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G Gibbs free energy
j flow ratio (Eq. 46)
J diffusive mass flux (flow), mol m-2 s-1 
Jq conduction heat flux (flow), W m-2  
Jr volumetric reaction rate mol m-3 s-1

ke  effective thermal conductivity, W m-1 K-1  
kB Boltzmann constant
ki rate constant for chemical reaction i
K equilibrium constant
KM Michaelis constant
L characteristic half thickness, m
Le modified Lewis number, dimensionless and defined in Eq. (64)
Lik phenomenological coefficients
Lqr coupling coefficient between chemical reaction and heat flow, 
 mol K m-2 s-1

Nomenclature
A affinity (Eq. 21)
A* nondimensional affinity in Eqs. (63)and (64)
cp  heat capacity
Ci concentration of specie i
Da Damköhler number, dimensionless and defined in Eqs. (63)
 and (64)
Di Diffusion coefficient of species i
DS,e effective diffusion coefficient for the substrate S, m2 s-1  
DD,e coupling coefficient related to the Dufour effect, J m2 mol-1 s-1  
DT,e coupling coefficient related to the thermal diffusion (Soret 
 effect), mol m-1 s-1 K-1  
E activation energy of the chemical reaction, J mol-1

F Faraday constant
∆Hr reaction enthalpy, J mol-1 
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Review
Nonequilibrium Thermodynamics Modeling of Coupled Biochemical Cycles in Living Cells

Yaşar Demirel
Department of Chemical and Biomolecular Engineering, University of Nebraska-Lincoln, Lincoln, USA; ydemirel2@unl.edu

Abstract
Living cells represent open, nonequilibrium, self organizing, and dissipative systems maintained with the continuous supply of outside and 

inside material, energy, and information flows. The energy in the form of adenosine triphosphate is utilized in biochemical cycles, transport pro-
cesses, protein synthesis, reproduction, and performing other biological work. The processes in molecular and cellular biological systems are 
stochastic in nature with varying spatial and time scales, and bounded with conservation laws, kinetic laws, and thermodynamic constraints, 
which should be taken into account by any approach for modeling biological systems. In component biology, this review focuses on the model-
ing of enzyme kinetics and fluctuation of single biomolecules acting as molecular motors, while in systems biology it focuses on modeling bio-
chemical cycles and networks in which all the components of a biological system interact functionally over time and space. Biochemical cycles 
emerge from collective and functional efforts to devise a cyclic flow of optimal energy degradation rate, which can only be described by none-
quilibrium thermodynamics. Therefore, this review emphasizes the role of nonequilibrium thermodynamics through the formulations of ther-
modynamically coupled biochemical cycles, entropy production, fluctuation theorems, bioenergetics, and reaction-diffusion systems. Fluctu-
ation theorems relate the forward and backward dynamical randomness of the trajectories or paths, bridge the microscopic and macroscopic 
domains, and link the time-reversible and irreversible descriptions of biological systems. However, many of these approaches are in their ear-
ly stages of their development and no single computational or experimental technique is able to span all the relevant and necessary spatial and 
temporal scales. Wide range of experimental and novel computational techniques with high accuracy, precision, coverage, and efficiency are 
necessary for understanding biochemical cycles.

Keywords: Biological systems, Network dynamics, Stochastic equations, Nonequilibrium thermodynamics, Fluctuation theorems, Bioenergetics, Reaction-diffusion 
systems
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Greek symbols
β friction coefficient; thermicity group, dimensionless and de-
 fined in Eqs. (63)and (64)
γ Arrhenius group, dimensionless defined in Eqs. (63)
ε cross coefficient related to Soret effect, dimensionless and de-
 fined in Eqs. (63)
ζ random force
η	 energy conversion efficiency (Eq. 47)
θ dimensionless concentration defined in Eqs. (63)
κ cross coefficient dimensionless and defined in Eq. (64)
µ chemical potential
ρ density 
σ entropy production;  cross coefficient, dimensionless and de-
 fined in Eq. (64)
τ dimensionless time
Φ volumetric entropy generation rate, W m-3 K-1 
φ network potential as an emerging property (Eq. 19)
ϕ dimensionless temperature defined in Eqs. (63)
ω cross coefficient related to Dufour effect, dimensionless and 
 defined in Eq. (64)

Subscripts
b backward
dis dissipation
D Dufour
e effective
ext external
eq equilibrium
f forward
opt optimum
q heat
r reaction
s surface
sh static head
S Soret
unc uncoupled

also help determining biochemical reaction mechanisms, which clar-
ify the set of elementary steps, the nature of reaction intermediates, 
their interactions in transformations, and the rates of these transfor-
mations. The mechanisms also help understand the functional role 
of various molecules, control of various biochemical pathways, and 
kinetic modeling [19]. 

Living cells represent open, nonequilibrium, self organizing, and 
dissipative systems maintained with the continuous supply of out-
side and inside material, energy and information flows. Therefore, it 
can create and maintain pathways in which thermodynamically cou-
pled and critically synchronized rate and transport processes of the 
biochemical cycles take place [20,21]. Here, the coupling refers that 
a flow occurs without or against its primary thermodynamic driving 
force, which may be a gradient of temperature, or a chemical poten-
tial, or an affinity. The principles of thermodynamics allow the prog-
ress of a process without or against its primary driving force only if 
it is coupled with another spontaneous process. This is consistent 
with the statement of second law, which states that a finite amount 
of organization may be obtained at the expense of a greater amount 
of disorganization in a series of coupled processes. Living systems 
survive as they are capable of funneling material, energy, and in-
formation into their own production and reproduction, and contrib-
ute to the pathways of autocatalytic processes of biochemical cycles, 
which are bounded with conservation, kinetics, and thermodynam-
ic laws [6,14,16]. 

The processes in molecular and cellular biological systems are sto-
chastic in nature with varying scales of time and space [11,17,18]. 
The stochastic differential equations can be linked to both the mas-
ter equation type description with explicit discrete nature of chemi-
cal processes and the Fokker–Planck equation type with continuous 
variables in both time and state space [11]. Therefore, the modeling 

LSr coupling coefficient between chemical reaction and mass 
 flow, mol2 K J-1 m-2 s-1

n number of components
Nr number of independent reactions
P probability
Pi phosphate 
q degree of coupling (Eq. 44)
Q heat
R gas constant
S entropy
t time, s-1

T temperature, K
u internal energy
V total volume, m3  
W work
x thermodynamic force ratio (Eq. 46)
X thermodynamic force
z dimensionless distance; charge
Z phenomenological stoichiometry; partition function 

