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Value-added modeling is an alternative approach to test-based accountability 

systems based on the proportions of students scoring at or above pre-determined 

proficiency levels. Value-added modeling techniques provide opportunities to estimate an 

individual teacher’s effect on student learning, while allowing for the possibility to 

control for the effect of non-educational factors beyond a school system’s control, such as 

socioeconomic status. However, numerous considerations exist when using value-added 

models to estimate teacher effects and defining what the teacher effects really describe.  

Chapter 2 provides an introduction to value-added methodology by describing 

several value-added models available for estimating teacher effects and their respective 

advantages and disadvantages. Modeling variations and their impact on estimated teacher 

effects are also discussed in addition to the various statistical and psychometric issues 

associated with estimating value-added teacher effects.  

Because value-added analyses require high-quality longitudinal data that are often 

not available, Chapters 3 and 4 propose methodology for analyzing less-than-ideal 

assessment data. Chapter 3 proposes value-added methodology for analyzing longitudinal 

student achievement data not on a single developmental scale and addresses issues arising 



 

when using a layered, longitudinal mixed model to analyze gains in standardized scores. 

The chapter also discusses methods for estimating teacher effects on student learning 

before and after entering professional development programs and applies these methods 

of analysis to achievement data. 

Chapter 4 describes the use of curve-of-factors methodology to analyze 

longitudinal achievement data collected from two differently scaled assessments in a 

single year and subject, such as mathematics. Assuming data come from a curve-of-

factors model structure, a simulation study evaluates the performance of the proposed 

curve-of-factors model in its ability to accurately rank teachers in the presence of either 

complete or missing test data and compares it to the performance of the Z-score 

methodology proposed in Chapter 3. 
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Chapter 1 

Introduction 
 

Over the past several years, there has been a national effort to hold students to 

higher academic standards. This effort includes holding states accountable for assessing 

measurable student outcomes. Value-added modeling is an alternative approach to test-

based accountability systems interested in the proportions of students scoring at or above 

pre-determined proficiency levels. Value-added modeling techniques estimate the 

contribution of educational factors, such as teachers, to growth in student achievement, 

while allowing for the possibility to control for the effect of non-educational factors 

beyond a school system’s control, such as socioeconomic status. Value-added modeling 

methods provide opportunities to estimate the proportion of variability in achievement or 

student growth attributable to teachers, as well as estimate an individual teacher’s effect 

on student learning. 

School districts and policymakers desire to use teacher effect estimates for a 

variety of purposes, from informing educational systems how students are affected by 

current practices and conditions to making high-stakes decisions regarding teacher salary 

and/or employment. These estimates are also desired to evaluate the effectiveness of 

professional development programs. However, even though value-added modeling 

methods infer causal effects of teachers on student growth, the assessment data are not 

obtained from randomized, experimental studies. Consequently, several obstacles need to 

be addressed before value-added modeling should be used in these ways. 
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1.1 Value-Added Models for Estimating Teacher Effects 

 
Chapter 2 serves as a background and introduction to value-added methodology. 

Several value-added models available for estimating teacher effects are described, as are 

the models’ respective advantages and disadvantages. Modeling variations, such as the 

use of layered versus non-layered design matrices and the specification of teacher effects 

as fixed or random, are also discussed, and the impact of such considerations on 

estimated teacher effects is explained in detail using an example provided by Wright and 

Sanders (2008). The various statistical and psychometric issues associated with 

estimating value-added teacher effects are highlighted, providing a summary of the 

current state of value-added modeling research and recommendations for future work. 

 

1.2 Estimating the Impact of a Professional Development Program on Student 
Learning 

 
Professional development programs focus on preparing teachers to meet the 

recent initiatives on improving the quality of student instruction, but rigorous evaluations 

are needed to determine whether these programs are actually effective. Value-added 

modeling techniques provide opportunities to estimate the relationship between teacher 

development and student learning, but most require student achievement data to be on a 

single developmental scale over time (McCaffrey, Lockwood, Koretz, & Hamilton, 

2003). Typically, available assessment data do not meet such requirements, limiting 

analyses that can be conducted. Chapter 3 proposes alternative value-added methodology, 

specifically the use of Z-scores, for analyzing less-than-ideal longitudinal student 

achievement data collected from a mixture of norm- and criterion-referenced assessments 

to estimate the impact of a professional development program on student learning. The 
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chapter discusses methodology for estimating teacher effects on student learning before 

and after entering professional development and addresses issues arising when using a 

layered, longitudinal linear mixed model to analyze gains in standardized scores. The 

methodology is applied to data collected from a mathematics professional development 

program in mathematics education, the Math in the Middle Institute Partnership (M2), and 

the results are discussed.  

 

1.3 Using Parallel Processing Methodology to Estimate Teacher Effects 

 

Few studies have addressed how to use value-added models to analyze 

achievement data not on a single developmental scale (Green, Smith, Heaton, Jiao, & 

Stroup, under review; Rivkin, Hanushek, & Kain, 2005), and even fewer, perhaps none, 

have discussed how to use information from multiple instruments in a single year that are 

on different scales, potentially both within and between instruments over time. When 

modeling multiple outcome measures, instead of a single measure across time, parallel 

process, or multivariate, growth curve models can estimate the relationship between the 

growth trajectories for each of the parallel measures and allow researchers to investigate 

changes in latent factors over time instead of changes in observed scores. Chapter 4 

describes the use of parallel processing, specifically curve-of-factors, methodology to 

analyze longitudinal student achievement data collected from two different assessments 

in a single subject, such as mathematics, and estimate teachers’ effects on student 

learning. Assuming data come from a curve-of-factors model structure, a simulation 

study evaluates the performance of the proposed curve-of-factors model in its ability to 
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accurately rank teachers in the presence of either complete or missing test data and 

compares it to the performance of the Z-score methodology proposed in Chapter 3. 
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Chapter 2 

Value-Added Models for Estimating Teacher Effects 
 

2.1 Introduction 

 
Since the enactment of No Child Left Behind (NCLB) (2001), education systems, 

in theory, have held students to higher academic standards, and states are accountable for 

assessing measurable student outcomes. States receiving Title I funds for improving the 

academic achievement of disadvantaged students must require schools to make adequate 

yearly progress (AYP). While states are given latitude with regards to what is meant by 

“adequate,” in general, this means the proportion of students achieving pre-determined 

proficiency levels on state assessments is expected to increase annually until all students 

in particular grades are deemed proficient or higher. 

Value-added modeling is an alternative approach to test-based accountability 

systems interested in the proportions of students scoring at or above pre-determined 

proficiency levels. Value-added modeling techniques estimate the contribution of 

educational factors, such as teachers, to growth in student achievement, while allowing 

for the possibility to control for the effect of non-educational factors beyond a school 

system’s control, such as socioeconomic status. Value-added modeling methods provide 

opportunities to estimate the proportion of variability in achievement or student growth 

attributable to teachers, as well as estimate an individual teacher’s effect on student 

learning. When these methods identify large differences in teacher effectiveness, they 

also have the potential to help researchers identify what characteristics highly effective 
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teachers possess and motivate informed improvements in education (McCaffrey, 

Lockwood, Koretz, & Hamilton, 2003).  

Teacher effect estimates can be used for a variety of purposes, from informing 

educational systems how students are affected by current practices and conditions to 

making high-stakes decisions regarding teacher salary and/or employment. However, 

even though value-added modeling methods infer causal effects of teachers on student 

growth, the assessment data are not obtained from randomized, experimental studies. 

Consequently, several limitations exist when defining what teacher effects really 

describe. Defining teacher effects requires identifying to what a particular teacher’s 

impact on a student’s growth in achievement will be compared, such as other teachers in 

the school, district, or entire state. The definition also depends on the outcomes used to 

measure achievement; the scope and purpose of the instruments can limit what is 

measured and, consequently, restrict the part of a teacher’s total impact on a student that 

can be estimated (McCaffrey et al., 2003). Other factors affecting students’ growth in 

achievement, such as characteristics of classrooms and schools, can be confounded with 

teacher effect estimates, so the purpose for obtaining such estimates needs to be clearly 

defined and should dictate how precisely the effects need to be estimated. Typically, 

teacher effects merely account for unexplained classroom-level heterogeneity 

(Lockwood, McCaffrey, Mariano, & Setodji, 2007).  

Studies investigating value-added teacher effects provide evidence teachers have 

differing effects on student learning (Rivkin, Hanushek, & Kain, 2005; Rowan, Correnti, 

& Miller, 2002; Wright, Horn, & Sanders, 1997) that persist over time (Sanders & 

Rivers, 1996), but these studies have shortcomings (McCaffrey et al., 2003). Section 2.2 
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describes proposed value-added models for estimating teacher effects and discusses their 

respective advantages and disadvantages. Section 2.3 covers the impact of different 

modeling decisions on the estimation of teacher effects, and Section 2.4 highlights 

various statistical and psychometric issues associated with estimating such effects. The 

chapter concludes with a summary of the current state of value-added modeling research 

and recommendations for future work.  

 

2.2 Value-Added Models 

 

Multiple authors have championed the use of value-added models to analyze 

longitudinal student achievement data (Doran, 2003; Drury & Doran, 2003; Hershberg, 

Simon, & Lea-Kruger, 2004; Lissitz, 2005; Sanders, Saxton, & Horn, 1997). These 

methods fall into three categories: covariate adjustment models, gain score models and 

multivariate models (McCaffrey et al., 2003).  

2.2.1 Covariate Adjustment Models 

Covariate adjustment models, for example, 

 igggiigig eTyy  1, ,           (2.1) 

 regress each student’s current achievement score, igy , on his or her prior score, 1, giy , 

for the year of data collection, g = 1, 2, 3, …, m. The student-specific mean, ig , adjusts 

for factors affecting a student’s level of achievement, such as free-and-reduced lunch and 

English Language Learner (ELL) identifiers. It can also account for many other factors, 

including characteristics of schools. The teacher effect, gT , estimates the current year 

teacher’s impact on a student’s outcome. The residual errors, ige , are assumed to be 
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normally distributed with mean zero and variance 2
eg  and independent of the prior year 

scores and teacher effects.  

Covariate adjustment models are easy to specify and fit, and they do not require 

performance on measures used in successive years to be placed on a single 

developmental scale so growth can be measured across grades or ages. This is 

particularly beneficial for school systems using a mixture of norm-referenced and/or 

criterion-referenced tests, where reported student scores from the two types of 

instruments reflect different measurements: either relative academic performance or 

proficiency on predetermined criteria, respectively. Teacher effects from prior years are 

embedded in the previous year’s score, so the effects persist indefinitely even though they 

are not explicitly specified in subsequent years’ models. However, information is lost 

about student performance by estimating models separately for each year, so critics argue 

these methods are not really measuring student growth. Covariate adjustment methods 

also require complete student records, so missing student outcomes must either be 

imputed or removed from the analysis. When data are not missing completely at random, 

list-wise deletion can lead to biased estimates of all effects. In general, covariate 

adjustment models are easy to work with, but potentially over-simplify the complexity of 

student growth over time.  

2.2.2 Gain Score Models 

Gain score models, 

iggiggiigig eTyyd   1, ,       (2.2) 

treat the difference between two successive scores, igd , for student i as the response for 

the gth year of data collection. The student-specific mean, ig , adjusts for factors 
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affecting a student’s growth from one year to the next. It can account for many factors, 

including characteristics of schools. The teacher effect, gT , estimates the current year 

teacher’s impact on a student’s growth. The residual errors, ige , are assumed to be 

normally distributed with mean zero and variance 2
eg  and independent of the teacher 

effects. 

Gain score models are also easy to specify and fit. These methods model students’ 

gains in scores, so time-invariant factors, such as gender, race and poverty level, affecting 

a student’s level of achievement need not be estimated. Prior year teacher effects are not 

typically specified in the model, which assumes they persist undiminished over time. 

Although “covariate” methods do not require tests to be on a single developmental scale, 

“gain” methods do, so changes in performance are not confounded with changes in tests 

(McCaffrey et al., 2003). In addition, gain score models require complete student records 

and lose information about student growth by assuming pairs of gains for the same 

student are independent. Overall, gain score models are easy to work with and explicitly 

model student growth in achievement, but they have stringent scale requirements and 

potentially over-simplify the complexity of student growth over time.  

2.2.3 Multivariate Models 

Multivariate methods jointly model all student scores, including relationships 

between each student’s set of outcomes. These approaches also accommodate missing 

data, making efficient use of all available information. Specifying a multivariate model 

provides more flexibility, allowing the exploration of several assumptions, such as the 

persistence of teacher effects and the residual covariance structure of student outcomes. 

In some instances, these models are robust to omitted covariates, but they are 
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computationally intensive and require much more in the way of computing resources than 

either the gain score or covariate adjustment methods. Even though multivariate methods 

are often recommended, they are not widely adopted because the required resources and 

high-quality longitudinal data are not readily available. Three common multivariate 

approaches include the cross-classified model (Raudenbush & Byrk, 2002), the Education 

Value-Added Assessment System (EVAAS) teacher model (Sanders et al., 1997), and the 

variable persistence model (McCaffrey, Lockwood, Koretz, Louis, & Hamilton, 2004). 

2.2.3.1 Cross-Classified Models 

Hierarchical linear models (HLMs) can model students’ growth over time, but 

when assessing teachers’ influence on rates of learning, the models require each outcome 

to belong to only one student, who in turn remains in a single teacher’s classroom over 

the course of the study (Raudenbush & Byrk, 2002). The nested structure required by 

HLMs is a limitation when studies want to model students’ growth over the course of 

several years and, subsequently, several teachers. Rather, students who share the same 

teacher(s) in one year do not share the same teacher(s) in the next year, resulting in a 

cross-classified structure (Rasbash & Browne, 2008; Raudenbush & Byrk, 2002); HLMs 

do not model this additional complexity. 

Cross-classified models, for example, 

         

 
   
   
   

0 0 0

1 0 1 1

2 0 1 2 2

3 0 1 2 3 3

2

3

i i i

i i i i

i i i i

i i i i

y m T e

y m b T T e

y m b T T T e

y m b T T T T e



 

 

 

   

      

       

        

,      (2.3) 

model scores, )1(, giy , for student i at the g = 1, 2, 3, 4 year of data collection as a 

function of the average achievement,  , and the average learning rate,  . The student-
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specific intercepts, im , and slopes, ib , are assumed to be independent across students and 

normally distributed with mean zero, variances 0  and 1 , respectively, and covariance 

01 . The random teacher effects, kT , are the expected deflections to students’ growth 

curves when encountering teacher k. These effects are assumed to be independently, 

normally distributed with mean zero and constant variance across years. Teacher effects 

are also assumed to be independent of all other effects in the model. The random errors, 

ige , are assumed to be normally distributed and independent of each other, both within 

and between students, because the individual growth curves are assumed to “capture all 

the student-related influences on scores” (McCaffrey et al., 2003, p. 58). 

More generally, the cross-classified model from above can be specified as, 

      
1

,( 1) ,( 1) ,( 1)
1 0

gK

i g i i g i hik k i g
k h

y m a b D T e 


  
 

      ,       (2.4) 

where )1(, gia  assumes the value (g-1) at year g, and the term 1hikD  if student i 

encounters teacher k at time h; 0hikD  otherwise. The teacher effects, kT , are summed 

over time, so a student’s score is attributed to all previous and current teachers the student 

had for a particular subject. These types of models can also be extended to include other 

factors, such as student- and teacher-level covariates (Raudenbush & Byrk, 2002), as well 

as higher-order polynomials in g (Raudenbush, 2004). 

Cross-classified models explicitly model individual growth curves, often using a 

linear trend instead of separate means for each year. The linear trend used to model 

student growth places restrictions on the residual error covariance matrix. Subsequently, 

whenever the covariance between im  and  01, ,ib   is greater than zero, the variability of 

scores increases over time (McCaffrey et al., 2004). Raudenbush (2004) acknowledged 
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cross-classified approaches have stronger variance assumptions than models with 

unstructured variance-covariance matrices, but he argued this additional assumption 

potentially makes more appropriate and efficient use of student achievement data. 

Because cross-classified models can become complex quickly, other constraints may also 

need to be imposed to simplify a model. 

In the cross-classified model described, teacher effects persist undiminished into 

the future, so contributions of past as well as current teachers, are accounted for in a 

student’s set of scores. Consequently, the variability due to teacher inherently increases 

with each additional year of data collection (McCaffrey et al., 2004). Scores must also be 

on a single developmental scale (McCaffrey et al., 2003). 

2.2.3.2 EVAAS Model 

One prominent multivariate longitudinal linear mixed model is the Education 

Value-Added Assessment System (EVAAS) layered model (Sanders et al., 1997). This 

approach assumes teacher effects are independent and persist undiminished over time and 

subject. For a single track of students within a school system, a simplified version of the 

EVAAS model for a particular subject, such as math or reading,  

 

332133

22122

1111

ii

ii

ii

eTTTy

eTTy

eTy










,          (2.5) 

models scores, igy , for student i at year g = 1, 2, 3 as a function of year-specific means, 

g . Random teacher effects are included for all teachers a student encounters for the 

subject during the course of the study. The teacher effects are assumed to be normally 

distributed with zero mean and year-specific variances; these effects are assumed 



13 

independent both within and across year. The random errors, ige , are assumed to be 

normally distributed and independent across students. Within-student correlations are 

assumed to follow an unstructured covariance structure with time-specific variances. 

 EVAAS jointly models more than one subject per grade for multiple cohorts of 

students across several school systems. The EVAAS teacher model (Sanders et al., 1997),  

     



mk

pp

N

p
ijklmnijklmijklmiklmijklmn etcy

1
)()( ,          (2.6) 

is much more complex, where ijklmny  is the measurement on the nth student in the mth 

subject and the lth grade who encountered the jth teacher in the ith school system during 

the kth year. Separate fixed means, iklm , are estimated for each grade, year, subject and 

school system combination. The random effect of the jth teacher who taught in the ith 

school system during the kth year, lth grade and mth subject is ijklmt , and ijklmc  is the 

fractional contribution of teacher j to the student’s score, accounting for instances when a 

student has multiple teachers for a subject in the same year. Finally, ijklmne , is the random 

deviation of the nth student’s measurement from the fixed mean. 

 The 
pp ijklmijklm tc )()(  terms are summed so a student’s score is attributed to all 

previous and current teachers the student had for subject m, creating a layered model. The 

teacher effects are summed over the index p, which tracks the student across years and 

allows for multiple teachers in the same year. The total number of teachers a student had 

though year k in subject m is mkN . 

The random teacher effects are assumed independent across teacher, subject, 

grade and time, even when the same teacher teaches multiple subjects, grades and/or 
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years. Separate teacher variance components are estimated for each year, subject and 

grade combination, creating a heterogeneous, diagonal variance-covariance matrix for the 

random teacher effects. The EVAAS teacher model also uses an unstructured variance-

covariance matrix to account for relationships between each student’s set of scores across 

subjects and grades, but assumes different students’ scores are independent. Teachers’ 

impact is analyzed based on at least three years of student data (Sanders et al., 1997). 

In both the cross-classified and the EVAAS teacher models, teacher effects persist 

undiminished into the future, so contributions of both current teachers and past teachers 

are accounted for in a student’s set of scores. Consequently, the total teacher contribution 

to the variability of scores increases over time, even though the total variance may not, 

depending on the testing instrument used (McCaffrey et al., 2004). However, the EVAAS 

model, unlike the cross-classified model, does not place restrictions on the overall grade-

specific means or the covariance structure of repeated measurements on the same student 

(McCaffrey et al., 2004; Wright, Sanders, & Rivers, 2006). The unstructured within-

student covariance matrix allows each student to serve as his or her own control, making 

it unnecessary to account for factors affecting a student’s level of achievement (Sanders 

et al., 1997). Yet, both of these models are computationally intensive and require scores 

be on a single developmental scale (McCaffrey et al., 2003).  

2.2.3.3 Variable Persistence Model 

McCaffrey et al. (2004) proposed the variable persistence model, a generalized 

version of multivariate longitudinal models for student outcomes. This approach is 

similar to the EVAAS teacher model, but it allows prior teachers to have variable 

contributions to current scores rather than assuming complete persistence of these effects. 
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For a single track of students within a school system, a simplified version of the variable 

persistence model for a particular subject,  
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,             (2.7) 

 
models scores, igy , for student i at year g = 1, 2, 3 as a function of year-specific means, 

g . Random teacher effects are included for all teachers a student encounters for the 

subject during the course of the study. The teacher effects are assumed to be normally 

distributed with zero mean and year-specific variances; these effects are assumed 

independent both within and across year. The persistence of prior teacher t on subsequent 

scores at year g is gt , which is estimated. The random errors, ige , are assumed to be 

normally distributed and independent across students. Within-student correlations are 

estimated using an unstructured covariance structure with time-specific variances. 

 The variable persistence model can be extended to include student- and school-

level covariates (McCaffrey et al., 2003). A special case of the variable persistence model 

(Lockwood, McCaffrey, Mariano, et al., 2007), 

   iggig
gg

ggigggig ey  


*
'

*
*

*
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includes covariates, but not school effects, where igy  is student i’s score in year g, g = 1, 

2, …, m, and g  is the year-specific mean. Time-invariant and time-varying covariates 

for student i are included in the vector, igx . The random teacher effects for each year, 

gθ , are linked to students by igφ , which allows fractional contributions of teachers to 

student i’s score during year g. The persistency parameters, *gg , model the strength of 
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past teacher effects on current student measurements, where 1* gg  when g* = g. The 

term ige  represents random error. Similar to the EVAAS teacher model, the variable 

persistence model can be extended to account for multiple cohorts of students, subjects 

per grade and school systems, but the model quickly grows in complexity (Lockwood, 

McCaffrey, Mariano, et al., 2007). 

Although the variable persistence model allows teacher effects to persist into the 

future, it does not assume these effects persist undiminished. Instead, the persistency 

parameters are freely estimated, so the total teacher contribution to the variability of 

scores does not inherently increase over time, unlike the cross-classified and EVAAS 

teacher models (McCaffrey et al., 2004). However, as the persistency parameters 

approach zero, correlations between future scores of students who shared a teacher in the 

past are no longer accounted for, eliminating one of the benefits of using the layered 

modeling approach (Wright & Sanders, 2008). In fact, McCaffrey et al. (2004) and 

Lockwood, McCaffrey, Mariano, et al. (2007) found estimated teacher effect persistency 

parameters to be relatively small. 

McCaffrey et al. (2004) showed, under certain restrictions, each of the alternative 

value-added modeling approaches discussed is a special case of the general, variable 

persistence model (Figure 2.1). Although the multivariate methods allow efficient use of 

all available data and are typically recommended, they are computationally intensive and 

require much more in the way of computing resources than either the gain score or 

covariate adjustment methods. While similar in many regards, each of the multivariate 

approaches has unique features (Figure 2.2). For instance, unlike the EVAAS teacher and 
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omputationally intensive and require much more in the way of computing resources than 

either the gain score or covariate adjustment methods.  

 
 
 
 
 
 
 
 
 
 
 
 
Without covariates, gain scores and the cross-classified model are special cases of the 
layered model with restrictions to the overall time trend and/or the distribution of 
residual errors. The layered model is a special case of the general model with 
restrictions to the αs and without covariates. The covariate adjustment and gain-score 
model with covariates are special cases of the general model with restrictions to the 
distribution of residual errors and the αs.  
 
Note. From “Models for Value-Added Modeling of Teacher Effects,” by D. F. McCaffrey, J. R. Lockwood, 
D. Koretz, T.A. Louis, and L. Hamilton, 2004, Journal of Educational and Behavioral Statistics, 29(1), p. 
78. Copyright 2004 by Sage Publications, Inc. Adapted with permission. McCaffrey et al. (2004) refer to 
the EVAAS layered model as the TVAAS layered model. 
 

Figure12.1: Relationship among Models 

the variable persistence models, the cross-classified framework models individual growth 

curves for students, so its within-student covariance matrix is restricted. Also, while both 

the cross-classified and EVAAS teacher models assume teacher effects persist 

undiminished in the future, the variable persistence model allows the strength of these 

effects on future scores to vary. Consequently, the variable persistence model only 

requires scores be linearly related instead of on a single developmental scale (McCaffrey 

et al., 2004): that is, the cumulative distribution functions for different scales should not 

cross (McCaffrey et al., 2003). While the additional complexities of these modeling 
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approaches can be beneficial, they also come with the price of additional computational 

burdens. 

 
 

Figure22.2: Comparison of Multivariate Models for Modeling Longitudinal Student 
Achievement Data 

 

2.3 Estimating Teacher Effects 

 

 Studies investigating value-added teacher effects provide evidence teachers have 

differing effects on student learning (Rivkin et al., 2005; Rowan et al., 2002; Wright et 

al., 1997) that persist over time (Sanders & Rivers, 1996), but these studies have 

shortcomings. Statistical and psychometric issues arise when estimating teacher effects 

using longitudinal student achievement data (McCaffrey et al., 2003). Different modeling 

variations, such as the use of layered versus non-layered design matrices and the 

estimation of random versus fixed teacher effects, are described, and the impact of such 

considerations on estimated teacher effects follows.  
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2.3.1 Layered Models 

Wright and Sanders (2008) distinguish between the layered and non-layered 

model in the construction of the coefficient matrix for teacher effects (Table 2.1). In the 

non-layered model, each student’s outcome in a given year is linked only to the current 

teacher. In contrast, the layered model links a student’s achievement to current and 

previous teachers within a given time span. Therefore, the coefficient matrix for the 

layered model can have several “1”s in a row, connecting past teachers with subsequent 

student outcomes. This approach accounts for the “correlation of future scores for 

students who [have] shared a past teacher” (Lockwood, McCaffrey, Mariano, et al., 2007, 

p. 126). 

    
      

Matrix for non-layered model 
 

Matrix for layered model 

                 
Student  Year  Teacher  A  B  C  A  B  C 

                 
01 

 
1 

 
A 

 
1 

 
0 

 
0 

 
1 

 
0 

 
0 

                 
01  2  B  0  1  0  1  1  0 

                 
01 

 
3 

 
C 

 
0 

 
0 

 
1 

 
1 

 
1 

 
1 

                 
02 

 
1 

 
B 

 
0 

 
1 

 
0 

 
0 

 
1 

 
0 

                 
02  2  C  0  0  1  0  1  1 

                 
02 

 
3 

 
A 

 
1 

 
0 

 
0 

 
1 

 
1 

 
1 

                                       
Note. The example used estimates one overall teacher effect for each teacher instead of a separate teacher 
effect for each year.  

 
Table12.1: Comparison of Coefficient Matrices for Teacher Effects in Non-Layered and 

Layered Models 
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2.3.2 Best Linear Unbiased Predictors 

 Teacher effects may be specified as either fixed or random effects depending on 

the intended scope of inference. If teacher effects are treated as fixed, the underlying 

assumption is the observed teachers are the only units of interest; conclusions drawn 

apply only to the teachers for whom data were collected. If teacher effects are specified 

as random, it is assumed the observed teachers represent a random sample from a 

population of teachers to which conclusions can be applied. Random teacher effects are 

estimated by best linear unbiased predictors (BLUPs), which are also referred to as 

shrinkage estimators (Raudenbush & Byrk, 2002; Robinson, 1991). This estimation 

procedure weights the average deviations of each teacher’s students’ scores from the 

overall average score. The weighting takes into account sample size and variability 

within, as well as across, teachers’ classrooms to “shrink” teacher effect estimates to the 

overall mean of the distribution of teacher effects, assumed to be zero. Each teacher’s 

random effect is estimated relative to all other teachers in the sample, and the variability 

of the estimated teacher effects is assumed to represent variability present in the 

population of teachers. Such shrinkage and relative estimation does not occur in the 

estimation of fixed effects. 

