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Combustion of Moving Droplets and Suspended Droplets:
Transient Numerical Results

Daniel N. Pope,∗ Damon Howard,† Kun Lu,‡ and George Gogos§

University of Nebraska at Lincoln, Lincoln, Nebraska 68588-0656

A numerical investigation of unsteady liquid fuel droplet combustion with droplet heating and internal circulation
under forced convection is presented. The droplet is burning within an airstream at atmospheric pressure and
under zero-gravity conditions. Combustion is modeled using finite rate kinetics and a one-step overall reaction.
The numerical model includes a new multicomponent formulation, which is appropriate for use with the finite
volume method, to describe mass diffusion in the gas phase accurately. Numerical results were obtained for both
suspended droplets (constant relative velocity) and for moving droplets. It is shown that the flame configurations
present in a burning droplet are a function of the time histories of both the Reynolds number and the Damköhler
number. For a moving droplet, the Reynolds number decreases with time (due to both relative velocity and droplet
size reduction), but the Damköhler number increases with time. For a suspended droplet, both the Reynolds number
and the Damköhler number decrease with time due to the reduction in droplet size. As a result, for the same initial
Reynolds number, suspended droplets may demonstrate different burning behavior than moving droplets. Within
the range of initial Reynolds numbers considered (6, 8, and 50), a moving droplet tends to develop an envelope
flame at some stage during its lifetime, whereas a suspended droplet develops an envelope flame only for low
initial Reynolds numbers. The flame configurations present during droplet burning are of critical importance in
determining the droplet lifetime.

Nomenclature

Q1

Q2

Q3

Q4

A = preexponential factor
a = fuel concentration exponent in reaction rate equation
b = oxygen concentration exponent in reaction

rate equation
CD = drag coefficient
cp = specific heat capacity at constant pressure
Da = Damköhler number, Eq. (12)
Di j = binary diffusion coefficient for the i– j pair
Dim = effective diffusion coefficient for the i th species
DT,i = thermal diffusion coefficient for the i th species
d = droplet diameter
Ea = activation energy
FF = friction drag force
FP = pressure drag force
FT = thrust drag force
H1 = downstream flame dimension
H2 = upstream flame dimension
h = specific enthalpy
K = evaporation constant
k = thermal conductivity
L = latent heat of vaporization
ṁ ′′

θ = local mass flux at droplet surface
N = total number of chemical species
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nr = number of radial grid points
nθ = number of tangential grid points
p = pressure
R = droplet radius
Re = Reynolds number, Eq. (11)
Ru = universal gas constant
r = radial position
T = temperature
T0 = initial droplet temperature
t = time
td = droplet lifetime
U∝ = freestream velocity
Vi = diffusion velocity of the i th species Q5
Vi = component of Vi caused by concentration gradient
V0

i = zeroth-order approximation of Vi

v = velocity vector
vr = velocity component in radial direction
vθ = velocity component in polar direction
W = one-half of the lateral flame dimension
Wi = molecular weight of i th species
Wi = component of Vi caused by temperature gradient
Xi = mole fraction of i th species
Yi = mass fraction of i th species
�r = radial grid spacing
δVi = correction velocity for Vi

µ = dynamic viscosity
ν = kinematic viscosity
ν ′′

i , ν ′
i = stoichiometric coefficient of the i th product

and reactant, respectively
θ = polar position
ρ = density
ρ̄ = average density
τrr , τrθ = shear-stress tensor components
ωi = rate of mass production of the i th species

per unit volume

Subscripts

f = fuel or flame
g = gas phase
i = i th species
l = liquid phase

1
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o = oxygen (O2)
s = droplet surface
0 = initial condition
∞ = freestream or outer computational boundary

Superscripts

T = transpose
∗ = dimensionless variable

I. Introduction

E XPERIMENTAL studies to determine the burning characteris-
tics of droplets under forced convection employ either porous

spheres or suspended droplets. In both types of experiments, the
ambient oxidizer is often blown over the “droplet” at a set ve-
locity (freestream velocity). Porous sphere experiments, such as
those conducted by Spalding1 and Gollahalli and Brzustowski2 un-
der normal-gravity conditions, showed that the freestream velocity
could be changed so that the resulting flame formed in the wake of
the droplet (wake flame), partially surrounded the droplet (transi-
tion flame), or completely enveloped the droplet (envelope flame).
The microgravity suspended droplet combustion experiments of
Okajima and Kumagai3 utilized a constant freestream velocity to in-
vestigate the variation of the droplet diameter and flame dimensions
over the droplet lifetime. Suspended droplet experiments3−5 using
a constant freestream velocity are more closely related (than porous
sphere experiments) to the moving droplet present in a combustion
chamber because they include transient effects such as droplet heat
up, variations in the flame dimensions, and the decrease in droplet
diameter due to evaporation. Dwyer and Sanders6 were one of the
first research teams to develop an unsteady numerical model for the
moving droplet case. They predicted a transition from a wake to an
envelope flame as the droplet velocity decreased.