Abbreviations
ATP adenosine triphosphate 
ADP adenosine diphosphate
BST biochemical system theory
CME chemical master equation
DNA deoxyribonucleic acid
EBA energy balance analysis
FBA flux balance analysis
LNET linear nonequilibrium thermodynamics
MCA metabolic control analysis
MM Michaelis-Menten
NESS nonequilibrium steady state
OP oxidative phosphorylation
PFK phosphofructokinase
RNA ribonucleic acid
SNT stoichiometric network thermodynamic 

1.  Introduction
The human genome project revealed that understanding the bio-

logical structures, a comprehensive description of deoxyribonucle-
ic acid (DNA), protein and their functions is needed. The large scale 
biological data sets and more time sequence data generated by the 
human genome project [1-4] require expertise beyond traditional bi-
ology, such as chemists, physicists, mathematicians, engineers, com-
puter scientists, and others. Consequently, the efforts in analyses of 
component biology and system biology as well as analyses for bridg-
ing them have attracted researchers from variety of disciplines. Of-
ten, however, the researchers emphasize their point of view in their 
descriptions and interpretations of important steps, and yet the stan-
dards of these descriptions, interpretations, procedures, and formu-
lations vary from one group or lab to another and leads to some 
communication difficulties. Component biology is closely related to 
enzyme kinetics and fluctuation of single biomolecule acting as mo-
lecular motors. Systems biology, on the other hand, involves FCA 
functional cellular attractorscomprehensive analysis of the complex 
biological organization and processes in which all the components 
of a biological system interact functionally over time and space [5-
10]. Systems biology has various evolving stages, such as molecu-
lar self organization, large-scale models, metabolic control analy-
sis, and convergence of many concepts of chemistry, mathematics, 
thermodynamics, and molecular biology. The integrated elements of 
systems biology are [5,10]: (1) designed biological experiments, (2) 
experimental technologies at cellular level, (3) biocomputation and 
bioinformation for processing and presentation of large scale data 
sets [1,2], and (4) conceptual and mathematical frameworks to ana-
lyze stochastic data and model biological cycles [11,12-19]. Data col-
lected from experiments on genomic and metabolic scales help iden-
tifying the components and interactions in biochemical cycles and 
networks. With the right algorithms and approaches, such data can
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orems. This review also emphasizes the need of a truly collective ef-
fort to understand and describe the thermodynamically coupled bi-
ological systems within the constraints of conservation, thermody-
namics, and kinetics laws.

2.  Biological systems
DNA and ribonucleic acid (RNA) are two different nucleic acids 

found in the cells of every living organism and have cooperating 
roles in the field of cell biology. DNA contains the genetic informa-
tion of an organism. This information dictates how the body’s cells 
would construct new proteins. DNA, RNA, protein and some oth-
er complex organic molecules give biological systems their unique 
properties, which emerge out of the interaction of the components 
comprising the whole system. The eight levels of living systems are 
cells, organs, organisms, groups, organizations, communities, so-
cieties, and supranational systems. The cells are the basic building 
blocks of all living systems [4].

Sequenced genomes together with gene expression data help un-
derstanding of metabolic networks [3,4], which consist of typical-
ly several hundreds of reactions that are catalyzed by enzymes. 
These metabolic reactions of an organism can to some extent be de-
termined from its genome since the presence of an enzyme and the 
particular reaction it catalyzes can be ascertained by sequence ho-
mology analysis. A flux (flow) is assigned to each metabolic reaction 
to predict the behavior of the cell as a result of interactions between 
the different reactions that go on inside the cell [19]. Some impor-
tant concepts in biological transformations are state, key state, con-
formational state, kinetic state, transition, trajectory, and restraint. A 
state characterizes chemical and physical composition, and three di-
mensional structure of a macromolecule or an assembly. Creation of 
a structural dynamics model of a macromolecular process, such as 
active transport with molecular motors and protein synthesis by the 
ribosome, requires determination of key states and their structural 
characterization, since the set of key states and transitions between 
them defines the essence of the process [54]. A trajectory is a de-
tailed sequence of states and describes a transition between two key 
states, which may be stable or unstable. Conformational heteroge-
neity implies that multiple states exist in a single molecule or an as-
sembly, while the kinetic heterogeneity results from different copies 
of the system following different transitions; for example, different 
parts of a protein can form and function independently. A restraint 
restricts geometric and dynamic properties of an assembly, such as 
the distance between two components, overall shape of the complex, 
or the time interval between two key states. A biological dynam-
ic process is represented as a set of key states connected by transi-
tions with associated trajectory, rate and transport information in-
volving single macromolecule, macromolecular complexes, and bio-
chemical cycles taking place over a wide variety of spatial and time 
scales [13,17,55-59]. Table 1 shows the spatial and time scales of bio-
logical systems. Currently, no single computational or experimental 
technique is able to span all the relevant and necessary spatial and 
temporal scales, and wide range of experimental and novel compu-
tational techniques with high accuracy, precision, coverage, and ef-
ficiency are necessary for understanding biological systems in gen-
eral [11,15-17].

2.1.  Some relevant experiments
Some of the current experimental techniques used in biological sys-

tems are [54]: (i) Time resolved small angle X-ray scattering collects a 
time course of the scattering profile by repeatedly exposing a sample 
in solution to determine the structure of intermediates in the sample 
[19]. (ii) Transverse relaxation optimized spectroscopy is a variant of nu-
clear magnetic resonance spectroscopy that can be applied to large 
systems. This method isolates part of the system by replacing the re-
maining hydrogen atoms with deuterium atoms to be monitored to 
measure local conformation and its changes. (iii) In pulse-chase moni-
tored by quantitative mass spectrometry, a complex is allowed to assem-
ble for some period, followed by a rapid dilution of nonbound pro-
teins in solution with N14 labeled proteins. It then measures the rela-

helps to understand biological structure, perform exploring simu-
lations, interpret and evaluate of measured data, make predictions, 
and help design further experiments [11,13-19].

Systems in global equilibrium with large number of molecules fol-
low the laws of classical thermodynamics, which investigate sys-
tems with larger length and longer time scales, and less molecular 
detail [26,27]. However, living systems of biochemical cycles oper-
ate far from equilibrium and constrained by large gradients (ther-
modynamic forces), and utilize all means available to counter these 
applied gradients [6,22-25]. Fluctuations at far from equilibrium 
dominate the behavior of biological systems and can lead to self-
organized dissipative structures, such as biochemical cycles acquir-
ing low entropy by increasing the entropy in their environments 
[6,12,22]. At each bifurcation, existing structures trigger the process 
that leads to new, more complex, and more stable forms of order 
[6-8,22-25]. In its more general form, fluctuation theorems provide 
an analytical description of how irreversible macroscopic behavior 
evolves from time-reversible microscopic dynamics as either the sys-
tem size or the observation time increases [26,27]. Therefore, fluctu-
ation theorems bridge the microscopic and macroscopic domains, 
link the time-reversible and irreversible descriptions, help under-
standing the unique properties of microscopic and mesoscopic sys-
tems, and may serve as the basis for a theory of the nonequilibrium 
thermodynamics of small systems [6,26-29].