2.3.3 Impact of Model Specification on Teacher Effect Estimates 

Wright and Sanders (2008) explain the EVAAS model in further detail by 

comparing it to three other sub-models. The researchers use simple examples to illustrate 

the effect layered design matrices and/or within-student correlations have on estimated 

teacher effects. In these examples, Wright and Sanders (2008) use a special case of the 

linear mixed model (Laird & Ware, 1982), 
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eZuXβy  ,          (2.9) 

where y  is a vector of test scores, X  tracks the year of each test score, β  is a vector of 

overall mean scores for each year and Z is the coefficient matrix for u , the vector of 

random teacher effects, assumed to be normally distributed with 0u )(E  and 
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the number of students with test scores and s is the number of test scores for each student; 

residuals from different students are assumed to be independent, but measures on the 

same student are assumed to be correlated. The overall variance of test scores is 

  ,)( 0
2

0
2 VRZZRZDZyV   TTVar  where 2

2


  . Variance 

components are not estimated from the data, because the focus is on the estimation of 

fixed means and random teacher effects. In each of the examples, the ratio of teacher 

variance to residual variance, ,  is fixed at 1000 to reduce the amount of shrinkage in the 

teacher effect estimates and, subsequently, make the estimates easier to interpret; the 

within-student correlation, , is specified as either 0 or 0.7. Substituting 0V for ,V  0R  

for R  and tI for D  in the estimating equations for fixed and random effects does not 

change the estimates produced. 

One of the examples involves three years of scores for nine different students 

(Figure 2.3). These data can also be found in Table 10 of Wright and Sanders (2008). In 
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each year there are three different teachers: teachers A, B and C in year one; teachers D, 

E and F in year two; and teachers G, H and J in year three. As shown in Figure 2.3, the 

teachers fall into two different tracks: students who have teacher A or B in year one do 

not share any teachers over the course of the three years with the student who has teacher 

C in year one; students who have teacher A or B in year one either have teacher D or E in 

year two and teacher G or H in year three, whereas the student who has teacher C in year 

one has teachers F and J in years two and three, respectively. Subsequently, the estimated 

random effects of teachers depend on deviations for students in the teachers’ respective 

tracks, where deviations are the differences between students’ scores and the 

corresponding yearly mean. The students’ scores are also assumed to be scaled so 

changes in scores from year to year are meaningful.  

 

 

 

 

  

 

 

 

 

Figure32.3: Student Scores and Teachers over Time 

Estimates of random teacher effects are compared for four different models: 1) the 

non-layered model (NLM) with within-student correlations set to zero ),0(   

abbreviated NLM(0); 2) the non-layered model with ,7.0  abbreviated NLM(0.7); 3) 
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the layered model (LM) with ,0  abbreviated LM(0); and 4) the layered model with 

,7.0  abbreviated LM(0.7). For the previously described data, Wright and Sanders 

(2008) provide formulas for calculating the effects of the second and third year teachers 

using each of the four models. Estimated teacher effects during the first year are not 

value-added and, while estimated, are not discussed; students do not have previous scores 

from which to determine the value a year one teacher has added. In the formulas, “M” 

represents the mean of the deviation scores  Xβy   for a group of students, the 

subsequent integer indicates the year for which the deviations were calculated and the 

subscript denotes the students’ corresponding teacher(s). For example, M2D represents 

the average year two deviation score of students taught by teacher D, and M1DE 

represents the average year one deviation score of students taught by teachers D and E in 

year two. Differences in teacher effect estimating equations for the four models are 

discussed using this notation. 

The NLM(0) teacher effect estimates are merely unadjusted means of students’ 

deviation scores. For instance, the estimated random effect of teacher D in year two is the 

mean deviation score of students taught by teacher D during year two, 

 M2D = Σ(Score – Year Two Fixed Effect Mean) / Number of Students 

= {(440 – 500) + (380 – 500) + (500 – 500) + (440 – 500)} / 4 

= -60. 

Similarly, the estimated random effect of teacher G is the average deviation score of the 

students he or she taught in year three,  

 M3G = Σ(Score – Year Three Fixed Effect Mean) / Number of Students 
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= {(470 – 600) + (550 – 600) + (530 – 600) + (610 – 600)} / 4 

= -60. 

The NLM(0) estimates do not incorporate expected deviation scores, because within-

student correlations are assumed to be zero; no basis exists for which to obtain such 

expected deviations. Consequently, teachers with generally higher achieving students will 

appear to be more effective than teachers with generally lower achieving students, even 

when the latter have huge impacts on their students’ learning. 

The NLM(0.7) teacher effect estimates adjust the means of students’ deviation 

scores in a given year to account for students’ deviation scores in other years, as in 

analysis of covariance (ANCOVA). For example, the estimated random effect of teacher 

D in year two is the mean deviation score of students taught by that teacher during that 

time adjusted by the students’ expected deviation scores. The formula,  

M2D – b(M1D – M1DE) – b(M3D – M3DE), 

can be interpreted in three parts: M2D, b(M1D – M1DE) and b(M3D – M3DE). The mean 

deviation score of students taught by teacher D in year two, M2D, is -60; this is the 

NLM(0) estimate for teacher D.  

However, M2D is adjusted by the expected year one deviation score for students 

taught by teacher D in year two, b(M1D – M1DE). The coefficient, b, is the pooled within-

teacher multiple regression coefficient for predicting students’ year two deviation scores 

from their corresponding year one and year three deviation scores. In this example, b = 

  / (1 +  ) = 0.7 / (1 + 0.7) = 0.411765. The mean year one deviation score of students 

taught by teacher D in year two is: 
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 M1D = Σ(Year One Score for Students Taught by Teacher D – Year One Fixed 

Effect Mean) / Number of Students 

= {(370 – 400) + (350 – 400) + (430 – 400) + (410 – 400)} / 4  

= -10. 

The expected year one deviation score also incorporates the mean year one deviation 

score of students taught by teacher D or E in year two, 

 M1DE = {Σ(Year One Score for Students Taught by Teacher D – Year One Fixed 

Effect Mean) + Σ(Year One Score for Students Taught by Teacher E – Year 

One Fixed Effect Mean) } / Number of Students 

= {(370 – 400) + … + (410 – 400) + (330 – 400) + …. + (370 – 400)} / 8  

= -30. 

Hence, the students taught by teacher D in year two had an above-average deviation score 

in year one, b(M1D – M1DE) = 0.411765{(-10) – (-30)} = 8.235. 

The mean, M2D, is also adjusted by the expected year three deviation score for 

students taught by teacher D in year two, b(M3D – M3DE). The mean year three deviation 

score of students taught by teacher D in year two is: 

 M3D = Σ(Year Three Score for Students Taught by Teacher D – Year Three 

Fixed Effect Mean) / Number of Students 

= {(470 – 600) + (530 – 600) + (530 – 600) + (590 – 600)} / 4  

= -70. 

This mean is then compared to the mean year three deviation score of students taught by 

teacher D or E in year two, 
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 M3DE = {Σ(Year Three Score for Students Taught by Teacher D – Year Three 

Fixed Effect Mean) + Σ(Year Three Score for Students Taught by Teacher E 

– Year Three Fixed Effect Mean) } / Number of Students 

= {(470 – 600) + … + (590 – 600) + (550 – 600) + …. + (670 – 600)} / 8  

= -30, 

to produce an expected year three deviation score of 0.411765{(-70) – (-30)} = -16.471. 

 Together, these three parts comprise the NLM(0.7) estimate for the random effect 

of teacher D in year two: 

 M2D – b(M1D – M1DE) – b(M3D – M3DE)  

= -60 – 0. 411765{(-10) – (-30)} – 0.411765{(-70) – (-30)} 

= -60 – 0. 411765{20} – 0.411765{-40} 

= -51.8. 

Although slightly higher than teacher D’s NLM(0) estimate of -60, the estimate of -51.8 

still indicates teacher D had a lower than average teacher effect. The NLM(0.7) estimate 

is simply an adjusted mean of the students’ deviation scores. Although the adjustments 

based on expected deviations are conventional, some properties of these adjustments are 

undesirable. For instance, future scores are used to adjust for earlier scores, even though 

the covariate is potentially affected by the prior year teacher; this is typically 

inappropriate for ANCOVA and may also be inappropriate in this context. The NLM(0.7) 

estimate for the effect of teacher D uses the students’ third year deviation scores to adjust 

for their second year deviation scores, even though teacher D’s impact may also affect 

student performance in year three. Additionally, the NLM(0.7) estimates reduce a 
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teacher’s effect if his or her students’ subsequent deviation scores are above-average, i.e., 

a teacher is penalized if students go on to have higher than expected gains.  

The NLM(0.7) estimates are also susceptible to within-track centering of the 

covariates. The expected deviation scores are found by comparing a teacher’s mean 

student deviation score to the mean deviation scores of students in the same track rather 

than the mean deviation scores of all students for whom scores are available. For 

example, the NLM(0.7) estimate for teacher D uses M1DE and M3DE to center the year 

one and year three covariates, respectively. Teacher D and E’s students are not in the 

same track as teacher F’s student. Consequently, the year one and year three deviation 

scores of teacher F’s student do not impact the centering of the covariates for estimating 

teacher D and teacher E’s NLM(0.7) effects. Although these scores are included in the 

estimation of the year one and year three fixed effect means, the fixed effect means used 

in the calculation of M1D, M1DE, M3D and M3DE cancel when finding the differences 

(M1D – M1DE) and (M3D – M3DE). Therefore, teacher F’s student deviation scores do not 

affect the NLM(0.7) estimates of teacher D and E’s effects. Similarly, when estimating 

the NLM(0.7) effect for teacher F in year two, the year one and year three mean deviation 

scores are found for only the students in that same track. This example is particularly 

problematic, because the within-track centering of the covariates simplifies the formula 

for this estimate,  

M2F – b(M1F – M1F) – b(M3F – M3F), 

to be merely the unadjusted mean deviation score for teacher F’s student in year two, 

M2F, the same as the NLM(0) estimate; no adjustments are made, because the expected 

deviations are zero. 
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In year three, the NLM(0.7) estimates have similar issues. The estimated effect 

for teacher G in year three, 

M3G – b(M2G – M2GH) – b(M1G – M1GH), 

is the mean deviation score for teacher G’s students in year three, M3G, adjusted for the 

students’ performance in years one and two, b(M1G – M1GH) and b(M2G – M2GH), 

respectively. Although the covariates for years one and two are not affected by the year 

three deviation scores, the year three NLM(0.7) estimates are still susceptible to within-

track centering. Consequently, the NLM(0.7) estimates for teachers F and J do not 

account for the student’s previous performance and, therefore, are not truly value-added 

effects.  

The LM(0) teacher effect estimates are also adjusted means, but the estimates 

incorporate between-track differences and between-student correlations. For instance, the 

random effect of teacher D in year two is estimated using  

M2D – M1DE + 0.5[(M3D – M3DE) – (M2D – M2DE)]. 

The mean deviation score of students taught by teacher D in year two, M2D = -60, is 

adjusted by the mean year one deviation score for students taught by either teacher D or E 

in year two, M1DE = -30, and the performance of teacher D’s students in year three 

compared to year two, relative to students on the same track, 0.5[(M3D – M3DE) – (M2D – 

M2DE)] = 0.5[{(-70) – (-30)} – {(-60) – (-30)}] = -0.5. Together, these adjustments 

produce the estimated LM(0) effect for teacher D in year two, -35, which is higher than 

the NLM(0) estimate of -60, but still below the average teacher effect. The LM(0) effect 

for teacher F in year two simplifies to be  

M2F – M1F + 0.5[(M3F – M3F) – (M2F – M2F)] = M2F – M1F, 



29 

because this track consists of only one teacher in each year, nullifying the adjustment for 

future scores and reducing the teacher effect to simply a mean gain. However, in both of 

these estimates, the LM(0) effects account for between-track differences, unlike the 

NLM(0.7) estimates. The mean deviation of the previous year’s scores is track specific, 

but it incorporates the fixed effect mean for that year, which is estimated using data from 

all students, irrespective of track. This is contrary to the NLM(0.7) estimates, in which 

each fixed effect mean cancels due to the centering of each covariate. 

The LM(0) estimates also account for the between-student correlations induced by 

using the layered design matrix. Expected deviation scores are found based on deviation 

scores for students who have shared at least one common teacher. In the adjustment for 

teacher D’s effect, 0.5[(M3D – M3DE) – (M2D – M2DE)], teacher D is rewarded if his or 

her students perform better in year three than they did in year two, relative to other 

students on the same track. Likewise, if teacher D’s students have relatively worse future 

performance, his or her teacher effect estimate decreases; this is contrary to the 

estimation of the NLM(0.7) teacher effects. Although no future scores are available to 

obtain this type of adjustment for year three LM(0) teacher effect estimates, between-

student correlations are accounted for through the additional prior year adjustment in the 

teacher effect estimates. For instance, the formula for the LM(0) estimate for teacher G in 

year three is M3G – M2GH, where M2GH adjusts the year three mean deviation score for 

teacher G, M3G, by accounting for prior mean score deviations, between-track differences 

and between-student correlations. This type of adjustment also occurs in the year two 

LM(0) teacher effect estimates (e.g., M1DE for teacher D’s effect and M1F for teacher F’s 

effect). Yet, none of the LM(0) teacher effect estimates account for within-student 
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correlations, so expected deviations scores for a student cannot be based on other scores 

from the same student, only on scores of students who have shared the same teacher(s). 

 The LM(0.7) estimates account for both between- and within-student correlations. 

The LM(0.7) random effect of teacher D in year two is estimated using  

M2D – M1DE – 0.7(M1D – M1DE) + 0.5[(M3D – M3DE) – (M2D – M2DE)], 

which is similar to the LM(0) estimate. However, the LM(0.7) utilizes within-student 

correlations to obtain expected deviation scores for students based on other scores from 

those same students. The inclusion of the additional term, 0.7(M1D – M1DE), compares 

the mean year one deviation score for students who had teacher D in year two to the 

mean year one deviation score for students in the same track. The LM(0.7) estimate for 

teacher G in year three,  

M3G – M2GH – b(M2G – M2GH) – b(M1G – M1GH), 

also accounts for within-student correlations by incorporating the students’ prior mean 

deviation scores in both year one, b(M1G – M1GH), and year two, b(M2G – M2GH). By 

making use of both between- and within-student information, the LM(0.7) teacher effect 

estimates utilize expected deviation scores based on scores of students who have shared 

the same teacher(s), as well as other scores from the same student.  

 Table 2.2 displays the year two and year three teacher effect estimates from each 

of the four models discussed using the student scores graphed in Figure 2.3. Estimates are 

not included for year one teachers A, B and C, because their effect estimates cannot be 

described as value-added. However, comparing the year two and year three teacher effect 

estimates is particularly enlightening. As illustrated in Figure 2.3, student gains from year 

one to year two and from year two to year three support the notion teachers E and H had 
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relatively higher than average effects on student learning. Alternatively, the effects of 

teachers D and G on student gains from one year to the next were below average, while 

the effects of teachers F and J were average. The effects of teachers G and H are further 

magnified by considering each student’s score trajectory from year one to year two 

through the inclusion of within-student correlations; the students’ trajectories drastically 

change after teacher G’s and teacher H’s instruction, whereas the trajectory for teacher 

J’s student does not change.  

    Model 

           
Year 

 
Teacher 

 
NLM(0) 

 
NLM(0.7) 

 
LM(0) 

 
LM(0.7) 

           
2 

 
D 

 
-60 

 
-51.8 

 
-35 

 
-49 

           
  

E 
 

0 
 

-8.2 
 

35 
 

49 

           
  F  60  60  0  0 

           
3 

 
G 

 
-60 

 
-76.5 

 
-30 

 
-46.5 

           
  

H 
 

0 
 

16.5 
 

30 
 

46.5 

           
  

J 
 

60 
 

60 
 

0 
 

0 

Table22.2: Teacher Effect Estimates from NLM(0), NLM(0.7), LM(0) and LM(0.7) 

The non-layered models produce estimates reflecting mean deviation scores; 

NLM(0) estimates are merely unadjusted mean deviation scores, while NLM(0.7) are 

mean deviation scores adjusted for students’ prior and/or future achievement. 

Consequently, the teacher effect estimates for these models portray teachers F and J as 

highly effective teachers, simply because their student had higher than average scores in 

years two and three, not because the student showed higher than average growth. 
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Alternatively, the layered models produce estimates reflecting mean gains in deviation 

scores. As a result, teachers F and J had teacher effect estimates of zero for both layered 

models, because their student had relatively average mean gains and the student’s score 

trajectory did not change over time; the estimate of zero conveys the teacher did not have 

a value-added effect on the student’s learning. Additionally, accounting for within-

student correlations provides more information about student growth over time, pulling 

the other LM(0.7) teacher effect estimates further from zero than the LM(0) estimates for 

the same teachers. 

The variable persistence model (Equation 2.8) proposed by McCaffrey et al. 

(2004) allows teacher persistency parameters to vary. However, estimated persistency 

parameters tend to be near zero (Lockwood, McCaffrey, Mariano, et al., 2007; 

McCaffrey et al., 2004), so the teacher effect estimates from the low-persistency model 

approach the undesirable behavior of the NLM(0.7) estimates and do not appear to be 

value-added; estimates fail to account for between-track differences, and teachers are 

penalized for students who perform unexpectedly well in future years. As discussed by 

McCaffrey et al. (2004), the non-layered and low-persistency model estimates are also 

typically more susceptible to bias from omitted variables correlated with the level of 

student achievement than are the layered model estimates. In fact, the risk of 

overcorrecting teacher effects arises if non-instructional, time-invariant covariates 

beyond a school system’s control, such as race and poverty status, are included in the 

layered model. However, teacher effect estimates are susceptible to bias if variables 

correlated with gains in student achievement are omitted, irrespective of how teacher 

effect persistency is or is not specified. 
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In general, using the EVAAS layered model (Equation 2.6) to estimate teacher 

effects has advantages over other modeling approaches. The layered model accounts for 

both between- and within-student correlations to adjust for past and future student 

achievement scores. The model also uses all available scores, resulting in “less biased, 

more stable, more efficient estimates” (Wright & Sanders, 2008, p. 14) than either the 

gain score (Equation 2.2) or the covariate adjustment model (Equation 2.1). The use of 

multiple years of data allows estimates to be adjusted, thereby accounting for external 

pulses occurring in a given year and rewarding teachers whose students perform better 

than expected in the future. Overall, Wright and Sanders (2008) argue the EVAAS 

layered model is a competitive option for estimating teacher effects, because of its 

flexibility and adherence to value-added philosophy. 

 

2.4 Issues 

 
 Uncertainty remains concerning whether student background variables should be 

included as covariates. The EVAAS model does not include such covariates, but 

researchers can inappropriately extend this practice to other, less sophisticated 

longitudinal value-added models. Instead, decisions to model student-level covariates 

should be based upon the interaction of several factors: “the distribution across classes 

and schools of students with different characteristics, the relationship between the 

characteristics and outcomes, the relationship between the characteristics and true teacher 

effects, and the type of model used” (McCaffrey et al., 2003, p. 70). Bias of teacher effect 

estimates is an issue when students are disproportionately assigned to schools and/or 

classrooms based on background characteristics related to student outcomes and true 
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teacher effects. When student background characteristics are correlated with teacher 

effects, the inclusion of student-level covariates can mask the effects of teachers. Fixed 

effects estimation of the covariates overcorrects for these background characteristics and 

results in underestimation of true, random teacher effects. For example, if highly 

effective teachers are assigned to affluent students, socioeconomic status becomes a 

proxy for teacher quality and true teacher effects are underestimated. Ballou, Sanders, 

and Wright (2004) propose a strategy to adjust for bias when student characteristics are 

correlated with true teacher effects, but strategies to address the issue of bias resulting 

from contextual effects as a result of aggregate-level variables have yet to be developed. 

Ultimately, when deciding whether to control for covariates, researchers must choose 

between potentially confounding teacher effects with student-level variables and 

potentially biasing teacher effects. 

 Debates also continue about the persistency of teacher effects. The EVAAS 

(Equation 2.6) and cross-classified models (Equation 2.4) assume teacher effects persist 

undiminished into the future. As a result, prior teachers affect a student’s score in a 

particular year, but not a student’s gain in scores from one year to the next. Gain score 

models (Equation 2.2) implicitly make the same assumption in that gains do not rely on 

prior year teacher effects. Consequently, the models assume teachers do not affect 

students’ future growth. In the variable persistence model (Equation 2.8), however, 

student gains depend on prior teachers’ effects, because the differences between the 

current and previous year’s persistency parameters for teacher effects are not necessarily 

zero, as they are in complete persistence models. Similarly, covariate adjustment models 

(Equation 2.1) assume prior teacher effects influence student growth at the rates specified 
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by the coefficients for prior scores. Yet, the potential advantages of freely estimating 

persistency parameters need to be carefully weighed against the advantages of using a 

layered model; as the persistency parameters approach zero, correlations between future 

scores of students who shared a teacher in the past are no longer accounted for, 

eliminating one of the benefits of using the layered modeling approach (Wright & 

Sanders, 2008). 

 Other issues arise when linking teachers to student scores. In some cases, students 

have incomplete records, missing some or all of their teacher links in a given year. This 

can occur when students are taught by multiple teachers in a single subject. Specifically, 

students may transfer to different schools midyear, be team-taught and/or learn a subject, 

such as reading, in multiple teachers’ classes. Such instances result in complex teacher 

links, and linking a student’s outcome to only one (or even no) teacher in a particular 

year may confound an identified teacher’s effect with other, unidentified teachers’ 

effects. However, determining how to accurately reflect the effect of multiple teachers on 

a student is not straightforward and requires potentially unrealistic assumptions.  

Issues associated with the construction and scaling of instruments used to measure 

student achievement also exist. Typically, measures of student achievement are assumed 

to be on an interval scale, where any difference in scores has the same meaning at any 

point on the scale. For example, a student with test scores of 40 and 60 in consecutive 

years is assumed to have made the same amount of growth as a student with scores of 20 

and 40. However, linking scores from different tests to a single scale for comparisons 

across grades may require nonlinear transformations, where rates of growth no longer 

have the same meaning across all ability levels. As illustrated in the previous example, 
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students with different levels of ability may have the same rates of achievement on the 

original test scales, but after transforming the scores nonlinearly to a single 

developmental scale, the students could potentially have different rates of change; the 

change from 20 to 40 may be more or less significant than the change from 40 to 60 and 

may subsequently impact teacher effect estimates (McCaffrey et al., 2003). Teacher 

effect estimates may also be sensitive to the alignment of test content with curricula, and 

the weighting of test content to obtain one overall achievement score (Lockwood, 

McCaffrey, Hamilton, et al., 2007; Martineau, 2006). Yet, varying curricula and test 

content across grades amplify the complexity of measuring growth in a multidimensional 

domain, such as mathematics, and the potential impact of such test construction and 

scaling issues on teacher effect estimates should not be ignored. 

 

2.5 Summary and Future Work 

 
Value-added modeling techniques estimate the contribution of educational 

factors, such as teachers, to growth in student achievement, while allowing for the 

possibility to control for the effect of non-educational factors. Several value-added 

models for estimating teacher effects have been proposed as alternatives to current test-

based accountability procedures, such as AYP, but each has its respective advantages and 

disadvantages. Although these methods have the potential to identify highly effective 

teachers, teacher effect estimates are sensitive to different modeling specifications, 

including the persistency of teacher effects. Several statistical and psychometric issues 

exist, and sensitivity of teacher effects to such issues needs to be explored. Consequently, 

considerations should be made when defining what teacher effects really describe, and 



37 

teacher effect estimates should be linked to other valid measures of teacher effectiveness. 

Although value-added teacher effect estimates should not be used in isolation to make 

high-stakes decisions, value-added methodology can help researchers identify what 

characteristics highly effective teachers possess and motivate informed improvements in 

education (McCaffrey et al., 2003). 
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Chapter 3 

Estimating the Impact of a Professional Development Program on 
Student Learning 
 

3.1 Introduction 

 
Professional development programs focus on preparing teachers to meet the 

recent initiatives on improving the quality of mathematics instruction, but rigorous 

evaluations are needed to determine whether these programs are actually effective 

(Carey, 2004; Guskey, 1994; Hill, 2007a; Loucks-Horsley, Stiles, & Hewson, 1996; 

National Mathematics Advisory Panel [NMAP], 2008; Shaha, Lewis, O’Donnell, & 

Brown, 2004). According to Hill (2007a), 

Almost no local professional development—and even most efforts offered 

by respected university faculty, nonprofit, and commercial professional 

developers—is rigorously evaluated, in the sense of researchers looking 

for changes in teacher knowledge and instructional practice. Even more 

seldom do researchers investigate the effect on student learning. More 

often, evaluations simply ask participants to report whether and how the 

program affected their own teaching. (p. 122) 

However, teacher self-reports tend to be unreliable and subjective measures of program 

effectiveness (Borko, 2004; Wilson & Berne, 1999). 

Past research has examined the relationship between teaching quality and student 

learning, investigating the effect teachers’ degrees (Ackerman, Heafner, & Bartz, 2006; 

Rowan, Correnti, & Miller, 2002; Wayne & Youngs, 2003), coursework (Hill, Rowan, & 
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Ball, 2005; Wayne & Youngs, 2003), certification status (Ackerman et al., 2006; Hill et 

al., 2005; Rowan et al., 2002; Wayne & Youngs, 2003), teaching experience (Ackerman 

et al., 2006; Hill et al., 2005; Rowan et al., 2002; Wayne & Youngs, 2003), licensure 

examination scores (Wayne & Youngs, 2003), pedagogical practices (Ackerman et al., 

2006; Rowan et al., 2002) and amount of professional development (Ackerman et al., 

2006) have on student achievement. Recent efforts measure not only teachers’ 

mathematical content knowledge, but also their mathematical knowledge for teaching 

(Ball, Hill, & Bass, 2005; Hill, 2007b; Hill, Schilling, & Ball, 2004), examining its 

relationship to student achievement (Hill et al., 2005). Various covariate adjustment 

models and gain score models have been used in conjunction with statistical models, such 

as analysis of variance (ANOVA), analysis of covariance (ANCOVA) (Sanders, 2006) 

and hierarchical linear models (HLM) (Raudenbush & Bryk, 2002; Rowan et al., 2002; 

Wright, Sanders, & Rivers, 2006), to estimate teacher effects. However, researchers 

criticize these procedures for biasing teacher effects and/or modeling students’ 

achievement status instead of changes in achievement (Rowan et al., 2002), as well as for 

the methods’ approaches for handling missing data (Sanders, 2006). Unfortunately, 

“assertions about the magnitude of teacher effects on student achievement depend…on 

the methods used to estimate these effects and on how the findings are interpreted” 

(Rowan et al., 2002, p. 1536). 

Cross-classified models (Raudenbush & Bryk, 2002) and the Educational Value-

Added Assessment System (EVAAS) model (Sanders, Saxton, & Horn, 1997) are 

currently recommended over other models to provide estimates of teacher effectiveness. 

The EVAAS model is a longitudinal linear mixed effects model that has each student 
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serve as his or her own control, similar to the cross-classified model which models 

individual growth curves. Using the EVAAS model, Sanders et al. (1997) have been able 

“to produce estimates of school and teacher effects that are free of socioeconomic 

confoundings and do not require direct measures of these concomitant variables” 

(Wright, Horn, & Sanders, 1997, p. 58). In fact, Sanders (2000) claims, “Our research 

work…clearly indicates that differences in teacher effectiveness is the single largest 

factor affecting [students’] academic growth” (p. 334); teachers are the dominant factor 

impacting student progress (Sanders, 2004; Wright et al., 1997). Darling-Hammond 

(2000) adds, “[E]ffects of well-prepared teachers on student achievement can be stronger 

than the influences of student background factors, such as poverty, language background, 

and minority status” (Conclusions and Implications, ¶ 6). 

