NU{0}, we have

To [((xe: + X8 A@)n(s)) XrCrltr) - Conltn)(diy - x dv) (b, )
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n n n—k

| 7| (e A9) (e A

i
o

xrpCL(ty) -+ Con(t) (diry X -+ X du) (b1, .. tw) . (6.61)

Proof. (Note that the theorem is expressed using notation as in Definition 6.2.6, so
arguments of characteristic functions are omitted.) If n = 0, then the zeroth-power
factors on both sides of the expression above equal 1, and the result is immediate.
Suppose, then, that n > 1 (in which case we may use Theorem 6.3.1). We observe

first that given any sy, ..., Sy, t1,...,tm € [0, 1], we have

X(E1wB) (815 -5 Snstiy ooy tm)
= (XE + X2)(51) - (XE + XE) (S0)XF (T, -, )

= [XE (51) + XBa (51)] - [XE: (8n) + Xa (80)IXF (15 - oo tm)

- Z XEq, <81>XEq2 (52) “ XEg, <5n)XF(t1, o ,tm)

q15-qn=1
2
= g XquxEq2><~--><Eqn><F(517527-- -75n7t17--->tm)7 (662>
q15-qn=1

where the sets E, x Eg, x --- x E, x F in the last summation are pairwise disjoint
for different terms in the sum.

Consequently, by Theorem 6.3.1,

To [((xe + X8 AW)n(s)) XrCrltr) - Conltn) (i x - x dv) (b, )]
=Ty {((w e () Als1)dia(s1) ) -+ ((xs + e (5,) Alsa)dia(sa) )

: XF({.;p e vtm)él(tl) T ém(tm)dyl(tl) T d’/m(tm)}
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_ T [(xEl )5 o+ X))t o)

: A(Sl)dﬂ(sl) T A(Sn)dﬂ(SN)él(tl) T ém(tm)dyl(tl) T d’/m(tm)}
2
- Z Tg’ [XquxEQQX"’XEanF($17‘.927‘"7$n7t17"'7tm>

. A(sl)du(sl) e fl(sn)du(sn)éﬁ(tl) e C’m(tm)dl/l (t1)--- dl/m(tm):|
i_ 1g |:<XE(11 ($1>A(81)d/‘(31)> T <XEqn (Sn)A(sn)dﬂ<3n))

ety )0 Cnlt)n (1) i)

(6.63)

We then group the factors of (Xqufl(s)du(s)> <XEqnf1(s)du(s)> according to
whether they include xp, or xg,. Note that these factors do commute, because
the factors are made up of commuting indeterminates and characteristic functions,
which by Definition 6.2.5 are allowed to commute with each other and with the inde-
terminates. (Be aware, however, that we have not defined a multiplication on G'; the

factors of

(e A)di(s) ) -+ (x5, Als)d(s) )

= (e, (s) Alsr)din(s1)) - (xm,, (5,) Alsn)dp(s0)) - (6.64)

are not being viewed as separate elements of G’ that are joined by multiplication;
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they are viewed collectively as a product of the characteristic function

X{(s1,058n): Slequv--anEEqn}(‘.sp sy Sn) (665>

and the commuting indeterminates A(sy), ..., A(sn), du(sy), ... du(s,), whose prod-
uct forms an element of G’.) Counting terms that are identical, we note that for each
integer kK = 0,...,n there are (2) terms in the sum that have k factors of xp, and
n — k factors of yg,. (We enumerate those by considering the n labels ¢, ..., ¢, and
asking how many ways we can choose k of them to equal 1 and n — k of them to equal

2, hence (7).) The result is

D o1 (4 £ [ CPRETIE) N O B )
k=0
XrC1(t1) -+ Con(tm)(dvy X -+ X dv,) (t, ,tm)], (6.66)
as we claimed. O]

Recalling our discussion above that motivated the use of an intermediate disen-
tangling space E—or for right now, the use of the set G'—between D and L(X), we
hope to be able to exploit commutativity in the intermediate space, manipulating an
expression there until it is in the desired form, before mapping it finally into £(X).
Specifically, we want to perform the final mapping after the expression is in a form
which we consider to be time-ordered. We will now consider three theorems to that
effect, one in which the expression in G’ is time-ordered, and two in which it is partly

time-ordered. The most fundamental of the three theorems is the first.



179

Theorem 6.3.3 (Applying 7g to a time-ordered expression). Let Ci,...,C,, €
L(X), let vy, ..., Um € Mpl0,1], and let E C [0,1]™ be a Borel set with E C A,,(0)

for some fized o € S,,, m > 1. Then

Tgr [X8(55- 2 5,) Cotn(Sotm) -+ Cotty (o)) (1) -+« v ()

= / Cotmy -+ Coqy(v1 X -+ X ) (ds1, ..., dsp,). (6.67)
B

Proof. By definition of 7g (and using Theorem 3.1.7) we have

= Z / XE(Sh R Sm)CW(m) cee Cﬁ(l)(l/l X oo X Vm)(dsl, R ,dsm). (6.68)
A ()

TI'ESm

Since £ C A,,(0), and since the sets A,,(7) are pairwise disjoint, the integrals will

integrate to zero except possibly when 7 = o, yielding

Tg [XE({SP e 38, )Com) (Som)) ** Co1) (So1))dvi (51) - - de(Sm)]

(51, 5m)Co(m) - - Coqy(tn X -+ X ) (ds1, ..., dSp,)
o)

Coimy -+ Coqy(v1 X -+ X v)(ds1, ..., dsp,). (6.69)

O

Example 27. Let X{o<r<s<i<1}(T, 5, 1) A(r)B(s)C(t)du(r)dv(s)dn(t) € G'. Then us-

ing commutativity of indeterminates and applying Theorem 6.3.3, we have that

Tor [Xqor<sctny (15, ) A() B(s)C(0)dp(r)du(s)dn(2)
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= Ty |X(o<resct<ny (s 8.0 C () B(s) Ar)dpa(r)dv(s)dn(2)

= / CBA (u x v xn)(dr,ds,dt). (6.70)
{

1>t>s>r>0}

The second time-ordering theorem involves two characteristic functions, one over
a set whose elements are smaller than a given fixed value, and the other over a set

whose elements are larger than that value.

Theorem 6.3.4 (Applying 7g to an expression with two sets time-ordered relative
to each other). Let integer m > 0, let Cy,---Cp, € L(X), let vy, ..., Uy, € My[0,1],
let a € (0,1) be fized, and let k € {1,2,...,m—1}. If B, C (0,a)* and By C (a,1)™ "

are Borel sets, then

Tg [XEz('.SkJrla e >$m)ék+1(3k+1) T C~(m(3m)d’/1~:r+l (Skt1) AV (Sm)

XE (S5 8,)Ch(s1) - -+ Cr(sp)d(sy) - - - dvg(se)]

=Tg [XE2($k+1a e >$m)ék+l(3k+l) o Cr(Sm)dVpg1 (Spgn) -+ d’/m(sm)]

X Ty [xg ($y,- -8, )C1(s1) -+ Ci(sp)dvi(sy) - - dug(sp)] . (6.71)

(Note that the statement (6.71) also holds if either xg, (s, .. "‘-Sk)él(Sl) - Ck(sp)
dvi(s1) - dvi(se) or Xm (8,405 8,) it (sk11) -+ O (Sm) A (s41) - - A (5m)
is replaced by the element 1 € G', so the statement holds in that sense for k = 0 or
k = m, provided the corresponding hypothesis, By C (0,a)* or Ey C (a,1)™ %, or both

if m =0, is omitted.)

Proof. The method of proof is to partition the sets E; and Es (up to sets of measure

zero). For 7 € Oy, my we define Apyy o (7) = {(Sp41,- -5 5m) 1 0 < 85;0) < ... <

,,,,,
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Srim—k) < 1}. Then under the given assumptions we have by Theorem 6.3.1 that

To (X2 ($101s - $) Chra(s11) - - Con(5m) Vi (s541) -+ v (51m)
XE (815 8,)C1(51) -~ Crlsi)din(s1) - - - dvg(sy,)]
=T [XEixma(S15 5 Spurs - - 50 ) Crat (Ss1) -+ O (5m)Ci(51) -+ - Cr(s)
cdvi(s1) - dvg(si) Vi1 (k) -+ - AV (Sm)]

- Z 7'g/ [X[ElmAk(U)}X[EZmAk+1,m(7')](‘.917 ] $k’ $k+17 LR Sm)

Cryr(8541)  Con(8m)Ci(51) -+ Crolsi)dva (s1) -+ - dv(si)dvir1 (Spsn) -+ AV (8m)]

- Z %, [X[ElmAk(U)}x[E2mAk+1,m(7')](‘.917 Ty ‘.Sk’ $k+17 R Sm)

+ Crtimt)(Srm—)) * * Cr1)(521)) Coti) (Soi))  + * Cor1) (Sr())

cdvi(s1) -+ du(sg) v (Sgg1) - - - dvm(sim)].- (6.72)

Here we may apply Theorem 6.3.3, since [E1NAg(0)] X [EaNAg11.,(7)] C {(s1, .-, Sk,

Sktts--55m) 1 0 < Sp) <0 < Sory < @< Sra) <o < Sram—k) < 1}. The result is
that
T [xa($50ys -+ 8,) Ot (sk1) -+ Con(Smn ) Vi1 (Sp41) -+ AV (Sm)

XE (815 85,)C1(s1) - Crlsi)din(s1) - - - dvg(si,)]

= Z / rm—k) *  CryCoy -+ - Co(1)
E (7]

er{l 1ﬂAk U)]X[EgﬂAk+1 m )
TEO{k+1

.....

