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The high-field spin structure of magnetic perovskites and related magnetoresistive materials is
investigated by model calculations. Competing exchange as well as real-structure-dependent
random field, random anisotropy, and Dzyaloshinskii–Moriya interactions yield a noncollinear
magnetic structure that may be called a spin colloid. The noncollinear structure, which contributes
to the zero- and finite-temperature spin mixing and reduces the magnetoresistance, is strongly field
dependent. ©2005 American Institute of Physics. fDOI: 10.1063/1.1851412g

I. INTRODUCTION

The spatial magnetization distribution or spin structure is
of crucial importance for the magnetoresistive behavior of
perovskites and related materials, such as half-metallic ferro-
magnets. Typical experiments are performed in high mag-
netic fields, where the spin state is close to saturation and the
magnetoresistive behavior approaches that of ideal
half-metallics.1,2 In low fields or at remanence, the same
samples exhibit huge drops in band polarization, as observed
for NiMnSb.3,4 This deviation from perfect spin alignment
results in spin mixing and negatively affects the magnetore-
sistance of half-metallic ferromagnets.2,5

The materials of interest tend to exhibit a subtle compe-
tition between ferromagneticsFMd and antiferromagnetic
sAFMd interactions, specifically in the vicinity of charge-
ordering transitions.6 In addition, in some half-metals
there exist incommensurate spin states2,7 of similar origin.
The situation is further complicated by the simultaneous
presence of random magnetocrystalline anisotropy and
Dzyaloshinskii–Moriya sDMd interactions at the grain
boundaries. Here we use a generalized nanomagnetic or “mi-
cromagnetic” approach to study the field dependence of the
magnetization.

II. ENERGY CONTRIBUTIONS

The key to the understanding of noncollinear spin struc-
tures is the relativistic classification of the underlying
mechanisms.8,9 The starting point is the Pauli expansion of
the Dirac interaction in terms of the electron velocityv=ac,
wherea=4p«oe

2/"c<1/137 is Sommerfeld’s fine-structure
constant.10 For example, expanding the free-electron energy
mc2Î1+v2/c2 yields the rest energy mc2, the electrostatic
energy mv2/2, and the lowest-order relativistic correction
sa /2d2 mv2/2. In the magnetic analogy, the last contribution
describes, for example, magnetostatic interactions and mag-
netocrystalline anisotropy.

Subsequent terms in the expansion differ by factors of
the order ofa2=1/1372. This is an order-of-magnitude esti-

mate for magnetic and anisotropic forces, as compared to
electrostatic forces. For example, typical susceptibilities are
of the order ofa2 because they reflect the competition be-
tween magnetic and electrostatic interactions.

A. Heisenberg exchange

Heisenberg exchange is a relatively strong interaction
of electrostatic origin and has the familiar structure
JsRi −R jd SiSj =Jij SiSj. It is isotropic, so that uniform spin
rotation does not change the exchange energy, even if the
system is noncubic. For example, layered structures tend to
exhibit bond anisotropy, that is, intra- and interlayer ex-
changes may be different,11 but the exchange does not de-
pend on whether the magnetization is in plane or normal to
the layers.

On a continuum level, the anisotropic exchange is de-
scribed by

Eex =E E Jsr − r 8dM sr dM sr 8ddVdV8, s1d

as compared to the more familiar expressioneAs¹M d2dV.
Fourier transformation diagonalizesJsr −r 8d and yields
terms of the typeJskd, as compared toAk2. Noncollinear or
incommensurate spin states then correspond to a minimum
of Jskd. Examples are the helimagnetism of elemental rare-
earth metals,12 characterized by ak vector parallel to thec
axis, and the spin structure of some semi-Heusler alloys,
where thek vectorko is given by the intercept of transverse-
optical phonon and magnon modes.2

Note that the bond anisotropy described in Eq.s1d must
not be confused with the proper exchange anisotropy involv-
ing exchange constantsJxx, Jyy, andJzz rather than the iso-
tropic constantsJ. The latter anisotropy is a small relativistic
correction to the isotropic exchange and will be neglected.