The present study addresses the difference in combustion be-
havior, given the same initial conditions, of an isolated liquid fuel
droplet under two scenarios: moving droplet and suspended droplet
combustion in a forced convection environment. The first problem
simulates the injection of a droplet into a combustion chamber.
In this case, the droplet is allowed to decelerate due to the drag
force. The second scenario simulates the conditions that are typi-
cally present in experiments that employ the suspended droplet tech-
nique (constant velocity). A numerical model has been developed
to simulate the two cases. The equations and methods employed in
our model, the validation of the model, and results for n–heptane
droplet combustion are presented hereafter.

II. Theoretical Formulation
The problem considered is that of a single-component (n–

heptane) liquid fuel droplet undergoing evaporation and combustion
in a hot, convective, low-pressure, zero-gravity environment of in-
finite expanse (Fig. 1). The freestream pressure p∞ and freestream
temperature T∞ are constant. For a moving droplet, the relative ve-
locity U∞ between the droplet and freestream is subject to change
due to the influence of the drag force on the droplet. For a suspended
droplet, the relative velocity is constant. The remaining assumptions

Fig. 1 Problem schematic and envelope flame dimensions.

employed in the model include the following: 1) The flow is ax-
isymmetric and laminar. 2) The droplet maintains a spherical shape.
3) The effect of the fiber in the suspended droplet case is negligi-
ble. 4) Thermal radiation is negligible. 5) The Dufour effect and
pressure diffusion are negligible. 6) Viscous dissipation and pres-
sure work are negligible. 7) Solubility of gas-phase species into the
liquid phase is negligible.

The governing equations for the gas phase and the liquid phase
consist of the unsteady, axisymmetric equations of mass, momen-
tum, species (gas phase only), and energy conservation with variable
properties.7 The conservation of mass and momentum equations in
the gas phase and the liquid phase are given by

∂ρ

∂t
+ ∇ · (ρv) = 0

∂

∂t
(ρv) + ∇ · (ρvv) = −∇ p − ∇

[
2

3
µ(∇ · v)

]

+ ∇ · {µ[(∇v) + (∇v)T ]} − ρ
dU∞

dt
where dU∞/dt is the acceleration of the coordinate system and the
superscript T denotes the transpose of the tensor. Conservation of
energy in the gas phase is described by

∂

∂t
(ρT ) + ∇ · (ρvT ) = ∇ ·

(
k

cp
∇T

)
+ k

c2
p

∇T · ∇cp

− 1

cp

N∑
i = 1

ρYi Vi · ∇hi − 1

cp

N∑
i = 1

ωi hi

The last two terms in the right-hand side of the preceding equation
are not present in the liquid-phase conservation of energy equation.

In addition to the preceding equations, the species diffusion ve-
locities Vi are calculated using the following:

∇ Xi =
N∑

j = 1

(
Xi X j

Di j

)
(V j − Vi )

+
N∑

j = 1

[(
Xi X j

ρDi j

)(
DT, j

Y j
− DT,i

Yi

)](∇T

T

)
(1)

for i = 1, . . . , N , where N is the number of species. The N equations
for the diffusion velocities are subject to the constraint∑

Yi Vi = 0

and the thermal diffusion coefficients have the following property.8∑
DT,i = 0

In the current model, the diffusion velocity is defined as

Vi = −(Dim/Yi )∇Yi + δVi + Wi

where

Wi = −(DT,i/ρYi )(∇T/T )

is the thermal diffusion velocity and

Dim = 1 − Xi∑
j �= i (X j/Di j )

is the effective diffusion coefficient for the i th species into the mix-
ture of all other species. (See, for example, Ref. 8 and method 5 V
in Ref. 9.) Here, δVi is a correction velocity to satisfy equation (1).
Using the identities