X (V) X oo X Vg X Upyr X oo X Up)(dSt, ..., dSg, dSks1, - .., dSp),

(6.73)
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which by Fubini-Tonelli is

Z / (/ Crm—ty Cr)Cotry -+ ot
EaNApi1,m(m) \JE1NA(0)

0€0q,..,
TEO (1, ..., m}
X (g X oo X yg)(dsy, . .. ,dsk)) X (Vg1 X oo X U )(dSks1, - .., dSp,)
= Z / C‘I‘(m—k‘) e CT(l)(Vk—H X oo X Uy )(dSgyt, - dSm)
EoNAgy1,m(T)

X Z /E Coty - Coy(v1 X -+ x ) (dsy, . .., dsy)

= ( Z / XE2(8k+1""7Sm)CT(m—k)"‘CT(l)

Ak+1,m(7)

X (Vg1 X oo X Upy ) (dSka1,s - - - ,dsm)>

X Z / XE (81,3 88)Cogy - Coy(v1 X -+ - X 1) (dsq, . . ., dsy)
Ak(a)

= Tor [Xa(S10- -+ 8,) O (5u4) - Con5m) i (311) -+ ()|

x Tgr [XE1(=.917 o 5,)C1(s1) Ci(sp)dvy(sy) - - dyk(sk)] :

(6.74)

]

Example 28. Now we are able to work with decomposing disentanglings (discussed
earlier, Example 15) using the intermediate set G'. This example is based on the
heuristic ‘derivation’ of decomposing disentanglings of a monomial in two indetermi-
nates found in [17, p. 4]. The referenced article also includes a proof of the formula;
we will provide a different proof here using the set G, and in Example 36 below we

will extend the formula to a third measure.
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Let A,B € L(X), let u,v € My4|0,1] be probability measures, let m, my be

nonnegative integers, and let a € (0,1). Then by Theorems 6.3.2 and 6.3.4 we have

Py (A, B)
=To [ (xon AW)du(r)) " (xon Bls)dv(s)) |
=75 [ (0w + @l AW ()" (Ko + X Bs)du(s)) |
= Y P (omA@)dn)” (xen A)dn()

111911 291 75!
i1+j1=m1 1)1 12:]2
ig+j2=m2

(X0 BEB()) (e Bls)dw(s)) ]

C oy A (e B(s)”

11191! 291 75!
i1+j1=m1 1)1 12:J2
12+j2=m2

: (X(o,a)z‘i(r)dﬂ(r)yl < 0w B(s)dv(s )>i2}

_ oy ol [(Ma,l)A(r)du(r))ﬁ (X(aJ)B(S)dV<5>)j2]

L 11191! 791 75!
11+j1=m1 1)1 12-J2
12+j2=m2

x Ty [(X(O’a)[l(r)dp(r)yl ( X(0.0)B(s)dv (s ))m}

myl my! .

= Y DL pive (A B)PLE (AB). (6.75)
] - /Ll']l‘ Z2'j2' Hi(a,1):YI(a,1) H1(0,a):71(0,a)
11+j1=m1
i2+j2=m2

We see here that the set G’ and the map 7g enable us to perform certain calculations

much as we would do with the ordinary binomial theorem.

The third time-ordering theorem involves characteristic function sets that depend

on the argument of another characteristic function. (The sets are E;(t) and Fs(t),
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which depend on the argument ¢ of the characteristic function x#(¢).) It is similar to
Theorem 6.3.4, in which the image of the map 7g is split into two factors to the left
and right of a fixed value a € (0,1); here, however, the split occurs at a variable t,
which is associated with an operator. In the final expression, that operator is between
the split factors. (This theorem is closely related to a special case of [17, Theorem

3.6, p. 15].)

Theorem 6.3.5 (Third time-ordering theorem in G'). Let B,Cy,Cy, ..., Cp, € L(X)
be operators associated with measures pu, vy, Vs, ..., Vym € My|0,1] for an integer m >
0, let F C (0,1) be a Borel set, and let k € {1,2,...,m—1}. Further, for allt € [0,1]
let E\(t) C (0,8)%, Ey(t) C (t,1)™ " be Borel sets. Then

Tg [XF@) <XE2(t)<$k+1> SRR $m)ék+1(5k+1) o C(Sm) Vi1 (Sk41) -+ de(Sm)> B(t)
(Xm0 (s 5)C(s1) - Culs)dva(s1) - dvi(si) ) du(t)]

= / Ig: |:XE2(t)<$k+1a e 7$m)ék+1(5k+1)"'Cm(3m>dyk+1(3k+l) : "de(Sm)]B(t)
F

X Tg (5,0 5,)Ca(1) -+ Culsi)din(s) - (i) (). (6.76)

(The statement will hold as well if k = 0 and no set E1(t) is hypothesized, or if k = m

and no set Ey(t) is hypothesized, or both.)

Proof. The method of proof is similar to that of Theorem 6.3.4. Under the given
assumptions we let G := {(51,..., 8k Sk41,---s5m,t) € (0,1)™ = (s1,...,8,) €

Ey(t), (Skt1y---,Sm) € Ex(t), and t € F'}. Then

%’ |:XF<t> <XE2(t)(‘.9k+17 ceey ‘?m)ék-‘rl (Sk—i-l) T ém<5m)de+1<Sk+1) cee de(Sm)> B(t)

. (XEl(t)(aSp 150G (1) -+ Cilsi)din(s) - ~dyk(sk)> d;L(t)}
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= 7-9/ XG<$17 e S Spy1 e S t)ék+1(5k+1) T Cm(Sm)B(t)Cl(Sl) U Ck(8k>

~dvy(s1) - dvg(S) AUk 1 (Sk+1) -+ - AV (Sm)dp(t) | (6.77)

Given any 7 € Ogiy1,..m}, define as before Apy1m(7) = {(Sk41,---58m) + 0 <

,,,,,

Sr1) < oo < Sr(m—k) < 1}. Then up to aset of vy X+ - XV X Vjy1 X+ -+ X Uy, X fi-Ieasure

zero we have
G=Gn[0, 1™ =Gn 1) Awlo) | x 1) Aciim(m) | x(0,1)

= U [en (8 < deantn < 0.0))] 6.73)

oceO{1,....k}
TEO(k41,...,m}

Consequently, by Theorem 6.3.1 we have

7&’ [XF(t) <XE2(t) ($k+17 R ‘.Sm)ék-&-l(sk—i-l) e ém(sm)dyk—i-l(sk-i-l) T de(Sm)> B(t)
: (XElm(aS‘p o 8)C(s1) -+ Culsi)dva(s1) - - de(Sk)> dﬂ(t)]

= Z 723’ |:XG0[A1€(U)><Ak+1,m(7')><(071)](*.917 s S "Sk—I—l’ s S t)

+Crs1(8541) ++ Con($m) B(t)Ci(s1) - - Ci(s1)

~dv(s1) - dvg(Sg) AUk (Spr1) - AV (i) dp(t)

= Z %’ |:XGO[A;€(<7)><Ak+1’m(7—)><(0,1)](‘.917 s 7$k’ $k+1’ ) ‘?m? t)

- Crtmt) (Srm—r)) - Cr1)(8:1)) B(t) Coriy (Sor)) -+ - Cor1) (So(1))

~dvi(s1) - dvg(Sk) AUk (Sk+1) -+ - AV (Sm)dp(t) | .
(6.79)
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Now, if (S1,..., Sks Skt1y---5Smst) € G N [Ak(0) X Agi1.m(7) % (0,1)] for some

m}, then by definition of G,

..........

(51,..,50) € Er(t) € (0,8),  and  (Sps1s...,8m) € Eo(t) C (1,1);  (6.80)

thus s; < tforv =1,...,k, and t < s; for i = k+ 1,...,m. Furthermore, 0 <
So1) < o0 < Sery < land 0 < s71) < -++ < Spm—k) < 1. Together these yield that
0 < 8oy <0 < Soh) <t <8r1) <+ < Srim—k) < 1. Hence we may apply Theorem

6.3.3 to obtain that

Tg [XF@) <XE2( ) (Spyrr s $m)ék+1(5k+1) e Co () dWiei1 (Sig1) - --dum(sm)> B(t)
: (XElm(aS‘p o 8)C1(s1) -+ Cilsi)din(sy) - - de(Sk)> dﬂ(t)]

/ CT(m—k) te CT(l)BCO'(k‘) te Ca(l)
GN[AE(0) X Akt1,m (7)%(0,1)]

X (V1 X oo X Vg X Vg1 X oo X Upy X p)(dsy, ..o, dSg, dSg11, - - -, dSp, dt)

= / XG (81, Sky Skt - s Sms £)Crimei) -+ - Cry BCoy - - - Coq1)
Ap(o

06(9{1 ..... )X Agp1,m( ><(0 1)

T€O0 (ky1,...,

X (Vl X Vg X Vgg1 X oo X Uy X,M)(dsl,...,dSk,d8k+1,...,dSm’dt)
- / XEi (1) (815 )XEQ(t)(5k+1, ey Sm)XF(E)

06(9{1 ,,,,, Ag( 0)xAk+1 m(T)%(0, 1)

T€O0 (khy1,...,

X Crim—k) =+ CryBCo(y - - Co1)

X (V1 X oo X Vg X Vpgp X oo X Uy X p)(dsq, ..., dSg, dSgs1, ..., dSp,dt).  (6.81)
Applying Fubini-Tonelli gives

,TQ’ [XF<t> (XEz(t)($k+17 SRR $m)ék+1 (5k+1) tee ém<3m)dyk+1<8k+1) s de<Sm)) B(t)
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: (xEl (- 5,)C1(s1) -+ Ci(si)din (s1) - duk(sk)> du(t)]
= / / / XE1(t) Sla s >Sk)XE2(t)(sk’+1v s 7Sm)XF(t)
UEO{l ..... 0.1) S Apt1,m(7) S Ar(o
TEO (K1, ...,

X Crim—k) *+* CryBCoky - - Coq1)
X (1 X o X vp)(dsyy .oy dsg)(Vker X o+ X U ) (dSgs1,y - -+, dSp) pi(dt)

= Z / XF(t)/ X&) (Skt1s - -+ > Sm)Crm—r) - - Cr(y B
(0,1) Apt1,m(T)

ceO{1,....k}
Teo{k+l AAAAA m}

X / XE ) (515 85) Coy - - - Coq)
Ay (o)

X (Vl X X Vk)(dsla .- ‘7d5k)<yk+1 X X Vm>(d5k+1, s 7d5m):u(dt)

= / ( Z / XEg(t)(3k+17 sy Sm)CT(mfk) T C'7(1)
F

T€O(k41,...,m} Akt1,m(7)

X (1 X - X vg)(dsy, ..., dsk)> p(dt)

:/TQ' [XEz(t)({;k_,_la'-->$m)ék+l(3k+1>"'Cm(5m>d’/k+1(3k+l)"'dl/m(sm)]B
F

Ty [\ (5,5 - 8,)C1 (1) -+ Cils)din (1) -+~ dvi(s) | (), (6.82)

concluding the proof for 1 < k < m. The cases k = 0 and k = m can be proved by a

similar treatment. O

Example 29. We will consider a simple example using Theorem 6.3.5. (We will
achieve the same effect by a somewhat different means in Example 38 below.) Con-

sider operators A, B € L(X) and measures pu,v € My4[0,1]. We are interested in
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calculating