Living systems grow by adding more of the same types of path-
ways and develop when new pathways and networks emerge 
[30,31]. Necessary energy for growth and development comes 
[21,31,32] from energy converters that couple input flow-force pairs 
with the corresponding output flow-force pairs in biochemical cy-
cles. Molecular motors ranging in size from 2 to 10 nm in a thermal 
bath, for which fluctuations can be even larger than the mean values, 
converts chemical energy into useful work in the cell. Subsequent-
ly, the cell performs many biological work by utilizing the energy re-
leased by the hydrolysis of adenosine triphosphate (ATP) [14,23,24]. 
Biological work includes biosynthesis of proteins, nucleic acids, lip-
ids and polysaccharides, ATP production, active transport and ex-
cretion of wastes. Some of the mechanical work consist of cell divi-
sion and muscle contraction, while some of the electrical work in-
volve transmission of nerve impulses to osmotic activity and firefly 
illumination. All these work involve complex energetic coupling, in 
which complexity is the number of successive levels of hierarchical 
structuring in a system-part to whole [24,31-37]. 

The self-organizing processes of living cells are linked to certain 
functions and are characteristically different from other dynamic 
organizations that do not necessarily acquire a function [6,9,22,23]. 
Consequently, biochemical cycles emerge from collective and func-
tional efforts to devise a cyclic flow of optimal energy degradation 
rate, which can only be described by nonequilibrium thermodynam-
ics [6,21,29,31,32,36,38-53]. For example, as a major part of organiza-
tion, the thermodynamic coupling in the membranes of living cells 
plays major role in the respiratory electron transport chain leading 
to synthesizing of ATP [31]. 

This review starts with a general description of biological systems 
in which experimental and computational techniques, dynamic 
character, thermodynamic constraints, and self-organizing process-
es of biological systems are briefly discussed. Some approaches for 
modeling of biochemical cycles and macromolecules are reviewed 
with an emphasis of what they mean individually and how they are 
interrelated in a large variety of spatial and time scales. Nonequi-
librium thermodynamics of microscopic and macroscopic biologi-
cal systems are reviewed within the context of modeling self-orga-
nized dissipative systems [22,23]. Later, the fluctuations theorems 
with some specific applications for macromolecules are reviewed. 
Bioenergetics and linear nonequilibrium analysis of ATP production 
is reviewed next. Lastly, reaction-diffusion systems and some exam-
ples of linear nonequilibrium formulations are reviewed. Therefore, 
this review emphasizes the role of nonequilibrium thermodynam-
ics through the formulations of coupled biochemical cycles in near 
and far from equilibrium, entropy production, and fluctuation the-
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2.3.  Dynamic components 
Dynamic components of a given biological network are the forces 

(driving and transverse), the flows (fluxes), the dissipation, and the 
noise [28,57,69]. The driving force provides the necessary resource 
in order to start and maintain the desired function, and determines 
the distance from equilibrium and robustness of the network. The 
transverse force is responsible of relocation or translocation of the re-
source from one part of the network to another, the delay response, 
and the oscillation. The dissipation describes how the resource is 
consumed. Owing to dissipation, the network needs constant sup-
ply of external and internal resources. Finally, for any complex bio-
logical network, there always exists stochastic force. Both dissipative 
and stochastic characteristics provide the network with the unique 
ability to adapt to the optimal state. At the same time, the generic dy-
namical principles require that all the components must be bound-
ed by the constraints and the stochastic force must be the integral 
part of the network [11,70]. With the identification of the dynamical 
components, final stationary distribution can be estimated from the 
forces, and the time scales in the network become explicit [11,16,17].

2.4.  Thermodynamic constraints
Biological systems work under mass and energy conservations 

as well as thermodynamic constraints arising from the second law 
[11,71-74]. The flux balance analysis is based on mass conservation; 
and the energy balance analysis (EBA) is based on the nonequilibri-
um network thermodynamics, which states that each internal reac-
tion with non-zero flux must dissipate energy [25,74]. The FBA has 
proved to be useful for studying the steady-state metabolic flux in-
side the cell in the absence of knowledge of detailed kinetic parame-
ters of reactions [74-76]. For a flux vector J to be thermodynamically 

feasible, there must exist a vector Δμ ( m m∆ = ⋅S ) [71] for which 

the thermodynamic constraint is satisfied 0j jJm∆ ≤ ; here μ	is 
the chemical potential and S is the stoichiometric matrix of metabol-
ic chemical reactions. Furthermore, Jj = 0 if only Δμ = 0. According to 
the second law, fluxes must flow from reactants of higher chemical 
potential to ones of lower chemical potential and the entropy of the 
reaction is always non-decreasing [21,76]. Nigam and Liang [72,73] 
provided an algorithm for flux and energy balance analyses that per-
turb the metabolic network to find a thermodynamically feasible so-
lution. If one deletes reactions corresponding to zero fluxes, the met-
abolic network is modified, and this may lead to an optimal thermo-
dynamically feasible solution. It should, however, be noted that the 
FBA and EBA may still not able to constrain the metabolic network 
completely and lead to an infinity of flux and change in chemical po-
tential vectors [72]. More realistic bounds on the values of fluxes are 
required to further constrain the system by studying the biochemis-
try of several pathways. A more complete formulation could make 
the change in chemical potential for each internal reaction more in-
terpretable and comparable to experiment. 

2.5.  Self organization and energy dissipation
In 1960s, Prigogine [6,48,49] formalized the nature of dynamic self 

organization as emergence of order in systems with as an ability to 
dissipate the energy gradients effectively. As Karsenti [23] notes that 
the importance of self-organizing processes of biochemical cycles 
was recognized in 1980s and 1990s, and gain momentum only re-
cently [22,35,37,56]. 

Mostly, cell organization depends on the self-assembly processes, 
which are at thermodynamic equilibrium, and hence do not involve 
energy dissipation. In living cell, however, self-organization also oc-
curs by dissipating the ATP. The dynamic order of biological sys-
tems results from variety of dynamic interactions as some sponta-
neous processes thermodynamically couple with processes that re-
quire energy from outside hence the total entropy production for 
the whole system becomes positive, which is required by the second 
law of thermodynamics. Therefore, some processes for certain func-
tions, which cannot proceed on their own, become possible through 

tive populations of the heavy and light molecules, producing an as-
sociation rate estimate for accumulation in the complex. (iv) In time 
resolved pullouts, [60] the cells are rapidly frozen and the media is 
ground and is thawed. The protein is pulled out by affinity chro-
matography and identified with mass spectrometry or other meth-
ods. (v) In another technique, flourescent	tags [61] are attached to par-
ticles and the system is observed through a microscope. When the 
marked particles are separated by at least tens of nanometers, the in-
dividual dyes can be located [60]. (vi) In forster resonance energy trans-
fer spectroscopy [61], two particles are tagged with appropriate fluo-
rophores; when the dyes are close to one another (several nanome-
ters), they become coupled and the strength of this coupling, which 
depends on distance, detecs changes in distance. (vii) In optical twee-
zers, [62] a micron-sized polystyrene bead attached to part of the sys-
tem is held in an optical trap, which can be used either to hold the 
bead at a specified force or to set the displacement over time. Some 
recent setups allow a second bead to be trapped and manipulated 
independently. Optical tweezers can apply forces of up to hundreds 
of piconewtons.