With teacher effectiveness linked to student achievement, questions remain about 

what factors influence the quality of teaching (Carey, 2004). Professional development is 

one factor thought to influence teaching quality. Desimone, Porter, Garet, Yoon, and 

Birman (2002) write, “Professional development is considered an essential mechanism 

for deepening teachers’ content knowledge and developing their teaching practices” (p. 

81). Various authors list characteristics of effective professional development programs 

(Desimone et al., 2002; Garet, Porter, Desimone, Birman, & Yoon, 2001; Guskey, 1994; 

Loucks-Horsley et al., 1996), but rigorous evaluations are needed to determine whether 

these programs actually affect teaching quality (Carey, 2004; Hill, 2007a; Loucks-

Horsley et al., 1996; NMAP, 2008; Shaha et al., 2004).  

Previous research has examined the relationship between teacher quality and 

student learning (Ackerman et al., 2006; Darling-Hammond, 2000; Hill et al., 2005; 
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Presley, White, & Gong, 2005; Rowan et al., 2002; Wayne & Youngs, 2003), while other 

research has investigated the value-added effects of teachers on student learning 

(McCaffrey, Lockwood, Koretz, Louis, & Hamilton, 2004; Rowan et al., 2002; Sanders 

& Rivers, 1996; Sanders et al., 1997; Wright et al., 1997). Yet, the relationship between 

teacher development and teacher practices, as well as student learning still needs to be 

explored (Fishman, Marx, Best, & Tal, 2003; Frome, Lasater, & Cooney, 2005; NMAP, 

2008).  

Existing research tries to estimate the effect of professional development 

programs with a dichotomous variable (Shaha et al., 2004; Stroup, 2007; Stroup & Fang, 

2006). Typically, teachers are assigned either a value of one to indicate their participation 

or a value of zero to indicate their absence of participation in a program. However, the 

discrete nature of this approach neglects the interactive nature of teachers and the 

possibility of creeping excellence, where program participants share their newly acquired 

knowledge and ideas with non-participating teachers. This approach also disregards the 

teachers’ varying degrees of participation and changes in practice. Hill (2007a) writes, 

“Although teachers might be required to engage in professional development, they are 

not required to learn from it” (p. 123). A teacher’s participation in professional 

development opportunities does not necessitate actual learning or changes in teacher 

beliefs and practices. It may also be the case a teacher’s absence of participation in a 

professional development program does not predicate his or her lack of teaching quality.  

Instead, estimating the change in a teacher’s effect on student achievement after 

participating in a professional development program can be an alternative approach for 

estimating the impact of such a program; this approach allows each teacher to serve as his 
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or her own control and helps address the complexities ignored by merely comparing the 

effects of participating teachers on student achievement to those of non-participating 

teachers. In this chapter, alternative methodology for using less-than-ideal longitudinal 

student achievement data to estimate the impact of a professional development program 

is proposed and applied to data collected from a mathematics professional development 

program, the Math in the Middle Institute Partnership (M2). The chapter concludes with a 

summary of the results and recommendations for future work.  

 

3.2 Methods for Estimating the Impact of a Professional Development Program on 
Student Learning 

 
In recent years, education systems, in theory, have held students to higher 

academic standards (No Child Left Behind, 2001) by holding states accountable for 

assessing measurable student outcomes. Research efforts have addressed issues 

associated with analyzing student achievement data (McCaffrey, Lockwood, Koretz, & 

Hamilton, 2003), but many of the recommended approaches have not been widely 

adopted because the required resources and high-quality longitudinal data are not readily 

available. Most value-added modeling (VAM) approaches require student achievement 

data to be vertically scaled, or at least linearly related, over time (McCaffrey et al., 2003). 

Such requirements limit analyses that can be conducted on available assessment data, 

which often are not on a single developmental scale. Few studies have addressed how to 

use value-added models to analyze achievement data not on a single developmental scale 

(Rivkin, Hanushek, & Kain, 2005), and even fewer have discussed how to use these data 

to estimate the impact of professional development on students. The purpose of this 

section is to investigate how to use a value-added model for analyzing longitudinal 
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student achievement data collected from a mixture of norm- and criterion-referenced 

assessments to estimate the impact of a professional development program on student 

learning. 

3.2.1 Background 

Multiple authors have championed the use of value-added models to analyze 

longitudinal student achievement data (Doran, 2003; Drury & Doran, 2003; Hershberg, 

Simon, & Lea-Kruger, 2004; Lissitz, 2005; Sanders et al., 1997). These methods fall into 

three categories: covariate adjustment models, gain score models and multivariate models 

(McCaffrey et al., 2003). Covariate adjustment models regress each student’s current 

achievement score on his or her prior year score, while gain score models treat the 

difference between two successive years’ scores as the response. Both methods require 

complete student records and lose information about a student’s performance over time 

by estimating models separately for each year. Although “covariate” methods do not 

require tests to be on a single developmental scale, “gain” methods do so changes in 

performance are not confounded with changes in tests (McCaffrey et al., 2003). 

Multivariate models jointly model all student scores, including relationships 

between each student’s set of outcomes. These approaches also accommodate missing 

data, making efficient use of all available information. One prominent multivariate 

longitudinal linear mixed model is the Education Value-Added Assessment System 

(EVAAS) layered model (Sanders et al., 1997). This approach assumes teacher effects are 

independent and persist undiminished over time and subject. A more general version was 

proposed by McCaffrey et al. (2004) where prior year teachers have variable 

contributions to current year scores. The variable persistence model only requires scores 
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be on linearly related scales, but the EVAAS model requires scores be on a single 

developmental scale (McCaffrey et al., 2003). Although computationally intensive, the 

layered modeling approaches have advantages over other methods (Sanders, 2006; 

Wright & Sanders, 2008). 

 Studies investigating VAM teacher effects provide evidence teachers have 

differing effects on student learning (Rivkin et al., 2005; Rowan et al., 2002; Wright et 

al., 1997) that persist over time (Sanders & Rivers, 1996), but these studies have 

shortcomings. Statistical and psychometric issues arise when estimating teacher effects 

using longitudinal student achievement data (McCaffrey et al., 2003). Lockwood, 

McCaffrey, Hamilton, et al. (2007) showed estimated VAM teacher effects are sensitive 

to the ways student achievement is measured. This is particularly problematic when 

scores are not on a single developmental scale. Rivkin et al. (2005) standardized 

criterion-referenced test scores to have a mean of zero and a standard deviation of one for 

each cohort of students within a given academic year to address differences between 

tests. However, students could not be matched to specific teachers, so only subject- and 

grade-level means were used to model gains. Although a Z-score approach has 

limitations (McCaffrey et al., 2003), it is more appropriate to use for modeling gains in 

achievement than raw test scores when instruments are not on the same scale. It is 

important to investigate how a Z-score approach can be used on less-than-ideal data to 

not only estimate teacher effects, but also the impact of a professional development 

program on student learning. 

3.2.2 EVAAS Layered Teacher Model 

For  a  single  subject,  such as mathematics,  a  simplified  version  of  the  EVAAS  
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model,  

eZtμy  ,          (3.1) 

is a special case of the linear mixed model (Laird & Ware, 1982) where y  is a vector of 

test scores, μ  is a vector of means, and Z is the coefficient matrix for t , the vector of 

random teacher effects, assumed to be distributed  I0 2, tN  . Random errors, ,e  are also 

assumed to be normally distributed with 0e )(E  and Re )(Var . Residuals from 

different students are assumed to be independent, but residuals on the same student are 

assumed to be correlated and are modeled using an unstructured within-student 

covariance structure. This complex covariance structure accounts for variables affecting 

students’ levels of achievement and is used instead of non-instructional student-level 

covariates (Wright & Sanders, 2008). 

    
      

Z matrix for non-layered model 
 

Z  matrix for layered model 

                 
Student  Year  Teacher  A  B  C  A  B  C 

                 
01  1  A  1  0  0  1  0  0 

                 
01 

 
2 

 
B 

 
0 

 
1 

 
0 

 
1 

 
1 

 
0 

                 
01 

 
3 

 
C 

 
0 

 
0 

 
1 

 
1 

 
1 

 
1 

                 
02  1  B  0  1  0  0  1  0 

                 
02 

 
2 

 
C 

 
0 

 
0 

 
1 

 
0 

 
1 

 
1 

                 
02 

 
3 

 
A 

 
1 

 
0 

 
0 

 
1 

 
1 

 
1 

                                             
Note. The example used estimates one overall teacher effect for each teacher instead of a separate teacher 
effect for each year.  
 

Table33.1: Comparison of Z Matrix in Non-Layered and Layered Models 
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Wright and Sanders (2008) distinguish between the layered and non-layered 

model in the construction of the Z matrix (Table 3.1). In the non-layered model, each 

student’s outcome in a given year is linked only to the current teacher. In contrast, the 

layered model links a student’s achievement to current and previous teachers within a 

given time span. Therefore, the Z  matrix for the layered model can have several “1”s in 

a row, connecting past teachers with subsequent student outcomes. 

3.2.3 Modified Layered Model 

To estimate the impact of a professional development program on student 

learning, the earlier model (Equation 3.1) can be modified to  

    .etZtZtZXμy  ccbbaaaaβ        (3.2) 

The random teacher effect is separated into a common teaching effect, 

 I0t 2,~ cc N  , and before and after professional development participation effects, 

 I0t 2,~ bb N   and  I0t 2,~ aa N  . cab ZZZ  and,  are the corresponding coefficient 

matrices for cab ttt  and, , respectively. The covariate, ,aβ  accounts for the impact of a 

professional development program, and aX  is the coefficient matrix to track 

participation. The intercept, μ, can be estimated to be the same value for all students.  

 The cab ZZZ  and,  matrices are constructed so that for each teacher, the teacher 

effect before participating in a professional development program is cbb ttp  , 

 II0p 22,~ cbb N   ; the teacher effect after the onset of participation is caaa ttp   , 

 IIXp 22,~ caaaa βN   ; and their covariance is   2, cab ppCov  . In this model, the 

teacher effects before and after program participation are assumed to have different 

variances, but not to be independent. This is a reasonable assumption, because teachers’ 
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effects before and after participating in a professional development program should be 

related. 

The difference between each participating teacher’s effects, a b a a bp p t t    , 

is specified as the impact of the professional development program on his or her students’ 

achievement. While Sanders et al. (1997) and others (McCaffrey et al., 2004) estimate 

separate teacher effects for each combination of grade and year in a set of longitudinal 

data, only two overall teacher effects (one before and one after participation) are 

estimated for each teacher over the time period spanned by the data. 

 Table 3.2 illustrates how the Z  matrices change in the modified model (Equation 

3.2). A new variable, “PD,” is added, indicating whether a teacher had participated in the 

professional development program (1) or not (0). The corresponding ab ZZ  and  matrices 

displayed  link each teacher to the student outcomes, while also distinguishing whether or  

     
        bZ matrix 

 aZ matrix 

                   
Student 

 
Year 

 
Teacher 

 
PD 

 
A 

 
B 

 
C 

 
A 

 
B 

 
C 

                   
01 

 
1 

 
A 

 
0 

 
1 

 
0 

 
0 

 
0 

 
0 

 
0 

                   
01 

 
2 

 
B 

 
1 

 
1 

 
0 

 
0 

 
0 

 
1 

 
0 

                   
01 

 
3 

 
C 

 
0 

 
1 

 
0 

 
1 

 
0 

 
1 

 
0 

                   
02 

 
1 

 
B 

 
1 

 
0 

 
0 

 
0 

 
0 

 
1 

 
0 

                   
02 

 
2 

 
C 

 
0 

 
0 

 
0 

 
1 

 
0 

 
1 

 
0 

                   
02 

 
3 

 
A 

 
1 

 
0 

 
0 

 
1 

 
1 

 
1 

 
0 

                                                   

Table43.2: Zb and Za Matrices 
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not the teacher had participated in the program. For example, students 01 and 02 both had 

teacher A. However, student 01 had teacher A before the teacher had participated in the 

program, while student 02 had teacher A after participation. Therefore, the bZ  matrix 

links student 01 to teacher A, while the aZ  matrix links student 02 to teacher A. The cZ  

matrix is the sum of the ab ZZ  and  matrices, resulting in the same Z  matrix for the 

layered model (Table 3.1). 

 3.2.4 Z-scores 

With the EVAAS model, changes in raw scores are not meaningful when test 

scores in successive years are not on a single developmental scale. To compensate for 

this problem, standard Z-scores can be used. More specifically, for grade i and student j 

in a given academic year, the original test score is ijS . The corresponding Z-score is 

.ij i
ij

i

S S
Z




  where .iS  is the average score for grade i, and i  is the standard deviation 

of scores in grade i.  

 In a given academic year, ijZ  indicates how many standard deviations the original 

score ijS  is away from the average score for a grade. Changes in Z-scores reflect changes 

in relative position across years for a group of students, but not necessarily changes in 

academic achievement, when measures are on different developmental scales (McCaffrey 

et al., 2003). The standardized scores allow for within-group comparisons across 

academic years. 

 The variance of a student outcome in an academic year is 2

1

22)( e

g

k
tkcyVar   



, 

where g is the number of grades for which data have been collected on a student through 
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that academic year. In the EVAAS model, 1kc  for all k, so the variance of an outcome 

inherently increases with g. When the standard Z-score is used as the response variable in 

Equation 3.1, its variance is restricted to one. Thus, the layered Z  matrix was 

standardized so 1
1

2 


g

k
kc  (Table 3.3). As shown in Table 3.3, Sanders et al.’s (1997) 

proposed method of equally weighting each previous and current teacher’s contribution 

to a student’s score in a given academic year was adapted to take into account the 

constraint imposed by the fact Z-scores, by definition, must have a variance of one. 

          
        Standardized layered Z matrix  Layered Z matrix 

                             
Student 

 
Year 

 
Teacher 

 
PD 

 
A 

 
B 

 
C 

 
A 

 
B 

 
C 

                   
01  1  A  0  1  0  0  1  0  0 

                   
01  2  B  1  2

1  
 2

1  
 0  1  1  0 

                   
01  3  C  0  3

1  
 3

1  
 3

1  
 1  1  1 

                   
02  1  B  1  0  1  0  0  1  0 

                   
02  2  C  0  0  2

1  
 2

1  
 0  1  1 

                   
02  3  A  1  3

1  
 3

1  
 3

1  
 1  1  1 

                                 
Table53.3: Standardized Layered Z Matrix 

The same method was also applied to the standardization of the cZ  matrix when 

using Z-scores as the response for Equation 3.2. The nonzero elements in the aZ  and bZ  
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matrices were then assigned the corresponding standardized weights from cZ (Table 3.4). 

Elements in the coefficient matrix, ,aX were defined as the sum of the standardized 

weights in the aZ  matrix to track the weighted frequency of previous and current teachers 

participating in the professional development program and attributed to each student 

outcome.  

              

          
Standardized bZ matrix 

 
Standardized aZ matrix 

                     
Student 

 
Year 

 
Teacher 

 
PD 

 aX  
 

A 
 

B 
 

C 
 

A 
 

B 
 

C 

                     
01  1  A  0  0  1  0  0  0  0  0 

                     
01 

 
2 

 
B 

 
1 

 2
1  

 2
1  

 
0 

 
0 

 
0 

 2
1  

 
0 

                     
01  3  C  0  3

1  
 3

1  
 

0 
 3

1  
 0  3

1  
 0 

                     
02 

 
1 

 
B 

 
1 

 
1 

 
0 

 
0 

 
0 

 
0 

 
1 

 
0 

                     
02 

 
2 

 
C 

 
0 

 2
1  

 
0 

 
0 

 2
1  

 
0 

 2
1  

 
0 

                     
02 

 
3 

 
A 

 
1 

 3
2  

 
0 

 
0 

 3
1  

 3
1  

 3
1  

 
0 

                                                       

Table63.4: Standardized Zb asnd Za Matrices 

 

3.3 Example: Math in the Middle Institute Partnership 

 

The Math in the Middle Institute Partnership (M2) is an NSF-funded mathematics 

professional development program at the University of Nebraska-Lincoln aiming to 

“create a University/Educational Service Unit (ESU)/Local School District partnership 
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with the capacity to educate and support teams of outstanding middle level (Grades 5-8) 

mathematics teachers to become intellectual leaders in their school, districts and ESUs” 

(Lewis, Heaton, McGowan, & Jacobsen, 2004, p. 1). One major component of M2 is the 

M2 Institute, a multi-year institute offering participants a coherent program of study to 

deepen their mathematical knowledge for teaching and develop their pedagogical and 

leadership skills. The second M2 project component is a research initiative to understand 

how changes in teachers’ mathematics teaching practice translate into measurable 

improvement in student performance. The program consists of six cohorts, or groups, of 

mathematics teachers in Nebraska whose entrances were staggered yearly, with the first 

cohort beginning in October, 2004. 

As part of the research initiative, this example focuses only on the analysis of 

student achievement data from 2003-04 to 2007-08. During this time, each school district 

in Nebraska was free to choose whatever student achievement measure it deemed 

appropriate; a variety of criterion- and norm-referenced tests were administered to 

various grade levels at various points during the school year across districts. 

Consequently, student achievement scores from different districts are not directly 

comparable. Considering these issues, attention is restricted to one of the larger 

participating school districts, Middleview Public Schools1 (MPS). Typically, MPS middle 

schools have roughly 27 students in a mathematics class. The district’s mobility rate has 

ranged between 14.29% and 17.82% since the 2003-2004 academic year. Data were 

collected from 317 MPS 5th-8th grade teachers who taught mathematics between the 

2003-04 and 2007-08 academic years, 37 of whom were M2 participants. Student 

achievement data were collected for 5th-8th grade students in the district (Table 3.5), as 
                                                 
1 Names are pseudonyms. 
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were survey data from the teachers. Yet, no existing statistical models were adequate to 

address the MPS assessment practice of administering a mix of norm- and criterion-

referenced tests to various grade levels each year. 

  
Academic year administered 

           
Grade  2003-2004  2004-2005  2005-2006  2006-2007  2007-2008 

           
5  MAT  MAT  MAT & CRT  MAT & CRT  MAT & CRT 

           
6 

 
MAT 

 
MAT 

 
MAT & CRT 

 
CRT 

 
CRT 

           
7 

 
MAT 

 
MAT 

 
MAT & CRT 

 
MAT & CRT 

 
MAT & CRT 

           
8  --  --  CRT  CRT  CRT 

Note. Dashes indicate no test was administered to that grade level in that year. MAT = Metropolitan 
Achievement Test. CRT = Criterion Referenced Test. 

 
Table73.5: MPS Middle School Assessments between 2003-04 and 2007-08 

 MPS has shared annual middle school student achievement data with M2 

researchers since the 2003-2004 academic year. This example examines the data from 

2003-04 to 2007-08. These data include several variables, such as each student’s grade 

level, mathematics teachers, mathematics courses and mathematics achievement scores. 

Within each grade level and year combination students took a criterion-referenced test 

(CRT) and/or the Metropolitan Achievement Test (MAT). The MAT is a norm-

referenced test whose purpose is to test “a broad range of students with real world 

content,” and contains questions to measure basic skills and knowledge, as well as 

“critical thinking processes and strategies” (Pearson, 2008, ¶ 1). The CRTs were 

developed by MPS mathematics teachers. Questions were written according to specific, 

predetermined MPS mathematics standards, exceeding the state mathematics content 
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standards. Students’ CRT scores reflect proficiency on the criteria, rather than relative 

academic performance. 

The EVAAS model used by Sanders et al. (1997) and the variable persistence 

model proposed by McCaffrey et al. (2004) require, respectively, scores from year-to-

year be on a single developmental scale or linearly related. Each of the two types of tests 

used by MPS has a different purpose and potentially measures different mathematical 

abilities. Scores are not provided on a single developmental scale, so changes in student 

achievement are not necessarily directly comparable from one grade to the next.  

3.3.1 Modified Layered Model Implementation 

The modified layered model (Equation 3.2) using standardized layered 

cab ZZZ  and, matrices was applied to the MPS middle schools mathematics achievement 

scores, standardized within each grade and academic year combination. When a student 

had scores available for both tests in a given academic year and grade combination, the 

CRT score was used in the analysis. This decision was made in conjunction with MPS 

senior personnel. They reported students tended to take the CRT more seriously than the 

MAT, because performance on the CRT is a component of students’ math course grades, 

and performance on the MAT is not. Additionally, curricula and assessment analyses 

performed by Smith (2004) revealed the CRT to be a better match to M2 goals than the 

MAT. Thus, CRT scores were used in years when students had both CRT and MAT 

scores.  

The majority of fifth grade scores were missing teacher links, because fifth grade 

student achievement data are part of the district’s elementary, rather than middle, school 

data set; with the exception of fifth grade scores linked to M2 participants, none of the 
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elementary data are linked to specific teachers. This was the lowest grade level for which 

data were collected, and removal of the scores would eliminate information about student 

performance in an entire grade level. Consequently, information key to establishing a 

baseline for student performance would be lost. Hence, missing fifth grade teachers 

effects were assigned the value zero. In the few other instances where teacher links were 

missing, the student scores were still included in the analysis to better track each 

student’s changes in achievement across time. 

In some cases, a student had more than one math teacher in a given school year. 

This is due to the MPS practice of assigning students performing below grade level in 

mathematics to a Mathematics Intervention class in addition to the regular grade level 

mathematics course; thus, students are enrolled in a second math course, in which they 

receive additional instruction in an effort to bring their achievement up to meet grade 

level standards. Prior to eighth grade, such intervention courses meet every other day 

(while mathematics classes meet daily); in eighth grade students attend both courses 

daily. While ideally students would have the same teacher for both the regular 

mathematics course and the intervention course, scheduling difficulties meant some 

students had two different teachers. When this happened, students were linked to the 

regular mathematics course teacher rather than the intervention course teacher.  

Using standard mixed models methodology (Littell, Milliken, Stroup, Wolfinger, 

& Schabenberger, 2006) with  ca ZZZZ b ||  and  '
c

'
a

'
b t|t|tt' , the effect of a 

teacher on student learning before participating in M2 was estimated as cbb ttp ˆˆˆ   and 

after as caaa ttp ˆˆˆˆ   . Estimates were obtained using REML implemented in the 

GLIMMIX procedure in SAS, Version 9.2 (SAS Institute Inc., 2008).  
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3.3.2 Results 

Table 3.6 shows the estimated variance components and fixed effects. The 

estimated variances of the before and after participation teacher effects are 0.179 and 

0.141, respectively, indicating the teacher effects before participating in M2  are estimated  

Parameter  Estimate  SE 

2
b   0.161  0.041 

2
a   0.124  0.052 

2
c   0.018  0.037 

2
5e   0.945  0.011 

2
6e   0.753  0.011 

2
7e   0.710  0.011 

2
8e   0.734  0.015 

6,5  
 0.656  0.010 

7,5  
 0.601  0.010 

8,5  
 0.591  0.012 

7,6  
 0.586  0.010 

8,6  
 0.568  0.012 

8,7   0.596  0.012 

   -0.065   0.008 

a   0.019  0.064 

 

Table 3.6: Variance Components and Fixed Effects Estimates 
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to be slightly more variable than the teacher effects after participation. The covariance 

between a teacher’s before and after participation effects is estimated to be 0.018, and the 

resulting estimated correlation is 0.112. Consequently, these variance components do not 

seem reasonable, because a teacher’s effect on student learning before participating in a 

professional development program is expected to be at least moderately correlated with 

his or her effect after participation. The overwhelming number of fifth grade scores with 

missing teacher links appears to create a lot of noise, as evidenced by the relatively large 

estimated fifth grade residual error variance, 0.945. Yet, subsequent residual errors on the 

same student are strongly related, with estimated correlations ranging between 0.710 and 

0.825. 

The estimated intercept, -0.065, is the starting point from which to base 

subsequent teacher impacts. Although the covariate accounting for program participation 

is not significantly different from zero, it is estimated to be 0.019 and allows the center of 

the distribution of teacher effects after participating in M2 to shift from the assumed mean 

of zero. 

Figure 3.1 compares the estimated before participation teacher effects for M2 

participants and non-participants, illustrating the mean teacher effect for program 

participants (mean = 0.053, standard deviation = 0.372, n = 37) is estimated to be slightly 

higher but not statistically (p = .1671) different than that of non-participants (mean =       

-0.038, standard deviation = 0.359, n = 280). From this, there do not appear to be 

strikingly obvious differences between non-participants and participants, prior to entering 

the program.  
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Note. The horizontal axis is in terms of standardized units. 

Figure43.1: Comparison of Before Participation Effects between Teachers Participating  
(n = 37) and Not Participating (n = 280) in M2 

The estimated impact of participation in M2 does not indicate a significant change 

in participants’ effects on student learning (Figure 3.2). The average difference between 

each M2 participant’s estimated after and before participation teacher effects is -0.030 

with a standard error of 0.080, while the median difference, -0.007, is slightly higher. 

This indicates the average change in each teacher’s predicted teacher effect after program 

participation is slightly, though not statistically (p = .7099, df = 36), different from zero. 

While these results do not suggest a participation effect, the potential for ceiling 

effects with criterion-referenced tests exists. The tests are constructed to determine 

whether students meet pre-determined proficiency levels on specific mathematics criteria, 

and it is possible for students to consistently answer most to all questions on these 

assessments correctly. In such instances, the tests are unable to detect changes in a 
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student’s achievement across time and, consequently, limit discernment of value-added 

teacher effects. Thus, some teacher’s value-added effects could be underestimated due to 

many students in teachers’ classrooms reaching the ceiling of the criterion-referenced 

tests, which is a limiting feature of the instrument, but not necessarily of the model.  

 

 

 

 

 

 

 

 

 

 
 
 
Note. The horizontal axis is in terms of standardized units. 

Figure53.2: Comparison of Differences between Before and After Participation Effects 
for MPS Teachers (n = 37) and a Subset of MPS Teachers (n = 22) Participating in M2 

Further inspection of the teacher effect estimates and the MPS student 

achievement data reveals nine teachers participating in M2 are linked to only fifth grade 

scores. Consequently, the teacher effect estimates for these fifth grade teachers are not 

truly value-added, because previous scores on which to base each student’s fifth grade 

achievement are not available. Additionally, six more teachers are not linked to any 

student scores before their participation in M2, so these teachers’ estimated before 

participation teacher effects are not meaningful. After removing these 15 teachers’ 

0
5

10
15
20
25
30
35
40
45

P
er

ce
nt

0

-1.8 -1.4 -1.0 -0.6 -0.2 0.2 0.6

0
5

10
15
20
25
30
35
40
45

P
er

ce
nt

1

diff

Subset of Participants

P
er

ce
nt

20

30

-0.2-0.6-1.0-1.4 0.2 0.6
Differences

P
er

ce
nt

0

10

30

40

20

0

10

30

40 Participants

-1.8

0
5

10
15
20
25
30
35
40
45

P
er

ce
nt

0

-1.8 -1.4 -1.0 -0.6 -0.2 0.2 0.6

0
5

10
15
20
25
30
35
40
45

P
er

ce
nt

1

diff

Subset of Participants

P
er

ce
nt

20

30

-0.2-0.6-1.0-1.4 0.2 0.6
Differences

P
er

ce
nt

0

10

30

40

20

0

10

30

40 Participants

-1.8



59 

estimated effects from the comparison, the average difference between each remaining 

teacher’s estimated after and before participation teacher effects is slightly higher (mean 

= 0.027, SE = 0.073, n = 22), and the median difference remains roughly zero (Figure 

3.2). Although the results do not indicate the M2 Institute had a significant impact on 

participating teachers’ effects on student learning, the instruments may not have been 

designed to detect such changes. In future research, the Survey of Mathematical 

Knowledge for Teaching (Hill, Schilling, & Ball, 2004) data, collected from teachers 

before and after M2 participation, will be used to investigate whether teachers’ gains in 

content knowledge for teaching mathematics during the program can be linked to the 

changes in teacher effects on student learning. 