PEALE) = Tor | (v A()d(9) i Blo)av(0)]

= T (X (5. DA A BOdu()du(s)av(n)] . (6.83)

We note that

X(0,1)3 o X{(r,s,£)€(0,1): 7€(0,t)U(¢,1) and s€(0,t)U(t,1)}

= X{(r,s,t)€(0,1): 7€(0,t) and s€(0,t)} + X{(r,s5,t)€(0,1): 7€(0,t) and s€(t,1)}

+ X{(r,5.0)€(0,1): re(t,1) and s€(0,6)} T X{(r5,)€(0,1): re(t,1) and se(t,1)},  (0.84)

so for (r,s,t) € (0,1)% a.e.-p® x v,

X(0,1)8 (758, 1) = X(0.0) (M) X(0.0) (5)X0,1) () + X (0.6 () X (2.1) (8) X (0,1) (F)

+ X, (1) X (0,0 (8)X(0,1) (1) + X(&.1) ()X &,1) (8) X 0,1) () (6.85)

Hence by Theorems 6.3.1 and 6.3.5,

+ T [Xo (X0 ()0 (DA A() B du(r)dyu()dw (1)

+ Tgr _X(t,1)(7.")X(o,t)($)X(o,1)(1.5)/1(7’)/1(3)é(t)dﬂ(r)du(s)dV(t):

+ T [ (DX (X000 (VA A(3) B du(r)dia()dw (1)
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+ T [ (8) (X (1 AEu()) BE) (xon(s) Als)duls) ) du(d)]

+ T X0 (®) (X () A A(s)dpa(r)dp(s) ) Bt)dv()]

- /(OUBTQ a2 (r ) A() Als)dp(r)du(s)] v(d)

[ T [an(9A)a(s)| BT [ () AG)dp(r)| via)

(0,1)

| T [xen @A) BT [xn(s)Als)du(s) | v(dt)

(0,1)

[ T v () AW A)du(r)du(s) | Budn). (6.86)

(0,1)

6.4 The intermediate disentangling space E

We are now almost prepared to use elements of the set G’ to define the space E, after
which we will define the intermediate disentangling map 7g on E that corresponds to
the map 75 on G'. However, we will define E as a quotient space, so we need to first
define the vector space V and the subspace V' that will form the quotient. Also, we

will define V using only some, not all, of the elements of G'.

Definition 6.4.1 (The set G and the space V). Let G C G’ be the set of elements of

G’ of the form

XF(5,,--058 )C1(s1) - Con(8m)dvi(s1) -+ - dvp(Sm) (6.87)

for all nonnegative integers m, and all selections of nonzero operators C,...,C,, €
L(X) and measures vy, ...,v, € Mgyl0,1], for which F' is a Borel set with F C
Ay (en), where ‘e’ here (and in what follows) refers to the identity permutation

em € Sm (80 Ap(em) = {(s1,.-.,8m) : 0 <81 < -+ <5, < 1}). (Again, for m =0
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the expression (6.87) is taken to equal 1.)
We then define V to be the free module over C (and hence free vector space)
having basis G. (For the definition and introductory concepts of free modules, see

32, p. 135].)

Remark 26. When dealing with the set G, we have avoided expressing elements of G’
as sums of other elements, since G’ is a set and does not have any operations defined
on it. We did that even though we might have been inclined to think of certain
elements as sums. For example, because we can split up a characteristic function
and write X (o.1)(s)A(s)du(s) € G’ as [x X(0,2) T X208 )A(s)dpu(s) € G', we might have
wanted to write that element as X(Oé)(@)ﬁ(s)du(s) + X(%vo)((?)fl(s)du(s), but we have
avoided doing so. The reason is that we wanted to put off speaking of the sum of
two elements until we have a vector space in which a sum is defined. Now that
we have the vector space V), if we write a sum of two elements, then we will always
interpret it as the vector space sum. Consequently, the expression x(g 1) (s s)A(s)du(s)+
X(%,O)($)A(s)du(s) € V does not refer to the single vector y(.1)(s)A(s)du(s) € V; it
refers to a sum of two other vectors. (Eventually we will want to consider those to be
equal in the space E, which we will accomplish by defining certain equivalence classes
of elements of V as cosets of a subspace V', and defining IE to be the quotient space
v/V")

A second important thing to note about the sum of two vectors, or more generally
about a linear combination of vectors in V), is that the arguments of variables and

the corresponding labels attached to indeterminates are independent from one term

to the next. Thus, for example, if we write

2x(0.1) (1) A()dp(t) + 3x(0.1) (1) B(t)dw(t), (6.88)



191

then the occurrences of ‘¢’ and ‘¢’ in the first term are unrelated to the occurrences
in the second term.

Also using this example we observe that as we have defined the elements of V,
the scalar coefficients 2 and 3 in the expression (6.88) are multiplied by the entire
element of G, not just by the respective characteristic functions (since V is a space of
linear combinations of elements of G). However, it is easy to make sense of a scalar
multiple of a characteristic function, and later our definition of E will be designed in

a way that makes the two such scalar multiplications equivalent.

Although V has been defined so that the characteristic functions sets are subsets
of A,.(en,) for some m > 0, since V was generated by G C G, we may still permute

arguments as before, so that if

X558, )01(s1) - Cr(sm)dvi(s1) - - dvp(sm) €G SV (6.89)

m

with ' C A,,(e), then we may still say for any o € S, that

XF(8y5- 58, )01(s1) -+ Crn(sm)dvi(s1) - - AV (Sm)

= XF"<$J(1)7 e 7$J(m)>él(51) o Cp(sm)dvi(s1) - dvp(sm) € G S V. (6.90)

This means that the characteristic function sets for elements of V will always be
subsets of A,,(¢) for some o € S,,. We would like to expand these expressions to
include characteristic function sets that are arbitrary Borel subsets of [0, 1]™ for any
m > 0. (This does not add elements to V; it just adds to the expressions allowed for

representing elements of V.)

Definition 6.4.2 (Denoting elements of V using more general characteristic func-

tions). Let £ C [0,1]™ be a Borel set for some m > 0, let C,...,C,, € L(X), and
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let v1,..., Uy € Mg[0,1]. Then we define

Xe(5,,--.,5 )O1(s1) - Cp(8m)dvi(s1) - - - dvp(sm) €V (6.91)

*m

XE(S, 58, )01(s1) - Cr(Sm)dvi(sy) - - - AV (Sm)

= Z [XEﬁmAm(em)<‘.91’ sy $m)7rc’1(31) cee Cm(Sm)dVI(Sl) cee dym(sm)]

7T€Sm

= > [t (s 51y )Ci(51) - Conlsm) i (1) - dvin(s)|

7T€Sm

(6.92)

(For m = 0 there is a single summand, regarded as equal to 1.)

Remark 27. We need to verify that the above is well-defined, where our concern is
that the arguments of the characteristic function could be permuted by some o € S,
without changing the expression on the left, and we want to make sure it doesn’t
change the expression on the right. In fact, using Definition 6.4.2 in that case, we

would have in V that

XE° ('.90(1)7 ) '.So(m))cl(sl) e Cm(sm)dyl(sl) e de(Sm)

=D, [X(Ev)wmmwm)(%(l)’ o1 S omy)TCL(51) -+ Con(m) (1) -+ dvm(sm)}

ﬂ'ESm

= Z [XEdﬂﬂAm(em)('.Sgﬂ—(l)’ ce ,$Uﬂ(m))c~(1(81) “e . ém(Sm)dyl(Sl) [N de(Sm)}
omESm

= 3 [xmnanten (8 8,0)Ca(51) - Conlsm)dn (51) -+ ()|
PESM

=xe(s,,---, $m)é’1(31) co C(sm)dri(s1) - - dvp (Sm)- (6.93)



193

Hence the defined expression is well-defined.

As a consequence of this definition, we are able to use all of the valid expressions
in G’ as valid expressions for single terms in V), and they are equal in G’ if and only
if they are equal in V. (That is true because the allowed differences in expression be-
tween single terms that are equal, in either space, consist of changing a characteristic
function set by a set of measure zero or permuting indices. So equivalent expressions

in one are equivalent expressions in the other.)

Example 30. Let A, B € £(X), and let u,v € M[0,1]. then

Xo.02 (5, 1) A(s) B(t)du(s)du (t)

= X{ocs<t<1) (5, ) A(s) B(t)dp(s)dv () + X{o<t<s<ry (1, $)A(s) B(t)dp(s)dv(t) € V.
(6.94)

Note that in the case where E C A,, (o) for some o € S,,, the definition is
consistent with itself, saying nothing new.
Before we go on, we will define a multiplication on V (because we need a multi-

plication on E, and it is easier to define here first). This will make V an algebra.

Definition 6.4.3 (Multiplication in V). Let v,w € V. In the case that v, w are basis

vectors, that is, when v, w € G, let us say that

v=xp (5, 5,)A(1) - Alsm)dpa (s1) -+ dptm(5m),

W=ty ot VBt -+ Blty)dv(ty) - - dun(tn), (6.95)

where Aj,...,An,Bi,...,B, € L(X) are operators, fi1,..., m,V1,...,Vy €

M0, 1] are measures, and F; C A,,(en), F» C A,(e,) are Borel sets. Then we
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define the product vw € V to be

vw = Xp (81,5 8,)Als1) - Alsi)dpn (s1) - - dptn (5m)
XEy(ty - 1,)Bt) - Bt )dvn(th) - - dun (t,)
= XFx B ($15 s 8t o) A(s1) - Alsm) B(ty) - - Blt)

m’ <1’

cdpn(s1) - Aty (Sp)dvy (th) - - - dup (t). (6.96)

In particular, the element 1 € V acts as a multiplicative identity.
On the other hand, in the case v and w are not necessarily basis vectors, then say

they are expressed in terms of the basis vectors G of V as

M N
UV = Z a;g;, w = Zb]’h]’ (697)
i=1 j=1

where ay,...,ap,b1,...,0 € C, where gy1,...,9p € G are distinct, and where

hi,...,hy € G are distinct. Then we define the product vw to be

vw = Z Z a;bj(gih;). (6.98)

i=1 j=1

Remark 28. Tt is necessary to show that multiplication in V is well-defined. In fact,
the only ambiguity here, in the second part of the definition, is in how v and w are
expressed as linear combinations of basis vectors, because we have not ruled out the
possibility that some coefficients a; or b; might equal zero. But in fact, if any did
equal zero, then the terms they multiply in the double summation would simply drop
out, meaning they have no effect on the value assigned to vw. Thus multiplication in

V is well-defined.