2.2.  Some relevant computational methods
Structural modeling of a dynamic biological process usually be-

gins with the determination of key states, their structural charac-
terization [54], and trajectories between key states. In molecular dy-
namics [63] Newton’s equations of motion are integrated for the at-
oms of the system by relying on a molecular mechanics force field 
to obtain a trajectory of the system with time steps on the order of 
femtoseconds. Parallel molecular dynamics programming can han-
dle large systems [63]. Coarse graining and multiscale methods can 
extend the reachable time scales to fractions of a millisecond by 
representing many atoms with a single particle, using force fields 
derived from more detailed all-atom computations, and adding in-
termediate key states along the transition [17,57]. Computer simu-
lations are reaching the microsecond time scale, while the stopped-
flow	techniques reach the millisecond time scale. In normal modes 
dynamics [64], the assembly is represented as a collection of points 
connected by springs. The local dynamics of such an object is ap-
proximated by a linear combination of a small basis set of harmonic 
motions, each with a characteristic frequency. The trajectory is gen-
erated by an iterative extrapolation of local dynamics. Motion plan-
ning [3] algorithms are a large family of techniques taken from ro-
botics that search for noncolliding trajectories between two known 
states of the system. Stochastic path integral for coarse-grained sim-
ulations can preserve statistical characteristics of the original dy-
namics. With the stochastic path integral, large networks of sto-
chastic reactions can be reduced to a set of deterministic equations 
[65]. 

There are some other methodologies to describe metabolic net-
work study: In the Flux balance analysis (FBA), the mass conserva-
tion is built into the formulation and a linearization near a steady-
state state with the given stoichiometric constraints takes place. The 
first eliminates redundant dynamical variables, while the second is a 
special case by setting the stochastic force to be zero. The FBA is easy 
to be implemented in practical applications, because many matured 
mathematically tools, such as linear programming, can be employed 
[3]. Metabolic control analysis (MCA) studies how a network in steady 
state responds to changes in fluxes without dynamics and stochastic 
force. Properties of the architectural structure of the metabolic net-
work can be revealed by MCA. In Biochemical systems theory (BST) [4] 
the force is assumed to polynomial for an easy mathematical anal-
ysis, but the stochastic force is typically neglected, while the con-
trol theory is employed. Stoichiometric network thermodynamic theo-
ry (SNT) explicitly incorporates thermodynamic constraints into the 
modeling [30] since energy and entropy play such dominant roles in 
metabolic network dynamics [30,66-68]. However, an integration of 
experimental and theoretical considerations is necessary as none of 
these computational techniques are always accurate, applicable on 
all relevant time and size scales, and capable of describing all prop-
erties of interest [54].
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itive non-zero entropy production rate, which characterizes the non-
equilibrium steady state (NESS). Recent developments in the area 
of fluctuation theorems have highlighted the importance of entro-
py production (‘dissipation cost’) and its relationship with the irre-
versible nature of a system [83,98] and the robustness of biochem-
ical cycles [14,42,83,99,100,101]. Some of the deterministic and sto-
chastic approaches used in the modeling are briefly discussed with-
in the next sections.

3.1.  Deterministic models
Schlögl’s model [100] has an autocatalytic and trimolecular reaction:

1

1
A+2X 3X

k f

k b
→← , 

2

2
B X

k f

k b
→← .   

     (1)
The concentrations of substrates CA and CB are kept constant with ex-
change of materials between two material baths. Here CX is the dy-
namic concentration, kif and kib are the forward and backward rate 
constants for reaction i, respectively, and the system is assumed to 
be homogeneous in space and the volume, The deterministic model 
[19,38,102] is based on the law of mass action and yields a nonlinear 
ordinary differential equation given by

1 2 1 2( ) ( )X
f f b b

dC J J J J
dt

= + − + ,   
     (2)
where 

2 3
1 1 1 1 2 2 2 2,   ,   ,   f f A X b b X f f A b b XJ k C C J k C J k C J k C= = = =

. 
Here Jif and Jib are the forward and backward reaction fluxes, respec-
tively. Chemical detailed balance (or equilibrium steady state) oc-
curs when Jif = Jib in every reaction, while mathematical detailed bal-
ance assumes that total forward rate is equal to total backward rate. 
As the Schlögl reaction system is cubic (from the trimolecular reac-
tion) there may be three states depending on the set of parameters, 
such as a bistable state with two stable steady states separated by an 
unstable steady state. The bifurcation point is obtained through the 
following discriminant equation [38]

3 3 2 2 2 3 2 2 2
1 2 1 2 1 2 1 1 2 2 1 24 4 18 27f A f B f A b b b f b A f b B b f Bk C k C k C k k k k k C k k C k k C∆ = − + − +

.     (3)
The bistable state occurs when Δ < 0 [38]. There exist many bio-
logical examples of bistability and switching behavior [38,96,102]. 
When the volume V and number of molecules change, the val-
ues of ki and CA and CB are assumed to be constant. The steady 
state equilibrium concentration of dynamic molecule X is 

, 1 1 2 2/ /X es f A b f B bC k C k k C k= = .
 
“Macroscopic” studies of living cell biochemistry are usually based 
on deterministic nonlinear differential equations according to the 
law of mass action [54]. Currently, it is generally accepted that a 
bistability in the deterministic dynamics corresponds to a bimod-
al probability density function in the stochastic approach [38]. With 
the increasing size of chemical reaction systems, there is a separation 
of time scale: the transition rates between the two macroscopic states 
become infinitesimal. The driving forces are 
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the coupling, and consequently order emerges for the system. For 
example, self organization of microtubules and cell cortex feedback 
on each other to generate a self-organized dynamic cell shape [7-
9,23,77]. Also many enzymatic biological cycles oscillate that lead to 
dynamic instability of collective binding and unbinding and hence 
to temporal patterns [18,23], while the spindle of the nucleus repre-
sents a spatial self-organization. This indicates that there is ensemble 
of systems that can couple dynamically to reach a functional steady 
state [8,23,35,37]. Table 2 summarizes some important principles, 
concepts, and examples of self-organization in biological systems. 