∑
Yi = 1, Xi = (Yi/Wi )∑

(Y j/W j )
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in the preceding equations and rearranging gives an expression for
the correction velocities

δVi

∑
j �= i

Y j

W j Di j
−

∑
j �= i

Y j

W j Di j
δV j

=
∑
j �= i

1

W j

(
1 − D jm

Di j

)
∇Y j (2)

for i = 1, . . . , N , which are subject to the constraint

δVi +
∑
j �= i

Y jδV j =
N∑

j = 1

D jm∇Y j + δVi (1 − Yi ) (3)

The resulting gas-phase conservation of species equation, which is
appropriate for use with the finite volume method, is

∂

∂t
(ρYi ) + ∇ · [ρ(v + δVi + Wi )Yi ] = ωi + ∇ · (ρDim∇Yi )

The gas- and liquid-phase governing equations are coupled at the
interface by the following equations, which are shown in spherical
coordinates: Continuity of the tangential velocity is

vθ,g,s = vθ,l,s (4)

Continuity of the shear stress is

µg,s

[
∂vθ

∂r
− vθ

r
+ 1

r

∂vr

∂θ

]
g,s

= µl,s

[
∂vθ

∂r
− vθ

r
+ 1

r

∂vr

∂θ

]
l,s

(5)

Continuity of the temperature is

Tg,s = Tl,s (6)

Conservation of species is, for fuel

ṁ ′′
θ = ṁ ′′

θ Y f,s + ρg,sY f,s Vr, f,s (7)

and for nonfuel

0 = ṁ ′′
θ Yi,s + ρg,sYi,s Vr,i,s (8)

Conservation of energy is

ṁ ′′
θ L = k

∂T

∂r

∣∣∣∣
g,s

− k
∂T

∂r

∣∣∣∣
l,s

(9)

Conservation of mass is

ṁ ′′
θ = ρg,s

(
vr,g,s − dR

dt

)
= ρl,s

(
vr,l,s − dR

dt

)
(10)

Phase equilibrium, through the use of Wagner’s equation (see
Ref. 10) is employed to calculate the partial pressure of the gaseous
fuel at the droplet surface.

The axisymmetric governing equations are solved in spherical co-
ordinates (r − θ ). The origin of the coordinate system is the droplet
center. The computational boundary is located at r∞ and consists of
two regions in the gas phase: the inflow region (0 ≤ θ ≤ π/2) where
the values for all dependent variables are specified and the outflow
region (π/2 < θ ≤ π ) where a zero gradient normal to the boundary
is assumed. The polar velocity vθ is zero along the axis of sym-
metry, and a zero gradient normal to this boundary is assumed for
all other variables. The initial conditions are as follows: a uniform
initial droplet temperature T0, the pressure equal to p∞ everywhere,
velocities set to zero everywhere, and the gas-phase temperature
and composition set to their freestream values. Initial conditions
for the temperature and composition at the liquid/gas interface are
determined via the solution of the interface equations.

The surface regression rate (dR/dt) is calculated using overall
conservation of mass for the droplet:

dR

dt
= − 1

2ρ̄l

(∫ π

0

ṁ ′′
θ sin θ dθ + 2

3
R

dρ̄l

dt

)

For the suspended droplet (stationary), the r − θ coordinate system
is inertial, whereas for the moving droplet, the coordinate system
is noninertial. The effect of the acceleration of the noninertial co-
ordinate system (dU∞/dt) is included in the momentum equations.
Overall conservation of momentum for the droplet, which is given
by

dU∞
dt

= −3

8
CD

U 2
∞

R

(
ρ∞
ρ̄l

)
− 3

2

1

R3ρ̄l

d

dt

×
[∫ π

0

∫ R

0

ρl(vr,l cos θ − vθ,l sin θ)r 2 sin θ dr dθ

]

is used to calculate the droplet acceleration, where ρ̄l is the average
liquid-phase density and the subscript l indicates values in the liquid
phase. For completeness, the definition of CD in terms of the friction
FF , pressure FP , and thrust FT force is also given here:

CD = 2(FP + FF + FT )

ρ∞U 2∞π R2

FF = 2π R2

∫ π

0

(τrθ,g sin θ − τrr,g cos θ)s sin θ dθ

FP = 2π R2

∫ π

0

pg,s cos θ sin θ dθ

FT = 2π R2

∫ π

0

ṁ ′′
θ (vr,g cos θ − vθ,g sin θ)s sin θ dθ

where the subscripts g and s denote evaluation in the gas phase and
at the droplet surface, respectively.