Theorem 6.4.4. Multiplication in V' s commutative.
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Proof. Given v, w € V, we want to show vw = wv. Let us first take the case where v

and w are single terms (v, w € G), say

v=xp (8 8,) A1) - Alsm)dpn(51) -+ dptn (sm).

W=ty ot VBt -+ Blty)dv(ty) - - dun(tn), (6.99)

as in the definition (Definition 6.4.3) above (with F; C A,,(e,,) and Fy C A, (ey)).
Then by that definition and by the fact that we may commute characteristic functions

and indeterminates in expressions in G C G, we have

vw = Xp (81,5 8,)Als1) - Alsw)dpn (s1) - dptn (5m)
Nty )B(0) - Blta)dun(t) - dv, (1)
=Xty 1) B(t) - Bltw)dva(t) - - - dvy(t)
XE (850 8,)A(s1) - Alsm)dpn(s1) - dpim (sm)

= wo. (6.100)

For the general case, where arbitrary v,w € V are expressed in terms of the basis

vectors G of V as

M N
UV = Z a;g;, w = ijhj (6101)

i=1 j=1
where aq,...,ay,b1,...,by € C, where g1,...,9y € G are distinct, and where

hi,...,hy € G are distinct, we then have

vw = Z Z a;bj(gih;) = Z Z bjai(hjg;) = wo. (6.102)

i=1 j=1 j=1 i=1
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Theorem 6.4.5. InV, scalar multiplication associates with vector multiplication, and
vector multiplication distributes over addition; that is: Given ¢ € C and v,w € V, we

have c(vw) = (cv)w. Given u,v,w € V, we have u(v + w) = uv + uw.

Proof. For associativity of scalar multiplication with vector multiplication, let ¢ € C
and v,w € V. Say v = Zf\il a;g; and w = Z;V:1 bjh;, where ¢1,...,¢, € G are
distinct and hq,...,h, € G are distinct. Then by the definition of multiplication in

V (twice) we have

= (cv)w. (6.103)

We may therefore write c(vw) = (cv)w =: cow. By commutativity we may also say
v(cw) = (cw)v = c(wv) = c(vw) = cvw.
For the distributive law, let u,v,w € V. Let us say u = Zf‘il a;g;, and without

loss of generality we may say v = Zjvzl bjh; and w = EN

j=1Cjhy, where g1, ..., g €0

are distinct and hq,...,h, € G are distinct. Then applying vector space properties

and the definition of multiplication in V (twice again) we have

o )
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= uv + uw. (6.104)

]

We insert here an additional result about multiplication in V to make it more useful
in the context in which we will be working, namely, when characteristic functions are

arbitrary Borel subsets of [0, 1]™ for some m > 0.

Theorem 6.4.6 (Multiplication in V involving more general characteristic functions).

Let v,w €V be given by

v=XE (558, A1) Ap(sm)dpa(s1) - dptm(5m),

W = XE, (tlv ce ’tn>él(t1> e Bn(tn)dV1<t1) e an<tn)7 (6105)

where Ey C [0,1]™ and Ey C [0,1]" are Borel sets, Ay, ..., Am, B1,..., B, € L(X)

are operators, and fi1, ..., fim, Vi, -, Vn € Mg|0, 1] are measures. Then

vw = Xg, (5,5, )A1(s1) - Am(sm)dpa(s1) - - dppn ()
XE (-1, Bi(th) - Bolta)dia(th) - - - dun (tn)

= XExBs (S5 15,51 ...,tn)Al(sl)'--Am(sm)él(t1)~~gn(tn)

m? Y1)

cdpa(s1) - At (Sm)dvy (t) - - - dup (t). (6.106)

Proof. To avoid a little confusion, we will temporarily represent the multiplication

operation in V by an asterisk (x). Given the hypotheses as stated, we have that

v [XE1($1>---7$ )1211(31)'"Am(sm)dﬂl(sl)"'d“’”(s’”)]

s \Xm(t,, ot )Bi(ty) - Bu(ty)din(t) - - dun(tn)}
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= [ Z XEi’ﬁAm(em)(*?a(l)’ e 7$o’(m)>A1 (1) Am(sm)dpa(s1) - - - dﬂm(sm)]

oESm

* [Z XE;ﬂAn(en) (tT(l)’ e atT(n))Bl(tl) L Bn(tn)dl/l(tl) tee dl/n(tn)] .

TESn

(6.107)

Applying Definition 6.4.3 yields

vxw = Z Z [X(EfmAm(em))X(EgﬂAn(En))(‘?U(l)7 w135 (m) tT(1)7 ce 77.57-(n))

UGSm TGSn

cAi(s1)  An(sm) Bi(th) -+ Bu(ta)dpa(s1) -+ - dptyn (sm)dvn (t1) - - - an(tn)]

= > |:X(E10Am(o))"><(EgﬂAn(T))T($a(1)7'"7$U(m)7t7—(1)7"'7t7—(n))

O'GSm TESTL

. 1211(81) e flm(sm)él (t1)--- Bn(tn)dul(sl) o gy () dr (t1) - - dun(tn)]

= Z Z[ X(BE1n A (o)) x (BanAn () (81558, st T )

oE€ESm TESH

- Ax(s1) A(s) Bi(t1) -~ Balta)dpa(s1) - dpim(sm)din (t) - - dvn(tn)]

= Z Z|: E1><E2 (U)XAn(T))($17-.-,<_9m71§17...,tn)

oESm TESY
. Al(Sl) tee Am(8m>él(t1) cee Bn<tn)dul(51) tee dum(sm)dul(tl) cee an<tn)] .
(6.108)
We rename the variables tq,...,t, as Smi1,-- -, Smin, respectively, rewrite the index

sets, and apply Definition 6.4.2, and the expression becomes

vrw= ) > [X(Elsz)n(Am<a>xAm+1,m+n<p>>($1, s S i)

er{l ,,,,, m} PEO{m+1 ,,,,, m+n}

‘ 1211(51) t Am(SM)Bl(SmH) e Bn<3m+n)

~dpi(s1) - A (Sm)dvi (Smg) - - - an<5m+n>]
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= Z Z |:X[(E1XE2)Q(Am(U)XAm+1,m+n(p))}wmAern(eern)($1’ te "-Sm-f—n)ﬂ-

UGO{I ..... m} 7Tesrn+n
peo{m+1 ,,,,, m+n}

: /11(81) T Am(SM)Bl(Serl) T Bn(5m+n)

cdpn(51) -+ dptm () A (Smas1) - - dyn(smn)] . (6.109)

where Apyi1man(0) = {(Smt1, -y Sman) 1 0 < Spa) < ... < Spm) < 1}. But then we
notice that for all o € O my, p € Opmgt,....m4n}, Up to aset of pg X -+ X 1y, X vy X

-+« X Up-easure zero,

Am(g) X Am-i-l,m—s-n (P)

= {(515 -5 8man) 1 0<Sp(1) <0 < Som) < Land 0 < spy < -+ < 8p) < 1}

= U {(517 s 7Sm+n> 1 0< Sp) < < Spiman) < 1}
ne{o}o{r}

= | Anan). (6.110)

ne{o}o{r}

This implies that

[Am(0) X Apitman(P)] N Amgn(€min) = [Am(0) X At min(p) N Apgn ()]

= U Apin (77) N Am—‘rﬂ(”)
ne{o}o{p}
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[Amin(m)]" if 7 € {o} © {p},

() (the empty set) otherwise.

(6.111)

Vkw = Z Z [X[(E1><E2)ﬁﬁm+n(ﬂ')]“('.917 cey $m+n)ﬂA1(51> e Am(Sm)
0€01,...my we{o}{p}

Bi(smy1) - Bn(smﬁ-n)dul (1) dptm(8m)dvi(Smg1) - an(3m+n)]

= Z [X(El XEQ)“ﬁAern(eern)(‘.Slv s 7‘$m+n)w‘41(81) T Am(5m>
ﬂ€sm+n

- By (Serl) T Bn(Sern)dﬂl (31) e dlum(sm)dyl(sm+1> T dyn(3m+n)]

= XE1sz(*.91» ces 5m+n)A1(31) o A (8m) Br(Sm1) -+ Bn(sm-f—N)

: d,u1(81) T d:um(sm)dyl(sm-i-l) e dl/n(sm-i-n)

= XE1><E2($17 RS $m’t1’ s 7tn>Al(sl) T Am(sm)B1<t1) e Bn(tn)
dpi(s1) -+ A (Sm)dvi (ty) - - - dvn(tn)

= XE(8y5 -5 8,,)A1(s1) - Ap(sm)dpa (s1) -+ - dpin (Sim)

Xyt L) Br(t) - Bulty)dvn () - - (). (6.112)

Theorem 6.4.7. Multiplication in V is associative.

Proof. Let u,v,w € V. First we consider the case where each is a basis vector,
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u,v,w € G, say

U= Xrn (Tlv s ,T’m>A1(7’1) T ~m(rm)dﬂl(rl) T d,lj,m(Tm),

v=Xp(s1,---, sn)Bl(sl) o Bu(sp)dvy(s1) -+ - dun(sy),

w = Xp (1, .., tp)Ci(tr) - Cpltp)dm(tr) - - - dmp(ty), (6.113)

where m,n,p > 0, F1 C Ay (en), Fy € Ay(en), F5 C Ay(e,) are Borel sets, Ay, ..

Ap, By, ..., B,,Cy,...,C, € L(X)are operators, and fi1, . . ., flym, V1y -« s Vnys My« - -5 Tp
€ M0, 1] are measures. Then by Theorem 6.4.6 we have (again temporarily using

an asterisk ‘*’ to represent multiplication in V):

(uxv)*xw = |:(XF1 (r1y .o )AL (r1) - A () dpn (1) - - - d,um(rm)>

" (XFQ(sl, s Bi(s)) - Bo(sn)dvi(sy) - dun(sn)ﬂ

* <XF3 (t1,. .. atp)cl(tl) T ép(tp)dnl(tl) T d%(%))

= (XleFQ(Tla ceey Py 81500 7871)141(7”1) e Am(rm>

Bi(s1) -+ Bulsa)dpor (1) - dptn (1) v (51) -+ v () )

« (b ) Cit) - Colty)dm (1) -+ d ()

= XF1><F2><F3(T1a vy Tm,y S1,- - 7Sn7t1a s 7tp)

Ay () A () Bi(s1) -+ Ba(s)Ci(th) -+ Colty)
cdpa(r1) o A (T )dvi(81) - dvg(sp)dm (t) -+ - dip(t)
- (XFI Py ey r) AL () - - A () dpin () - -dum(rm)>

* <XF2><F3(Sla <oy Sy tla o 7tp)Bl(Sl) e Bn(sn)

Citr) -+ Cylty)dvi(s1) -+ dv(n)dm(ts) -+ dny (1))

_ (XF1 (1, ... ,Tm)zzll(ﬁ) e Am(rm)dul(rl) .. .dum(rm)>
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k [ XEy (81, 80)B1(s1) - Bu(sn)dvi(s1) - - - dvp(sy)
I ()5 )
i (xm(tr, o )Crt) -+ Colty)dmi (1) - dny (1))

=ux* (v*xw). (6.114)

Therefore, we have associativity for the case of single terms, and we may write
(wv)w = u(vw) =: uvw.