As Karsenti states [23], the character of biological systems as self-
organized biochemical cycles forces us to focus on collective behav-
iors and principles rather than on single process or molecule, and 
use physical sciences and computer simulations to understand these 
coupled dynamic systems. Self organization in biological systems 
occurs at far from global equilibrium on thermodynamic branch 
shown in Figure 1. Table 2 and Fig 1 show that the distance from 
global equilibrium emerges as a thermodynamic factor controlling 
the behavior of systems. Only after a critical distance, a biological 
system bifurcates due to enhanced fluctuations leading to multiple 
states among which a self-organized dissipative biochemical cycle 
emerges as a functional stable state. 

3.  Modeling
Biological systems have evolved pathways, molecular structures 

and machinery at the nanoscale to power sophisticated and syn-
chronized cell functioning. However, current tools usually do not 
measure these entities directly but infer their presence using prior 
knowledge of their presence as most of our knowledge of biologi-
cal systems is descriptive and qualitative in nature [58]. Some major 
challenges in formulation and analysis of biochemical cycles are sto-
chastic modeling, functional cellular attractors, multiple spatial and 
time scales, and thermodynamics of open and nonequilibrium sys-
tems [11,13-17,55,38,93]. Some chemical systems inside a cell, such as 
signaling networks involving transcription regulation, protein phos-
phorylation, and ATPases, often involve a small number of mole-
cules of one or more of the reactants. Thus, the traditional methods 
of describing concentration changes with ordinary differential equa-
tions (ODEs) and the law of mass action [34] become insufficient. A 
Markov chain (or master equation) model accounts for the discrete, 
probabilistic nature of the chemical reactions at the molecular level, 
but can be difficult to analyze. Diffusion (Fokker–Planck) approxi-
mations can match the solution to the master equation in the ther-
modynamic limit for some finite time. However, unless the steady 
state is unique in the macroscopic description, the two models can 
disagree in the infinite time limit [38]. Microscopic simulations have 
validated the master equation as the most accurate description of a 
reactive process [11,13]. In terms of the chemical master equation 
(CME) formulation [38,94,95], each stable steady state of the de-
terministic model corresponds to a peak, while an unstable steady 
state corresponds to a saddle in the stationary probability distribu-
tion. These states are called as functional cellular attractors (FCA) in 
which the system is most likely to be found to perform its function 
[38]. The CME and Fokker–Planck descriptions can yield conflicting 
answers to the question how long the system remains in each of the 
FCA, while Schlogl’s model exhibits multiple time scales; a fast scale 
where the system relaxes to one of the FCAs, and a slow scale over 
which the system transitions from one FCA to another [96]. Focus-
ing on measurement technologies will rely on an iterative relation-
ship with computational modeling approaches that are capable of 
dealing with the gradients and discontinuities of biological systems. 
New modeling approaches, on the other hand, will be required to 
represent the nonlinearity, adaptive, and collective behavior of bio-
logical systems by using the responses as assets of a biological net-
work rather than simply the programmed responses of cells [53-59].

Biochemical nonequilibrium reaction systems operate with flux-
es (material and energy), thermodynamic forces, multiple steady 
states, nonzero steady-state flux, and may be part of coupled trans-
port and rate processes [21,31,36,40,41,79, 82,97]. There is also a pos-
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where βn and αn are the birth and death rates, respectively. The rate 

constants îk are related to the number of reactants involved in the 
ith reaction; for example, for a reaction involving m reactants, we 

have 1ˆ / m
i ik k V −= .  

 Steady state probability distribution would be ob-
tained by the mathematical detailed balance equation 

1 1, ,n n s n n sP Pb a− − =  where the probability fluxes in forward 
and backward reactions are equal at each state [38,102,103]. So the 
stationary probabilities become

1
, 0, 0, ,

0 11
,        1

n i
n s s s j s

i ji
P P P Pb

a

− ∞

= =+
= = −∏ ∑ .  

     (10)
In the CME, the steady-state probability distribution of the equilib-
rium steady state is a Poisson distribution [104]. For Schlögl’s model 
[81] steady-state probability distributions become

where kB is the Boltzmann constant, T is the temperature. For one 
forward cycle of reactions the potential energy required to transform 
one A into one B is
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Therefore, the rate of entropy production in the ith steady state (is) 
becomes

1 2
1 1 2 2

1 2
ln ( ) ln ( ) 0f b

i is B f b b f
b f s

J JGJ k T J J J J
J J

   
Φ = ∆ = − + − ≥          

, 
  
     (6)
where the steady state flux is 

1 1 2 2( ) ( )is f b s b f sJ J J J J= − = − .

3.2.  Stochastic models 
The stochastic model, in the form of the chemical master equa-

tion (CME), is an infinite system of mathematically coupled ODEs 
[16,38,43,95,103,104]. Assuming that na and nb are the number of sub-
strate molecules, which are fixed for a fixed volume, and Pn(t) is the 
probability of having nX molecule at time t. The stochastic model 
equations are

0
1 1 0 0

( )dP t P P
dt

a b= − ,     
     (7)

Table 1
Variety of spatial and time scales of biological system. Nonequilibrium thermodynamics studies complex heterogeneous chemical and biological systems, at all lev-
els of hierarchy, from molecular scale to macromolecular sacle. A "hierarchical system" in the long temporal scheme is open to the exchange of matter, energy, and 
information with the environment [56-59].

Biological systems Time 
scale

Spatial 
scale

Modeling  and methods

Atoms, molecules:
H, C, N, O, S, …
H2O, CO2, N2, ..

~fs 0.1 nm Molecular or microscopic scale:

-Mutations, gene expressions, 
-Signaling, 
-Metabolic pathways, 
-Cell cycle.

Molecular dynamics
reaction kinetics, lattice reaction-annihilation 
processes,
stochastic dynamics.

Small molecules (~30 or fewer C atoms), Building blocks with 
chirality, isomerism, hydrophobicity:
Nucleotides, amino acids, sugars, fatty acids, …

~ps-ns ~1 nm

Biomolecules (Macromolecules) with collective properties, 
conformational transitions:
DNA, proteins, polysaccharides, lipids

~ns ~10 nm

Supramolecular structures with self-organization and molecular 
recognition:
Enzymatic complexes, membranes, contractile systems

~ns ~100 nm

Organelles with self-organization, molecules in compartments, 
reaction networks, biological cycles:
Nucleus, mitochondrion (1 µm), 
chloroplast (5µm)

~10 ns ~1 µm Mesoscopic scale

Cell to cell and cell to matrix interactions,
translocation of a biomolecule
growth phenomena.

General kinetic equations of Fokker-Planck type,
stochastic dynamics
kinetic Monte Carlo.

Cells with self-organization, autonomy, self-replication, 
metabolism, evolution
Prokaryotic cell (0.5-4 µm)
Plant cell (10-100 µm)

~1 ms ~100 µm

Tissues with multicellularity, differentiation, collective behavior ~s ~1 mm Macroscopic scale

Diffusion of nutrients,
cell migration,
tissue processes.