 

3.4 Summary and Future Work 

 

Although a Z-score approach has limitations, it is an appropriate alternative to 

using raw data when analyzing less-than-ideal student achievement data across a mixture 

of norm- and criterion-referenced tests over time. This chapter addressed issues arising 

when using a layered, longitudinal linear mixed model to analyze gains in standardized 

scores, including weighting considerations for variance components. Additional studies 

should consider other weighting alternatives and investigate the impact of such variance 

component weighting schemes on the estimation of teacher effects. Because curricula and 

test content vary across grades, as do mobility rates, future research should also explore 

whether notable changes in a student’s Z-scores from year to year are associated with 

changes in mobility rates, curricula and/or test content. 
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Additionally, methods were proposed for estimating teacher effects on student 

learning before and after teacher participation in professional development programs. 

Although the specific example used does not indicate the M2 Institute had a significant 

impact on participating teachers’ effects on student learning, the instruments may have 

not been designed to detect such changes. When utilizing this methodology, determining 

whether the goals of the program align with what the instruments assess and 

acknowledging any existing limitations is essential. Further research should address the 

potential issue of censoring, and careful consideration needs to be given to what data are 

needed and how much baseline data should be obtained when estimating the impact of a 

professional development program. Ideally, these methods can be extended to other 

VAM approaches, as well as other professional development programs, and could 

eventually be used to establish potential relationships between changes in a teacher’s 

mathematical knowledge for teaching mathematics and changes in student achievement. 
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Chapter 4 

Using Parallel Processing Methodology to Estimate Teacher Effects 
 

4.1 Introduction 

 
In recent years, education systems, in theory, have held students to higher 

academic standards (No Child Left Behind, 2001) by holding states accountable for 

assessing measurable student outcomes. Research efforts have addressed issues 

associated with analyzing student achievement data (McCaffrey, Lockwood, Koretz, & 

Hamilton, 2003), but many of the recommended approaches have not been widely 

adopted because the resources and high-quality longitudinal data required for these 

approaches are not readily available. Most value-added modeling approaches require 

student achievement data to be vertically scaled, or at least linearly related, over time 

(McCaffrey et al., 2003). Such requirements limit the analyses that can be conducted on 

available assessment data, which often are not on a single developmental scale. Few 

studies have addressed how to use value-added models to analyze achievement data not 

on a single developmental scale (Green, Smith, Heaton, Jiao, & Stroup, under review; 

Rivkin, Hanushek, & Kain, 2005), and even fewer, perhaps none, have discussed how to 

use information from multiple instruments in a single year that are on different scales, 

potentially both within and between instruments over time. Section 4.2 describes how to 

use parallel processing, specifically curve-of-factors, methodology to analyze 

longitudinal student achievement data collected from two different assessments in a 

single subject, such as mathematics, and estimate teachers’ effects on student learning. 
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Assuming data come from a curve-of-factors model structure, a simulation study 

described in Section 4.3 evaluates the performance of the proposed curve-of-factors 

model in its ability to accurately rank teachers in the presence of either complete or 

missing test data. The performance of the curve-of-factors model is then compared to that 

of the Z-score methodology proposed in Chapter 3. The chapter concludes with a 

summary of the results and recommendations for future work. 

 

4.2 Parallel Processing Methodology 

 
Growth curve models analyze differences in individuals’ changes on repeated 

measurements over time. Growth curve models can be specified either within a multilevel 

modeling framework as a random coefficients regression model (Raudenbush & Byrk, 

2002) or within a structural equation modeling (SEM) framework as a latent growth 

curve model (Little, Bovaird, & Slegers, 2006). In a random coefficients model, an 

average growth curve is estimated for all individuals. Because growth curves differ 

between persons, each individual’s random deviations from the average trajectory are 

also modeled, capturing individual variability around the average trajectory of change 

(Raudenbush & Byrk, 2002). Although a latent growth curve model can be specified as a 

random coefficients model in the multilevel framework, modeling growth models within 

the SEM framework has the advantage of allowing researchers to model changes in a 

latent construct over time (Little et al., 2006). This is particularly beneficial when 

modeling multiple outcome measures, instead of a single measure across time. In such 

instances, parallel process, or multivariate, growth curve models estimate the relationship 
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between the growth trajectories for each of the parallel measures and allow researchers to 

investigate changes in latent factors over time instead of changes in observed scores. 

4.2.1 Introduction to Parallel Processing 

Multivariate, or parallel process, growth curve models “model univariate growth 

in the context of multiple parallel measures and relate those multiple outcomes to each 

other” (Little et al., 2006, p. 193). One type of multivariate growth curve model is the 

associative latent growth curve model (Little et al., 2006). This type of model first 

establishes the univariate latent growth curve model structures for each of the constructs, 

or processes, measured over time and then estimates the correlations between the growth 

factors for all of the constructs. This type of model allows researchers to estimate the 

relationship between the growth trajectories of multiple constructs measured over time. 

For example, Cheong, MacKinnon, and Khoo (2003) used an associative latent growth 

model in a mediation analysis context. In the study, Cheong et al. (2003) explored the 

impact a drug prevention program had on the growth factors of two different, parallel 

processes: the mediator process (perceived importance of team leaders) and the outcome 

process (nutrition behaviors) for high school football players. Structural relations in a 

mediation model were used to analyze the effect of participation in the prevention 

program on initial status and change in both the perceived importance of team leaders and 

the nutrition behaviors over time. The authors also used structural relations, instead of 

correlations, to explore whether initial status in each of the constructs predicted change in 

the other construct and whether change in perceived performance of team leaders 

predicted change in nutrition behaviors over time. In this sense, Cheong et al. (2003) used 

an associative growth curve model to estimate the relationship between the latent growth 
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curves of perceived performance of team leaders and the nutrition behaviors over time. 

Similarly, Roesch et al. (2009) used an associative growth curve model to explore the 

relationship between the growth trajectories of various mediator processes (psychosocial 

constructs) and the growth factors of an outcome process (physical activity constructs) in 

adolescents over time. The authors also used a mediation model to estimate the effect of a 

health promotion intervention program on those growth factors. 

Another type of multivariate growth curve model is the factor-of-curves model 

(Little et al., 2006). Similar to the associative growth curve model, the factor-of-curves 

model first establishes the univariate growth trajectories for each of the constructs 

measured over time. However, instead of estimating the correlations or structural 

relations between the latent growth factors for the constructs, this type of model uses 

higher-order growth factors to represent the relationship between the latent growth curves 

of the processes. This type of model allows researchers to determine whether the growth 

trajectories for multiple constructs measured over time can be summarized by a common, 

higher-order latent growth curve. Duncan, Duncan, and Strycker (2000) used a factor-of-

curves model to analyze the relationship between the initial status and rate of change in 

four different behaviors (drug use, marijuana use, deviance and academic failure) of 

adolescents across time. Instead of correlating the growth factors, the factor-of-curves 

model allowed them to specify a higher-order latent growth curve of problem behavior 

with one common initial status and one common rate of growth to describe the 

relationship among growth trajectories of the lower-order constructs. 

The last type of multivariate growth curve model discussed in this chapter is the 

curve-of-factors model (Little et al., 2006). This type of model is used to estimate a latent 
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growth curve to describe changes in a latent construct measured by multiple indicators 

over time. For instance, mathematics achievement can be measured by multiple 

instruments in a given year. Across time, changes in the latent factor can be described by 

a higher-order growth curve. This allows researchers to investigate change over time 

based on a student’s common, latent trait, instead of a student’s observed scores. The 

following section describes the use of a modified version of this type of model in a value-

added context, where the latent factors are allowed to covary instead of have a specific 

growth trajectory over time. 

4.2.2 Parallel Processing in a Value-Added Context 

Parallel processing, specifically curve-of-factors methodology, applied in a value-

added context can extend the analysis of student achievement data to situations in which 

multiple tests with potentially different scales are given each year in a particular subject. 

Instead of estimating a teacher’s effect on changes in a student’s scores over time, curve-

of-factors models can allow the estimation of a teacher’s effect on changes in some 

common, latent trait measured by the multiple instruments in each year. These models 

can  be  extended  to account  for  longitudinal  student   achievement  data cross-classified  in  

 

Figure64.1: Visual of Cross-Classified Data Structure 

Level 1 

Level 2 

Teachers, 
Time 1 

Teachers, 
Time 2 

Teachers, 
Time 3 

Teachers, 
Time 4 

Students 



66 

nature. Figure 4.1 shows an example of such a structure, where students at level one are 

nested within level two teachers’ classrooms at each time. However, not all students who 

have the same teacher at one time have the same teacher at another time, resulting in a 

cross-classified structure. 

The level one curve-of-factors model shown in Figure 4.2 has two indicators, or 

observed measurements, e.g., CA1 and MA1, of a latent trait at each of the four time 

points. The latent factors A1-A4 represent the latent trait of interest, e.g., achievement, at 

each of the times. The set of latent factors for a single individual is assumed to follow a 

multivariate normal distribution with a mean vector of zero and an unstructured 

covariance matrix. The covariance between two latent factors is represented by a two-

sided arrow connecting the two factors, with the variance of a factor represented by a 

self-connecting arrow. Latent factors are assumed independent across students. The 

measurement error variance of an indicator or test, i.e., the portion of an indicator’s 

variance not explained by the underlying construct, is also estimated and represented by a 

 

* Freely estimated (i.e., unconstrained) parameter.  
 

Figure74.2: Level One Curve-of-Factors Model 
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self-connecting arrow. All measurement errors are assumed to be independent both 

within and across students, with constant variance across indicators and time. The 

loadings, or coefficients, regressing the indicators on their corresponding factors, or 

constructs, are constrained to one for identification purposes. 

Including the level two teacher effects in the curve-of-factors model structure 

(Figure 4.2) cannot be easily depicted in a diagram because of the cross-classified nature 

of the data. Instead, this relationship can be given by the model equations, 

 
at

 A Z t d
         

(4.1)
 

and
  

      
2 ,   y Xβ A 1 e

        
(4.2)

 
which can be combined into one overall equation, 

    
t d   y Xβ Z t Z d e ,        (4.3) 

where 2at t Z Z 1 , 2d  Z I 1  and 2A 1  adjust for the shift from one response (i.e., 

the latent factor) at level two to two responses (i.e., the test indicators) at level one in 

each year. In Equation 4.3, y  is the vector of test scores, X  is the coefficient matrix for 

β , the vector of test means, and tZ  is the coefficient matrix for t , the vector of random 

teacher effects on latent factors, which can be assumed to be distributed  I0 2, tN  . As 

indicated in Equation 4.1, the teacher effects are estimated based on changes in a 

student’s common, latent trait, instead of on changes in a student’s scores over time. 

Including teachers in this manner changes the constructs, A1-A4, from exogenous, or 

independent, factors, as illustrated in Figure 4.2, to endogenous, or dependent, factors. 

Consequently, the variance of a factor originally represented by a self-connecting arrow 
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in Figure 4.2 is replaced by a disturbance, or term representing factor-level variability not 

attributed to teachers. Additionally, the unstructured covariance matrix is no longer for 

the set of latent factors, but instead for the set of disturbances for the latent trait across 

time. The vector of random, factor-level disturbances, d , can be assumed to be normally 

distributed with ( )E d 0  and 

2
1 1, 2 1, 3 1, 4

2
2, 1 2 2, 3 2, 4

2
3, 1 3, 2 3 3, 4

2
4, 1 4, 2 4, 3 4

( )

d d d d d d d

d d d d d d d

d d d d d d d

d d d d d d d

Var

   
   
   
   

  
  
     
      

d I , where 

disturbances for the same student are allowed to covary but disturbances for two different 

students are assumed to be independent; dZ is the corresponding coefficient matrix. 

Random test measurement errors, e , can be assumed to be normally distributed with 

0e )(E  and 2( ) eVar e I . 

Equation 4.3 can be extended to a layered model in which teacher effects are 

assumed to persist undiminished over time. Wright and Sanders (2008) distinguish 

between the layered and non-layered model in the construction of the tZ  matrix (Table 

4.1). In the non-layered model, each student’s outcome for a given indicator is linked 

only to the current teacher. In contrast, the layered model links a student’s achievement to 

current and previous teachers within a given time span. Therefore, the tZ  matrix for the 

layered model can have several “1”s in a row, connecting past teachers with subsequent 

student levels of the latent trait. Because multiple indicators are available in a given year, 

two outcomes in the same year in either the non-layered or the layered model are 

identically linked to teachers in the respective tZ  matrix. 

 

 



69 

tZ matrix for non-layered model 
 

 tZ matrix for layered model 

Student   Indicator   Teacher    A   B   C   D   A   B    C   D 

1 CA1 A 1 0 0 0 1 0 0 0 

1 MA1 A 1 0 0 0 1 0 0 0 

1 CA2 B 0 1 0 0 1 1 0 0 

1 MA2 B 0 1 0 0 1 1 0 0 

1 CA3 C 0 0 1 0 1 1 1 0 

1 MA3 C 0 0 1 0 1 1 1 0 

1 CA4 D 0 0 0 1 1 1 1 1 

1    MA4    D    0   0   0   1   1   1    1   1 
Note. The example used estimates one overall teacher effect for each teacher instead of a separate teacher 
effect for each year.  
 

Table84.1: Comparison of Z Matrix in Non-Layered and Layered Models 

 

4.3 Example: Student Achievement Simulation Study 

 

The analysis of student achievement data can be challenging, particularly when 

high-quality longitudinal data on a single developmental scale are not readily available. 

Student achievement data from Middleview Public Schools2 (MPS) exhibit such 

complexities. Over time, a variety of criterion- and norm-referenced tests have been 

administered across the middle-level grades within MPS schools. As shown in Table 4.2, 

student achievement data were collected for 5th-8th grade students in the district between 

the academic years 2003-2004 and 2007-2008. Green et al. (under review) proposed Z-
                                                 
2 Names are pseudonyms. 
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score methodology to address the MPS assessment practice of administering a mix of 

norm- and criterion-referenced tests to various grade levels each year. However, the 

proposed method does not use information from multiple instruments administered in a 

given year; in each year, scores from only one instrument are used. Thus when multiple 

assessments are given in a year, the researcher must choose which test to use. A 

simulation study was conducted to compare the use of a Z-score model to a curve-of-

factors model when data were simulated assuming a curve-of-factors model structure. Of 

particular interest was how estimated teacher effects and percentiles change when 

analyzing data with this alternative approach instead of the correct model. Model 

parameters specified for the simulation were based on summary statistics obtained from 

the MPS student achievement data. Comparisons across models were made for both a 

complete and a missing tests case to investigate the impact of having only one, instead of 

two, indicators of a construct in one or more years. 

Note. Dashes indicate no test was administered to that grade level in that year. MAT = Metropolitan 
Achievement Test. CRT = Criterion Referenced Test. 

 
Table94.2: MPS Middle School Assessments between 2003-04 and 2007-08 

 

  
Academic year administered 

           
Grade  2003-2004  2004-2005  2005-2006  2006-2007  2007-2008 

           
5  MAT  MAT  MAT & CRT  MAT & CRT  MAT & CRT 

           
6 

 
MAT 

 
MAT 

 
MAT & CRT 

 
CRT 

 
CRT 

           
7 

 
MAT 

 
MAT 

 
MAT & CRT 

 
MAT & CRT 

 
MAT & CRT 

           
8  --  --  CRT  CRT  CRT 
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4.3.1 Simulation Study Description 

Student achievement data were simulated for 2,000 students over the course of 

four years. Each year, data were simulated from two different instrument scales assuming 

a curve-of-factors model structure (Equation 4.3), for a total of eight observations per 

student. The MA-indicators and the CA-indicators, representing the MAT and CRT 

assessments in the MPS data set, were simulated assuming the following mean structures: 

 2000 62 84 54 70 and
T1  2000 ,

231 234 236 239
T1  respectively. The total 

variance for each indicator was 225 units squared. Random measurement errors, ,e were 

assumed to be normally distributed with ( )E e 0  and  2
2000 8( ) eVar   e R I I . 

Measurement error variances were simulated to be equal for both instruments across all 

four years, with 20 percent ( 2
e = 45) of the total indicator variance representing 

measurement error variance. Factor-level disturbances were simulated assuming an 

unstructured within-student covariance structure. The vector of random, factor-level 

disturbances, d , was simulated assuming the covariance structure, 

2000

157.5 116.7 99.8 83.3

116.7 135 98.6 82.7
( )

99.8 98.6 112.5 80.5

83.3 82.7 80.5 90

Var

  
  
     
     

d I , where disturbances for the same 

student were allowed to covary but disturbances for two different students were assumed 

to be independent. Because a layered model with complete persistence was assumed, the 

variances of a student’s outcomes in an academic year are 

2 2 2

1

( ) ( )
g

g

g g t d e
k

Var CA Var MA   


    , where k = 1, 2, …, g represents the years for 

which data were collected on a student through that academic year. Consequently, the 
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variance of an outcome inherently increases with g unless other adjustments are made. 

For this simulation, the disturbances were simulated to have decreasing variance over 

time to adjust for the assumed complete persistency of teacher effects, as specified by the 

layered tZ  coefficient matrix, and the subsequent increase in variability accounted for by 

teachers across time. An alternative approach would be to allow indicator variances to 

increase over time, but the MPS student achievement data motivating the simulation did 

not support the use of this strategy. Within each year, 20 different teachers were each 

randomly assigned 100 students. The vector of random teacher effects, t , was assumed to 

be distributed  2
80, tN 0 I  with constant variance, 2

t = 22.5.  

Each of the 1000 simulations was analyzed using both the curve-of-factors model 

from which the data originated (Equation 4.3) and an alternative approach, referenced in 

this chapter as the Z-score model. The Z-score model,  

t  z μ Z t e ,          (4.4) 

 is a modified version of the EVAAS model (Sanders, Saxton, & Horn, 1997), where tZ  

is a standardized layered coefficient matrix (Green et al., under review) and z  is a vector 

of simulated achievement scores, standardized within each year for each of the two 

different types of instruments. The vector of standardized test scores for an instrument, 

z , is modeled by an overall intercept, μ , and a vector of random teacher effects, t , 

assumed to be distributed  2
80, tN 0 I . Random errors, ,e  are also assumed to be 

normally distributed with 0e )(E  and Re )(Var . Residuals from different students are 

assumed to be independent, but residuals on the same student are assumed to be 

correlated and are modeled using an unstructured within-student covariance structure. 
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Because a student had scores available for both tests in all four years, the Z-score method 

was applied twice: once using MA scores across all four years (MA Z-score model) and 

once using CA scores (CA Z-score model). 

 The 1000 simulated data sets were also modified to reflect one pattern of 

missingness occurring in the MPS data. The modified data sets were identical to those 

previously described; however, it was assumed the CA1 and the MA4 assessments were 

not given. Therefore, those simulated test scores were removed from the original data 

sets. Each of the 1000 modified simulations were analyzed using both a curve-of-factors 

model (Equation 4.3), where the random measurement errors, ,e were assumed to be 

distributed   2
2000 6, eN  0 I I , and the Z-score model (Equation 4.4). As shown in 

Table 4.3, three different Z-score models were specified in the missing tests case. The 

CA Z-score model used the standardized CA scores as its response when both 

instruments were administered in the same year. Alternatively, the MA Z-score model 

used the standardized MA scores when available.  In the third Z-score model, the  MA/CA 

  
Year 

          
Model 

 
1 

 
2 

 
3 

 
4 

 
          

Curve-of-factors 
 

MA1 
 

MA2 & CA2 
 

MA3 & CA3 
 

CA4 
 

          
CA Z-score  MA1  CA2  CA3  CA4  
          
MA Z-score 

 
MA1 

 
MA2 

 
MA3 

 
CA4 

 
          
MA/CA Z-score 

 
MA1 

 
MA2 

 
CA3 

 
CA4 

 
 

Table104.3: Assessments used as Responses for Simulation Analysis with Missing Tests 
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model, the standardized MA2 assessment scores were specified as the response in year 

two, and the standardized CA3 assessment scores were specified as the response in year 

three. This third Z-score model differed from the other two because it used scores from 

the same type of instrument in two subsequent years rather than three subsequent years.  

Data were simulated in SAS, Version 9.2 (SAS Institute Inc., 2008), and teacher 

effect estimates were obtained for each set of analyses using REML implemented in 

ASReml, Version 3.0 (Gilmour, Gogel, Cullis, & Thompson, 2009). For each simulation 

and model combination, the teacher effect estimates were ranked within year. Among the 

20 teachers in a given year i, the rank of the kth teacher, ( )
ˆ

k iR , was between 1 and 20, 

where ( )
ˆ 1k iR   was assigned to the smallest estimated teacher effect and ( )

ˆ 20k iR   to the 

largest. In instances where multiple teachers had the same predicted teacher effect, the 

teachers were assigned the mean of those corresponding ranks. The true teacher effects 

for each simulation were similarly ranked and denoted ( )k iR . The corresponding 

percentiles, ( )k̂ iP  and ( )k iP , are defined as ( )
( )

ˆ
ˆ 100

20 1
k i

k i

R
P

 
    

 and ( )
( ) 100

20 1
k i

k i

R
P

 
   

, 

respectively. The mean squared error of the estimator, ( )
ˆ

p

m
k iP , for estimating the true 

percentile, p, of teacher k in year i with model m,  2

ˆ ( )
ˆ ,

p

m m
k iiP

MSE E P p p    
 was 

estimated as   
1000 2

ˆ
( )

1

1
ˆ ,

1000 p

m
m

iP qk i
q

MSE p p


      where ( )ˆ
p

m
qk ip  is the percentile estimate 

from model m for teacher k whose true percentile is p in year i and simulation q 

(Lockwood, Louis, & McCaffrey, 2002). Taking into account scaling considerations, the 

square root of  ˆ
m

iPMSE ,  ˆ
m

iPRMSE , was compared across true percentiles and models within 
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each time. For a given percentile p, the bias and standard error of the estimator, ( )
ˆ

p

m
k iP , 

 ˆ ( )
ˆ

p

m m
k iiP

Bias E P p p    
and  ˆ ( )

ˆ
p

m m
k iiP

SE Var P p p    
 were estimated as 

  
1000

ˆ
( )

1

1
ˆ

1000 p

m
m

iP qk i
q

Bias p p


    and   ˆ
( )ˆ

p

m
m

iP qk iSE Var p p p    
, respectively. 

4.3.2 Results 

 For the Z-score models, the means and standard errors of the estimated teacher 

effect variance components are almost identical in the complete and missing tests 

scenarios. The same is true for the curve-of-factors model. In both the complete and the 

missing tests cases, the means and standard errors of the estimated teacher effect 

variances for the Z-score models are all 0.27 and 0.04, respectively. This finding is 

expected, because the only difference between a student’s mean-centered MA and CA 

scores for a given year is the random measurement error, assumed to have constant 

variance across test and year. The curve-of-factors models in the complete and missing 

cases have similar means and standard errors of the estimated teacher effect variances, 

with averages for both cases of 22.59 and standard errors of 3.72 and 3.73 for the 

complete and missing tests scenarios, respectively. The means of the estimated teacher 

effect variance components for the curve-of-factors models are close to the true teacher 

effect variance, 22.5, but this is to be expected because the data are generated assuming a 

curve-of-factors structure with complete data for all eight tests. The means of the 

estimated teacher effect variances for the Z-score models, 0.27, indicate teachers are 

estimated to account for approximately 27% of the total variability present in the data, or 

60.75 units squared (as opposed to the true teacher effect variance, 22.5). This result 

appears contrary to what the curve-of-factors models suggest, but the increasing 
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proportion of total variability accounted for by teachers each year is modified in the Z-

score models through the standardized layered tZ  coefficient matrix. Consequently, the 

percent of total variability accounted for by teachers in the Z-score models is a weighted 

average of the increasing proportion of total variability attributed to teachers in the 

simulation across years.  

 Figure 4.3 shows the estimated RMSE for the different models with complete and 

missing tests for specific percentiles across the four years. The estimated RMSE is largest 

at the middle percentiles for all models, indicating the difficulty of accurately predicting a 

teacher’s true rank increases as the teacher’s true percentile moves toward the average. In 

year one, the estimated RMSE across percentiles is larger than that of the other three 

years, irrespective of the availability of all test scores or the model used. Across 

percentiles, the estimated RMSE does not change drastically from the complete to the 

missing case for the Z-score models. However, the magnitude of the estimated RMSE 

across percentiles for the curve-of-factors model that is noticeably smaller in the 

complete tests case tends toward the magnitude of the estimated RMSE of the Z-score 

models in the missing tests case. 

The estimated bias at specific percentiles for the various models ranges from 

approximately two percentiles above to three percentiles below the true percentiles across 

the four years. As depicted in Figure 4.4, the bias at the extreme percentiles is largest in 

year one for all of the models, irrespective of whether data for all eight tests are available. 

Similar to the pattern evidenced in the RMSE plots, the estimated bias across percentiles 

does not change drastically from the complete to the missing case for the Z-score models. 

Again, the noticeably smaller magnitude of the estimated bias across percentiles for the  
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Figure84.3: Comparison of  ˆ
m

iPRMSE  for the Curve-of-Factors (solid), CA Z-score (dash) 
and MA Z-score (dotted) Models with Complete and Missing Tests, and MA/CA Z-score 

(dot-dash) Model with Missing Tests for Specific Percentiles and Years 
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Figure94.4: Comparison of  ˆ
m

iPBias  for the Curve-of-Factors (solid), CA Z-score (dash) 
and MA Z-score (dotted) Models with Complete and Missing Tests, and MA/CA Z-score 

(dot-dash) Model with Missing Tests for Specific Percentiles and Years 
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curve-of-factors model in the complete tests case increases toward that of the Z-score 

models in the missing tests case. Because the magnitude of the bias is relatively small, 

the patterns present in the plots of the estimated standard errors of the estimator, ˆ
p

m
ikP , for 

specific percentiles are all but identical to those of the RMSE plots in Figure 4.2. 

Figure 4.5 depicts the estimated sampling distributions of the estimator, ˆ
p

m
ikP , for 

teachers truly at the 48th percentile and teachers truly at the 76th percentile. Because the 

simulation has only 20 teachers each year, the 48th and 76th percentiles are closest to the 

true percentiles of interest, the 50th and 75th percentiles. These distributions are compared 

across all years for the curve-of-factors and MA Z-score models with complete and 

missing tests. For clarity, the estimated distributions of other Z-score models are not 

included due to their similarity to the estimated sampling distributions for the MA Z-

score models. In instances where multiple teachers have the same predicted teacher 

effect, the teachers are assigned the mean of those corresponding ranks. When creating 

these graphs, teachers originally assigned a non-integer rank are reassigned the next 

highest integer rank. For example, teachers assigned a rank of 14.5 are reassigned a rank 

of 15. This strategy errs in favor of the teachers, because it allows the teachers to be 

ranked higher, rather than lower, than their non-integer rank. Because ties in rankings are 

infrequent, this strategy only eliminated low relative frequencies representing rare 

occurrences, rather than meaningful information, in the plots. Comparing the estimated 

sampling distributions across true percentiles, years and models, there do not appear to be 

noteworthy differences between those for complete tests and those for missing tests. The 

estimated distributions at the 48th percentile in years one and four are slightly more 

variable  than  those  in  other  years.  In  all  years,  the  fatter  tails  illustrate  the  difficulty  
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Figure104.5: Comparison across Years of the Estimated Sampling Distributions of ˆ
p

m
ikP  

under the Curve-of-Factors (gray) and MA Z-score (black) Models with Complete and 
Missing Tests for Teachers Truly at the 48th (solid) and 76th (dotted) Percentiles 
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associated with accurately predicting a teacher’s true rank when he or she is close to the 

average percentile. Although slight differences between the curve-of-factors model and 

the MA Z-score model appear in the complete tests case, these differences almost 

disappear in the missing tests case. 