Variable properties in the gas phase were calculated using the ideal
gas law and low-pressure correlations from Reid et al.10 Species vis-
cosities and thermal conductivities were calculated using the method
of Chung et al.11 (See also Ref. 10.) Mixture viscosity and thermal
conductivity were obtained using the method of Wilke.12 (See also
Ref. 10.) The curve fits of McBride et al.13 were used to calculate
the specific heat capacities and enthalpies. Binary diffusion coef-
ficients were evaluated using the first approximation from kinetic
theory10,14 and the Lennard–Jones 12-6 potential. An approximation
developed by Ramshaw15 was used to calculate the thermal diffusion
coefficients. The properties of n–heptane in the liquid phase were
calculated employing the correlations used by Haywood et al.16

A one-step overall reaction is used to model the combustion of
n–heptane in dry air:

C7H16 + 11(O2 + 3.77N2) → 7CO2 + 8H2O + 11(3.77N2)

The resulting expression for ωi is

ωi = Wi (ν
′′
i − ν ′

i )A(ρY f /W f )a(ρYo/Wo)
b exp[−Ea/Ru T ]

where the subscripts f and o indicate fuel and oxygen. The preexpo-
nential factor A, the activation energy Ea , and the fuel and oxygen
concentration exponents a and b for a one-step overall reaction were
determined empirically using a quasi-steady version of the current
code.17 The reaction was assumed to be first order with respect to
fuel and oxygen (a = b = 1). Appropriate values for A and Ea were
determined by matching numerical results for extinction velocity to
experimental data available in the literature. The resulting kinetics
parameters are given in Table 1. These parameters are used in the
present work.
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Table 1 Reaction rate parameters
used for the present study17

Parameter Value

A, m3/kmol · s 3.35 × 1011

Ea , kJ/kmol 1.53 × 105

a 1.0
b 1.0

Table 2 Computational grids

Initial
Reynolds number �r∗

s,0 r∗∞ nθ nr,g nr,l

100 0.02 30 90 100 25
1–50 0.025 50 90 150 25
0.01 0.025 125 60 250 25

III. Numerical Model
The governing equations are discretized using the finite volume18

and SIMPLEC19 methods. Convection–diffusion is modeled us-

Q6

ing the power-law scheme.18 A collocated grid20 is adopted. The
discretization equations, with the exception of Eqs. (2) and (3),
are solved using the alternating direction implicit method with theQ7

Q8 TDMA used on each line of the two alternating directions. The N
δVi defined by Eqs. (2) and (3) are calculated at each grid point
using Gauss–Seidel iteration. Equation (3) is used for the δVi that
corresponds to the species with the maximum Yi . The iterative solu-
tion of the governing equations is performed within each time step
until convergence is achieved. The calculations are terminated when
the droplet radius is less than 1/10 of its initial value (R < 0.1R0).

The computational grid consists of adjoining orthogonal control
volumes with uniform tangential grid spacing and nonuniform ra-
dial grid spacing. In the radial direction, hyperbolic tangent stretch-
ing functions21 are used to concentrate grid points near the droplet
surface in both the gas phase and liquid phase. The nonuniform ra-
dial grid extends from the instantaneous droplet radius R to a fixed
computational boundary r∞ in the gas phase and from the droplet
center to R in the liquid phase. The following parameters define the
grid spacing: the initial dimensionless spacing next to the droplet
surface (�r∗

s,0 = �rs,0/R0), the dimensionless location of the com-
putational boundary r∗

∞, the number of tangential grid points nθ , and
the number of radial grid points in the gas phase nr,g and liquid phase
nr,l . Because of the nature of the problem under investigation and
the range of initial Reynolds numbers Re0 employed in the present
work, the three different computational grids shown in Table 2 were
used in the numerical solutions.