Reaction-diffusion systems,
continuous mechanics,
finite elements,
finite differences.

Organs with physiology, information processing, memory, 
recognition:
Brain, lungs, liver

~100 s ~100 mm

Organisms with language, sex, social behavior ~ 1 m

fs: femtoseconds; ps: picoseconds, ns: nanoseconds;nm: nanometer; µm: micrometer
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with 

1 2 1 2,    n n n n n nb b b a a a= + = + .

When the system is bistable, there are multiple entropy produc-
tion rates one for each steady state and the stochastic entropy pro-
duction rate becomes a combination of the rates in each possible 
state, weighted by the probability of being in each of those states. 
This shows that the entropy production rate is neither maximized 
nor minimized for all NESSs, and hence the entropy production rate 
alone may be unable to fully describe stability in the steady state 
[64,105]. However, as Han and Wang [99] have suggested lower rate 
of entropy production indicates less dissipation in a complex bio-
chemical network, which may be more robust to perturbations. 

The deterministic and the stochastic models under equilibri-
um conditions are in agreement; when there is only one real root, 
steady-state behavior of the stochastic system will be the same with 
that of deterministic system. However, when the system is bistable, 
the behavior in the deterministic model depends on the initial con-
dition, while the steady-state behavior in the stochastic model is in-
dependent of the initial condition [38]. In the long term, the stochas-
tic model predicts that the system spends almost all its time in the 
two FCA states that correspond to the stable states of the determinis-
tic model, and the proportion of time spent in each is dictated by the 
ratio of the transition rates between them. The key behavior of a bi-
stable system is the ability of transition between the FCAs. Schlögl’s 
model exhibits multiple time scales: at fast scale the system relaxes 
to one of the FCAs, while it transitions from one to another FCA at a 
slow scale [38,88,100].

Modeling and analysis of biochemical systems need consider-
ation of multiple scales, which require linking and integrating the 
models that operate at different temporal and spatial scales. To im-
prove multiscale modeling of data, new and existing strategies for 
coupling micro- and macro level models must be developed and 
tested [13,29,96]. Vellela and Qian [38] have suggested a new hy-
brid method with continuous diffusion and discrete jumps, which 
may describe the multiscale dynamics of bistable systems [96]. For 
a large but finite volume size, the stochastic model predicts that bi-
stable systems will be in the more stable FCA and spends most of 
its time there. However, for small volume, the FCA may exchange 
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When 1 2 1 2f b A b f Bk k C k k C=  is not satisfied, the system 
will reach nonequilibrium steady state, in which Jif ≠ Jib, and the re-
action will be forming a cycle, such as A→ X → B →A, which may 
be quantified by a cycle flux [38,102]. In biochemical cycles, the con-
centrations of the substrates could vary in different situations, while 
the rate constants, which depend on the type of substrates involved, 
would not change. Biological systems are capable of reaching a 
unique fluctuating, stochastic, and nonequilibrium stationary state 
(NESS) with a stationary probability distribution [40,42,102,103]. 
A certain amount of chemical energy is lost to the solvent via heat, 
which also fluctuates [38,99]. There is a mean stationary entropy pro-
duction rate Φ, which is calculated first over each possible state and 
later over each reaction [43] using either cycle flux
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where the stochastic forward and backward steady-state fluxes of 
the reactions are:
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and separation of birth and death rates from each reaction yields
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Table 2
Dynamically coupled processes may lead to systems that acquire emergent properties that cannot be expected from individual processes. Such systems are self-or-
ganized systems as they can lower the overall rate of entropy production by dissipating energy [6,10,18,20,21,22,23,35,37,80,48]. Self-organization in biological sys-
tems is related to a function through the dissipation of ATP [23]

Principles Mechanisms & Processes Biological examples

Nonequilibrium 
thermodynamics.

Thermal, chemical or other energy dissipation due to entropy 
production in biochemical cycles.

Oxidative phosphorylation;
Hydrolysis of ATP for active transport in living 
cells [21,31,32,41-49,79,133,134].

Thermodynamic coupling. Emergence of driving (JX >> 0) and driven (JX < 0) processes; 
driving process is a spontaneous process, while driven process 
needs energy from outside. Here J and X show the flow and force, 
respectively.

Respiration drives the oxidative 
phosphorylation to produce ATP, 
ATP hydrolysis drives molecular pumps 
[41,45,81,82].

Emergence of a new 
property, state, flow.

Thermodynamic coupling and collective effects lead to new state 
and system properties.

Functional biological cycles; enzymatic 
oscillators, information processing [18,48].

Robustness in selecting and 
remaining in a state: the 
ability to perform in 
uncertainty.

Information processing, feedback loops, physical and chemical 
constraints and synchronization between biological cycles, key 
properties of biochemical cycles.

Cell-cell regulation and signal transduction 
,Transitions between two key states in 
biochemical cycles, such as FoF1-ATPase, 
Bioenergetics, mutations [32,70,74,83-86].
  

Bifurcation from one steady 
state to another.

Distance from global equilibrium, local fluctuations around 
critical controlling parameters, nonlinearities, lipid and protein 
kinase signals, protein-protein interactions. 

Switches between coupled biochemical cycles, 
cycles regulatory processes, cell size control with 
bursting oscillations [12,18,32,40,87-91].

Symmetry breaking 
by switching from one 
symmetry level to another.

Thermodynamic gradients, local fluctuations, homochirality in 
biomolecules by breaking racemization. 

Nonlinear reactions, Turing patterns, biosystems 
produce only D-forms of sugars and L-forms 
of amino acids; L-form rotate polarized light 
anticlockwise [92]. 
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reactions with a few complex processes in a way that retains predict-
ability of the system. This may be possible by reducing the number 
of interacting elements, increasing the copy numbers of agglomerat-
ed hyper species, and combining multiple microscopic rates into a 
smaller number of effective parameters [28,30,57,65]. Multiscale ap-
proaches possess an inherent uncertainty that needs to be addressed 
by setting standards for data analysis. For example, uncertainty can 
be controlled by using numerical simulation techniques to approx-
imate with quantitative error indicators on different scales leading 
to multiscale numerical simulation environments. Still, understand-
ing which measurements are most informative for characterizing a 
complex biological system will require significant advances in com-
putational modeling. The disparity between the current scale of bi-
ological modeling and analytical technologies is one of the most se-
vere bottlenecks in systems biology. There is unlikely to be a single 
“best” approach for modeling complex biological systems. Instead, 
the most effective methodologies probably will link analytical mea-
surements and data analysis to models of a particular biological re-
sponse. Building a predictive model requires the ability to measure 
effects and compare them with the simulated results [17,39,58,106].