Across all four years, the estimated probability of classifying teachers in the upper 

quartile for each of the models with complete and missing tests increases nonlinearly as 

the true percentile increases (Figure 4.6). Although there do not appear to be noticeable 

differences between the estimated probabilities across models and availability of tests, the 

slopes of the curves in year one differ from those in subsequent years due to the 

differences in the variability of the sampling distributions for the estimator,
 

ˆ
p

m
ikP , at some 

true percentiles. The range of estimated probabilities of correctly ranking a teacher at the 

76th percentile is not centered at .5, as might be expected. Instead, it ranges between 

approximately .5 and .7, because of the bias associated with the estimator at the 76th 

percentile. 

 

4.4 Summary and Future Work 

 

Curve-of-factors methodology applied in a value-added context extends the analysis of 

student achievement data to situations in which multiple tests with potentially different 

scales are given each year in a particular subject. Instead of estimating a teacher’s effect 

on changes in a student’s score over time, the curve-of-factors models allow the 

estimation of a teacher’s effect on changes in some common, latent trait measured by the 

multiple  instruments across years.  In the  simulation  study,  the behavior of  the curve-of- 
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Figure114.6: Comparison of the Estimated Probability of Classifying Teachers in the 
Upper Quartile for the Curve-of-Factors (solid), CA Z-score (dash) and MA Z-score 
(dotted) Models with Complete and Missing Tests, and MA/CA Z-score (dot-dash) 

Model with Missing Tests for Specific True Percentiles and Years 

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0.
8

1
.0

 

0 20 40 60 80 100

0
.0

0
.2

0
.4

0
.6

0.
8

1
.0

 

True Percentile 

Pr
ob

ab
ilit

y 

Complete Missing 

Year 1 
Year 2 

Year 3 
Year 4 



83 

factors model when all tests are given tends toward that of the alternative Z-score models 

when a test is missing in both years one and four. With regards to estimating a teacher’s 

true percentile, assuming a curve-of-factors model structure from which the data are 

originally simulated loses its statistical advantages, such as smaller RMSE, when tests are 

missing in some of the years. The results from the Z-score models are not noticeably 

different from one another for both the complete and missing tests cases. This is 

expected, because the only difference between a student’s mean-centered MA and CA 

scores for a given year is the random measurement error, assumed to have constant 

variance across test and year. The lack of differences between Z-score models in the 

complete and missing tests cases is also expected. Because only one test can be used as 

the response in each year, having only one test in a given year instead of two is not 

consequential. Overall, the curve-of-factors model does not have drastically better 

performance relative to the alternative Z-score approach, even though the curve-of-

factors model is the structure from which the data are simulated. Additional studies 

should use simulation to investigate how the estimation of teacher effects and their 

corresponding percentiles change under other assumed model structures and alternative 

weighting schemes for teacher effect variance components across years, as well as 

different ratios of teacher effect variance to error variance, such as those used by 

Lockwood et al. (2002), in various complete and incomplete test scenarios. 
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Chapter 5 

Conclusions 
 

Value-added modeling techniques estimate the contribution of educational 

factors, such as teachers, to growth in student achievement, while allowing for the 

possibility to control for the effect of non-educational factors. Several value-added 

models for estimating teacher effects have been proposed as alternatives to current test-

based accountability procedures, such as adequate yearly progress (AYP), but each has its 

respective advantages and disadvantages. Although these methods have the potential to 

identify highly effective teachers, teacher effect estimates are sensitive to different 

modeling specifications, including the persistency of teacher effects. Furthermore, several 

statistical and psychometric issues exist, and sensitivity of teacher effects to such issues 

still needs to be explored.  

This dissertation includes three chapters that provide an introduction to value-

added methodology and discuss the estimation of teacher effects. Because value-added 

analyses require high-quality longitudinal data that are often not available, Chapters 3 

and 4 proposed methodology for analyzing less-than-ideal student assessment data. 

Specifically, Chapter 3 described how to use a value-added model when 

longitudinal student achievement data are not on a single developmental scale. Although 

the Z-score approach has limitations, it is an appropriate alternative to using raw data 

when analyzing less-than-ideal student achievement data across a mixture of norm- and 

criterion-referenced tests over time. This chapter addressed issues arising when using a 

layered, longitudinal linear mixed model to analyze gains in standardized scores, 
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including weighting considerations for variance components. Additionally, this chapter 

proposed methods for estimating teacher effects on student learning before and after 

teacher participation in professional development programs. Although the specific 

example used in this chapter did not indicate the Math in the Middle Institute had a 

significant impact on participating teachers’ effects on student learning, the instruments 

may not have been designed to detect such changes. Additionally, teacher change from 

professional development may take time to show an impact on student learning. It is also 

possible other factors impact a teacher’s instruction and his or her ability or perceived 

ability to change in ways that align with the professional development program 

(Kromminga, in progress). When utilizing this methodology, determining whether the 

goals of the program align with what the instruments assess and acknowledging any 

existing limitations is essential. 

Chapter 4 applied curve-of-factors methodology in a value-added context to 

extend the analysis of student achievement data to situations in which multiple tests with 

potentially different scales are given each year in a particular subject. Instead of 

estimating a teacher’s effect on changes in a student’s scores over time, the curve-of-

factors model allowed the estimation of a teacher’s effect on changes in some common, 

latent trait measured by the multiple instruments across years. In the simulation study, the 

behavior of the curve-of-factors model when all tests were given tended toward that of 

the alternative Z-score models when a test was missing in both years one and four. With 

regards to estimating a teacher’s true percentile, assuming a curve-of-factors model 

structure from which the data were originally simulated lost its statistical advantages, 

such as smaller RMSE, when tests were missing in some of the years. In general, the 
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curve-of-factors model did not have drastically better performance relative to the 

alternative Z-score approach, even though the curve-of-factors model was the structure 

from which the data were simulated.  

Together, these two approaches address concerns surrounding the estimation of 

value-added teacher effects when analyzing less-than-ideal student achievement data. 

However, considerations should be made when defining what teacher effects really 

describe, and teacher effect estimates should be linked to other valid measures of teacher 

effectiveness. Although standardized tests can provide useful information about a 

student’s content knowledge in a particular subject, they can only measure a few of the 

many skills teachers help shape and influence in their students. Teacher evaluation should 

reflect these many areas of instruction and learning and not be based solely on students’ 

performance on achievement tests. The uncertainty associated with value-added teacher 

effect estimates suggests such estimates should not be used in isolation of other measures 

for high-stakes evaluation purposes and decisions. Instead, value-added teacher effects 

could be one of many different aspects used for teacher development purposes, fostering 

high quality teaching and motivating informed improvements in education. 
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Appendix A 

Z-score Method SAS Analysis Code for Math in the Middle Example3 
 

libname lps 'C:\Users\Jenny\Desktop\Flash Drive - June 2, 
2008\PhD\LPS Analysis\Data\LPS\analyze LPS using z score'; 
libname lpss 'C:\Users\Jenny\Desktop\Flash Drive - June 2, 
2008\PhD\LPS Analysis\Data\LPS\reformat dataset'; 
 
%macro standardize; 
%do i=5 %to 8; 
%do j=4 %to 8; 
data select; 
set lpss.fulldata; 
if grade=&i. and year=&j.; 
proc sort data=select; by stuid ; 
data select_undup; 
set select; 
by stuid ; 
if first.stuid; 
proc sql; 
create table std_sco_g&i.0&j. as select 
case 
when std(crt) ne . then (crt-mean(crt))/std(crt) 
else (mat-mean(mat))/std(mat) 
end 
 as std_score, grade-year as track, * 
from select_undup; 
quit; 
%end; 
%end; 
%mend; 
%standardize; 
 
data lps.stddata_full; 
set std_sco_g504 std_sco_g505 std_sco_g506 std_sco_g507 
std_sco_g508 std_sco_g604 std_sco_g605 std_sco_g606 
std_sco_g607 std_sco_g608 std_sco_g704 std_sco_g705 
std_sco_g706 std_sco_g707 std_sco_g708 std_sco_g806 
std_sco_g807 std_sco_g808; 
if tidn30 = "" and M2 = "" then M2 = 0; 
run; 
                                                 
3 This code was written in collaboration with Shuo Jiao. 
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%let student=stuid; 
%let ranvar=tidn30; 
%let data_o=lps.stddata_full; 
%let zmax=1; 
/*This macro creates the layered Z matrix, I created this 
macro for the general case when the teachers are not 1, 2, 
3, ...., but instead are names.*/ 
%macro 
randvar_full(dataname,w11,w21,w22,w31,w32,w33,w41,w42,w43,w
44); 
proc sort data=&data_o; by &ranvar; 
data Z(keep=&ranvar); 
set &data_o; 
by &ranvar; 
if first.&ranvar; 
run; 
data zz; 
set z; 
rank=_N_; 
run; 
proc sql; 
select max(rank) into: zmax from zz; 
 
data new_1; 
merge &data_o zz; 
by &ranvar; 
 
proc sort data=new_1; by  track &student grade; 
 
data new_2 (drop=Zmat%eval(&zmax+1) Zmat_a%eval(&zmax+1) 
Zmat_b%eval(&zmax+1)); 
set new_1; 
by track &student grade; 
 
/*Create lag variable*/ 
array reset(3) lagrank1-lagrank3; 
array mim(3) lagmim1-lagmim3; 
lagrank1=lag(rank); 
lagrank2=lag2(rank); 
lagrank3=lag3(rank); 
lagmim1=lag(m2); 
lagmim2=lag2(m2); 
lagmim3=lag3(m2); 
if first.&student then count=1; 
do i=count to 3; 
   reset(i)=%eval(&zmax+1); 
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   mim(i)=2; 
end; 
count+1; 
 
%do ii=1 %to %eval(&zmax+1); 
Zmat&ii=0; 
Zmat_b&ii=0; 
Zmat_a&ii=0; 
%end; 
 
array Zmat(%eval(&zmax+1)) Zmat1-Zmat%eval(&zmax+1); 
if grade=5  then Zmat[rank]+&w11;  
else if grade=6 then do; Zmat[rank]+&w21; 
Zmat[lagrank1]+&w22; end; 
else if grade=7 then do; Zmat[rank]+&w31; 
Zmat[lagrank1]+&w32; Zmat[lagrank2]+&w33; end; 
else if grade=8 then do; Zmat[rank]+&w41; 
Zmat[lagrank1]+&w42; Zmat[lagrank2]+&w43; 
Zmat[lagrank3]+&w44; end;  
 
array Zmat_a(%eval(&zmax+1)) Zmat_a1-Zmat_a%eval(&zmax+1); 
array Zmat_b(%eval(&zmax+1)) Zmat_b1-Zmat_b%eval(&zmax+1); 
if grade=5 then do; 
if m2=1 then Zmat_a[rank]+&w11;  
if m2=0 then Zmat_b[rank]+&w11; 
end;  
else if grade=6 then do;  
if m2=1 then Zmat_a[rank]+&w21;   
if m2=0 then Zmat_b[rank]+&w21; 
if lagmim1=1 then Zmat_a[lagrank1]+&w22;    
if lagmim1=0 then Zmat_b[lagrank1]+&w22;  
end; 
else if grade=7 then do;  
if m2=1 then Zmat_a[rank]+&w31;   
if m2=0 then Zmat_b[rank]+&w31; 
if lagmim1=1 then Zmat_a[lagrank1]+&w32;   
if lagmim1=0 then Zmat_b[lagrank1]+&w32; 
if lagmim2=1 then Zmat_a[lagrank2]+&w33;  
if lagmim2=0 then Zmat_b[lagrank2]+&w33; 
end; 
else if grade=8 then do;  
if m2=1 then Zmat_a[rank]+&w41;   
if m2=0 then Zmat_b[rank]+&w41; 
if lagmim1=1 then Zmat_a[lagrank1]+&w42;   
if lagmim1=0 then Zmat_b[lagrank1]+&w42;  
if lagmim2=1 then Zmat_a[lagrank2]+&w43;  
if lagmim2=0 then Zmat_b[lagrank2]+&w43; 
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if lagmim3=1 then Zmat_a[lagrank3]+&w44;  
if lagmim3=0 then Zmat_b[lagrank3]+&w44; 
end; 
 
sum_z=sum(of Zmat2-Zmat%eval(&zmax)); *Change to two so the 
sum of missing teacher not included in standardization of 
weights; 
run;  
 
data new_3; 
set new_2; 
%do ii=2 %to &zmax;*Change to two so that the sum of 
missing teacher not included in standardization of weights; 
if sum_z ne 0 then Zmat&ii=(Zmat&ii/sum_z)**0.5;  
else Zmat&ii=0; *Eliminate division by zero; 
if sum_z ne 0 then Zmat_b&ii=(Zmat_b&ii/sum_z)**0.5;  
else Zmata&ii=0; 
if sum_z ne 0 then Zmat_a&ii=(Zmat_a&ii/sum_z)**0.5;  
else Zmatb&ii=0; 
%end; 
run; 
 
data &dataname(drop=count i); 
set new_3; 
sum_za= sum(of Zmat_a2-Zmat_a%eval(&zmax)); 
run; 
%mend; 
 
%randvar_full(lps.new_std_data1,1,1,1,1,1,1,1,1,1,1); 
 
%macro analysis; 
proc sort data=LPS.new_std_data1; 
by track stuid grade; 
proc glimmix data=LPS.new_std_data1 ; 
class track grade stuid; 
model std_score=sum_za/solution; 
random Zmat_a2-Zmat_a%trim(&zmax)/type=toep(1) solution;  
random Zmat_b2-Zmat_b%trim(&zmax)/type=toep(1) solution;  
random Zmat2-Zmat%trim(&zmax)/type=toep(1) solution;  
random _residual_ /type=un subject=stuid*track; 
nloptions om=congra; *Needed to change b/c Quanew 
optimization could not be completed with missing teacher 
links; 
run;  
%mend; 
%analysis; 
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/* blup and covariate */ 
proc sort data=lps.new_std_data1 out=out; 
by rank m2; 
data lps.teacher_m2 (keep=tidn30 rank m2); 
set out; 
by rank; 
if last.rank and rank ne 1; 
run; 
 
/*extract after effect*/ 
data aaa (keep=estimate_a StdErrPreda); 
set lps.teacher_effect1_UN; 
if substr(effect,1,6)="Zmat_a"; 
estimate_a=estimate ; 
StdErrPreda = StdErrPred; 
run; 
 
/*extract before effect*/ 
data bbb (keep=estimate_b StdErrPredb); 
set lps.teacher_effect1_UN; 
if substr(effect,1,6)="Zmat_b"; 
estimate_b=estimate; 
StdErrPredb = StdErrPred; 
run; 
 
/*extract common effect*/ 
data ccc (keep=estimate_c StdErrPredc); 
set lps.teacher_effect1_UN; 
if substr(effect,1,6) ne "Zmat_a" and substr(effect,1,6) ne 
"Zmat_b" ; 
estimate_c=estimate ; 
StdErrPredc = StdErrPred; 
run; 
 
/*combine all effects*/ 
data lps.effect_crtz; 
merge aaa bbb ccc lps.teacher_m2; 
run; 
 
data compare; 
set lps.effect_crtz; 
before=estimate_b+estimate_c; 
after=estimate_a+estimate_c+0.01905; /*substitute this 
number with the estimated fixed effect for sum_za*/ 
diff=after-before; 
run; 
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Appendix B 

Complete Tests SAS Simulation Code and ASReml Analysis Code 
 

********************************************; 
*** Create a Macro to Simulate Data Sets ***; 
********************************************; 
 
Libname Results 'C:\Users\Jenny\Desktop\Flash Drive - June 
2, 2008\PhD\Dissertation\Paper 1 - Intro and Model Lit 
Review\Curve of Factors Methodology\Results'; 
 
*Delete Old True Teacher Effects File before re-creating 
data sets; 
Data Results.True_Teacher_Effects; 
 Delete; 
Run; 
 
%macro 
cof_full(nstudent,seed,dataname2,dataname3,dataname4); 
%let seed1 = &seed + 3220; 
%let seed2 = &seed + 9086; 
%let seed3 = &seed + 3; 
 
***************************************; 
*** Make Random Teacher Assignments ***; 
***************************************; 
 
/* you do this by ranking the random numbers from step 1 
   then for year 1 you call ranks 1 to (n/20) teacher 1,  
        ranks (n/20)+1 to (2n/20) teacher 2, etc 
        for year 2 you call ranks 1 to (n/20) teacher 21,  
        ranks (n/20)+1 to (2n/20) teacher 22, etc 
        and similarly for years 3 and 4 */  
 
/* step 1: generate random numbers for each student each 
year */  
data step_1; 
 seed=&seed1; 
 do student=1 to &nstudent;  
  rntyr1=ranuni(seed); 
  rntyr2=ranuni(seed); 
  rntyr3=ranuni(seed); 
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  rntyr4=ranuni(seed); 
  output; 
 end; 
 
/* step 2: create the ranks using proc rank */            
proc rank data=step_1 out=step_2; 
 var rntyr1-rntyr4; 
 ranks tyr1 tyr2 tyr3 tyr4; 
run; 
 
/* step 3: use the ranks to make teacher assignments */ 
data step_3; 
 set step_2; 
 real_obs=1;  
  teacher_yr1=1;  
  if tyr1>((1/20)*&nstudent) then teacher_yr1=2; 
  if tyr1>((2/20)*&nstudent) then teacher_yr1=3; 
  if tyr1>((3/20)*&nstudent) then teacher_yr1=4; 
  if tyr1>((4/20)*&nstudent) then teacher_yr1=5; 
  if tyr1>((5/20)*&nstudent) then teacher_yr1=6; 
  if tyr1>((6/20)*&nstudent) then teacher_yr1=7; 
  if tyr1>((7/20)*&nstudent) then teacher_yr1=8; 
  if tyr1>((8/20)*&nstudent) then teacher_yr1=9; 
  if tyr1>((9/20)*&nstudent) then teacher_yr1=10; 
  if tyr1>((10/20)*&nstudent) then teacher_yr1=11; 
  if tyr1>((11/20)*&nstudent) then teacher_yr1=12; 
  if tyr1>((12/20)*&nstudent) then teacher_yr1=13; 
  if tyr1>((13/20)*&nstudent) then teacher_yr1=14; 
  if tyr1>((14/20)*&nstudent) then teacher_yr1=15; 
  if tyr1>((15/20)*&nstudent) then teacher_yr1=16; 
  if tyr1>((16/20)*&nstudent) then teacher_yr1=17; 
  if tyr1>((17/20)*&nstudent) then teacher_yr1=18; 
  if tyr1>((18/20)*&nstudent) then teacher_yr1=19; 
  if tyr1>((19/20)*&nstudent) then teacher_yr1=20; 
  teacher_yr2=21;  
  if tyr2>((1/20)*&nstudent) then teacher_yr2=22; 
  if tyr2>((2/20)*&nstudent) then teacher_yr2=23; 
  if tyr2>((3/20)*&nstudent) then teacher_yr2=24; 
  if tyr2>((4/20)*&nstudent) then teacher_yr2=25; 
  if tyr2>((5/20)*&nstudent) then teacher_yr2=26; 
  if tyr2>((6/20)*&nstudent) then teacher_yr2=27; 
  if tyr2>((7/20)*&nstudent) then teacher_yr2=28; 
  if tyr2>((8/20)*&nstudent) then teacher_yr2=29; 
  if tyr2>((9/20)*&nstudent) then teacher_yr2=30; 
  if tyr2>((10/20)*&nstudent) then teacher_yr2=31; 
  if tyr2>((11/20)*&nstudent) then teacher_yr2=32; 
  if tyr2>((12/20)*&nstudent) then teacher_yr2=33; 
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  if tyr2>((13/20)*&nstudent) then teacher_yr2=34; 
  if tyr2>((14/20)*&nstudent) then teacher_yr2=35; 
  if tyr2>((15/20)*&nstudent) then teacher_yr2=36; 
  if tyr2>((16/20)*&nstudent) then teacher_yr2=37; 
  if tyr2>((17/20)*&nstudent) then teacher_yr2=38; 
  if tyr2>((18/20)*&nstudent) then teacher_yr2=39; 
  if tyr2>((19/20)*&nstudent) then teacher_yr2=40; 
  teacher_yr3=41;  
  if tyr3>((1/20)*&nstudent) then teacher_yr3=42; 
  if tyr3>((2/20)*&nstudent) then teacher_yr3=43; 
  if tyr3>((3/20)*&nstudent) then teacher_yr3=44; 
  if tyr3>((4/20)*&nstudent) then teacher_yr3=45; 
  if tyr3>((5/20)*&nstudent) then teacher_yr3=46; 
  if tyr3>((6/20)*&nstudent) then teacher_yr3=47; 
  if tyr3>((7/20)*&nstudent) then teacher_yr3=48; 
  if tyr3>((8/20)*&nstudent) then teacher_yr3=49; 
  if tyr3>((9/20)*&nstudent) then teacher_yr3=50; 
  if tyr3>((10/20)*&nstudent) then teacher_yr3=51; 
  if tyr3>((11/20)*&nstudent) then teacher_yr3=52; 
  if tyr3>((12/20)*&nstudent) then teacher_yr3=53; 
  if tyr3>((13/20)*&nstudent) then teacher_yr3=54; 
  if tyr3>((14/20)*&nstudent) then teacher_yr3=55; 
  if tyr3>((15/20)*&nstudent) then teacher_yr3=56; 
  if tyr3>((16/20)*&nstudent) then teacher_yr3=57; 
  if tyr3>((17/20)*&nstudent) then teacher_yr3=58; 
  if tyr3>((18/20)*&nstudent) then teacher_yr3=59; 
  if tyr3>((19/20)*&nstudent) then teacher_yr3=60; 
  teacher_yr4=61;  
  if tyr4>((1/20)*&nstudent) then teacher_yr4=62; 
  if tyr4>((2/20)*&nstudent) then teacher_yr4=63; 
  if tyr4>((3/20)*&nstudent) then teacher_yr4=64; 
  if tyr4>((4/20)*&nstudent) then teacher_yr4=65; 
  if tyr4>((5/20)*&nstudent) then teacher_yr4=66; 
  if tyr4>((6/20)*&nstudent) then teacher_yr4=67; 
  if tyr4>((7/20)*&nstudent) then teacher_yr4=68; 
  if tyr4>((8/20)*&nstudent) then teacher_yr4=69; 
  if tyr4>((9/20)*&nstudent) then teacher_yr4=70; 
  if tyr4>((10/20)*&nstudent) then teacher_yr4=71; 
  if tyr4>((11/20)*&nstudent) then teacher_yr4=72; 
  if tyr4>((12/20)*&nstudent) then teacher_yr4=73; 
  if tyr4>((13/20)*&nstudent) then teacher_yr4=74; 
  if tyr4>((14/20)*&nstudent) then teacher_yr4=75; 
  if tyr4>((15/20)*&nstudent) then teacher_yr4=76; 
  if tyr4>((16/20)*&nstudent) then teacher_yr4=77; 
  if tyr4>((17/20)*&nstudent) then teacher_yr4=78; 
  if tyr4>((18/20)*&nstudent) then teacher_yr4=79; 
  if tyr4>((19/20)*&nstudent) then teacher_yr4=80; 
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Run; 
 
/* Transpose Random Teacher Assignments from Step 3 */ 
Data Tch_assignments; 
Set Step_3; 
Array S[4] teacher_yr1 teacher_yr2 teacher_yr3 teacher_yr4; 
Do Time = 1 to 4; 
 Teacher = S[Time]; 
Output; 
End; 
Keep Student Teacher Time; 
Run; 
 
*******************************; 
*** Generate Student Scores ***; 
*******************************; 
 
/* step 1: generate student scores and output data set */  
Proc IML;  
Call Randseed(&seed2); 
 N=1; 
 G={157.5 116.7 99.8 83.3, 116.7 135 98.6 82.7, 99.8 98.6 
112.5 80.5, 83.3 82.7 80.5 90}; *AR(1) structure with 1, 
0.8, 0.75, 0.7 correlations; 
 R=I(4)@{45 0, 0 45}; *20% of total variance attributed to 
measurement error; 
 lps_sim=j(&nstudent,9,.);  
 Do Student=1 to &nstudent; 
 D = (Randnormal(1, J(4,1,0), G))`; 
 D2 = D@J(2,1,1); 
 D = D2`; 
 E = Randnormal(1, J(8,1,0), R); 
 Mean={62 231 84 234 54 236 70 239}; *MAT/3 to adjust for 
variance, (CRT_yr1)*2 to adjust for variance; 
 Scores = Mean+D+E; 
  lps_sim[student,1]=student; 
  lps_sim[student,2]=scores[1,1]; 
  lps_sim[student,3]=scores[1,2]; 
  lps_sim[student,4]=scores[1,3];  
  lps_sim[student,5]=scores[1,4]; 
  lps_sim[student,6]=scores[1,5]; 
  lps_sim[student,7]=scores[1,6]; 
  lps_sim[student,8]=scores[1,7]; 
  lps_sim[student,9]=scores[1,8]; 
End; 
Create student_scores from lps_sim; 
Append from lps_sim; 
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Run; 
 
Data student_scores; 
 Set student_scores;  
 Student=col1; 
 yr1a_score=col2;  
 yr1b_score=col3; 
 yr2a_score=col4; 
 yr2b_score=col5;  
 yr3a_score=col6; 
 yr3b_score=col7; 
 yr4a_score=col8;  
 yr4b_score=col9; 
 Drop col1-col9; 
Run; 
 
/* step 2: Transpose student scores */  
Data Sim_Scores; 
Set Student_Scores; 
Array S[8] yr1a_score yr1b_score yr2a_score yr2b_score 
yr3a_score yr3b_score yr4a_score yr4b_score; 
Do I = 1 to 8; 
 Score = S[I]; 
Output; 
End; 
Keep Student I Score; 
Run; 
 
/* step 3: create time and test variables */  
Proc Sort Data = Sim_Scores; 
By I; 
Run; 
Data Sim_Scores; 
Set Sim_Scores; 
Time = Ceil(I/2); 
If Mod(I,2) = 1 then Test = 'CRT'; Else Test = 'MAT'; 
Keep Student Time Test Score; 
Run; 
 
****************************************************; 
*** Merge Student Scores and Teacher Assignments ***; 
****************************************************; 
 
Proc Sort Data = Sim_Scores; 
By Student Time; 
Proc Sort Data = Tch_Assignments; 
By Student Time; 
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Run; 
Data Sim_Scores_n_Tch; 
Merge Sim_Scores Tch_Assignments; 
By Student Time; 
Run; 
 
*******************************; 
*** Create Layered Z-matrix ***; 
*******************************; 
 
/* step 1: separate MAT & CRT scores to create z-matrix for 
each type of test*/  
Data Sim_Scores_MAT; 
Set Sim_Scores_n_Tch; 
If Test = 'MAT'; 
Run; 
Data Sim_Scores_CRT; 
Set Sim_Scores_n_Tch; 
If Test = 'CRT'; 
Run; 
 