The numerical model’s accuracy and sensitivity to grid size and
spacing were initially tested by isolating pertinent sections of the
code and comparing predicted results to available numerical and ex-
perimental correlations. Predicted drag coefficients for isothermal
spheres with Reynolds numbers between 0.01 and 100 were within
2% of the correlations of Clift et al.22 Nusselt numbers for constant
property flow past a solid sphere were within 1% of the numerical
results of Sayegh and Gauvin.23 For flow past an isothermal sphere
of water at Reynolds numbers of 30 and 100, the predicted drag co-
efficients were within 2% of the numerical calculations of LeClair
et al.24 The assembled code was also tested via comparison of nu-
merical results for a solid sphere of n–heptane evaporating in air at
800 K to the drag25 and Nusselt number correlations of Renksizbu-
lut and Yuen.26 For Reynolds numbers from 15 to 100, the current
code predicts drag coefficients that are from 7 to 8% lower than
the correlation, and Nusselt numbers that are from 8% lower to 4%
higher than the correlation. Further refinement of the grid size or
enlarging the r∗

∞ shown in Table 2 changed the predicted values by
less than 0.2%.

The grid spacing and time step used in the droplet combustion
simulations were tested to ensure that all solutions are reasonably
independent of these parameters. Simulations covering one-quarter
of the droplet lifetime were conducted with 50% more radial or
tangential grid points, one-half �r∗

s,0, or one-half of the time step
used to generate the final results. The accumulated difference in

flame dimensions was less than 2%, and values at the droplet surface,
such as the instantaneous radius and drag coefficient, differed by less
than 0.1%.

The fuel vapor/air mixture that surrounds the droplet can undergo
two types of ignition. Ignition may be caused by either a high am-
bient temperature or the presence of an external ignition source. In
the former case, the code is run as is, and ignition occurs if the am-
bient temperature is sufficiently high. In the latter case, the code is
run for a few time steps so that a fuel vapor/air mixture builds up
around the droplet. Energy is then added to an axisymmetric region
upstream of the droplet via the source term in the conservation of
energy equation. The addition of energy occurs over several time
steps and is terminated when ignition takes place. Thus, a minimum
amount of energy is introduced to cause ignition.

IV. Model Validation
The accurate modeling of the change in droplet velocity due to the

drag force is required for the moving droplet case. As part of the val-
idation procedure, combustion was disabled, and the transient code
was tested via comparison to numerical results for the evaporation of
a moving droplet. Haywood et al.16 present results for an n–heptane
droplet with T0 = 298 K and an initial Reynolds number Re0 of 100
that is evaporating in air at 800 K and 1 atm. Figure 2 shows their
results (dash–dot line) for dimensionless radius (R∗ = R/R0), di-
mensionless droplet velocity (U ∗

∞ = U∞/U∞,0), and the ratio of the
instantaneous to the initial Reynolds number (Re/Re0) vs dimen-
sionless time (t∗ = tU∞,0/R0). Results from the current code (solid
lines) are in excellent agreement. The maximum accumulated dif-
ferences between the current results and those of Haywood et al.16

are less than 0.2% for R∗ and less than 7% for U ∗
∞ and Reynolds

number. The difference in predicted velocity and Reynolds number
is caused by an approximately 8% difference in the predicted drag
coefficient (not shown).

Experimental data available in the literature3,4,27 for microgravity
droplet combustion have been used to validate the transient code.
Kumagai et al.27 studied the spherically symmetric combustion of
free n–heptane droplets in air at atmospheric conditions. A drop
tower was used to generate microgravity conditions. Air at atmo-
spheric conditions was numerically modeled using T∞ = 300 K and
p∞ = 1 atm. In the experiments, a spark was applied near the droplet
to cause ignition. Droplet ignition was accomplished numerically
through the use of the energy addition discussed earlier. Spherically
symmetric combustion was modeled using a constant freestream
velocity that corresponded to an initial Reynolds number of 0.01.
The initial droplet temperature was assumed to be 298 K. Figure 3
shows results for the dimensionless diameter squared (d/d0)2 and
flame diameter d f vs time after ignition for an n–heptane droplet
with an initial diameter d0 of 0.98 mm. For the numerical re-
sults (solid lines), time zero corresponds to the start of the energy

Fig. 2 Time history of R∗, U∗
∞, and Re/Re0 for n–heptane droplet with

Re0 = 100 evaporating in air at 800 K and 1 atm.
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Fig. 3 Time history of (d/d0)2 and df for spherically symmetric n–
heptane droplet combustion in air (d0 = 0.98 mm): •, experimental
atmospheric conditions and microgravity27 and ——, numerical,
Re0 = 0.01, T∞ = 300 K, p∞ = 1 atm, and zero gravity.