A well known example of coarse graining in biochemisty is the Mi-
chaelis-Menten (MM) kinetics

     (15)

relative stability with the changes solely in volume [38]. The long-
term behavior of bistable systems is determined by the transition 
rates between the FCAs. The CME model is the most valid mathe-
matical model to describe nonequilibrium systems occurring at the 
miscroscopic and mesoscopic scales [38,104]. The mesoscopic theo-
ry of stochastic macromolecular mechanics and macroscopic none-
quilibrium thermodynamics are consistent, which can have a wide 
range of applications to cellular and molecular biology. However, a 
proper mathematical framework would be based on stochastic dif-
ferential equations, which may be explicit and discrete with master 
equation type or continuous in time and state space with the Fokker-
Planck equation. 

3.3.  Multiscale computer simulations
 Computer simulations explore an agreement between a model 

and experimental data. Some special challenges associated with bio-
chemical simulations are: (1) biochemical systems involve combina-
torially many chemical compounds and reaction systems, (2) kinet-
ic parameters for biochemical cycles are rarely known, (3) molecu-
lar species have diverse dynamic time scales, and (4) modeled sys-
tems lack of a comprehensive interpretation power of identifying vi-
tal connections between its microscopic and macroscopic properties 
[17,57]. Such an interpretation can be aided by coarse-graining, in 
which certain nodes and/or reaction processes are merged and/or 
eliminated [106] or group of atoms are combined into systems of rig-
id bodies connected by joints [107]. Ideally, one wants to substitute 
multiple elementary (single-step, Poisson-distributed) biochemical 

Xc

Distance From Equilibrium

St
at

e

Near Equilibrium:

Small or no fluctuations
Perturbations decay
Linear flow-force relations hold

Thermodynamic equilibrium
is the global attractor

Self-assemby (crystals) lead to
stable and inadaptable order

Far From Equilibrium

Large fluctuations
Perturbations grow
Bifurcation and dissipative structures emerge
Nonlinear flow-force relations hold

- Physical self-organization (nonfunctional)
- Biochemical cycles as combination of various 
self-organized functionl modules

Coupled biochemical cycles maintain 
nonequilibrium character of the cell so they are:
- alive
- ordered
- stable
- stochastic
- robust

Figure 1.  Thermodynamic branch [48] showing the properties of physical and biological systems away from global equilibrium. Far from global equilibrium emerg-
es after a critical distance from equilibrium characterized by critical thermodynamic force Xc. Nonequilibrium thermodynamics leads to the conclusion that in sys-
tems moved away from equilibrium, self-organized dissipative processes can emerge with an ability to reduce the effect of the applied gradient. As biological sys-
tems increase their total dissipation, they can develop more complex structures with more matter, energy, and information flow, increase their cycling activity, de-
velop greater diversity, and generate more hierarchical levels. Nonequilibrium” or “out of equilibrium” becomes incomplete, arbitrary, and misleading unless it is 
clearly specified as ‘near equilibrium’ or ‘far from equilibrium’[30,43,46,78]. In the vicinity of global equilibrium only, linear phenomenological equations between 

flows (J) and forces (X) exist ( i ik kJ L X= ) and the cross coefficients obey Onsger’s reciprocal rules. However, for systems far from global equilibrium and near 

equilibrium the rate of entropy production is the product of independent flows and forces ( i i iJ XΦ = ∑ ).Linear flow-force relations are valid when the Gibbs 
free energy ranges less than 1.5 kJ/mol for chemical reactions [31,32,48,49]. The formalism of LNET can be used in wider ranges (over a 7 kJ mol-1) than usually ex-
pected with an error in the reaction velocity less than 15% [28,31,45-49] for some reactions and for selected biological pathways.
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lation biochemical cycle [79,109], which is known as a cellular bio-
chemical signaling module, [95] using Ferrel’s kinetic model [88]

1 2 3* * * * * *
i

1 2 3
ATP+E+K E +ADP+K ,       E +P E+P +P,      K+2E K

k k kf f f

k k kb b b
→ → →← ← ←

,  

     (17)
where E and E* are active and inactive forms of a signaling pro-
tein, K and P are kinase and phosphatase enzymes that cat-
alyze the phosphorylation-dephosphorylation, and K and 
K* active and inactive forms of the kinase. This cycle is bi-
stable in a certain parameter range [109]. In a cell, concentra-
tions of K, P, ATP, ADP, and Pi are constant, and the free energy 

( )1 2 1 2 iln [ATP]/{ [ADP][P ]}B f f b bG k T k k k k∆ =  

comes from the hydrolysis of ATP ( 2 iATP+H O ADP+P�
) where ADP is adenosine diphosphate, and Pi is phosphate). Ther-
modynamic limit of a bistable phosphorylation-dephosphorylation 
cycle plays role in the selection of more stable state, and the relative 
stability and robustness of the cycle cannot be analyzed without an 
explicit consideration of the intrinsic fluctuations in the model as the 
minor perturbations are inevitable in living systems [14,38,99,102]. 
Huang and Qian [109] also analyzed the phosphorylation-dephos-
phorylation cycle using a simple MM kinetics, which shows that de-
pending on the level of substrate concentration [S], the catalyzed re-
action can be either first order when the Michaelis constant KM >> 
[S] or zeroth order when KM << [S]. Dynamics of the system exhibits 
the canonical competition behavior beside the bistability [109-111]. 
Beard et al. [71] analyzed the energy metabolism network (glycoly-
sis, tricarboxilic acid cycle, oxidative phosphorylation, and ATP hy-
drolysis) with 28 reactions [112]. The CME is a fundamental math-
ematical theory for mesoscopic biochemical reaction systems in 
a small, spatially homogeneous volume [95], and its large volume 
limit recovers the law of mass action. The deterministic differential 
equations, while defining various attractors, provide no information 
on the relative probabilities between them. The Maxwell-type con-
struction incorporated in the CME leads to a more complete theo-
ry [102]. 

3.4.  Network dynamics 
Consider an n component network. The n components may be the 

relevant numbers of metabolites in a metabolic network or the rele-
vant proteins in a gene regulatory network pathway [11,30,67,68,113] 
or other quantities specifying the network. The n-dimensional trans-
pose vector qT = (q1,q2,..,qn) is the state variable of the network and the 
value of jth component is denoted by qj. Let fj(q) be the deterministic 
non-linear force on the jth component, which includes both the ef-
fects from other components and itself, and ζj(q, t) the random force. 
For simplicity, assume that fj is a smooth function explicitly indepen-
dent of time. The network dynamics may be generally modeled by 
a set of standard stochastic differential equations assuming that the 
noise will be Gaussian and white [5,11,15] 

( ) ( , )j
j j

dq
f t

dt
z= +q q .    