Now consider arbitrary u, v, w € V; let us say that they are given by

L M N
U= Z a;u;, v = ijvj, and w = chwk, (6.115)
i=1 j=1 k=1

where ay,...,ar,by,...,bp,¢1,...,cy € C and uy,...,up,v1,...,00,W,..., Wy €
G. Then by Theorem 6.4.5 and by the associativity for elements of G that we have

just established, we have

L M N kle M Z:;, = k=t
— Z Z Z a;bjcpuvywy = (Z aiUi) (Z Z bjckvjwk>
i=1 j=1 k=1 i=1 j=1 k=1
L M N
EOE) )
=1 j=1 k=1
= u(vw). (6.116)

]

We now know all that we need to know about the vector space V. After briefly
defining the subspace V' C V, we will be able to define E as the quotient of the

two. There are two effects we would like to accomplish in [E by means of our defini-
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tion of V'. Roughly speaking, the first is that for vectors in V having all the same
indeterminates (with time indices in the same order), we would like to relate their
characteristic functions ‘linearly’ in the way one would expect (for example, if two
of the characteristic functions add to a third, then we want the three corresponding
vectors to have the same relationship). The second is that we would like a vector in
V to represent the zero vector in E if the measures associated with the vector give
measure zero when applied to the characteristic function set as a product measure.

We can accomplish this in one step. We will define V' by means of a generating set U.

Theorem 6.4.8. Define a subset U CV to be the set of all linear combinations

n

> [xr(sy55,)C1(1) -+ Conlsm)dvn (1) - dvin(si)| (6.117)
i=1
for all possible integers m,n > 1, all complex numbers ay,...,a,, all Borel sets
Fi,...,F, C Apl(en), all nonzero operators Cy,...,Cy,, € L(X), and all measures
Vi, Um € Mgl0,1] for which Y\ aixr, =0 up to a set of v1 X -+ X vy, -measure

ZEero.

Then the set V' of all (finite) linear combinations of elements from U, that is,

N
V= {UEV: v:chuj, where N € N, ¢1,...,cy € C, andul,...,uNGM},
j=1

(6.118)

1s a subspace of V.

Remark 29. Note that under the definition of U stated in Theorem 6.4.8, given
m > 1, Borel set ' C A,,(e,,), nonzero operators C1,...,C,, € L(X) and measures

Uiy ooy Um € Mgl0,1] with (v X -+ X 1,)(F) = 0 we have that yz = 0 up to a set

of measure zero, and thus xr(s,,...,s, )Ci(51) - Cp(sm)dvi(s1) - - - dvm(s,m) € U.

-m
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Proof of Theorem 6.4.8. The set of linear combinations of elements of a subset of a

vector space always form a subspace (algebraically). (See [32, p. 129] on submodules.)

]

Example 31. Let A, B € £(X) and u,v € M[0,1]. Then

Xqo<s<t<1y (8, D A(s) B(t)dpu(s)dv(t) — Xqoci-r<sct<ry (5, 8) A(s) B(t)du(s)du(t)

— X{o<s<t<i-s<1}(5, 1) A(s) B(t)du(s)dv(t) € V', (6.119)

since X{o<s<t<1}(8,1) = X{{o<1-t<s<t<1}}(8: 1) = X{{o<s<t<1-s<1}}(5, 1) =0 (uxv)-a.e.

Definition 6.4.9 (The intermediate disentangling space E). Using V' as in Theorem
6.4.8, we now define E to be the quotient vector space E := V/V'. (In general, taking
the quotient of a vector space with respect to a subspace yields a vector space, as
module quotients by submodules yield modules, see [7, p. 452].) As usual for quotient
spaces, in that E is a space of cosets of V' in V, elements of V are representatives of

those cosets, and we will therefore often use elements of V to represent elements of [E.

Example 32. Let A, B € L(X) and pu,v € My[0,1]. As noted in the previous

example,

X{0<s<t<1}($7 t)A(S)B(t)dN(S)dV@) - X{0<1—t<s<t<1}($7 Zf)A(S)B(t)dM(S)dV(t)

— X{o<s<t<1-s<1} (5, 1) A(s) B(t)du(s)dv(t) € V', (6.120)

Therefore, in the space E we have

Xfo<s<i<1y(s, ) A(s) B(t)dpu(s)dv (1)



205

= X{o<1-t<s<t<1} (8, 1) A(s) B(£)dp(s)dv (£)+ X focs<icr—s<1y (5, 1) A(s) B(t)du(s)dv(t),
(6.121)

since the right-hand side of Equation (6.121) differs from the left-hand side by the

element of V' shown in the previous expression, (6.120).

Although we have defined all the elements of E as well as its addition and scalar
multiplication (which are implied by its definition as a quotient vector space), we
need to show how multiplication in E can be carried out using coset representatives

from V.

Definition 6.4.10 (Multiplication in E). Let z,y € E. Then given any representa-
tives v,w € V, respectively, so z = v+ V' and y = w+ V', we define the product of =
and y in E by 2y := vw + V', where the expression ‘vw’ on the right is the product

of v and w in V.

Remark 30. It is necessary for us to show that this product for E is well-defined. For
purposes of this demonstration, we will use “*g’ to mean multiplication in E and ‘%’
to mean multiplication in V.

As stated in the definition, let z,y € E, and take any representatives v,w € V,
respectively, so x = v + V' and y = w + V'. Now consider any other representative
of x, which we may write as v + v for some v € V', so we have x = v + v + V.
Then the definition of multiplication in E gives that both x gy = v %y w + V' and
zxpy = (v+ ') %y w+V'; we claim that those are equal. It suffices to show that
(v+0") %y w — vy w € V'; that is, that v’ *pw € V.

Since v € V', we may write v/ = Zjvzl bjuj, where N € N, by,...,by € C, and

Uy, ...,uy € U, with U defined as in Theorem 6.4.8. Since w € V, we may write
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w = Ef\il a;g; with ay,...,ay € C and ¢gq,...,9y € G. Therefore, we claim

N M N M
’U/ *py W = (Z bjUj) *y) (Z azQz) = Z Z b]CLl Uj *y) gz S V/ (6122)
j=1 i=1

j=1 i=1
Since V' is a vector space, it will suffice to show that each u; xy g; € V', or in general

that uxygeV forallueld, ge g.
Let w € U. Then

=Y a [m(sl, 8 VA1) - Ap(sm)dpn(s1) -+ dpm(sm)| €V (6.123)

a,, € C, Borel sets Ey, ..., E, C Ay, (en), operators Ay, ...,

with m,p > 1, aq, ...,
M € M0, 1], having >~F | a;x g, = 0 up to a set

A, € L(X), and measures f1, . . .

of 1 X - -+ X p,-measure zero. Let g € G; say

g=xr(t,, ...t )Bi(t1) - Bu(t)dvi(ty) - - - dvn(tn) (6.124)

B, € L(X), with measures vy, ...,v, € My[0,1],

with n > 0, with operators By, ...,
and with ' C A, (e,) a Borel set. Then

U *y g
p ~ ~

- [Z e%} <XE1(817 ceey ‘.Sm)Al(Sl) A (Sm)dﬂl(sl dlLLm Sm ]
=1

*y)) |:XF(t17,tn)Bl(t1)B ( )dl/l tl dl/n i|
p
= Oéi|:XEi><F($17 '73m77§17"'72§n)141(81)"'A ( )B (

i=1

dpr (1) -+ () (1) - ()|
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=

= 0% |:XE1-><F($17 s S $m+17 SR $m+n)A1(81) e Am(sm)

: Bl (Smy1) - Bn(strn)d,Ul (51) it (8m)dv1 (Smy1) - d’/n<3m+n)}

p
= Z (67} Z [X(EiXF)"ﬁAm+n(em+n)(‘.917 ce. ,$m+n>7FA1 (81) Ce Am(Sm)
=1

WGSm+n

) Bl<3m+1> T Bn(strn)d,ul(Sl) s (8m) vy (Smg) an<5m+n)}

p
= Z Z (&7 [X(EixF)“ﬂAm+n(em+n)(51a ce >$m+n)7rA1(S1) e 'Am(sm)

ﬂESm+ni=1

: Bl(sm+1> T Bn(5m+n)d,ul(81) s (8m) AV (Smg1) an<5m+n)} .

(6.125)

To show that the above expression is in V', it suffices to show that it is a sum of

elements from U, which we will do by demonstrating that for each fixed m € S,,,1,,

p
Z QX (B x F)™ A tn(emin) = 0 (6.126)
i=1
up to a set of (p3 X +++ X iy X 3 X -+ X v,)"-measure zero. But in fact, for fixed
T € Spin, for all values of s1,..., S;,n, We have
p
Z X (Esx F) A (emin) (815« s Smgn)”
i=1

p
= Z QX[(Esx )N A ()] (815« + 5 Smgm )"
=1

P

= g aiX(EixF)ﬁAm+n(7r)(sl7 sy Sm+n)

Li=1

r i

p
— Z QiXE (51,5 Sm)XF(Smtts - - Sman) XAmpn(m) (15 - -5 sm+n)]
=

p 0
= XF(Sm+17 trt Sm—i—n)XAern(ﬂ') (817 s 7Sm+n) Z aiXEi<Sl) trt Sm)]
=1
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— 0 (6.127)
€.~ (1 X+ - Xy X1y X+ - - X 1) as a function of (sq, ..., Spin)”, since Y a;xp, =0
a.e-puy X +++ X iy, (as function of (s1,...,$,)). This gives us the condition (6.126)

we sought, meaning that u %y g € V'.

Therefore, using a different representative for x will yield the same product in E.
By commutativity in V, the same fact will hold for choosing a different representative
for the other factor y in the product as well (or changing representatives ofboth z
and y). Hence the product in E is well-defined, making E an algebra.