Fig. 4 Time history of (d/d0)2 and flame dimensions for suspended
n–heptane droplet combustion in air with constant freestream velocity
U∞ = 19.9 cm/s and d2

0 = 1.5 mm2: •, experimental, atmospheric condi-
tions and microgravity3 and ——, numerical, T∞ = 300 K, p∞ = 1 atm,
and zero gravity.

addition. There is good agreement in d2 dependence between the
current numerical results (lines) and the experimental results (cir-
cles). The numerical results for d f are approximately 15% higher
than the experimental data. The flame diameter is defined numer-
ically as the location of maximum temperature, and the plot starts
when the flame completely envelops the droplet. Both the exper-
imental data and the numerical results show that d f reaches its
maximum value between 0.4 and 0.5 s from ignition. The numerical
prediction for the ratio d f /d (not shown) increases during the life of
the droplet. The evaporation constant (not shown) increases rapidly
as the droplet ignites and reaches a value of about 0.8 mm2/s at ap-
proximately one-third (t = 0.4 s) of the droplet lifetime. Kumagai
et al.27 reported an evaporation constant of 0.78 mm2/s. An evapo-
ration constant of 0.8 mm2/s was measured by Nayagam et al.4 for
spherically symmetric n–heptane droplet combustion.

Results from our numerical simulations and microgravity ex-
perimental data under forced convection (see Ref. 3) were also
in good agreement. Okajima and Kumagai3 gave data for d2 and
flame dimensions vs time from ignition for a suspended n–heptane
droplet with d2

0 = 1.5 mm2 and a constant freestream velocity U∞
of 19.9 cm/s. Their experiments were conducted using air at atmo-
spheric conditions, and a spark was used to ignite the droplet. Fig-
ure 4 shows results for (d/d0)2 and the upstream H2, lateral 2W , and
downstream H1 flame dimensions (Fig. 1). Our simulations of this
case (solid lines) showed excellent agreement with the experimental
data (circles) for (d/d0)2, H2, and 2W . The predicted downstream

flame dimension H1 was approximately 30% higher than the exper-
imental result. In the experiment, the droplet suspender was located
in the wake of the droplet where the presence of soot was noted.
The current code does not model the presence of the suspender, the
formation of soot, and soot-induced radiation. The inclusion of soot,
and its associated continuum radiation in the model would tend to
increase the numerical result for H1 (Refs. 28–30), whereas includ-
ing the droplet suspender in the model would tend to decrease the
numerical result for H1 (Ref. 27). Based on the difference between
the experimental and numerical value for H1, it appears the droplet
suspender has a greater effect on H1.

V. Results and Discussion
The numerical model was used to investigate the combustion

of an n–heptane droplet with an initial diameter of 500 µm. Two
cases were studied: 1) a moving droplet and 2) a suspended droplet
within a convective environment. The results presented here are
for T∞ = 1200 K, p∞ = 1 atm, T0 = 298 K, and initial Reynolds
numbers of 6, 8, and 50. The numerical simulations for all of these
cases do not include an external ignition source.

Table 3 compares the lifetimes of both moving and suspended
n–heptane droplets for the Reynolds numbers considered. Table 3
contains interesting results that require explanation. For example,
the lifetime of a moving droplet with Re0 = 50 is longer than the
lifetimes of moving droplets with initial Reynolds numbers of 6
and 8. Furthermore, for the same initial Reynolds number, the sus-
pended droplet burns out faster than its moving droplet counterpart
in two cases (Re0 = 6 and 50), whereas for Re0 = 8, the result is the
opposite. In the remainder of this section, the results presented in
Table 3 will be discussed in detail.

Figure 5 shows the predicted temperature distribution at vari-
ous times for a moving droplet with Re0 = 6. The droplet initially

a)

b)

c)

d)

e)

Fig. 5 Predicted gas-phase temperature distribution, in degrees
Kelvin around a moving droplet with Re0 = 6 (d0 = 500 µm and T∞ =
1200 K): a) t = 0.5 ms, b) t = 5.2 ms (wake flame), c) t = 6.9 ms (transition
flame), d) t = 8.8 ms (envelope flame), and e) t = 224.7 ms (envelope flame).
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experiences pure evaporation (Fig. 5a). The fuel vapor mixes with
the ambient oxidizer, and ignition occurs downstream of the droplet,
forming a wake flame (Fig. 5b). In this particular case, the flame
rapidly approaches the droplet, partially surrounds the droplet in a
transition flame configuration (Fig. 5c), and eventually surrounds
the droplet in an envelope flame configuration (Fig. 5d). An enve-
lope flame remains until the end of the droplet lifetime (Fig. 5e).