B. Relativistic interactions

Second-order magnetocrystalline anisotropy, as ex-
ploited permanent magnets and magnetic recording media, is
of the typeSab Kab Ma Mb, whereKab is a 333 spin-spaceadElectronic mail: rskomski@unlserve.unl.edu
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anisotropy tensor. Another relativistic contribution is the DM
interaction

HDM = − 1
2Si jDi jSiSj . s2d

In an itinerant description, the vectorDi j is proportional to
sRi −RodsR j −Rod, whereRo is the position of the not neces-
sarily magnetic atom that mediates the interaction.13 To be
operative, the DM interaction requires local environments
with sufficiently low symmetrysabsence of inversion sym-
metryd. It occurs, for example, in some crystalline materials,
such asa-Fe2O3 shaematited, in amorphous magnets,12 and
in spin glasses.8,12,13They are also encountered in magnetic
nanostructures,14 where they have recently been discussed in
a different context.15

Figure 1 illustrates the physical origin of the DM inter-
action. In solids with low symmetry, Fig. 1sad, the hopping
electrons are able to benefit from the spin-orbit interaction in
triangular configurations, thereby establishing a well-defined
axial vectorDi j perpendicular to the plane of hopping. In
crystals with inversion symmetry, Fig. 1sbd, the correspond-
ing DM contributions cancel by symmetry.16 A major effect
of the DM interaction isspin canting. Due to the relativistic
nature of the DM interaction, typical canting angles are
small, of the order of 0.1°, but they are easy to measure in
structures whose underlying nonrelativistic spin structure is
antiferromagnetic.sThis yields the small net moment of so-
called weak ferromagnets, such asa-Fe2O3.d The relative
importance of DM interactions is particularly pronounced in
the vicinity of FM-AFM and other exchange-related transi-
tions.

The magnetostatic self-interactionfield is of relativistic
origin, too. In inhomogeneous magnets, it is obtained by
Fourier transformation,17 and for strong magnetic fields, the
structure of the term isk ^ k /k2. Compared to exchange,
Ak2, magnetostatic interactions do not vanish fork=0, so
that they are important on mesoscopic and especially macro-
scopic length scales.9,14 Aside from thek dependence, the
magnetostatic self-interaction term is very similar to the
magnetocrystalline anisotropy, so that we incorporate it into
Kab.

III. CALCULATION AND RESULTS

A. Basic formalism

For well-textured hard-magnetic materials,8 the local
magnetizationM sr d is obtained by minimizing the micro-
magnetic energy functional18

E =E HAsr df¹sM /Msdg2Ksr d
fnsr dM g2

Ms
2 − moMHJdV.

s3d

Here Asr d is the local exchange stiffness,K1sr d is the first
uniaxial anisotropy constant, andH is the external magnetic
field. Minimizing and linearizing Eq.s3d for a field H =H ez

yields

− A¹2m + K1m +
1

2
moMsHm = K1sr dasr d. s4d

As explained elsewhere,8,14 the derivation of this equation
exploits M sr d=Msmsr d2ez/2+Msmsr d and nsr d=asr d2no/2
+asr d.

Note that Eqs.s3d ands4d ignore the field dependence of
the atomic magnetic moments,Ms=MssHd. In magnetoresis-
tive oxides, this effect is not necessarily small, but the
change is parallel to the external field and has no lowest-
order effect on the relevant perpendicular magnetization
component.

Equationss3d and s4d apply to simple ferromagnets but
are easily generalized to the present materials. First, to de-
scribe competing exchange, the exchange-stiffness term in
Eq. s4d must be replaced by an integraleJsr −r 8d msr 8ddV8.
Second, both the source or force termfsr d=K1sr d asr d and
the “effective-anisotropy” termK1sr d+mo Mssr d H /2 be-
come more complicated. In particular, there is a random DM
or spin-canting contribution tofsr d.