We should note as a result that multiplication in E inherits commutative, asso-
ciative, and distributive properties from V: Let ¢ € C, x,y,2z € E, and u,v,w € V

withz =u+V,y=v+V,z=w+YV". Then

zy=(u+V)v+V)=(w+V)=@wu+V)=(v+V)(u+V)=yz,
c(zy) = cf(u+ V)0 + V)] = cluw + V') = c(uw) + V' = (cu)v + V'
= (cu+V)(v+ V) = (cx)y,
(zy)z = [(u+ V)0 +V))(w+ V) = (ww+ V) (w+ V) = (w)w+ V' = ulvw) + V'
=(uw+V)(vw+V) = (u+V)[(v+V)(w+ V)] =z(yz),

(6.128)

and

rly+2)=u+W)v+V)+(w+V)]=w+V)[v+w)+V]=ulv+w)+V
= (uwv +uw) +V = (uwv + V') + (vw + V')

=w+WV)Yv+V)+ (u+V)(w+V)=2ay+zz2. (6.129)



209

Although we now have the space E entirely in hand, with all its operations, we
cannot yet use it as freely as we would like. For example, we would like to replace
the characteristic functions that appear in expressions with (general) simple functions
(linear combinations of measurable characteristic functions). With that in mind, we

will not change the space E, but we will expand the notation used.

Remark 31. At times a characteristic function can be written as a linear combination
of other characteristic functions. Consider one such, say >\ a;xg = Xg, for con-
stants aq,...,a, € C and Borel sets Fy, F1,...,E, C [0,1]™ for some m,n > 1. In
this case, given operators C1,...,C,, € L(X) and measures vy, ...,v, € My40,1],

we can say that in E (as we will show momentarily),

[Z aiXEil (53 >5,,)C1(51) - Con(sm)dvi (1) - - - v (1)

=1

=Y [XEi($1,...,$m)él(51)~~~ém(sm)dyl(51)~~~d1/m(5m) . (6.130)

The rationale is as follows: By hypothesis, the left-hand side is defined to equal

XEo(8y5--,8, JO1(51) - Crn(8m)dvi(s1) - - AV (Si)- (6.131)

Subtracting this from the right-hand side and letting ap := —1 gives the expression

n

Z a; |:XE1'($17 . ,$m)C~'1(31) e C(Sm)dvr (1) - - - dup (Sim)

=0
=3 Y Xt (5155, Cals1) - Conlsm)dvi(s1) -+ ()|
=0 TESm

=2 (Z 05 [XBroamem (5152 8,)7Crls1) -+ Consm)dun (1) -+ dvm<sm>}> ,

TESm =0

(6.132)
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and we would like to show that this equals the zero vector in E, which is to say, as a
vector in )V we want to show it is in the subspace V'.
By hypothesis, Y, a;xs, = Xg,, or equivalently, > "  a;xg, = 0. But then for

any ™ € S,, we have that

0= (Z aiXEZ.) = aixer, (6.133)
=0 =0

SO

0= (Z aiXE;’) XAm(em) = a; (XE;’XAm(em)> = a; (XE;TmAm(em)) . (6.134)

=0 =0 =0

Consequently, the expression (6.132) is a linear combination of elements of U and

therefore is an element of V', establishing our claim.

Equation (6.130) is therefore true in the case when Z a;X g, is a characteristic
i=1
function on [0, 1]™. If Z a;Xg, is not a characteristic function, then the left-hand
i=1
expression in (6.130) is not defined. We would therefore like to define it, in such a

way that the equation will hold in that case also.

Definition 6.4.11. Given any simple function Zjvzl bjxg, on [0,1]™ for m > 1 an

integer, where by, ...,by € C, and Fy,..., Ex C[0,1]™ are Borel sets, and given any
operators C1,...,C,, € L(X) and measures vy, ..., V, € My[0,1], we define
N ~ ~
[Z ijEj] (5,,--+55,)C1(51) - Cou(8m)dvi(s1) - - - dvp (51) € E (6.135)
j=1



211

[Z ijEj] (532 8,)Ci(s1) - Con(sm)din(51) - - dvia (1)

= 30 [ (s 8, )Ca0) - Conlsm)dia(s1) - ()] (6.136)

Jj=1

Example 33. Let A, B € £(X) and p,v € My|0,1]. Then we have

[2X(s<tr + 3Xgsony] (5, )A() B(t)du(s)dv(t) € E, (6.137)

and

[2X(s<ty + 3xpssny] (5, 8)A(s) B(t)dpu(s)dv (t)

=2 |Xgory (5, DA() BOp()dv(1)| +3 [ xomy (5. Als) B da(s)dw ()| . (6.138)

Remark 32. Note that the definition is consistent with what we said in the remark
above in the case that Zjvzl bixk, equals a single characteristic function. However,
we still need to show in general that the definition is well-defined. That is, if we
have two linear combinations that are equal to each other almost everywhere, say
Z;.Vzl biXe, = D iy GiXF, a.e~V1 X - X Uy on [0,1]™, with ay,...,a, € C and Borel

sets Fi,...,F, C [0,1]™, then we claim that the definition will produce the same
N n

member of the space E. In fact, examining this we see that Z bixE;, — Zaixpi
j=1 i=1
equals xp (the characteristic function that is identically zero) a.e.-vy X -+ X v, on

[0,1]™. Thus in V we have

N n
[Z ijEj - Z aiXFi] (“.517 ceey $m)él(31> T ém(sm)dyl(sl) e dUp(sm) €V,
7j=1 =1

1=

(6.139)
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and then by Remark 31 we have in [E that

(5,558, )01(51) - Cr(Sm)dvi(s1) - - - AV ()

[Z biXE, — Z a;XF;

j=1 =1

i b [ . $m)él(51) co Crn(8m)dn (1) -+ 'de(Sm)}

Jj=1
n

- [XFZ.(%, 8 )C(s1) <+ Con (s )i (s1) - - dum(sm)} . (6.140)

and therefore

S b, [XEJ.(% 5 )C(s1) -+ Conl(sm)din(s1) -+ dz/m(sm)]

=2 |:XFZ.<$1, ey § )CY(81) - Cr(Sm)dr (s1) - - ~dum(sm)} . (6.141)

m

Hence Definition 6.4.11 is well-defined.

Consequently, we can be less careful about our use of parentheses; the expression
D bixe (s 8,)C1(s1) - - Con(sm)dva (1) -+ - A (Sm) (6.142)

could be interpreted with parentheses (or brackets) as on either side of Equation

6.136, or even as
N ~ ~
3 [ bive, ) 5 )C(s1) -+ Con(sm)din(s1) - - dz/m(sm)] , (6.143)
7j=1

but the definition implies that these are all equal.

Having sufficiently defined the intermediate disentangling space E, we come at

last to the intermediate disentangling map 7g, in two steps.
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Definition 6.4.12. We define ¢ : V — L(X) to be the unique linear map given by

¢(9) := Tg|g] (6.144)

for all g € G. (Note under this definition ¢(1) = I, the identity operator.)

The fact that V is a free vector space with basis G implies that there exists such

a unique linear map ¢ ([32, p. 135, Theorem 4.1]).

Lemma 6.4.13. Given any integer m > 0, any operators Cy,...,C,, € L(X) and

measures vy, . .., Vpm € Mal0,1], and, if m > 0, any Borel set E C [0,1]™, we have

& (xXe(sys-- 1 8,)Cal51) -+ Clsm)din(s1) - dvn(s))

— Ty [XE(gl,...,gm)Cl(sl)--~C~Z'(sm)dyl(51)~~dl/m(sm) . (6.145)

(Note that on the left, xg(s,,. .. ,§m)é’1(81) o C(Sm)dvr(51) - - - v (spm) 7 s inter-
preted as an element of the space V, whereas on the right it is interpreted as an

element of the set G'.)

Proof. For m = 0 we have ¢(1) = I = Tg/[1]. Suppose m > 1. By linearity of ¢ we

have that

6 (X511 8,)C0(51) - Clsm)dn(s1) - dvr ()

= ( Z XE"(Am(em) (8155 sm)’ré’l(sl) e é’(sm)dyl(sl) e dym(sm)>

ﬂ'ESm

= Z ¢ <XE”ﬂAm(em)($1> SRR ‘?m)ﬂél(sl) T O(Sm)dl/l(sl) U de(Sm)>

7T€Sm

= " Tor [xrrnten (58, Cals1) -+ Clsm)dvi(s1) -+ dvyn(s) |

71'65771
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= " Tor [Xmran(s08,)Ci(51) - Clom)dvi(s1) -+ i)

TESm
Z Z / XENA, (m) 817 ER) Sm)Cp(m) T Cp(l)(”l X X Vm)(sla s 7Sm)
TESm PESm
Z / B(51,- -, 8m)Cr(m) - - Cr) (1 X -+ X V) (51, ..., Sm)
TESm Am(ﬂ)
=Ty [xnls, o 5,)C0(50) - Clsm)din(s1) - dvin(sm)| (6.146)

]

Remark 33. To be clear, we must note that even though we have used the expression
Xe(s, .-, $m)é’1(sl) e C8m)dir (51) - - - dvp(sm) for an element of G'—all elements
of G' are in this form—and we have used it for an element of V, we have never
established that G’ is a subset of V, nor will we (though we regard G as a subset of
both). However, the expression is valid in both spaces, and the above lemma says
that its images under the corresponding maps agree. We will say more about this in

a later remark, after we have defined the map 7g.

Lemma 6.4.14. Given the space V' C V as defined in Theorem 6.4.8, we have

V' C ker(¢).