/* step 2: macro creates the layered z-matrix for the 
general case when the teachers are not 1, 2, 3, ...., but 
instead are names.*/ 
%let Student=Student; 
%let Ranvar=Teacher; 
%let zmax=1; 
 
%macro 
Randvar_Full(dataname1,w11,w21,w22,w31,w32,w33,w41,w42,w43,
w44); 
Proc Sort data=&data_o; By &ranvar; 
Data Z(keep=&ranvar); 
Set &data_o; 
By &ranvar; 
If first.&ranvar; 
Run; 
Data zz; 
Set z; 
Rank=_N_; 
Run; 
Proc sql; 
Select max(rank) into: zmax from zz; 
 
Data new_1; 
Merge &data_o zz; 
By &ranvar; 
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Proc Sort Data=new_1; By  &student Time; 
 
Data New_2 (Drop=Zmat%eval(&zmax+1)); 
Set new_1; 
By &student Time; 
 
/*Create lag variable*/ 
Array reset(3) lagrank1-lagrank3; 
lagrank1=lag(rank); 
lagrank2=lag2(rank); 
lagrank3=lag3(rank); 
If first.&student then count=1; 
Do i=count to 3; 
   Reset(i)=%eval(&zmax+1); 
End; 
Count+1; 
 
%Do ii=1 %to %Eval(&zmax+1); 
Zmat&ii=0; 
%End; 
 
Array Zmat(%eval(&zmax+1)) Zmat1-Zmat%eval(&zmax+1); 
If time = 1  then Zmat[rank]+&w11;  
Else if Time = 2 then do; Zmat[rank]+&w21; 
Zmat[lagrank1]+&w22; End; 
Else if Time = 3 then do; Zmat[rank]+&w31; 
Zmat[lagrank1]+&w32; Zmat[lagrank2]+&w33; End; 
Else if Time = 4 then do; Zmat[rank]+&w41; 
Zmat[lagrank1]+&w42; Zmat[lagrank2]+&w43; 
Zmat[lagrank3]+&w44; End;  
 
Run; 
 
Data &dataname1(drop=count i); 
Set New_2; 
Run; 
%mend; 
 
/* step 3: run macro for both tests */ 
%Let Data_o=Sim_Scores_CRT; 
%Randvar_full(Sim_Scores_CRT1,1,1,1,1,1,1,1,1,1,1);  
%Let Data_o=Sim_Scores_MAT; 
%Randvar_full(Sim_Scores_MAT1,1,1,1,1,1,1,1,1,1,1); 
 
/* step 4: merge data for both tests */ 
DATA Sim_Scores; 
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 SET Sim_Scores_CRT1 Sim_Scores_MAT1; 
Run; 
Proc Sort Data = Sim_Scores; 
 BY Student Time Test; 
Run; 
 
*****************************; 
*** Create Final Data Set ***; 
*****************************; 
 
/* step 1: Generate random teacher effects and find ranks 
and percentiles by year */ 
 
Data Gen_tch_value; 
 Seed=&seed3; 
 Do Teacher=1 to 80; 
  t_eff=rannor(seed)*(sqrt(22.5)); 
  Output; 
 End; 
Run; 
 
Data Gen_tch_value; 
 Set Gen_tch_value; 
 Year = 1; 
 If Teacher > 20 then Year = 2; 
 If Teacher > 40 then Year = 3; 
 If Teacher > 60 then Year = 4; 
Run; 
 
Proc Sort Data = Gen_tch_value; 
 By Year Teacher; 
Run; 
 
Proc Rank Data = Gen_tch_value Out=Rank; 
 By Year; 
 Ranks True_Rank; 
 Var T_Eff; 
Run; 
 
Data Gen_tch_value_Temp; 
Set Rank; 
 Exp = &nsim; 
 True_Effect = t_eff; 
 True_Percentile=100*(True_Rank/21); 
 Drop t_eff; 
Run; 
 



104 

*Send true teacher effects to one permanent file, updated 
for each simulation; 
%If %eval(&nsim) = 1 %then %do; 
Data Results.True_Teacher_Effects; 
Set Gen_tch_value_Temp; 
Run; 
%End; 
%Else %do; 
Data Results.True_Teacher_Effects; 
Set Results.True_Teacher_Effects Gen_tch_value_Temp; 
Run; 
%End; 
 
/* step 2: merge student data, teacher assignments, and 
teacher values into single data set */ 
Proc IML;  
Use Sim_Scores; 
Read all var{student score time test teacher rank lagrank1 
lagrank2 lagrank3 Zmat1 Zmat2 Zmat3 Zmat4 Zmat5 Zmat6 Zmat7 
Zmat8 Zmat9 Zmat10 Zmat11 Zmat12 Zmat13 Zmat14 Zmat15 
Zmat16 Zmat17 Zmat18 Zmat19 Zmat20 Zmat21 Zmat22 Zmat23 
Zmat24 Zmat25 Zmat26 Zmat27 Zmat28 Zmat29 Zmat30 Zmat31 
Zmat32 Zmat33 Zmat34 Zmat35 Zmat36 Zmat37 Zmat38 Zmat39 
Zmat40 Zmat41 Zmat42 Zmat43 Zmat44 Zmat45 Zmat46 Zmat47 
Zmat48 Zmat49 Zmat50 Zmat51 Zmat52 Zmat53 Zmat54 Zmat55 
Zmat56 Zmat57 Zmat58 Zmat59 Zmat60 Zmat61 Zmat62 Zmat63 
Zmat64 Zmat65 Zmat66 Zmat67 Zmat68 Zmat69 Zmat70 Zmat71 
Zmat72 Zmat73 Zmat74 Zmat75 Zmat76 Zmat77 Zmat78 Zmat79 
Zmat80}; 
Use gen_tch_value; 
Read all var{t_eff}; 
Z = 
Zmat1||Zmat2||Zmat3||Zmat4||Zmat5||Zmat6||Zmat7||Zmat8|| 
Zmat9||Zmat10||Zmat11||Zmat12||Zmat13||Zmat14||Zmat15|| 
Zmat16||Zmat17||Zmat18||Zmat19||Zmat20||Zmat21||Zmat22|| 
Zmat23||Zmat24||Zmat25||Zmat26||Zmat27||Zmat28||Zmat29|| 
Zmat30||Zmat31||Zmat32||Zmat33||Zmat34||Zmat35||Zmat36|| 
Zmat37||Zmat38||Zmat39||Zmat40||Zmat41||Zmat42||Zmat43|| 
Zmat44||Zmat45||Zmat46||Zmat47||Zmat48||Zmat49||Zmat50|| 
Zmat51||Zmat52||Zmat53||Zmat54||Zmat55||Zmat56||Zmat57|| 
Zmat58||Zmat59||Zmat60||Zmat61||Zmat62||Zmat63||Zmat64|| 
Zmat65||Zmat66||Zmat67||Zmat68||Zmat69||Zmat70||Zmat71|| 
Zmat72||Zmat73||Zmat74||Zmat75||Zmat76||Zmat77||Zmat78|| 
Zmat79||Zmat80; 
Score_Total = Score + Z*t_eff; 
Test2 = J((&nstudent)*8,1,0); 
Do i = 1 to (&nstudent)*8; 
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If test[i,1] = 'MAT' then test2[i,1] = 2; Else test2[i,1] = 
1; 
End; 
Scores = 
Z||student||score||score_total||time||teacher||test2; 
Create tch_student_scores from Scores; 
Append from Scores; 
Print &nsim; 
Run; 
Quit; 
 
/* step 3: rename and create variables for PP (Dataname 2) 
Dataset*/ 
Data &dataname2; 
 Set tch_student_scores;  
 Array Z[80] Z1-Z80; 
 Array Col[80] Col1-Col80; 
Do i = 1 to 80; 
 Z[i] = Col[i]; 
End; 
 Exp = &nsim; 
 Student=col81; 
 No_Tch_Score=col82;  
 Tch_Score_Final=col83; 
 If Tch_Score_Final<0 then Tch_Score_Final=0; 
 Time=col84; 
 Teacher=col85;  
 If Col86 = 1 then Test = 'CRT'; Else Test = 'MAT'; 
 Drop Col1-Col86; 
Run; 
 
/* Step 4: Create Zcrt (Dataname 3) and Zmat (Dataname 4) 
Datasets */ 
Data Standard; 
 Set &dataname2; 
 sum_z=sum(of Z1-Z%eval(&zmax)); 
Run;  
 
Data New3; 
 Set Standard; 
 %Do ii=1 %to &zmax; 
     if sum_z ne 0 then Z&ii=(Z&ii/sum_z)**0.5; else 
Z&ii=0;  
 %End; 
Run; 
 
Proc Sort Data = New3; 
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By Time Test; 
Run; 
 
Proc Means Data = New3 Mean Std noprint; 
By Time Test; 
Var Tch_Score_Final; 
Output Out = Stats Mean = Mean Std = Std; 
Run; 
 
Data Stats; 
Set Stats; 
Drop _Type_ _Freq_; 
Run; 
 
Data New; 
Merge New3 Stats; 
By Time Test; 
Run; 
 
Data New2; 
Set New; 
Zscore = (Tch_Score_Final - Mean)/Std; 
Drop No_Tch_Score Tch_Score_Final Mean Std Sum_Z; 
Run; 
 
Data &Dataname3; 
Set New2; 
If Test = 'CRT'; 
Run; 
 
Data &Dataname4; 
Set New2; 
If Test = 'MAT'; 
Run; 
 
Proc Sort Data = &Dataname2; 
By Student Time Test; 
Proc Sort Data = &Dataname3; 
By Student Time; 
Proc Sort Data = &Dataname4; 
By Student Time; 
Run; 
 
Quit; *This makes sure a Proc is not still running; 
%mend; 
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***************************************************; 
*** Create Macro to Analyze Simulated Data Sets ***; 
***************************************************; 
 
*Delete Old Predicted Teacher Effects File before re-
analyzing data sets; 
Data Results.Pred_Teacher_Effects; 
 Delete; 
Run; 
 
*Delete Old Variance Components File before re-analyzing 
data sets; 
Data Results.Pred_Variance_pp; 
 Delete; 
Run; 
Data Results.Pred_Variance_zc; 
 Delete; 
Run; 
Data Results.Pred_Variance_zm; 
 Delete; 
Run; 
 
%macro Analyze(data,model); 
*Export simulated SAS data set as a text file; 
PROC EXPORT DATA= &data  
            OUTFILE= "C:\Users\Jenny\Desktop\Flash Drive - 
June 2, 2008\PhD\Dissertation\Paper 1 - Intro and Model Lit 
Review\Curve of Factors 
Methodology\Analyze\AnalyzeThis.dat"  
            DBMS=DLM REPLACE; 
     DELIMITER='20'x;  
     PUTNAMES=YES; 
RUN; 
 
%If &model = pp %then %do; 
*Create ASReml .as file for Curve of Factors; 
Filename tmp "C:\Users\Jenny\Desktop\Flash Drive - June 2, 
2008\PhD\Dissertation\Paper 1 - Intro and Model Lit 
Review\Curve of Factors 
Methodology\Analyze\tch_student_scores.as"; 
Data _null_; 
File tmp; 
put 'Curve of Factors for 80 Teacher, 2000 Students'; 
put ' Z1'; 
put ' Z2'; 
put ' Z3'; 
put ' Z4'; 
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put ' Z5'; 
put ' Z6'; 
put ' Z7'; 
put ' Z8'; 
put ' Z9'; 
put ' Z10'; 
put ' Z11'; 
put ' Z12'; 
put ' Z13'; 
put ' Z14'; 
put ' Z15'; 
put ' Z16'; 
put ' Z17'; 
put ' Z18'; 
put ' Z19'; 
put ' Z20'; 
put ' Z21'; 
put ' Z22'; 
put ' Z23'; 
put ' Z24'; 
put ' Z25'; 
put ' Z26'; 
put ' Z27'; 
put ' Z28'; 
put ' Z29'; 
put ' Z30'; 
put ' Z31'; 
put ' Z32'; 
put ' Z33'; 
put ' Z34'; 
put ' Z35'; 
put ' Z36'; 
put ' Z37'; 
put ' Z38'; 
put ' Z39'; 
put ' Z40'; 
put ' Z41'; 
put ' Z42'; 
put ' Z43'; 
put ' Z44'; 
put ' Z45'; 
put ' Z46'; 
put ' Z47'; 
put ' Z48'; 
put ' Z49'; 
put ' Z50'; 
put ' Z51'; 
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put ' Z52'; 
put ' Z53'; 
put ' Z54'; 
put ' Z55'; 
put ' Z56'; 
put ' Z57'; 
put ' Z58'; 
put ' Z59'; 
put ' Z60'; 
put ' Z61'; 
put ' Z62'; 
put ' Z63'; 
put ' Z64'; 
put ' Z65'; 
put ' Z66'; 
put ' Z67'; 
put ' Z68'; 
put ' Z69'; 
put ' Z70'; 
put ' Z71'; 
put ' Z72'; 
put ' Z73'; 
put ' Z74'; 
put ' Z75'; 
put ' Z76'; 
put ' Z77'; 
put ' Z78'; 
put ' Z79'; 
put ' Z80'; 
put ' i'; 
put ' exp  !I'; 
put ' student  !I 2000'; 
put ' notchscore'; 
put ' tchscorefinal'; 
put ' time !I'; 
put ' teacher !I'; 
put ' Test !A'; 
put 'AnalyzeThis.dat !SKIP=1 !MAXIT=100 !BRIEF'; 
put 'tchscorefinal ~ time.Test !r ![ Z1 Z2 Z3 Z4 Z5 Z6 Z7 
Z8 Z9 Z10 Z11 Z12 Z13 Z14 Z15 Z16 Z17 Z18 Z19 Z20 ,'; 
put ' Z21 Z22 Z23 Z24 Z25 Z26 Z27 Z28 Z29 Z30 Z31 Z32 Z33 
Z34 Z35 Z36 Z37 Z38 Z39 Z40 Z41 Z42 Z43 Z44 Z45 Z46 ,'; 
put ' Z47 Z48 Z49 Z50 Z51 Z52 Z53 Z54 Z55 Z56 Z57 Z58 Z59 
Z60 Z61 Z62 Z63 Z64 Z65 Z66 Z67 Z68 Z69 Z70 Z71 Z72 ,'; 
put ' Z73 Z74 Z75 Z76 Z77 Z78 Z79 Z80 !] time.student'; 
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put '0 0 2    # Measurement error 0 = Default (I_sigma-
squared) 0 = No terms in Direct Product 2 = Two Random 
Effects on G-side'; 
 
put 'Z1 1'; 
put '80 0 I 1 !GP'; 
 
put 'time.student 2'; 
put 'time 0  US !GP'; 
put '1'; 
put '0 1'; 
put '0 0 1'; 
put '0 0 0 1'; 
put 'student 0 I'; 
Run; 
%End; 
 
%Else %do; 
*Create ASReml .as file for Z-score Method; 
Filename tmp "C:\Users\Jenny\Desktop\Flash Drive - June 2, 
2008\PhD\Dissertation\Paper 1 - Intro and Model Lit 
Review\Curve of Factors 
Methodology\Analyze\tch_student_scores.as"; 
Data _null_; 
File tmp; 
put 'Z-score Method for 80 Teachers, 2000 Students';  
put ' Z1'; 
put ' Z2'; 
put ' Z3'; 
put ' Z4'; 
put ' Z5'; 
put ' Z6'; 
put ' Z7'; 
put ' Z8'; 
put ' Z9'; 
put ' Z10'; 
put ' Z11'; 
put ' Z12'; 
put ' Z13'; 
put ' Z14'; 
put ' Z15'; 
put ' Z16'; 
put ' Z17'; 
put ' Z18'; 
put ' Z19'; 
put ' Z20'; 
put ' Z21'; 



111 

put ' Z22'; 
put ' Z23'; 
put ' Z24'; 
put ' Z25'; 
put ' Z26'; 
put ' Z27'; 
put ' Z28'; 
put ' Z29'; 
put ' Z30'; 
put ' Z31'; 
put ' Z32'; 
put ' Z33'; 
put ' Z34'; 
put ' Z35'; 
put ' Z36'; 
put ' Z37'; 
put ' Z38'; 
put ' Z39'; 
put ' Z40'; 
put ' Z41'; 
put ' Z42'; 
put ' Z43'; 
put ' Z44'; 
put ' Z45'; 
put ' Z46'; 
put ' Z47'; 
put ' Z48'; 
put ' Z49'; 
put ' Z50'; 
put ' Z51'; 
put ' Z52'; 
put ' Z53'; 
put ' Z54'; 
put ' Z55'; 
put ' Z56'; 
put ' Z57'; 
put ' Z58'; 
put ' Z59'; 
put ' Z60'; 
put ' Z61'; 
put ' Z62'; 
put ' Z63'; 
put ' Z64'; 
put ' Z65'; 
put ' Z66'; 
put ' Z67'; 
put ' Z68'; 
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put ' Z69'; 
put ' Z70'; 
put ' Z71'; 
put ' Z72'; 
put ' Z73'; 
put ' Z74'; 
put ' Z75'; 
put ' Z76'; 
put ' Z77'; 
put ' Z78'; 
put ' Z79'; 
put ' Z80'; 
put ' i'; 
put ' exp  !I'; 
put ' student  !I 2000'; 
put ' time !I'; 
put ' teacher !I'; 
put ' Test !A'; 
put ' Zscore'; 
put 'AnalyzeThis.dat !SKIP=1 !MAXIT=100 !BRIEF'; 
put 'Zscore ~ mu !r ![ Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 
Z12 Z13 Z14 Z15 Z16 Z17 Z18 Z19 Z20 ,'; 
put ' Z21 Z22 Z23 Z24 Z25 Z26 Z27 Z28 Z29 Z30 Z31 Z32 Z33 
Z34 Z35 Z36 Z37 Z38 Z39 Z40 Z41 Z42 Z43 Z44 Z45 Z46 ,'; 
put ' Z47 Z48 Z49 Z50 Z51 Z52 Z53 Z54 Z55 Z56 Z57 Z58 Z59 
Z60 Z61 Z62 Z63 Z64 Z65 Z66 Z67 Z68 Z69 Z70 Z71 Z72 ,'; 
put ' Z73 Z74 Z75 Z76 Z77 Z78 Z79 Z80 !]'; 
put '1 2 1'; 
put '2000 0 I'; 
put '4 0 US !GP !S2==1'; 
put '1'; 
put '0 1'; 
put '0 0 1'; 
put '0 0 0 1'; 
 
put 'Z1 1'; 
put '80 0 I 1 !GP'; 
Run; 
%End; 
 
*Run .as file in ASReml; 
%Let asfile=tch_student_scores.as; 
Data _null_; 
Call System('cd C:\Users\Jenny\Desktop\Flash Drive - June 
2, 2008\PhD\Dissertation\Paper 1 - Intro and Model Lit 
Review\Curve of Factors Methodology\Analyze'); 
X "'C:\Program Files\ASREML3\BIN\asreml.exe' -NS6 &asfile"; 
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Run; 
 
*Select and send predicted teacher effects, ranks, and 
percentiles to one permanent file, updated for each 
simulation; 
Filename tmp2 "C:\Users\Jenny\Desktop\Flash Drive - June 2, 
2008\PhD\Dissertation\Paper 1 - Intro and Model Lit 
Review\Curve of Factors 
Methodology\Analyze\tch_student_scores.sln"; 
Data Teacher_Temp; 
%If &model = pp %then %do; 
Infile tmp2 firstobs = 9 obs = 88  lrecl=71;; 
Input Teacher 4-5 Pred_Effect 46-59 SE_Pred_Error 62-71; 
%End; 
%Else %do; *Check for Z-score method output; 
Infile tmp2 firstobs = 2 obs = 81  lrecl=71;; 
Input Teacher 4-5 Pred_Effect 46-59 SE_Pred_Error 62-71; 
%End; 
Exp = &nsim; 
Model = "&model"; 
 Year = 1; 
 If Teacher > 20 then Year = 2; 
 If Teacher > 40 then Year = 3; 
 If Teacher > 60 then Year = 4;  
Run; 
 
Proc Sort Data = Teacher_Temp; 
 By Year Teacher; 
Run; 
 
Proc Rank Data = Teacher_Temp Out=Rank; 
 By Year; 
 Ranks Pred_Rank; 
 Var Pred_Effect; 
Run; 
 
Data Teacher_Temp; 
Set Rank; 
 Pred_Percentile=100*(Pred_Rank/21); 
Run; 
 
%If %eval(&nsim) = 1 and &model = pp %then %do; 
Data Results.Pred_Teacher_Effects; 
Set Teacher_Temp; 
Run; 
%End; 
%Else %do; 
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Data Results.Pred_Teacher_Effects; 
Set Results.Pred_Teacher_Effects Teacher_Temp; 
Run; 
%End; 
 
*Select and send estimated variance components to one 
permanent file, updated for each simulation; 
 
%If &model = pp %then %do; 
*Create ASReml .pin file for PP Variance Components; 
Filename tmp "C:\Users\Jenny\Desktop\Flash Drive - June 2, 
2008\PhD\Dissertation\Paper 1 - Intro and Model Lit 
Review\Curve of Factors 
Methodology\Analyze\tch_student_scores.pin"; 
Data _null_; 
File tmp; 
put 'F error_var 1 * 1'; 
put 'F teacher_var 2 * 1'; 
put 'F D1_Var 3 * 1'; 
put 'F D2D1_Cov 4 * 1'; 
put 'F D2_Var 5 * 1'; 
put 'F D3D1_Cov 6 * 1'; 
put 'F D3D2_Cov 7 * 1'; 
put 'F D3_Var 8 * 1'; 
put 'F D4D1_Cov 9 * 1'; 
put 'F D4D2_Cov 10 * 1'; 
put 'F D4D3_Cov 11 * 1'; 
put 'F D4_Var 12 * 1'; 
Run; 
  
%Let pinfile=tch_student_scores.pin; 
Data _null_; 
Call System('cd C:\Users\Jenny\Desktop\Flash Drive - June 
2, 2008\PhD\Dissertation\Paper 1 - Intro and Model Lit 
Review\Curve of Factors Methodology\Analyze'); 
X "'C:\Program Files\ASREML3\BIN\asreml.exe' -NP &pinfile"; 
Run; 
 
Filename tmp3 "C:\Users\Jenny\Desktop\Flash Drive - June 2, 
2008\PhD\Dissertation\Paper 1 - Intro and Model Lit 
Review\Curve of Factors 
Methodology\Analyze\tch_student_scores.pvc"; 
Data Variance_Temp; 
Infile tmp3 firstobs = 16 obs = 27  lrecl=55; 
Input Error_Var 31-37 Error_SE 45-55 / Teacher_Var 31-37 
Teacher_SE 45-55 / D1_Var 31-37 D1_SE 45-55 / D2D1_Cov 31-
37 D2D1_SE 45-55 / D2_Var 31-37 D2_SE 45-55 / D3D1_Cov 31-



115 

37 D3D1_SE 45-55 / D3D2_Cov 31-37 D3D2_SE 45-55 / D3_Var 
31-37 D3_SE 45-55 / D4D1_Cov 31-37 D4D1_SE 45-55 / D4D2_Cov 
31-37 D4D2_SE 45-55 / D4D3_Cov 31-37 D4D3_SE 45-55 / D4_Var 
31-37 D4_SE 45-55 ; 
%End; 
 
%Else %do; 
*Create ASReml .pin file for ZCRT and ZMAT Variance 
Components; 
Filename tmp "C:\Users\Jenny\Desktop\Flash Drive - June 2, 
2008\PhD\Dissertation\Paper 1 - Intro and Model Lit 
Review\Curve of Factors 
Methodology\Analyze\tch_student_scores.pin"; 
Data _null_; 
File tmp; 
put 'F E1_var 1 * 1'; 
put 'F E2E1_cov 2 * 1'; 
put 'F E2_Var 3 * 1'; 
put 'F E3E1_Cov 4 * 1'; 
put 'F E3E2_Cov 5 * 1'; 
put 'F E3_Var 6 * 1'; 
put 'F E4E1_Cov 7 * 1'; 
put 'F E4E2_Cov 8 * 1'; 
put 'F E4E3_Cov 9 * 1'; 
put 'F E4_Var 10 * 1'; 
put 'F Teacher_Var 11 * 1'; 
Run; 
  
%Let pinfile=tch_student_scores.pin; 
Data _null_; 
Call System('cd C:\Users\Jenny\Desktop\Flash Drive - June 
2, 2008\PhD\Dissertation\Paper 1 - Intro and Model Lit 
Review\Curve of Factors Methodology\Analyze'); 
X "'C:\Program Files\ASREML3\BIN\asreml.exe' -NP &pinfile"; 
Run; 
 
Filename tmp3 "C:\Users\Jenny\Desktop\Flash Drive - June 2, 
2008\PhD\Dissertation\Paper 1 - Intro and Model Lit 
Review\Curve of Factors 
Methodology\Analyze\tch_student_scores.pvc"; 
Data Variance_Temp; 
Infile tmp3 firstobs = 15 obs = 25  lrecl=55;; 
Input E1_Var 31-37 E1_SE 45-55 / E2E1_Cov 31-37 E2E1_SE 45-
55 / E2_Var 31-37 E2_SE 45-55 / E3E1_Cov 31-37 E3E1_SE 45-
55 / E3E2_Cov 31-37 E3E2_SE 45-55 / E3_Var 31-37 E3_SE 45-
55 / E4E1_Cov 31-37 E4E1_SE 45-55 / E4E2_Cov 31-37 E4E2_SE 
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45-55 / E4E3_Cov 31-37 E4E3_SE 45-55 / E4_Var 31-37 E4_SE 
45-55 / Teacher_Var 31-37 Teacher_SE 45-55  ; 
%End; 
 
Exp = &nsim; 
Model = "&model"; 
Run; 
 
%If %eval(&nsim) = 1 %then %do; 
Data Results.Pred_Variance_&model; 
Set Variance_Temp; 
Run; 
%End; 
%Else %do; 
Data Results.Pred_Variance_&model; 
Set Results.Pred_Variance_&model Variance_Temp; 
Run; 
%End; 
 
%mend; 
 
**********************************************************; 
* Create Macro to Simulate & Analyze Multiple Data Sets *; 
**********************************************************; 
 
%Macro sim(sims,oseed); 
%Do nsim = 1 %to &sims; 
%Let seed = &oseed + &nsim; 
 
*Run COF Macro to create PP, Zcrt and Zmat Datasets; 
%cof_full(2000,&seed,Tch_Student_Scores_pp,Tch_Student_Scor
es_zcrt,Tch_Student_Scores_zmat); 
 
*Run Analyze Macro to analyze each dataset; 
%analyze(Tch_Student_Scores_pp,pp); 
%analyze(Tch_Student_Scores_zcrt,zc); 
%analyze(Tch_Student_Scores_zmat,zm); 
 
%End; 
%mend; 
%sim(1000,20060902); 
 
********************************************************; 
*** Create Datasets for Plots and Summary Statistics ***; 
********************************************************; 
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*Merge True and Predicted Teacher Effects from the 1000 
Simulations; 
Proc Sort Data = Results.True_Teacher_Effects; 
By Exp Teacher; 
Proc Sort Data = Results.Pred_Teacher_Effects; 
By Exp Teacher; 
Run; 
 
Data Results.Teacher_Effects; 
Merge Results.Pred_Teacher_Effects 
Results.True_Teacher_Effects; 
By Exp Teacher; 
Run; 
 