Figure 6 shows the time history of the dimensionless droplet
diameter squared (d/d0)2, Reynolds number, Damköhler number,
and evaporation constant K for a suspended (dashed lines) and a
moving (solid lines) droplet with Re0 = 6. The suspended and mov-
ing droplet developed envelope flames at approximately the same
time (t 	 10 ms). When the droplet lifetimes are considered (210
and 226 ms), this happened at a very early stage. Once the envelope
flame formed, it remained for both droplets until the end of their life-
times. Thus, during most of the droplet lifetime, both the suspended
and the moving droplet experience the same flame configuration.
This implies that the two droplets will exhibit similar burning be-
havior and, thus, similar lifetimes. Figure 6a shows that to be true.

Table 3 Droplet lifetimes of n–heptane for
suspended and moving droplets: p∞ = 1 atm,

T∞ = 1200 K, T0 = 298 K, and d0 = 500 µm

Initial
Reynolds number Droplet td , ms

6 Suspended 210
Moving 226

8 Suspended 300
Moving 230

50 Suspended 181
Moving 238

a)

b)

c)

d)

Fig. 6 Comparison between moving droplet and suspended droplet combustion for Re0 = 6 (d0 = 500 µm and T∞ = 1200 K); time history of a) (d/d0)2,
b) Reynolds number, c) Damköhler number, and d) K.

The droplets in both cases have very similar diameter squared time
histories.

Figure 6b shows the time history of the instantaneous Reynolds
number Re for a suspended and a moving droplet with Re0 = 6. Both
Reynolds numbers decrease monotonically with time; however, they
decrease at different rates. The Reynolds number is defined as

Q9Re = d(t)U∞(t)/ν∞ (11)

where ν∞ is the kinematic viscosity evaluated at ambient condi-
tions, and d(t) and U∞(t) are the instantaneous droplet diameter
and freestream velocity. The freestream velocity remains constant
for the suspended droplet. As a result, the Reynolds number changes
only with the droplet diameter. However, for the moving droplet, the
droplet diameter decreases, and the droplet velocity decreases due to
drag. Thus, the Reynolds number for the moving droplet decreases
faster than that for the suspended droplet.

The higher Reynolds number associated with the suspended
droplet implies a stronger convection. This results in a higher evap-
oration constant for the suspended droplet than for the moving
droplet, as shown in Fig. 6d. The evaporation constant is given by

Q10K = − d

dt
[d(t)2]

At the beginning of the droplet lifetime, the evaporation constants
for the two cases are very close, and both increase rapidly due to the
high-temperature environment. A difference between the evapora-
tion constants appears at about 1/10 of the lifetime due to the differ-
ence in the convective strength for the two cases. At the relatively
low initial Reynolds number of 6, the difference in the evaporation
constants between the suspended droplet and the moving droplet
remains fairly small during the entire droplet lifetime. As a result,
the droplet lifetimes for the two cases are close.
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a)

b)

c)

d)

Fig. 7 Comparison between moving droplet and suspended droplet combustion for Re0 = 50 (d0 = 500µm and T∞ = 1200 K); time history of a) (d/d0)2,
b) Reynolds number, c) Damköhler number, and d) K.

Figure 6c compares the instantaneous Damköhler numbers for a
suspended and a moving droplet with Re0 = 6. Here, the Damköhler
number is defined as

Da = [R(t)/U∞(t)]Aρa + b − 1
∞ W 1 − a

f (1/Wo)
b exp[−Ea/Ru T∞]

(12)

where Wo and W f are molecular weights for the fuel and oxygen
and R(t) is the instantaneous droplet radius. The Damköhler num-
ber is proportional to the ratio of droplet diameter to instantaneous
freestream velocity. This ratio is the characteristic convective time
scale. Thus,

Da ∝ d(t)/U∞(t) = tconv

In Fig. 6c, the Damköhler number for the suspended droplet de-
creases with time, whereas for the moving droplet case it increases
slowly with time. The former result is expected because, for the sus-
pended case, U∞ is constant whereas the droplet diameter decreases.
This results in a monotonic decrease in Damköhler number. For the
moving droplet case, both d(t) and U∞(t) decrease. The resulting
trend in Damköhler number is not obvious. For Re0 = 6, it seems
that the droplet velocity decreases slightly faster than the droplet
diameter.