Adding the contributions discussed in Sec. II yields the
generalized linear micromagnetic equations

E Jsr − r 8dmsr 8ddV8 + Qm +
1

2
moMsHm = fsr d, s5d

where

Q = SKzz− Kxx Kxy

Kxy Kzz− Kyy
D s6ad

and

f = Kxzex + Kyzey +
1

2
Ms

2S jsDij ,yex − Dij ,xeyd. s6bd

Here the summation overj includes all neighbors of the atom
at r i that contribute to the DM interaction.

B. Approach to saturation

Equationss5d and s6d describe the high-field spin struc-
ture of the magnet. Assuming thatH is large, we can solve
Eq. s5d by series expansion. For strong fields, the leading
interaction is of the typeJsr −r 8d+h dsr −r 8d /2, whereh
,H. Since the addition of a unit operator,dsr −r 8d, does not
change the eigenmodes of an operator, the noncollinearity of
the magnetization state is given by the eigenmodes ofJsr
−r 8d. If the exchange was ferromagnetic, the eigenmodes
would be plane wavessspin wavesd, and the spin structure
would be ferromagneticsk=0d with some random nanoscale

FIG. 1. Simple real-space illustration of Dzyaloshinskii–MoriyasDMd in-
teractions:sad nonzero interaction in magnets with low symmetry andsbd
absence of DM interactions for crystals with inversion symmetry.
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modulation due to random local anisotropysk.0d. In anti-
ferromagnets, the presence of sublattices slightly complicates
the structure of Eqs.s3d and s4d.19

In general, the eigenmodes ofJsr −r 8d are incommensu-
rate, that is, the wave vectorko does not correspond to an
integer multiple of the lattice constant. Figure 2 illustrates
this point by showing the magnetization componentmy along
ko/ko The main oscillation reflects the competing exchange,
Jsr −r 8d, whereas the noise is due to DM and other random
contributions.

C. Two-mode description

In k space, the whole spectrum ofk values is necessary
to explain the spin structure of the system. A semiquantita-
tive solution is to restrict the consideration to the most im-
portant wave vectors:k =0 andk =ko. Projecting the prob-
lem onto the two modes yields the equations

kml =
kfl

h + DJ/2
s7ad

and

mo =
fo

h − DJ/2
. s7bd

Here kml and kfl are the transverse-magnetization and
random-force volume averages,mo and fo,e expsikor d
fsr ddV are the amplitude of the noncollinear mode and the
corresponding Fourier-transformed inhomogenity, and the
spositived eigenvalue differenceDJ describes the relative sta-
bility of the noncollinear state.

Equations7d shows that the noncollinear exchangesDJd
suppresses ferromagnetic excitationssad but enhances and
stabilizes the noncollinear mode. In a very large positive
field, bothkml andmo approach zero, that is,Mz approaches
saturation. With reduced field strengthh, both volume-
averaged random forces,kfl, and random-force projections
onto the chiral mode,fo, tend to destabilize the ferromagnetic
state. However, due to the opposite sign of theDJ contribu-
tion, the incommensurate mode is more enhanced, and when

h=DJ/2, then the saturated or aligned state becomes un-
stable, and the magnet’s spin state switches to a true nonlin-
ear noncollinear state.

IV. DISCUSSION AND CONCLUSIONS

One reason for the complicated spin structure is the non-
diagonal character ofQ in Eq. s6ad. In terms of Fig. 2, spin
colloids exhibit a mixing of themx andmy components. The
details of the modulation of the noncollinear spin structure
are complicated and depend on factors such as the involved
materials parameters and the size and geometry of the grains.
A simpler but explicated treated case is antiferromagnets
with random anisotropy, whereko=p /a and Di j =0.19 Note
that themx−my mixing is not visible in Eq.s7d, due to the
projection onto twok-space modes.

In summary, we have investigated how competing inter-
actions affect the spin structure of half-metallic ferromag-
nets. Our generalized micromagnetic approach reveals that
competing exchange interactions yield difficult-to-suppress
wave-vector-dependent modulations of the spin structure. In
addition, there are small random anisotropy and
Dzyaloshinskii–Moriya noncollinearities at the grain and
phase boundaries. These noncollinearities lead to spin-
colloidal behavior and open a harmful second spin channel in
half-metallic ferromagnets.
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