*Create Dataset (Results.Stats_Plot) for RMSE and SEPE 
Plots; 
Data Results.Teacher_Effects; 
Set Results.Teacher_Effects; 
SPE = (Pred_Percentile - True_Percentile)**2; 
PE = (Pred_Percentile - True_Percentile); 
Run; 
 
Proc Sort Data = Results.Teacher_Effects; 
By Year True_Percentile Model; 
Run; 
 
Proc Means Data = Results.Teacher_Effects Mean noprint; 
By Year True_Percentile Model; 
Var SPE; 
Output Out = Stats1 Mean = MSE; 
Run; 
 
Proc Means Data = Results.Teacher_Effects VAR noprint; 
By Year True_Percentile Model; 
Var PE; 
Output Out = Stats2 Var = VPE; 
Run; 
 
Data Results.Stats_Plot; 
Merge Stats1 Stats2; 
By Year True_Percentile Model; 
Run; 
 
Data Results.Stats_Plot; 
Set Results.Stats_Plot; 
Drop _Freq_ _Type_; 
RMSE = sqrt(MSE); 
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SEPE = sqrt(VPE); 
Run; 
 
Proc Sort Data = Results.Stats_Plot; 
By Year Model; 
Run; 
 
PROC EXPORT DATA= RESULTS.Stats_PLOT  
            OUTFILE= "C:\Users\Jenny\Desktop\Flash Drive - 
June 2, 2008\PhD\Dissertation\Paper 1 - Intro and Model Lit 
Review\Curve of Factors Methodology\Graphs\Stats_Plot.csv"  
            DBMS=CSV REPLACE; 
     PUTNAMES=YES; 
RUN; 
 
*Create Dataset for Bias Plot; 
Proc Sort Data = Results.True_Teacher_Effects; 
By Exp Teacher; 
Proc Sort Data = Results.Pred_Teacher_Effects; 
By Exp Teacher; 
Run; 
 
Data Results.Teacher_Effects; 
Merge Results.Pred_Teacher_Effects 
Results.True_Teacher_Effects; 
By Exp Teacher; 
Run; 
 
Proc Sort Data=Results.Teacher_Effects; 
By Year True_Percentile Model; 
Run; 
 
Proc Means Data = Results.Teacher_Effects Mean noprint; 
By Year True_Percentile Model; 
Var Pred_Percentile; 
Output Out = Stats3 Mean = Mean_Pred; 
Run; 
 
Data Results.Bias_Plot; 
Set Stats3; 
Bias = Mean_Pred - True_Percentile; 
Drop _Freq_ _Type_; 
Run; 
 
PROC EXPORT DATA= RESULTS.Bias_Plot  
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            OUTFILE= "C:\Users\Jenny\Desktop\Flash Drive - 
June 2, 2008\PhD\Dissertation\Paper 1 - Intro and Model Lit 
Review\Curve of Factors Methodology\Graphs\Bias_Plot.csv"  
            DBMS=CSV REPLACE; 
     PUTNAMES=YES; 
RUN; 
 
*Create Dataset (Results.Percentile_Plot) for 25th, 50th 
and 75th Percentile Sampling Distribution Plots; 
Data Results.Percentile; 
Set Results.Teacher_Effects; 
If Ceil(True_Rank) = 5 or Ceil(True_Rank) = 10 or 
Ceil(True_Rank) = 16; 
Ceil_True_Rank = Ceil(True_Rank); *CEIL function adjusts 
for mean ranks from ties; 
Ceil_Pred_Rank = Ceil(Pred_Rank); *CEIL function adjusts 
for mean ranks from ties; 
Ceil_True_Percentile = (Ceil_True_Rank*100)/21; 
Ceil_Pred_Percentile = (Ceil_Pred_Rank*100)/21; 
Dummy = 1; 
Run; 
 
Proc Sort Data = Results.Percentile; 
By Ceil_True_Percentile Ceil_Pred_Percentile Year Model; 
Run; 
 
Proc Means Data = Results.Percentile Sum noprint; 
By Ceil_True_Percentile Ceil_Pred_Percentile Year Model; 
Var Dummy; 
Output out = Stats Sum = sum; 
Run; 
 
Data Zero; 
Do Ceil_True_Rank = 1 to 20; 
Ceil_True_Percentile = 100*(Ceil_True_Rank/21); 
 Do Ceil_Pred_Rank = 1 to 20; 
 Ceil_Pred_Percentile = 100*(Ceil_Pred_Rank/21); 
  Do Year = 1 to 4; 
 Do Model2 = 1 to 3; 
 Output; 
 End; 
  End; 
 End; 
End; 
Run; 
 
Data Zero; 



120 

Set Zero; 
If Ceil_True_Rank = 5 or Ceil_True_Rank = 10 or 
Ceil_True_Rank = 16; 
If Model2 = 1 then Model = 'pp'; 
If Model2 = 2 then Model = 'zc'; 
If Model2 = 3 then Model = 'zm'; 
Run; 
 
Data Test; 
Merge Stats Zero; 
By Ceil_True_Percentile Ceil_Pred_Percentile Year Model; 
Run; 
 
Data Results.Percentile_Plot; 
Set Test; 
If Sum = . then Sum = 0; 
Relative_Freq = Sum/1000; 
Drop _Freq_ _Type_ Model2; 
Run; 
 
PROC EXPORT DATA= RESULTS.Percentile_PLOT  
            OUTFILE= "C:\Users\Jenny\Desktop\Flash Drive - 
June 2, 2008\PhD\Dissertation\Paper 1 - Intro and Model Lit 
Review\Curve of Factors 
Methodology\Graphs\Percentile_Plot.csv"  
            DBMS=CSV REPLACE; 
     PUTNAMES=YES; 
RUN; 
 
*Create Dataset (Results.Prob75_Plot) for 75th Percentile 
Classification Probability Plots; 
Data Percentile75; 
Set Results.Teacher_Effects; 
If Pred_Percentile >=75 then Dummy75 = 1; 
Else Dummy75 = 0; 
Run; 
 
Proc Sort Data = Percentile75; 
By True_Percentile Year Model; 
Run; 
 
Proc Sort Data =  Results.Teacher_Effects; 
By True_Percentile Year Model; 
Run; 
 
Proc Means Data = Percentile75 Sum noprint; 
By True_Percentile Year Model; 
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Var Dummy75; 
Output out = Stats75 Sum = sum; 
Run; 
 
Data Results.Prob75_Plot; 
Set Stats75; 
Relative_Freq = Sum/1000; 
Drop _Freq_ _Type_; 
Run; 
 
PROC EXPORT DATA= RESULTS.PROB75_PLOT  
            OUTFILE= "C:\Users\Jenny\Desktop\Flash Drive - 
June 2, 2008\PhD\Dissertation\Paper 1 - Intro and Model Lit 
Review\Curve of Factors Methodology\Graphs\Prob75_Plot.csv"  
            DBMS=CSV REPLACE; 
     PUTNAMES=YES; 
RUN; 
 
*Obtain Mean and SD of Teacher Var and Avg Teacher Var SE 
for each Model; 
Proc Means Data = Results.Pred_Variance_pp Mean Std; 
Var Teacher_Var Teacher_SE; 
Output Out = VarStats; 
Run; 
Proc Means Data = Results.Pred_Variance_zc Mean Std; 
Var Teacher_Var Teacher_SE; 
Output Out = VarStats; 
Run; 
Proc Means Data = Results.Pred_Variance_zm Mean Std; 
Var Teacher_Var Teacher_SE; 
Output Out = VarStats; 
Run; 
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Appendix C 

Missing Tests SAS Simulation Code and ASReml Analysis Code 
 

********************************************; 
*** Create a Macro to Simulate Data Sets ***; 
********************************************; 
 
Libname MResults 'C:\Users\Jenny\Desktop\Flash Drive - June 
2, 2008\PhD\Dissertation\Paper 1 - Intro and Model Lit 
Review\Curve of Factors Methodology\MResults'; 
 
*Delete Old True Teacher Effects File before re-creating 
data sets; 
Data MResults.True_Teacher_Effects; 
 Delete; 
Run; 
 
%macro 
cof_missing(nstudent,seed,dataname2,dataname3,dataname4,dat
aname5); 
%let seed1 = &seed + 3220; 
%let seed2 = &seed + 9086; 
%let seed3 = &seed + 3; 
 
***************************************; 
*** Make Random Teacher Assignments ***; 
***************************************; 
 
/* you do this by ranking the random numbers from step 1 
   then for year 1 you call ranks 1 to (n/20) teacher 1,  
        ranks (n/20)+1 to (2n/20) teacher 2, etc 
        for year 2 you call ranks 1 to (n/20) teacher 21,  
        ranks (n/20)+1 to (2n/20) teacher 22, etc 
        and similarly for years 3 and 4 */  
 
/* step 1: generate random numbers for each student each 
year */  
data step_1; 
 seed=&seed1; 
 do student=1 to &nstudent;  
  rntyr1=ranuni(seed); 
  rntyr2=ranuni(seed); 
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  rntyr3=ranuni(seed); 
  rntyr4=ranuni(seed); 
  output; 
 end; 
 
/* step 2: create the ranks using proc rank */            
proc rank data=step_1 out=step_2; 
 var rntyr1-rntyr4; 
 ranks tyr1 tyr2 tyr3 tyr4; 
run; 
 
/* step 3: use the ranks to make teacher assignments */ 
data step_3; 
 set step_2; 
 real_obs=1;  
  teacher_yr1=1;  
  if tyr1>((1/20)*&nstudent) then teacher_yr1=2; 
  if tyr1>((2/20)*&nstudent) then teacher_yr1=3; 
  if tyr1>((3/20)*&nstudent) then teacher_yr1=4; 
  if tyr1>((4/20)*&nstudent) then teacher_yr1=5; 
  if tyr1>((5/20)*&nstudent) then teacher_yr1=6; 
  if tyr1>((6/20)*&nstudent) then teacher_yr1=7; 
  if tyr1>((7/20)*&nstudent) then teacher_yr1=8; 
  if tyr1>((8/20)*&nstudent) then teacher_yr1=9; 
  if tyr1>((9/20)*&nstudent) then teacher_yr1=10; 
  if tyr1>((10/20)*&nstudent) then teacher_yr1=11; 
  if tyr1>((11/20)*&nstudent) then teacher_yr1=12; 
  if tyr1>((12/20)*&nstudent) then teacher_yr1=13; 
  if tyr1>((13/20)*&nstudent) then teacher_yr1=14; 
  if tyr1>((14/20)*&nstudent) then teacher_yr1=15; 
  if tyr1>((15/20)*&nstudent) then teacher_yr1=16; 
  if tyr1>((16/20)*&nstudent) then teacher_yr1=17; 
  if tyr1>((17/20)*&nstudent) then teacher_yr1=18; 
  if tyr1>((18/20)*&nstudent) then teacher_yr1=19; 
  if tyr1>((19/20)*&nstudent) then teacher_yr1=20; 
  teacher_yr2=21;  
  if tyr2>((1/20)*&nstudent) then teacher_yr2=22; 
  if tyr2>((2/20)*&nstudent) then teacher_yr2=23; 
  if tyr2>((3/20)*&nstudent) then teacher_yr2=24; 
  if tyr2>((4/20)*&nstudent) then teacher_yr2=25; 
  if tyr2>((5/20)*&nstudent) then teacher_yr2=26; 
  if tyr2>((6/20)*&nstudent) then teacher_yr2=27; 
  if tyr2>((7/20)*&nstudent) then teacher_yr2=28; 
  if tyr2>((8/20)*&nstudent) then teacher_yr2=29; 
  if tyr2>((9/20)*&nstudent) then teacher_yr2=30; 
  if tyr2>((10/20)*&nstudent) then teacher_yr2=31; 
  if tyr2>((11/20)*&nstudent) then teacher_yr2=32; 
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  if tyr2>((12/20)*&nstudent) then teacher_yr2=33; 
  if tyr2>((13/20)*&nstudent) then teacher_yr2=34; 
  if tyr2>((14/20)*&nstudent) then teacher_yr2=35; 
  if tyr2>((15/20)*&nstudent) then teacher_yr2=36; 
  if tyr2>((16/20)*&nstudent) then teacher_yr2=37; 
  if tyr2>((17/20)*&nstudent) then teacher_yr2=38; 
  if tyr2>((18/20)*&nstudent) then teacher_yr2=39; 
  if tyr2>((19/20)*&nstudent) then teacher_yr2=40; 
  teacher_yr3=41;  
  if tyr3>((1/20)*&nstudent) then teacher_yr3=42; 
  if tyr3>((2/20)*&nstudent) then teacher_yr3=43; 
  if tyr3>((3/20)*&nstudent) then teacher_yr3=44; 
  if tyr3>((4/20)*&nstudent) then teacher_yr3=45; 
  if tyr3>((5/20)*&nstudent) then teacher_yr3=46; 
  if tyr3>((6/20)*&nstudent) then teacher_yr3=47; 
  if tyr3>((7/20)*&nstudent) then teacher_yr3=48; 
  if tyr3>((8/20)*&nstudent) then teacher_yr3=49; 
  if tyr3>((9/20)*&nstudent) then teacher_yr3=50; 
  if tyr3>((10/20)*&nstudent) then teacher_yr3=51; 
  if tyr3>((11/20)*&nstudent) then teacher_yr3=52; 
  if tyr3>((12/20)*&nstudent) then teacher_yr3=53; 
  if tyr3>((13/20)*&nstudent) then teacher_yr3=54; 
  if tyr3>((14/20)*&nstudent) then teacher_yr3=55; 
  if tyr3>((15/20)*&nstudent) then teacher_yr3=56; 
  if tyr3>((16/20)*&nstudent) then teacher_yr3=57; 
  if tyr3>((17/20)*&nstudent) then teacher_yr3=58; 
  if tyr3>((18/20)*&nstudent) then teacher_yr3=59; 
  if tyr3>((19/20)*&nstudent) then teacher_yr3=60; 
  teacher_yr4=61;  
  if tyr4>((1/20)*&nstudent) then teacher_yr4=62; 
  if tyr4>((2/20)*&nstudent) then teacher_yr4=63; 
  if tyr4>((3/20)*&nstudent) then teacher_yr4=64; 
  if tyr4>((4/20)*&nstudent) then teacher_yr4=65; 
  if tyr4>((5/20)*&nstudent) then teacher_yr4=66; 
  if tyr4>((6/20)*&nstudent) then teacher_yr4=67; 
  if tyr4>((7/20)*&nstudent) then teacher_yr4=68; 
  if tyr4>((8/20)*&nstudent) then teacher_yr4=69; 
  if tyr4>((9/20)*&nstudent) then teacher_yr4=70; 
  if tyr4>((10/20)*&nstudent) then teacher_yr4=71; 
  if tyr4>((11/20)*&nstudent) then teacher_yr4=72; 
  if tyr4>((12/20)*&nstudent) then teacher_yr4=73; 
  if tyr4>((13/20)*&nstudent) then teacher_yr4=74; 
  if tyr4>((14/20)*&nstudent) then teacher_yr4=75; 
  if tyr4>((15/20)*&nstudent) then teacher_yr4=76; 
  if tyr4>((16/20)*&nstudent) then teacher_yr4=77; 
  if tyr4>((17/20)*&nstudent) then teacher_yr4=78; 
  if tyr4>((18/20)*&nstudent) then teacher_yr4=79; 
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  if tyr4>((19/20)*&nstudent) then teacher_yr4=80; 
Run; 
 
/* Transpose Random Teacher Assignments from Step 3 */ 
Data Tch_assignments; 
Set Step_3; 
Array S[4] teacher_yr1 teacher_yr2 teacher_yr3 teacher_yr4; 
Do Time = 1 to 4; 
 Teacher = S[Time]; 
Output; 
End; 
Keep Student Teacher Time; 
Run; 
 
*******************************; 
*** Generate Student Scores ***; 
*******************************; 
 
/* step 1: generate student scores and output data set */  
Proc IML;  
Call Randseed(&seed2); 
 N=1; 
 G={157.5 116.7 99.8 83.3, 116.7 135 98.6 82.7, 99.8 98.6 
112.5 80.5, 83.3 82.7 80.5 90}; *AR(1) structure with 1, 
0.8, 0.75, 0.7 correlations; 
 R=I(4)@{45 0, 0 45}; *20% of total variance attributed to 
measurement error; 
 lps_sim=j(&nstudent,9,.);  
 Do Student=1 to &nstudent; 
 D = (Randnormal(1, J(4,1,0), G))`; 
 D2 = D@J(2,1,1); 
 D = D2`; 
 E = Randnormal(1, J(8,1,0), R); 
 Mean={62 231 84 234 54 236 70 239}; *MAT/3 to adjust for 
variance, (CRT_yr1)*2 to adjust for variance; 
 Scores = Mean+D+E; 
  lps_sim[student,1]=student; 
  lps_sim[student,2]=scores[1,1]; 
  lps_sim[student,3]=scores[1,2]; 
  lps_sim[student,4]=scores[1,3];  
  lps_sim[student,5]=scores[1,4]; 
  lps_sim[student,6]=scores[1,5]; 
  lps_sim[student,7]=scores[1,6]; 
  lps_sim[student,8]=scores[1,7]; 
  lps_sim[student,9]=scores[1,8]; 
End; 
Create student_scores from lps_sim; 
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Append from lps_sim; 
Run; 
 
Data student_scores; 
 Set student_scores;  
 Student=col1; 
 yr1a_score=col2;  
 yr1b_score=col3; 
 yr2a_score=col4; 
 yr2b_score=col5;  
 yr3a_score=col6; 
 yr3b_score=col7; 
 yr4a_score=col8;  
 yr4b_score=col9; 
 Drop col1-col9; 
Run; 
 
/* step 2: Transpose student scores */  
Data Sim_Scores; 
Set Student_Scores; 
Array S[8] yr1a_score yr1b_score yr2a_score yr2b_score 
yr3a_score yr3b_score yr4a_score yr4b_score; 
Do I = 1 to 8; 
 Score = S[I]; 
Output; 
End; 
Keep Student I Score; 
Run; 
 
/* step 3: create time and test variables */  
Proc Sort Data = Sim_Scores; 
By I; 
Run; 
Data Sim_Scores; 
Set Sim_Scores; 
Time = Ceil(I/2); 
If Mod(I,2) = 1 then Test = 'CRT'; Else Test = 'MAT'; 
Keep Student Time Test Score; 
Run; 
 
****************************************************; 
*** Merge Student Scores and Teacher Assignments ***; 
****************************************************; 
 
Proc Sort Data = Sim_Scores; 
By Student Time; 
Proc Sort Data = Tch_Assignments; 



127 

By Student Time; 
Run; 
Data Sim_Scores_n_Tch; 
Merge Sim_Scores Tch_Assignments; 
By Student Time; 
Run; 
 
*******************************; 
*** Create Layered Z-matrix ***; 
*******************************; 
 
/* step 1: separate MAT & CRT scores to create z-matrix for 
each type of test*/  
Data Sim_Scores_MAT; 
Set Sim_Scores_n_Tch; 
If Test = 'MAT'; 
Run; 
Data Sim_Scores_CRT; 
Set Sim_Scores_n_Tch; 
If Test = 'CRT'; 
Run; 
 
/* step 2: macro creates the layered z-matrix for the 
general case when the teachers are not 1, 2, 3, ...., but 
instead are names.*/ 
%let Student=Student; 
%let Ranvar=Teacher; 
%let zmax=1; 
 
%macro 
Randvar_Full(dataname1,w11,w21,w22,w31,w32,w33,w41,w42,w43,
w44); 
Proc Sort data=&data_o; By &ranvar; 
Data Z(keep=&ranvar); 
Set &data_o; 
By &ranvar; 
If first.&ranvar; 
Run; 
Data zz; 
Set z; 
Rank=_N_; 
Run; 
Proc sql; 
Select max(rank) into: zmax from zz; 
 
Data new_1; 
Merge &data_o zz; 
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By &ranvar; 
 
Proc Sort Data=new_1; By  &student Time; 
 
Data New_2 (Drop=Zmat%eval(&zmax+1)); 
Set new_1; 
By &student Time; 
 
/*Create lag variable*/ 
Array reset(3) lagrank1-lagrank3; 
lagrank1=lag(rank); 
lagrank2=lag2(rank); 
lagrank3=lag3(rank); 
If first.&student then count=1; 
Do i=count to 3; 
   Reset(i)=%eval(&zmax+1); 
End; 
Count+1; 
 
%Do ii=1 %to %Eval(&zmax+1); 
Zmat&ii=0; 
%End; 
 
Array Zmat(%eval(&zmax+1)) Zmat1-Zmat%eval(&zmax+1); 
If time = 1  then Zmat[rank]+&w11;  
Else if Time = 2 then do; Zmat[rank]+&w21; 
Zmat[lagrank1]+&w22; End; 
Else if Time = 3 then do; Zmat[rank]+&w31; 
Zmat[lagrank1]+&w32; Zmat[lagrank2]+&w33; End; 
Else if Time = 4 then do; Zmat[rank]+&w41; 
Zmat[lagrank1]+&w42; Zmat[lagrank2]+&w43; 
Zmat[lagrank3]+&w44; End;  
 
Run; 
 
Data &dataname1(drop=count i); 
Set New_2; 
Run; 
 
%mend; 
 
/* step 3: run macro for both tests */ 
%Let Data_o=Sim_Scores_CRT; 
%Randvar_full(Sim_Scores_CRT1,1,1,1,1,1,1,1,1,1,1);  
%Let Data_o=Sim_Scores_MAT; 
%Randvar_full(Sim_Scores_MAT1,1,1,1,1,1,1,1,1,1,1); 
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/* step 4: merge data for both tests */ 
DATA Sim_Scores; 
 SET Sim_Scores_CRT1 Sim_Scores_MAT1; 
Run; 
Proc Sort Data = Sim_Scores; 
 BY Student Time Test; 
Run; 
 
*****************************; 
*** Create Final Data Set ***; 
*****************************; 
 
/* step 1: Generate random teacher effects and find ranks 
and percentiles by year */ 
 
Libname MResults 'C:\Users\Jenny\Desktop\Flash Drive - June 
2, 2008\PhD\Dissertation\Paper 1 - Intro and Model Lit 
Review\Curve of Factors Methodology\MResults'; 
 
Data Gen_tch_value; 
 Seed=&seed3; 
 Do Teacher=1 to 80; 
  t_eff=rannor(seed)*(sqrt(22.5)); 
  Output; 
 End; 
Run; 
 
Data Gen_tch_value; 
 Set Gen_tch_value; 
 Year = 1; 
 If Teacher > 20 then Year = 2; 
 If Teacher > 40 then Year = 3; 
 If Teacher > 60 then Year = 4; 
Run; 
 
Proc Sort Data = Gen_tch_value; 
 By Year Teacher; 
Run; 
 
Proc Rank Data = Gen_tch_value Out=Rank; 
 By Year; 
 Ranks True_Rank; 
 Var T_Eff; 
Run; 
 
Data Gen_tch_value_Temp; 
Set Rank; 
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 Exp = &nsim; 
 True_Effect = t_eff; 
 True_Percentile=100*(True_Rank/21); 
 Drop t_eff; 
Run; 
 
*Send true teacher effects to one permanent file, updated 
for each simulation; 
%If %eval(&nsim) = 1 %then %do; 
Data MResults.True_Teacher_Effects; 
Set Gen_tch_value_Temp; 
Run; 
%End; 
%Else %do; 
Data MResults.True_Teacher_Effects; 
Set MResults.True_Teacher_Effects Gen_tch_value_Temp; 
Run; 
%End; 
 
/* step 2: merge student data, teacher assignments, and 
teacher values into single data set */ 
Proc IML;  
Use Sim_Scores; 
Read all var{student score time test teacher rank lagrank1 
lagrank2 lagrank3 Zmat1 Zmat2 Zmat3 Zmat4 Zmat5 Zmat6 Zmat7 
Zmat8 Zmat9 Zmat10 Zmat11 Zmat12 Zmat13 Zmat14 Zmat15 
Zmat16 Zmat17 Zmat18 Zmat19 Zmat20 Zmat21 Zmat22 Zmat23 
Zmat24 Zmat25 Zmat26 Zmat27 Zmat28 Zmat29 Zmat30 Zmat31 
Zmat32 Zmat33 Zmat34 Zmat35 Zmat36 Zmat37 Zmat38 Zmat39 
Zmat40 Zmat41 Zmat42 Zmat43 Zmat44 Zmat45 Zmat46 Zmat47 
Zmat48 Zmat49 Zmat50 Zmat51 Zmat52 Zmat53 Zmat54 Zmat55 
Zmat56 Zmat57 Zmat58 Zmat59 Zmat60 Zmat61 Zmat62 Zmat63 
Zmat64 Zmat65 Zmat66 Zmat67 Zmat68 Zmat69 Zmat70 Zmat71 
Zmat72 Zmat73 Zmat74 Zmat75 Zmat76 Zmat77 Zmat78 Zmat79 
Zmat80}; 
Use gen_tch_value; 
Read all var{t_eff}; 
Z = 
Zmat1||Zmat2||Zmat3||Zmat4||Zmat5||Zmat6||Zmat7||Zmat8|| 
Zmat9||Zmat10||Zmat11||Zmat12||Zmat13||Zmat14||Zmat15|| 
Zmat16||Zmat17||Zmat18||Zmat19||Zmat20||Zmat21||Zmat22|| 
Zmat23||Zmat24||Zmat25||Zmat26||Zmat27||Zmat28||Zmat29|| 
Zmat30||Zmat31||Zmat32||Zmat33||Zmat34||Zmat35||Zmat36|| 
Zmat37||Zmat38||Zmat39||Zmat40||Zmat41||Zmat42||Zmat43|| 
Zmat44||Zmat45||Zmat46||Zmat47||Zmat48||Zmat49||Zmat50|| 
Zmat51||Zmat52||Zmat53||Zmat54||Zmat55||Zmat56||Zmat57|| 
Zmat58||Zmat59||Zmat60||Zmat61||Zmat62||Zmat63||Zmat64|| 
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Zmat65||Zmat66||Zmat67||Zmat68||Zmat69||Zmat70||Zmat71|| 
Zmat72||Zmat73||Zmat74||Zmat75||Zmat76||Zmat77||Zmat78|| 
Zmat79||Zmat80; 
Score_Total = Score + Z*t_eff; 
Test2 = J((&nstudent)*8,1,0); 
Do i = 1 to (&nstudent)*8; 
If test[i,1] = 'MAT' then test2[i,1] = 2; Else test2[i,1] = 
1; 
End; 
Scores = 
Z||student||score||score_total||time||teacher||test2; 
Create tch_student_scores from Scores; 
Append from Scores; 
Print &nsim; 
Run; 
Quit; 
 
/* step 3: rename and create variables for PP_Missing 
(Dataname 2) Dataset*/ 
Data pp_missing; 
 Set tch_student_scores;  
 Array Z[80] Z1-Z80; 
 Array Col[80] Col1-Col80; 
Do i = 1 to 80; 
 Z[i] = Col[i]; 
End; 
 Exp = &nsim; 
 Student=col81; 
 No_Tch_Score=col82;  
 Tch_Score_Final=col83; 
 If Tch_Score_Final<0 then Tch_Score_Final=0; 
 Time=col84; 
 Teacher=col85;  
 If Col86 = 1 then Test = 'CRT'; Else Test = 'MAT'; 
 Drop Col1-Col86; 
Run; 
 
Data &dataname2; 
 Set pp_missing;  
 If Time = 1 and Test = 'CRT' then delete; 
 If Time = 4 and Test = 'MAT' then delete;  
Run; 
 