Proof. Recalling that we defined a subset 4/ C V in Theorem 6.4.8, and that U

generates V', let u € Y. Then

u= Z aiXF (5 $m)6~‘1(sl) e O (Sm)dv (1) - - - du (Spm) (6.147)
for some m,n > 1, ay,...,a, € C, Borel sets Fi,..., F, C Ap(en) (€ém € Sy, is the
identity permutation), and measures vy, ..., U, € Mg[0,1], and "7 a;xr = 0 up

to a set of vy X - - - X v,-measure zero. We apply the map ¢ to u (we may since u € V)
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to get

B() = YTy [xr (- 8,)Cals0) - Conlsn)din(s1) - ()|

= Zai Z / XF (8153 8m)Crgmy - Cry (V1 X -+ X ) (ds1, ..., dsiy)

i=1  7€Sy Y Am(m)

= Z / Zaixpi(sl, o 8m)Crmy - Cry (1 X o+ X ) (dsy, ... dsyy,)
Am(m) =1

TESm

=0, (6.148)

since Y ., a;xp = 0 a.e. Thus u € ker(¢) and U C ker(¢). Moreover, since V'
consists of linear combinations of elements of I/, and the map ¢ is linear on all of V,

we have that V' C ker(¢). O

Theorem 6.4.15 (The map 7g). There exists a unique linear map Tg : E — L(X)
gwen by Tg[z] := ¢(v), where v € V is any coset representative in V of x € E (that is,
x =v+V'). Moreover, given any xg(s,, - - - ,$m)C~’1(31) e C(8p)di (81) - - - AU (i) €

G' (where E C [0,1]™), m > 0, we have that

T [XE($1, 8 )Ci(s1) - Clsm)din(s) - - dym(sm)]

— To [XE(gl,...,$m)Cl(sl)---C’(sm)dl/l(sl)---dl/m(sm) . (6.149)

Proof. (The first statement of this theorem is a special case of the mapping property
for homomorphisms of modules; see [7, p. 452], but we will go through a proof anyway.)

First we need to show that 7g given by 7g[z] = ¢(v) is well-defined. Let v, w € V
be two representatives of r € E, so x = v+ V' = w + V'. Then w = v + v’ for some
v € V. Hence ¢p(w) = (v +v') = ¢(v) + ¢(v') = ¢(v) since V' C ker(¢p). Thus the

map 7Tg is well-defined.
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To see that 7 is linear, we consider any =,y € E and any a,b € C. Let v,w € V

be coset representatives of x,y, respectively. Then

Telax + by] = Tela(v + V') + b(w + V)] = Tg[(av + V') + (bw + V)]

= Te[(av + bw) + V'] = ¢(av + bw) = ap(v) + bp(w) = aTg|x] + bTgly]. (6.150)

Therefore, 7 is a linear map. The second statement in the theorem, (6.149), then

follows by Lemma 6.4.13. O]

Remark 34. As in Lemma 6.4.13, in Theorem 6.4.15 we have used the expression
Xe(s, .-, $m)é’1(sl) oo« C(8m)dir(51) - - - dvp(sm) both as an element of G', and as
an element of V representing an element of . Although the expression is used in
both places, we do not regard it as representing the same entity, since we have never
said that G’ is a subset of V (though perhaps it is possible to make G' a subset of
V; the present author is unable to say at this time). Nevertheless, every element of
G’ has an expression that is also valid as an element of E (as a monomial), and the
maps 7g: and 7g agree on those expressions. Furthermore, in G’ we introduced other
notations for elements (such as those used for exponentiation, involving scope rules
for variables), and where there is no danger of confusion, we will apply the same kind
of notation for terms in E as well.

Most importantly, the same time-ordering theorems that hold for the map Zg on

G’ hold for the map 7z on monomials in E.

Example 34. Let z := X(0,1)2(..9,t)fl(s)é(t)du(s)du(t) € E, where A, B € L(X) and
p,v € Myl0,1]. Then

T 1] = Ta X025 ) A(s) B(8)dp(s) ()
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= T [Xocny (5, DA BEdp(3)d0(8) + Xgo<ey (1, 9) A) B () (1]

=Ty |Xtoeny (5, D AG) BO)dp(s)dv(t) | + Tor |Xpucs) (1 $)A(9) B da(s) v (1))

(6.151)

We may also write

Tg (2] = T [Xw,l)X(o,t)B(t)A(S)du(S)dV(t) + X(o,nX(m)A(S)B(f)du(S)dV(t)]

= / BA(p x v)(ds, dt) +/ AB(p x v)(ds, dt). (6.152)
{s<t}

{t<s}

As if all that were not enough, we can also define a norm on E, which is one reason

we chose the set U as we did earlier.

Theorem 6.4.16 (The norm ||-||z). Let |||z : E — [0,00) be the map defined as

follows: Given any x € E, let v € V be a coset representative of x, so v = v+ V.

Write v as
N nj ~ ~
v = Z Qjk [XFj,k ($j,1, R $j,m‘j)0j,mj (8,m;) - Cjalsin)
j=1 k=1

dvja(sj) - dvjm, (Sj,mj)] , (6.153)

for some N > 1,n; > 1, m; > 0, a;, € C, Borel sets Fj. C Ay (em;), oper-
ators Cj1,...,Cjm, € L(X), and measures vj1,...,Vim, € Myl0,1] for all j €
{1,....N} and all k € {1,...,n;}, with the additional requirement that for any

i,j € {1,...,N} with i # j, the terms have (Cyy,...,Cim. dvi1,... dvim,) #
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(Cj@, Ce 7Cj,mj7 dl/j71, RN 7de,mj)- Deﬁne

N nj
EFEEDY [/ > ajuxr, (sias - Sian) | 1 Coan || -+ 1€l
j=1 L/ Bmjlem;) | k=1

(Vj71 X X Vj,mj)(dsj,la e 7d8j,mj>] . (6154)

Then the map ||-||g so defined is a norm on the space E.

Example 35. Before we prove both that the map ||-||g is well-defined and is a norm,
it may be helpful to look at an example. The idea of the map is that given any = € E,
we choose a representative v € V, giving x = v+)’. Then we write v in terms of basis
vectors in V', which is to say, as a linear combination of expressions from G. We group
the terms according to whether they have the same sequence of indeterminates (with
the indeterminates placed in decreasing time order, first for the operators, then for
the measures, just so we can compare them). Then we replace the operator-related
indeterminates with operator norms, and integrate over the absolute value of the
linear combination of characteristic functions, grouped by matching indeterminate
terms.

For a specific example, consider
= Xap AW B)du(s)dv(t) — 2x(ocn A(s) BO)du(s)du(t) € B, (6.155)

where A, B € L(X) and u,v € My|0,1]. We can write

= X(1en A() BOdu()dv () + Xgoey Als) B du(s)du(t)
— 2\ (o< Al) B(t)dpu(s)dv (1)

= X< A(8) B(t)dp(s)dv(t) — X(s<iy A(s) B(t)du(s)dv(t)
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= Xp1<s) A(s) B(t)dv(t)dp(s) — xgsey B(t) A(s)dp(s)du(t). (6.156)

We note that the sequences of operator and measure indeterminates are different for

the different terms, so we then have

[zl = (v x ) ({(t,5) = £ < sHIANBI + (1 x v)({(s, 1)+ s < }) [ B]|[|A]

= (uxv) ([0, 1%) 1AL 1B] - (6.157)

Proof. First we need to show that the map ||| is well-defined. Let x € E, and
let v € V with x = v+ V', expressible as in Equation (6.153). Since V is a free
vector space with basis G, there is, apart from the order of summation and terms
with coefficients a;j equal to zero, only one way of expressing v as shown (there is
one way to express v as a linear combination of basis vectors, and then there is only
one way to group those according to indeterminates). If any coefficients are zero, then
they make no contribution to ||z||g, so we do not need to be concerned with them.

The only other possible ambiguity for x is in the representative chosen for it from
V. Take any other representative, which we may write as v + ¢’, with v € V', so
r=v+V =v+v +V. We can write v/ = Y ", cu; for some n € N, where
cly...,cn €Cand uy,...,u, €U, 50 x =0+ crug + - - + cpu, + V. If we can show
that expressing = as v + cjuy + V' yields the same value for |zl as when we use
x = v+, then we can repeat the process to show that the expression z = v+v'+ V'
yields the same value also. In other words, without loss of generality it is enough to
take only the case v' = cu with ¢ € C and u € U.

Let uw € U. Then we may without loss of generality say that
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ni

el = Z Chu [XFl,k(‘-Sl,l’ R $1,m1)él7m1(31,m1) e C~'171(51,1)

k=1

din (1) - dy17m1(317m1)] . (6.158)

meaning that we are matching the term j = 1 in (6.153) except for the scalars.
Consequently, when we group terms of v + v = v + cu, it will affect only the j = 1

term, changing each a; ; to ay + cbyx. The effect on the expression (6.154) is that

ni
Z a1 kXF (81155 Sty ) (6.159)
k=1
will change to
ni ni
Z al,kXFl,k(‘Sl,l? Tt 817m1) _'_ Z Cbl,kXFlyk(Sl,la LR 751,m1)- (6160)
k=1 k=1

However, since u € U, we have that ¢y ", bixXr,, = 0 a.e., so that change affects
the value of (6.159) only on a set of measure zero, and changes its absolute value only
on a set of measure zero, and that change has no effect on the corresponding integral
in (6.154) in the definition of ||z||4.

Therefore, the map ||-||z is well-defined on E. In addition, we can see that it
genuinely is a function from E to [0,00). We claim, further, that it is a norm. To
establish that, we claim first that for any a € C and any x € E we have |az||y =
la| |z||g. In fact that is not difficult to see from Equations (6.153) and (6.154) by
factoring the a to the inside in the first and then factoring |a| out of the absolute
values in the second.