Figure 7 shows the time history of (d/d0)2, Reynolds number,
Damköhler number, and K for a suspended and a moving droplet
with Re0 = 50. With this higher initial Reynolds number, both
droplets ignite in the wake areas far downstream. After ignition,
for the moving droplet case, the flame moves toward the droplet and
finally forms an envelope flame (at approximately t = 205 ms) near
the end of its lifetime. For the suspended droplet, no envelope flame
is developed throughout its lifetime, and the wake flame remains at
approximately the same location for most of the droplet’s lifetime.

The plots for Re0 = 50 in Fig. 7 are similar to those for the low
initial Reynolds number (Re0 = 6, Fig. 6). The differences, how-
ever, between predicted quantities for a suspended and for a moving
droplet are larger for Re0 = 50. The evaporation constant for the
suspended droplet is higher than that for the moving droplet during
most of the droplet lifetime, as shown in Fig. 7d. This causes a much
shorter droplet lifetime for the suspended droplet than the moving
droplet. The steep increase in the evaporation constant for the mov-
ing droplet near the end of its lifetime is due to the formation of an
envelope flame. This event can also be seen in Fig. 7a, where the
slope in the (d/d0)2 plot becomes steeper for the moving droplet
case. Despite that the moving droplet eventually develops an enve-
lope flame, whereas the suspended droplet does not, the presence
of the envelope flame at the very end of the moving droplet’s life
does not have an impact on its lifetime. In the absence of envelope
flames, the difference in Reynolds number histories between the two
cases is the only cause for their different vaporization rates. Note
that the trend in Damköhler number is the same in Figs. 7c and 6c,
namely, the Damköhler number increases for the moving droplet
and decreases for the suspended droplet.

The combustion behavior for the two cases at Re0 = 8 is quite
different from the cases discussed earlier. Figure 8b compares the
Reynolds number time histories between the suspended and the
moving droplet case. Although the Reynolds number for the sus-
pended droplet is again higher than that for the moving droplet
throughout the droplet lifetime, the lifetime of the suspended droplet
is approximately 30% longer than that of the moving droplet
(Fig. 8a). Figure 8d shows that the evaporation constant for the mov-
ing droplet is higher than that for the suspended case during most of
the droplet lifetime, despite that the suspended droplet experiences
stronger convection than its counterpart. The difference in evapora-
tion constants, which leads to the disparity in droplet lifetimes, is
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a)

b)

c)

d)

Fig. 8 Comparison between moving droplet and suspended droplet combustion for Re0 = 8 (d0 = 500 µm and T∞ = 1200 K); time history of a) (d/d0)2,
b) Reynolds number, c) Damköhler number, and d) K.

caused by the difference in flame configurations. The moving droplet
develops an envelope flame at an early stage (t = 40 ms) of its life-
time. In contrast, the suspended droplet exhibits a transition flame
during most of the droplet lifetime. The transition flame partially
surrounds the droplet, but the temperature at the front of the droplet
is the ambient temperature. (See Fig. 5c) Figure 8c shows that the
Damköhler number increases with time for the moving droplet and
decreases with time for the suspended droplet, which is the same
trend noted for the other initial Reynolds numbers.

The results presented for the three different Reynolds numbers
seem to suggest that a moving droplet tends to develop an enve-
lope flame at some stage during its lifetime, whereas a suspended
droplet develops an envelope flame only at low initial Reynolds
numbers. The flame configurations present in a burning droplet are
a function not only of the Reynolds number, but of the Damköhler
number as well. Similar results were presented31 using the kinetics
of Westbrook and Dryer.32 Although previous and current results are
slightly different quantitatively, they remain qualitatively the same.

VI. Conclusions
The numerical results for n–heptane clearly indicate that, given

the same initial conditions, suspended droplets and moving droplets
can exhibit very different combustion behavior. The flame configu-
rations present in a burning droplet are a function of both Reynolds
and Damköhler number. For a moving droplet, the Reynolds num-
ber decreases with time, but the Damköhler number increases with
time, whereas for a suspended droplet, the Reynolds and Damköhler
number both decrease. The increasing Damköhler number associ-
ated with a moving droplet promotes the formation of an envelope
flame at some point in the droplet lifetime. Over the range of initial
Reynolds numbers considered (6, 8, and 50), a suspended droplet

developed an envelope flame at only the lowest initial Reynolds
number. The flame configurations present during droplet burning
are of critical importance in determining the droplet lifetime.
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