/* Step 4: Create Zcrt_Missing (Dataname3), Zmat_Missing 
(Dataname4) and Zmatcrt_missing (Dataname 5) Datasets */ 
Data Standard; 
 Set &dataname2; 
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 sum_z=sum(of Z1-Z%eval(&zmax)); 
Run;  
 
Data New3; 
 Set Standard; 
 %Do ii=1 %to &zmax; 
     if sum_z ne 0 then Z&ii=(Z&ii/sum_z)**0.5; else 
Z&ii=0;  
 %End; 
Run; 
 
Proc Sort Data = New3; 
By Time Test; 
Run; 
 
Proc Means Data = New3 Mean Std noprint; 
By Time Test; 
Var Tch_Score_Final; 
Output Out = Stats Mean = Mean Std = Std; 
Run; 
 
Data Stats; 
Set Stats; 
Drop _Type_ _Freq_; 
Run; 
 
Data New; 
Merge New3 Stats; 
By Time Test; 
Run; 
 
Data New2; 
Set New; 
Zscore = (Tch_Score_Final - Mean)/Std; 
Drop No_Tch_Score Tch_Score_Final Mean Std Sum_Z; 
Run; 
 
Data &Dataname3; 
Set New2; 
If Time = 2 and Test = 'MAT' then delete; 
If Time = 3 and Test = 'MAT' then delete; 
Run; 
 
Data &Dataname4; 
Set New2; 
If Time = 2 and Test = 'CRT' then delete; 
If Time = 3 and Test = 'CRT' then delete; 
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Run; 
 
Data &Dataname5; 
Set New2; 
If Time = 2 and Test = 'CRT' then delete; 
If Time = 3 and Test = 'MAT' then delete; 
Run; 
 
Proc Sort Data = &Dataname2; 
By Student Time Test; 
Proc Sort Data = &Dataname3; 
By Student Time; 
Proc Sort Data = &Dataname4; 
By Student Time; 
Proc Sort Data = &Dataname5; 
By Student Time; 
Run; 
 
Quit; *This makes sure a Proc is not still running; 
%mend; 
 
***************************************************; 
*** Create Macro to Analyze Simulated Data Sets ***; 
***************************************************; 
 
*Delete Old Predicted Teacher Effects File before re-
analyzing data sets; 
Data MResults.Pred_Teacher_Effects; 
 Delete; 
Run; 
 
*Delete Old Variance Components File before re-analyzing 
data sets; 
Data MResults.Pred_Variance_pp; 
 Delete; 
Run; 
Data MResults.Pred_Variance_zc; 
 Delete; 
Run; 
Data MResults.Pred_Variance_zm; 
 Delete; 
Run; 
Data MResults.Pred_Variance_mc; 
 Delete; 
Run; 
 
%macro Analyze(data,model); 
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*Export simulated SAS data set as a text file; 
PROC EXPORT DATA= &data  
            OUTFILE= "C:\Users\Jenny\Desktop\Flash Drive - 
June 2, 2008\PhD\Dissertation\Paper 1 - Intro and Model Lit 
Review\Curve of Factors 
Methodology\Analyze\AnalyzeThis.dat"  
            DBMS=DLM REPLACE; 
     DELIMITER='20'x;  
     PUTNAMES=YES; 
RUN; 
 
%If &model = pp %then %do; 
*Create ASReml .as file for Curve of Factors; 
Filename tmp "C:\Users\Jenny\Desktop\Flash Drive - June 2, 
2008\PhD\Dissertation\Paper 1 - Intro and Model Lit 
Review\Curve of Factors 
Methodology\Analyze\tch_student_scores_missing.as"; 
Data _null_; 
File tmp; 
put 'Curve of Factors for 80 Teacher, 2000 Students'; 
put ' Z1'; 
put ' Z2'; 
put ' Z3'; 
put ' Z4'; 
put ' Z5'; 
put ' Z6'; 
put ' Z7'; 
put ' Z8'; 
put ' Z9'; 
put ' Z10'; 
put ' Z11'; 
put ' Z12'; 
put ' Z13'; 
put ' Z14'; 
put ' Z15'; 
put ' Z16'; 
put ' Z17'; 
put ' Z18'; 
put ' Z19'; 
put ' Z20'; 
put ' Z21'; 
put ' Z22'; 
put ' Z23'; 
put ' Z24'; 
put ' Z25'; 
put ' Z26'; 
put ' Z27'; 



135 

put ' Z28'; 
put ' Z29'; 
put ' Z30'; 
put ' Z31'; 
put ' Z32'; 
put ' Z33'; 
put ' Z34'; 
put ' Z35'; 
put ' Z36'; 
put ' Z37'; 
put ' Z38'; 
put ' Z39'; 
put ' Z40'; 
put ' Z41'; 
put ' Z42'; 
put ' Z43'; 
put ' Z44'; 
put ' Z45'; 
put ' Z46'; 
put ' Z47'; 
put ' Z48'; 
put ' Z49'; 
put ' Z50'; 
put ' Z51'; 
put ' Z52'; 
put ' Z53'; 
put ' Z54'; 
put ' Z55'; 
put ' Z56'; 
put ' Z57'; 
put ' Z58'; 
put ' Z59'; 
put ' Z60'; 
put ' Z61'; 
put ' Z62'; 
put ' Z63'; 
put ' Z64'; 
put ' Z65'; 
put ' Z66'; 
put ' Z67'; 
put ' Z68'; 
put ' Z69'; 
put ' Z70'; 
put ' Z71'; 
put ' Z72'; 
put ' Z73'; 
put ' Z74'; 
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put ' Z75'; 
put ' Z76'; 
put ' Z77'; 
put ' Z78'; 
put ' Z79'; 
put ' Z80'; 
put ' i'; 
put ' exp  !I'; 
put ' student  !I 2000'; 
put ' notchscore'; 
put ' tchscorefinal'; 
put ' time !I'; 
put ' teacher !I'; 
put ' Test !A'; 
put 'AnalyzeThis.dat !SKIP=1 !MAXIT=100 !BRIEF'; 
put 'tchscorefinal ~ time.Test !r ![ Z1 Z2 Z3 Z4 Z5 Z6 Z7 
Z8 Z9 Z10 Z11 Z12 Z13 Z14 Z15 Z16 Z17 Z18 Z19 Z20 ,'; 
put ' Z21 Z22 Z23 Z24 Z25 Z26 Z27 Z28 Z29 Z30 Z31 Z32 Z33 
Z34 Z35 Z36 Z37 Z38 Z39 Z40 Z41 Z42 Z43 Z44 Z45 Z46 ,'; 
put ' Z47 Z48 Z49 Z50 Z51 Z52 Z53 Z54 Z55 Z56 Z57 Z58 Z59 
Z60 Z61 Z62 Z63 Z64 Z65 Z66 Z67 Z68 Z69 Z70 Z71 Z72 ,'; 
put ' Z73 Z74 Z75 Z76 Z77 Z78 Z79 Z80 !] time.student'; 
put '0 0 2'; 
 
put 'Z1 1'; 
put '80 0 I 1 !GP'; 
 
put 'time.student 2'; 
put 'time 0  US !GP'; 
put '1'; 
put '0 1'; 
put '0 0 1'; 
put '0 0 0 1'; 
put 'student 0 I'; 
Run; 
%End; 
 
%Else %do; 
*Create ASReml .as file for Z-score Method; 
Filename tmp "C:\Users\Jenny\Desktop\Flash Drive - June 2, 
2008\PhD\Dissertation\Paper 1 - Intro and Model Lit 
Review\Curve of Factors 
Methodology\Analyze\tch_student_scores_missing.as"; 
Data _null_; 
File tmp; 
put 'Z-score Method for 80 Teachers, 2000 Students'; 
put ' Z1'; 
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put ' Z2'; 
put ' Z3'; 
put ' Z4'; 
put ' Z5'; 
put ' Z6'; 
put ' Z7'; 
put ' Z8'; 
put ' Z9'; 
put ' Z10'; 
put ' Z11'; 
put ' Z12'; 
put ' Z13'; 
put ' Z14'; 
put ' Z15'; 
put ' Z16'; 
put ' Z17'; 
put ' Z18'; 
put ' Z19'; 
put ' Z20'; 
put ' Z21'; 
put ' Z22'; 
put ' Z23'; 
put ' Z24'; 
put ' Z25'; 
put ' Z26'; 
put ' Z27'; 
put ' Z28'; 
put ' Z29'; 
put ' Z30'; 
put ' Z31'; 
put ' Z32'; 
put ' Z33'; 
put ' Z34'; 
put ' Z35'; 
put ' Z36'; 
put ' Z37'; 
put ' Z38'; 
put ' Z39'; 
put ' Z40'; 
put ' Z41'; 
put ' Z42'; 
put ' Z43'; 
put ' Z44'; 
put ' Z45'; 
put ' Z46'; 
put ' Z47'; 
put ' Z48'; 
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put ' Z49'; 
put ' Z50'; 
put ' Z51'; 
put ' Z52'; 
put ' Z53'; 
put ' Z54'; 
put ' Z55'; 
put ' Z56'; 
put ' Z57'; 
put ' Z58'; 
put ' Z59'; 
put ' Z60'; 
put ' Z61'; 
put ' Z62'; 
put ' Z63'; 
put ' Z64'; 
put ' Z65'; 
put ' Z66'; 
put ' Z67'; 
put ' Z68'; 
put ' Z69'; 
put ' Z70'; 
put ' Z71'; 
put ' Z72'; 
put ' Z73'; 
put ' Z74'; 
put ' Z75'; 
put ' Z76'; 
put ' Z77'; 
put ' Z78'; 
put ' Z79'; 
put ' Z80'; 
put ' i'; 
put ' exp  !I'; 
put ' student  !I 2000'; 
put ' time !I'; 
put ' teacher !I'; 
put ' Test !A'; 
put ' Zscore'; 
put 'AnalyzeThis.dat !SKIP=1 !MAXIT=100 !BRIEF'; 
put 'Zscore ~ mu !r ![ Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9 Z10 Z11 
Z12 Z13 Z14 Z15 Z16 Z17 Z18 Z19 Z20 ,'; 
put ' Z21 Z22 Z23 Z24 Z25 Z26 Z27 Z28 Z29 Z30 Z31 Z32 Z33 
Z34 Z35 Z36 Z37 Z38 Z39 Z40 Z41 Z42 Z43 Z44 Z45 Z46 ,'; 
put ' Z47 Z48 Z49 Z50 Z51 Z52 Z53 Z54 Z55 Z56 Z57 Z58 Z59 
Z60 Z61 Z62 Z63 Z64 Z65 Z66 Z67 Z68 Z69 Z70 Z71 Z72 ,'; 
put ' Z73 Z74 Z75 Z76 Z77 Z78 Z79 Z80 !]'; 
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put '1 2 1'; 
put '2000 0 I'; 
put '4 0 US !GP !S2==1'; 
put '1'; 
put '0 1'; 
put '0 0 1'; 
put '0 0 0 1'; 
 
put 'Z1 1'; 
put '80 0 I 1 !GP'; 
Run; 
%End; 
 
*Run .as file in ASReml; 
%Let asfile=tch_student_scores_missing.as; 
Data _null_; 
Call System('cd C:\Users\Jenny\Desktop\Flash Drive - June 
2, 2008\PhD\Dissertation\Paper 1 - Intro and Model Lit 
Review\Curve of Factors Methodology\Analyze'); 
X "'C:\Program Files\ASREML3\BIN\asreml.exe' -NS6 &asfile"; 
Run; 
 
*Select and send predicted teacher effects, ranks, and 
percentiles to one permanent file, updated for each 
simulation; 
Filename tmp2 "C:\Users\Jenny\Desktop\Flash Drive - June 2, 
2008\PhD\Dissertation\Paper 1 - Intro and Model Lit 
Review\Curve of Factors 
Methodology\Analyze\tch_student_scores_missing.sln"; 
Data Teacher_Temp; 
%If &model = pp %then %do; 
Infile tmp2 firstobs = 9 obs = 88  lrecl=71;; 
Input Teacher 4-5 Pred_Effect 46-59 SE_Pred_Error 62-71; 
%End; 
%Else %do; 
Infile tmp2 firstobs = 2 obs = 81  lrecl=71;; 
Input Teacher 4-5 Pred_Effect 46-59 SE_Pred_Error 62-71; 
%End; 
Exp = &nsim; 
Model = "&model"; 
 Year = 1; 
 If Teacher > 20 then Year = 2; 
 If Teacher > 40 then Year = 3; 
 If Teacher > 60 then Year = 4;  
Run; 
 
Proc Sort Data = Teacher_Temp; 
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 By Year Teacher; 
Run; 
 
Proc Rank Data = Teacher_Temp Out=Rank; 
 By Year; 
 Ranks Pred_Rank; 
 Var Pred_Effect; 
Run; 
 
Data Teacher_Temp; 
Set Rank; 
 Pred_Percentile=100*(Pred_Rank/21); 
Run; 
 
%If %eval(&nsim) = 1 and &model = pp %then %do; 
Data MResults.Pred_Teacher_Effects; 
Set Teacher_Temp; 
Run; 
%End; 
%Else %do; 
Data MResults.Pred_Teacher_Effects; 
Set MResults.Pred_Teacher_Effects Teacher_Temp; 
Run; 
%End; 
 
*Select and send estimated variance components to one 
permanent file, updated for each simulation; 
 
%If &model = pp %then %do; 
*Create ASReml .pin file for PP Variance Components; 
Filename tmp "C:\Users\Jenny\Desktop\Flash Drive - June 2, 
2008\PhD\Dissertation\Paper 1 - Intro and Model Lit 
Review\Curve of Factors 
Methodology\Analyze\tch_student_scores_missing.pin"; 
Data _null_; 
File tmp; 
put 'F error_var 1 * 1'; 
put 'F teacher_var 2 * 1'; 
put 'F D1_Var 3 * 1'; 
put 'F D2D1_Cov 4 * 1'; 
put 'F D2_Var 5 * 1'; 
put 'F D3D1_Cov 6 * 1'; 
put 'F D3D2_Cov 7 * 1'; 
put 'F D3_Var 8 * 1'; 
put 'F D4D1_Cov 9 * 1'; 
put 'F D4D2_Cov 10 * 1'; 
put 'F D4D3_Cov 11 * 1'; 
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put 'F D4_Var 12 * 1'; 
Run; 
  
%Let pinfile=tch_student_scores_missing.pin; 
Data _null_; 
Call System('cd C:\Users\Jenny\Desktop\Flash Drive - June 
2, 2008\PhD\Dissertation\Paper 1 - Intro and Model Lit 
Review\Curve of Factors Methodology\Analyze'); 
X "'C:\Program Files\ASREML3\BIN\asreml.exe' -NP &pinfile"; 
Run; 
 
Filename tmp3 "C:\Users\Jenny\Desktop\Flash Drive - June 2, 
2008\PhD\Dissertation\Paper 1 - Intro and Model Lit 
Review\Curve of Factors 
Methodology\Analyze\tch_student_scores_missing.pvc"; 
Data Variance_Temp; 
Infile tmp3 firstobs = 16 obs = 27  lrecl=55; 
Input Error_Var 31-37 Error_SE 45-55 / Teacher_Var 31-37 
Teacher_SE 45-55 / D1_Var 31-37 D1_SE 45-55 / D2D1_Cov 31-
37 D2D1_SE 45-55 / D2_Var 31-37 D2_SE 45-55 / D3D1_Cov 31-
37 D3D1_SE 45-55 / D3D2_Cov 31-37 D3D2_SE 45-55 / D3_Var 
31-37 D3_SE 45-55 / D4D1_Cov 31-37 D4D1_SE 45-55 / D4D2_Cov 
31-37 D4D2_SE 45-55 / D4D3_Cov 31-37 D4D3_SE 45-55 / D4_Var 
31-37 D4_SE 45-55 ; 
%End; 
 
%Else %do; 
*Create ASReml .pin file for ZCrt, ZMat and MatCrt Variance 
Components; 
Filename tmp "C:\Users\Jenny\Desktop\Flash Drive - June 2, 
2008\PhD\Dissertation\Paper 1 - Intro and Model Lit 
Review\Curve of Factors 
Methodology\Analyze\tch_student_scores_missing.pin"; 
Data _null_; 
File tmp; 
put 'F E1_var 1 * 1'; 
put 'F E2E1_cov 2 * 1'; 
put 'F E2_Var 3 * 1'; 
put 'F E3E1_Cov 4 * 1'; 
put 'F E3E2_Cov 5 * 1'; 
put 'F E3_Var 6 * 1'; 
put 'F E4E1_Cov 7 * 1'; 
put 'F E4E2_Cov 8 * 1'; 
put 'F E4E3_Cov 9 * 1'; 
put 'F E4_Var 10 * 1'; 
put 'F Teacher_Var 11 * 1'; 
Run; 
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%Let pinfile=tch_student_scores_missing.pin; 
Data _null_; 
Call System('cd C:\Users\Jenny\Desktop\Flash Drive - June 
2, 2008\PhD\Dissertation\Paper 1 - Intro and Model Lit 
Review\Curve of Factors Methodology\Analyze'); 
X "'C:\Program Files\ASREML3\BIN\asreml.exe' -NP &pinfile"; 
Run; 
 
Filename tmp3 "C:\Users\Jenny\Desktop\Flash Drive - June 2, 
2008\PhD\Dissertation\Paper 1 - Intro and Model Lit 
Review\Curve of Factors 
Methodology\Analyze\tch_student_scores_missing.pvc"; 
Data Variance_Temp; 
Infile tmp3 firstobs = 15 obs = 25  lrecl=55;; 
Input E1_Var 31-37 E1_SE 45-55 / E2E1_Cov 31-37 E2E1_SE 45-
55 / E2_Var 31-37 E2_SE 45-55 / E3E1_Cov 31-37 E3E1_SE 45-
55 / E3E2_Cov 31-37 E3E2_SE 45-55 / E3_Var 31-37 E3_SE 45-
55 / E4E1_Cov 31-37 E4E1_SE 45-55 / E4E2_Cov 31-37 E4E2_SE 
45-55 / E4E3_Cov 31-37 E4E3_SE 45-55 / E4_Var 31-37 E4_SE 
45-55 / Teacher_Var 31-37 Teacher_SE 45-55  ; 
%End; 
 
Exp = &nsim; 
Model = "&model"; 
Run; 
 
%If %eval(&nsim) = 1 %then %do; 
Data MResults.Pred_Variance_&model; 
Set Variance_Temp; 
Run; 
%End; 
 
%Else %do; 
Data MResults.Pred_Variance_&model; 
Set MResults.Pred_Variance_&model Variance_Temp; 
Run; 
%End; 
 
%mend; 
 
*********************************************************; 
* Create Macro to Simulate & Analyze Multiple Data Sets *; 
*********************************************************; 
 
%Macro sim(sims,oseed); 
%Do nsim = 1 %to &sims; 
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%Let seed = &oseed + &nsim; 
 
*Run COF Macro to create PP, Zcrt, Zmat and Zmatcrt 
Datasets; 
%cof_missing(2000,&seed,Tch_Student_Scores_pp,Tch_Student_S
cores_zcrt,Tch_Student_Scores_zmat,Tch_Student_Scores_zmatc
rt); 
 
*Run Analyze Macro to analyze each dataset; 
%analyze(Tch_Student_Scores_pp,pp); 
%analyze(Tch_Student_Scores_zcrt,zc); 
%analyze(Tch_Student_Scores_zmat,zm); 
%analyze(Tch_Student_Scores_zmatcrt,mc); 
 
%End; 
%mend; 
%sim(1000,20060902); 
 
********************************************************; 
*** Create Datasets for Plots and Summary Statistics ***; 
********************************************************; 
 
*Merge True and Predicted Teacher Effects from the 1000 
Simulations; 
Proc Sort Data = MResults.True_Teacher_Effects; 
By Exp Teacher; 
Proc Sort Data = MResults.Pred_Teacher_Effects; 
By Exp Teacher; 
Run; 
 
Data MResults.Teacher_Effects; 
Merge MResults.Pred_Teacher_Effects 
MResults.True_Teacher_Effects; 
By Exp Teacher; 
Run; 
 
*Create Dataset (MResults.Stats_Plot) for RMSE and SEPE 
Plots; 
Data MResults.Teacher_Effects; 
Set MResults.Teacher_Effects; 
SPE = (Pred_Percentile - True_Percentile)**2; 
PE = (Pred_Percentile - True_Percentile); 
Run; 
 
Proc Sort Data = MResults.Teacher_Effects; 
By Year True_Percentile Model; 
Run; 
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Proc Means Data = MResults.Teacher_Effects Mean noprint; 
By Year True_Percentile Model; 
Var SPE; 
Output Out = Stats1 Mean = MSE; 
Run; 
 
Proc Means Data = MResults.Teacher_Effects VAR noprint; 
By Year True_Percentile Model; 
Var PE; 
Output Out = Stats2 Var = VPE; 
Run; 
 
Data MResults.Stats_Plot; 
Merge Stats1 Stats2; 
By Year True_Percentile Model; 
Run; 
 
Data MResults.Stats_Plot; 
Set MResults.Stats_Plot; 
Drop _Freq_ _Type_; 
RMSE = sqrt(MSE); 
SEPE = sqrt(VPE); 
Run; 
 
Proc Sort Data = MResults.Stats_Plot; 
By Year Model; 
Run; 
 
PROC EXPORT DATA= MResults.Stats_PLOT  
            OUTFILE= "C:\Users\Jenny\Desktop\Flash Drive - 
June 2, 2008\PhD\Dissertation\Paper 1 - Intro and Model Lit 
Review\Curve of Factors 
Methodology\MGraphs\MStats_Plot.csv"  
            DBMS=CSV REPLACE; 
     PUTNAMES=YES; 
RUN; 
 
*Create Dataset for Bias Plot; 
Proc Sort Data = MResults.True_Teacher_Effects; 
By Exp Teacher; 
Proc Sort Data = MResults.Pred_Teacher_Effects; 
By Exp Teacher; 
Run; 
 
Data MResults.Teacher_Effects; 
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Merge MResults.Pred_Teacher_Effects 
MResults.True_Teacher_Effects; 
By Exp Teacher; 
Run; 
 
Proc Sort Data=MResults.Teacher_Effects; 
By Year True_Percentile Model; 
Run; 
 
Proc Means Data = MResults.Teacher_Effects Mean noprint; 
By Year True_Percentile Model; 
Var Pred_Percentile; 
Output Out = Stats3 Mean = Mean_Pred; 
Run; 
 
Data MResults.Bias_Plot; 
Set Stats3; 
Bias = Mean_Pred - True_Percentile; 
Drop _Freq_ _Type_; 
Run; 
 
PROC EXPORT DATA= MResults.Bias_Plot  
            OUTFILE= "C:\Users\Jenny\Desktop\Flash Drive - 
June 2, 2008\PhD\Dissertation\Paper 1 - Intro and Model Lit 
Review\Curve of Factors Methodology\MGraphs\MBias_Plot.csv"  
            DBMS=CSV REPLACE; 
     PUTNAMES=YES; 
RUN; 
 
*Create Dataset (MResults.Percentile_Plot) for 25th, 50th 
and 75th Percentile Sampling Distribution Plots; 
Data MResults.Percentile; 
Set MResults.Teacher_Effects; 
If Ceil(True_Rank) = 5 or Ceil(True_Rank) = 10 or 
Ceil(True_Rank) = 16; 
Ceil_True_Rank = Ceil(True_Rank); *CEIL function adjusts 
for mean ranks from ties; 
Ceil_Pred_Rank = Ceil(Pred_Rank); *CEIL function adjusts 
for mean ranks from ties; 
Ceil_True_Percentile = (Ceil_True_Rank*100)/21; 
Ceil_Pred_Percentile = (Ceil_Pred_Rank*100)/21; 
Dummy = 1; 
Run; 
 
Proc Sort Data = MResults.Percentile; 
By Ceil_True_Percentile Ceil_Pred_Percentile Year Model; 
Run; 
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Proc Means Data = MResults.Percentile Sum noprint; 
By Ceil_True_Percentile Ceil_Pred_Percentile Year Model; 
Var Dummy; 
Output out = Stats Sum = sum; 
Run; 
 
Data Zero; 
Do Ceil_True_Rank = 1 to 20; 
Ceil_True_Percentile = 100*(Ceil_True_Rank/21); 
 Do Ceil_Pred_Rank = 1 to 20; 
 Ceil_Pred_Percentile = 100*(Ceil_Pred_Rank/21); 
  Do Year = 1 to 4; 
 Do Model2 = 1 to 4; 
 Output; 
 End; 
  End; 
 End; 
End; 
Run; 
 
Data Zero; 
Set Zero; 
If Ceil_True_Rank = 5 or Ceil_True_Rank = 10 or 
Ceil_True_Rank = 16; 
If Model2 = 1 then Model = 'mc'; 
If Model2 = 2 then Model = 'pp'; 
If Model2 = 3 then Model = 'zc'; 
If Model2 = 4 then Model = 'zm'; 
Run; 
 
Data Test; 
Merge Stats Zero; 
By Ceil_True_Percentile Ceil_Pred_Percentile Year Model; 
Run; 
 
Data MResults.Percentile_Plot; 
Set Test; 
If Sum = . then Sum = 0; 
Relative_Freq = Sum/1000; 
Drop _Freq_ _Type_ Model2; 
Run; 
 
PROC EXPORT DATA= MResults.Percentile_PLOT  
            OUTFILE= "C:\Users\Jenny\Desktop\Flash Drive - 
June 2, 2008\PhD\Dissertation\Paper 1 - Intro and Model Lit 
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Review\Curve of Factors 
Methodology\MGraphs\MPercentile_Plot.csv"  
            DBMS=CSV REPLACE; 
     PUTNAMES=YES; 
RUN; 
 
*Create Dataset (MResults.Prob75_Plot) for 75th Percentile 
Classification Probability Plots; 
Data Percentile75; 
Set MResults.Teacher_Effects; 
If Pred_Percentile >=75 then Dummy75 = 1; 
Else Dummy75 = 0; 
Run; 
 
Proc Sort Data = Percentile75; 
By True_Percentile Year Model; 
Run; 
 
Proc Sort Data =  MResults.Teacher_Effects; 
By True_Percentile Year Model; 
Run; 
 
Proc Means Data = Percentile75 Sum noprint; 
By True_Percentile Year Model; 
Var Dummy75; 
Output out = Stats75 Sum = sum; 
Run; 
 
Data MResults.Prob75_Plot; 
Set Stats75; 
Relative_Freq = Sum/1000; 
Drop _Freq_ _Type_; 
Run; 
 
PROC EXPORT DATA= MResults.PROB75_PLOT  
            OUTFILE= "C:\Users\Jenny\Desktop\Flash Drive - 
June 2, 2008\PhD\Dissertation\Paper 1 - Intro and Model Lit 
Review\Curve of Factors 
Methodology\MGraphs\MProb75_Plot.csv"  
            DBMS=CSV REPLACE; 
     PUTNAMES=YES; 
RUN; 
 
*Obtain Mean and SD of Teacher Var and Avg Teacher Var SE 
for each Model; 
Proc Means Data = MResults.Pred_Variance_pp Mean Std; 
Var Teacher_Var Teacher_SE; 
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Output Out = VarStats; 
Run; 
Proc Means Data = MResults.Pred_Variance_zc Mean Std; 
Var Teacher_Var Teacher_SE; 
Output Out = VarStats; 
Run; 
Proc Means Data = MResults.Pred_Variance_zm Mean Std; 
Var Teacher_Var Teacher_SE; 
Output Out = VarStats; 
Run; 
Proc Means Data = MResults.Pred_Variance_mc Mean Std; 
Var Teacher_Var Teacher_SE; 
Output Out = VarStats; 
Run; 
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