Second, we claim that the triangle inequality holds. Let z,y € E. Say they are
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represented, respectively, by v,w € V, sox = v+ V', y = w + V'. Without loss of

generality we may write

$. )Cjm; (Sjm;) - Cia(s1)

dvii(sjn) - dvjm, (sj,mj)] , (6.162)

with each b;, € C and all other stipulations as for Equation (6.153) above. Then

x + y is represented by

N nj
vtw= Z Z(aj,k + ) [XFj,k((Sj,p RS $j,mj)0j,mj(51,mj) - Cials)n)

j=1 k=1

dvja(sja) -+ dvjm, (Sjvmj)] , (6.163)

so that
N nj
lz+ylle = [/ > @ik +bia)XE, (5505 - Sjam) | | Coamy ||+ 1€
j=1 [/ Bmjlem;) k=1
(V1 X s XV )(dsji1, 7d537mg)]
N nj
<) [/ > aXE (550, Sjamy) | || Gy ||+ 1G5l
j=1 A (emj) k=1
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(I/j71 X - X Vj,mj)(dsj,la . 7d8j,mj)]

N
+) / kX F (5515 -5 S5m )| | Coamy || -+ 1C,
j=1 L/ Am;(em;)
(Vj,l X oo X Vj,mj)<d5j,17 RN 7de,mj)]
= llzllg + l[yllg - (6.164)

The remaining step is to show that if z € E with ||zl = 0, then z is the zero vector

in E. (We already know by the statement ||az||z = |a|||z||g for all a € C,z € E that

10]lg = 0.) If = v+ V' for v € V, then this is equivalent to saying that v € V'. Let

x € E and v € V be as described in the theorem statement, and let ||z||; = 0. Then

r=v+V,

j

Mz

]:1 =

and

N

lelle =" /.
Z Amj(emj)

Jj=1

Qj k |:XF] k ] 100 ‘.Sj,mj)cj,mj (Sj,mj) e Cj,l(sj,l)

dvja(sj) -+ - dvjm, (Sj,m]-)] , (6.165)

)| G| -~ 11C,

'kXFj,k(Sj,la ey Sj,mj

(Vj,l X+ X I/jymj)(dsﬂ, . 7d8j,mj )] = (. (6166)
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Consequently, for any fixed j € {1,..., N} we have that

/Am ) (emj)

J

nj
Z aj7k'XFj,k($j717 SRR Sjvmj) HO'7mj H T HCJH
k=1
(Vj,l X+ X Vj,mj)(dsj,lv e 7d8j,mj) = O, (6167)

. . . ng .
which implies that ;7 a;jrxr,, (Sj1,-- -, Sjm;) = 0 almost everywhere (since we

know the operators have nonzero norms). That implies for each 7,

g

D [XFj,k(t?j,p e85 ) Ciamy (Simy) - Cia(si0)dvia(sin) -+ d’/j,mj(sj,mj)] €U,
k=1
(6.168)
and therefore v € V', establishing the claim. Thus ||-||g is a norm on E. O

The natural progression at this point would be to extend E to a Banach algebra,
if possible. It would be good, if possible, to be able to use the space to disentangle a
function expressible as a power series (an exponential function, for example). How-
ever, for lack of time we will not deal with any of that, and will leave it to anyone

else who is interested. Instead we will simply finish with examples.

Example 36. In Example 28 above we provided an alternate proof of a decomposing
disentangling formula from [17, p. 4]. We did so using the set G’ and the map Zg.
We will now extend that result to a third measure using the space E and the map 7g.

Let A, B,C € L(X), let u,v,n € M|0, 1] be probability measures, let my, mo, ms
be nonnegative integers, and let a € (0,1). Then, taking advantage of commutativity
and the distributive law in E (which imply that a binomial theorem holds in E), as

well as linearity of the map 7g, we have
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Pl (A, B, C)

=% [ (xonA0)du) " (xon BE)dv(s)) " (xonCtdn) "]

= B[ (x0a A)du(r) + XanAr)du(r) (xm,a)f?(s)dws) Ve BEd(s))

7

—p[ Y I (A (en A )

111911 421951 i5175!
i 1:J1-%2:72: 13:]3

i2+jo=m2
13+73=m3

(x00BEd()” (xanBE©d)” (vonCin®)” (xwyCnn)”]

=y e e e A (e Biv(s)”

111911 191951 751 75!
R 1-J1-%2:J2- 1373

ig+jo=m2
13+73=m3

(xenC®Hin®)” (xondrdu)" (xonBE)d () (vonCh®)"].
(6.169)

We now apply Theorem 6.3.4, yielding

Prmzms(A B C)

TR |

! my! my! ~ J1 ~ J2
= Z Vi i liclgala TE[(X(@J)A(T)du(r)) (X(a yB(s )du(5)>
i1t+j1=m Zl'jl'ZQ-]2-23.j3!

ig+j2=m2
i3+j3=m3

'(X(a,né(t)d??(t))jg] Te [(X(o,a)A(T)dM(T)> il(X(o,a)B(S)dV(S)) iQ(X(o,a)é(t)dn(iD i3]

ml! m2! m3!

_ J1,J2,J3 A, B,C pitsiasis A B
. Z_ ir!71 1 iolgal islys! “|<a,1>’”\<a,1>ﬂ7\<a,1>< )E #l(0,0)¥1(0,a): 77\<0a>< B, C).
11+j1=m1
12-+j2=m2
t3+j3=ms3

(6.170)
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Example 37. At the end of Section 3.2 we established Theorem 3.2.2, which we

restate here (and renumber):

Theorem 6.4.17 (Disentangling a monomial that involves a sum of two measures).
Given a Banach space X, together with operators Ay, ..., A, € L(X), non-negative
integers my, ..., my, and finite, continuous Borel measures v,n, lia, [13, . - . , by 0N the

interval [0, 1] associated with Ay, Ay, Ag, As, ..., Ay, respectively, we have that

= Pk’ml_k’mQ’m3 """ mn (Al, Al, AQ, Ag, B 7An>‘ (6171)

VT 2,43 s

Using this together with the relationship we have established (by way of the map
75') between the disentangling map and the map 7 on E, especially Theorem 6.2.7,

we have under the conditions of Theorem 6.4.17 that

~ mi ~ m9 ~ mMn
T [ (xonAs)d +m)(1) " (xonAls2)dn(s2)) " - (xonAlsi)du(sa)) |
= P (Ar, Agy As, o Ay)
- ml —K,m2,Mm m
=> phmkmama.mn (A AL Ay, As, ., Ay)
k=0 \ k
my

= i ™ Tr [(X(OJ)A(Sl)dV(Sl)) k<X(0,1)A(31)d77(51)>

. ' '(X(o,l)ﬁ(sn)du(sn»mn]

mi

my mi

T - (vonAlsa)du(s,)) "

]

(xonAlsdv(s)) (xonAls)dn(s)

k=0\ k

m2

=Tg |:<X(0,1)A(51)d7/(81) + X(O,l)le(sl)6577(31))m1 <X(071)A(32)d“(52)>
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- (vl dutsn)) ™

(6.172)

In effect, then, we have replaced the expression ‘X(O,l)fi(sl)d(l/ + 1)(s1)" with the
expression ‘X(DJ)A(sl)dy(sl) + X(o,1)z‘1(81)d77(81)’, where the measures have been split

up. A similar result can be achieved for operators using Theorem 4.3.8.

Example 38. Let A, B € £(X), and let u,v € My[0,1]. Then

(X(o,1>f‘~1(8)du(8))2< o B(H)dv(1)) € E (6.173)

and we can write

2

(X(o,nfl(s)du(s) X0, B(t)dv(t)
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-3

2
k=0

2 ~ m—k . - k
(k> X(0.1) (X(tJ)A(S)du(S)) B(t) (X(O,t)A<S)d,u(S)> dv(t).  (6.174)

Hence, using Theorems 6.3.5 and 6.2.4,

I
WE
—

B
Il
o
ol

M)

2
m—Fk k
I /(0 0 PM\(t,l) (A)B PHl(o,t) (A)V<dt)' (6'175)

B
Il
=)

In these calculations we see that

2

(X(o,nfl(S)dM(S)) (X(O,I)B(t)dV(t)) (6.176)
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became
2 2 ~ m—k ~ k ~
| | (eende)duts) ™ (xonA)in(s)) xon Bt (0177

This hints at the possibility that we might be able to write these two expressions as

an intermediate expression

‘ (X(o,wfl(S)du(S) + ><(t,1>f1(8)0lu(5>‘))2 (X<o,1>B(t)du(t)) g (6.178)

and then apply a binomial theorem. However, this expression has not been defined
in E, or even in V; our definition of multiplication in E, based on that of V (Defini-
tion 6.4.3), applies only to elements of V that have fixed characteristic function sets,
namely Fi, Fy in Equation (6.95). To define (6.178) it may be necessary to define
multiplication in the case when the characteristic function sets depend on the argu-
ments of another characteristic function. For example, Fy, F» in Equation (6.95) in
that case might need to be changed to Fi(ty,...,t,), Fo(s1,...,Sm), and one would

have to see whether it would be possible to make sense of Definition 6.4.3 then.

Example 39. We end with a few comments on how to approximately disentangle
a product AB if B is associated with a finite, continuous Borel measure vy on a
generalized Cantor set K, and A is associated with a finite, continuous Borel measure
g on the complement of that set J = [0, 1]\ K in the interval [0, 1]. (Because the set
is complicated, we are not working with a general monomial in A and B .) Although
one could define a measure on the set J one interval at a time, it would be impossible
to do the same with K, since generalized Cantor sets contain no intervals. Instead we
will assume that p and v are finite, continuous Borel measures on the entire interval

[0,1] and that p; and v are their restrictions, respectively, to J and K, respectively.
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Let us suppose that K is formed in the usual manner of generalized Cantor sets
by removing an open interval [; from the center of the interval [0, 1], then removing
open intervals I, and I3 from, respectively, the centers of the remaining left interval
and right interval, then removing each of the intervals Iy, I5, I, I7 from, respectively,
the centers of the remaining four subintervals (left to right again), etc. We then have
J = U I; and K = [0,1] \. J. Since the sequence of deleted intervals is infinite, and
the igérvals do not overlap, the measures of the deleted intervals must approach zero
for both p and v.

We are going to consider unions of the intervals I, I5, I3,... in two groups. For
n=12 . wedefine L, =), [and R, := |, I;, so that L,UR, = J. Then
K =1[0,1]\ L, \ R,,. Disentangling the monomial AB using the associated measures
Wy = pls, vk = v|k (associating p; with A and vg with B) gives (by Theorem 6.2.4)

Pl (A,B)

HJVK

=T _xeK($,t)fl(S)B(t)du(S)dV( )

T [m P, (DA() B(t)dp(s >du<t>}
+ T [\, (.12, (DA() B dpa() v (1)
= Pl J(AB) = P (A B) = T [xu, (9)xn, (DA(s) B du(s)dv (1)

+ T | X (X0, (DA B dp()dw (1) (6.179)

Since the set L, is a union of disjoint intervals, the first two terms in the last expression
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may be calculated by existing methods, and they serve as the estimate of PlJ (A, B).
As for the other two terms, we can say of their operator norms in £(X) that
|7 [xe. (9. O A B0 |,
=[x 048G st + [ om0 <),
{s>t} {t>s} L(X)
< 1A 1Bl | [ x4 [ 0000 ), )
{s>t} {t>s}
= “AHE(X) ||B||£(X) ([0, 1)) v (Ry,). (6.180)
Similarly,
T | xx, Lo ia (1) A()B(t)dp(s)dv(t H
|7 [ (Do DA BOan()avv)] ||,
< ALy 1Bl ey (R ([0, 1]). (6.181)

Combining these two gives us our error estimate, so by choice of sufficiently large
n € N we may force pu(R,) and v(R,) to be small and get our estimated value of the
operator P}}lek (A, B) as close to the correct value as we would like. Disentangling a

monomial exactly in the case of a generalized Cantor set and its complement might

require a different approach—something recursive, perhaps.
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