     (18)
In complex biochemical network more complicated noises, such as 

non-Gaussian and colored, can exist. If an average over the stochas-
tic force ζ is performed, Eq. (18) is reduced to the deterministic equa-
tion in dynamical systems. Eq. (18) does not address how the sto-
chastic force ζ	can be related to the deterministic force f. To do that 
Eq. (18) can be transformed into the following form [11]:

[ ( ) ( )] ( ) ( , )dS T t
dt

f z+ = −∇ +
qq q q q ,   

     (19)
with the semi-positive definite symmetric matrix S, the antisymmet-

where k1f, k1b, k2f are the kinetic rates, S, ES, E, and P are the substrate, 
enzyme-substrate complex, enzyme, and product, respectively. 
Here, the enzyme catalyzes the S → P transformation by combining 
with S to create a complex ES, which dissociates either back to E+S or 
forward to E+P. When S>>E, the enzyme cycles many times, and in a 

coarse-grained reaction of S PJr→  we have the rate of reaction 

cycle given by 2 2 1 1[S][E]/{[S] ( ) }r f f b fJ k k k k= + + . 

However, the coarse-grained reaction of Eq. (15) is insufficient 
when stochasticity is important as each MM reaction consists of mul-
tiple elementary steps, thus approximating the number of the reac-
tions as a Poisson variable is not always valid [65]. A coarse-graining 
procedure must be applicable to systems with variable time scales by 
eliminating the time scales hierarchically [106]. The reducibility of 
complex system by coarse graining may determine how to model it 
(i.e., microscopically or macroscopically) and at which scale to mea-
sure it [19,26,65]. Still, where possible, one should chose not to ex-
cessively coarse-grain the state space if it will reduce the precision or 
predictive power of the model [106]. In coarse-graining as well as in 
relating single-molecule dynamic disorder to reaction networks, one 
must understand if the fluctuations are enhanced or damped [12]. 
The nature of fluctuations is closely related to the distance from equi-
librium as the thermodynamic branch shown in Figure 1 illustrates.

Enzyme kinetics in complex biochemical cycles [19] may also in-
volve the effects of inhibitors and activators of the enzyme. Crampin 
et al. [19] generalized the enzyme inhibition by the following scheme
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where I is an inhibitor and EI and ESI are enzyme-inhibitor com-
plex and enzyme-substrate-inhibitor complex, respectively. For the 
inhibitor and substrate inhibitor equilibrium constants are KI = k3f/k3b 
and KSI = k4f/k4b, respectively, and the inhibition is noncompetive if KI 
= KSI. The MM type of kinetics exhibits saturation at high substrate 
concentration, which is another common behavior of enzymatic re-
actions [19].  

Extreme pathways correspond to steady-state flux distributions 
through a metabolic network and help characterize the relative flux 
levels through all the reactions necessary to convert substrates to 
products, balance all cofactor pools, and study emergent properties 
[75,108]. The minimal extreme pathway length indicates the mini-
mum number of reactions necessary to synthesize a given product, 
including a set of variable reactions in addition to the essential reac-
tion set. For example, the number of essential reactions in aspartic 
acid production in Helicobacter pylori and Haemophilus	 influenza	are 
12 and 22, respectively, while the utilized reactions are 91 and 97, re-
spectively [68,108]. Here the essential reactions are the number of re-
actions used in every extreme pathway, while the utilized reactions 
are used at least once in the set of extreme pathways for the pro-
duction of the associated product. The determination of these essen-
tial reaction sets could enable the identification these reactions that 
would result in the complete failure of the synthesis capability for 
the corresponding product. It will also display a certain degree of re-
dundancy in the network and an ability of the metabolic network to 
make a selection in how the product is synthesized. 

Ge and Qian [102] analyzed the phosphorylation-dephosphory-
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ed, under physiological conditions, the ATP hydrolysis reaction is 
energetically favorable but slow; however, enzyme catalysts dra-
matically accelerate the rate of hydrolysis and harness the energy to 
repeat a cyclical sequence of catalytic events capable of carrying out 
useful functions. The free energy from ATP hydrolysis depends on 
the ratio of [ATP]/[ADP][Pi]. The amount of energy required for ful-
filling a function, the shape and conformational structure (key state) 
of the enzyme, and the information encoded determine the enzyme 
dynamics [29]. Biological systems, including molecular motors, in 
nonequilibrium steady states have net flows and require a contin-
uous input of material, energy, and information to maintain their 
self-organized steady state as they continuously dissipate net ener-
gy [67,117]. 

Modeling of motor proteins, such as kinesin and myosin-5, 
[93,118,121,122] must take into account the collective behavior that is 
the energy coupling between the internal biochemical cycle of a mac-
romolecule and its external load, such as random walk [114,115,118]. 
Kinetics of the simple model may be characterized by a random walk 
for motor stepping that is the stochastic movement and a biochemi-
cal cycling. The random walk is biased with birth and death process-
es for an elastic or viscous load [114,119]. These molecular motors 
are mechanochemical and stochastic systems, and take part in the 
cellular metabolism under nonequilibrium conditions. As Andrieux 
and Gaspard [50] states, one of the major achievement would be to 
understand the nonequilibrium statistical thermodynamics of these 
motors because of their size, random motion on a privileged direc-
tion on average, and dependence of the mean motion on the concen-
trations of reactants and products.

Molecular motors, over the course of their enzymatic cycle, per-
form work, as they move along a track a distance Δx against a con-
stant force F. There are several models for explaining the relation-
ship between a motor’s enzymatic mechanisms and its mechanisms 
for work production [93,114,117,118]. In some motor models, en-
zymatic mechanisms explicitly are different from the work related 
mechanisms; for example, in the Huxley-Hill model [24] motor force 
is generated within the biochemical step and work is subsequent-
ly performed when a motor relaxes within the potential well of a 
biochemical state. According to fluctuating thermal ratchet model 
[120], motor force is generated when a ratchet potential is switched 
on and work is subsequently performed when a motor relaxes. On 
the other hand, some recent studies support a chemical motor mod-
el [93,114,121] in which reaction and space coordinates are intimate-
ly linked. Force is generated and/or work is performed with a ther-
mally activated biochemical transition. For example, a motor struc-
tural change induced by ligand binding or by other effects might di-
rectly perform work. Most chemical motor models assume that it is 
the external work (Wext = FΔx), i.e. in moving the track, that is cou-
pled to the free energy for that step. Internal work, on the other hand 
may involve pulling out compliant elements in the motor, and is per-
formed in stretching these internal elastic elements that are coupled 
to free energy ΔG. Motor enzymes, like myosin and kinesin, move 
along a track while catalyzing a hydrolysis reaction of ATP are self-
consistent mechanochemical systems [93,117,121], in which the reac-
tion mechanisms start and end with free enzyme, while the free en-
zyme is binded with the substrates and unbinded with products in 
some random order [122].

For a reaction at isobaric and isothermal conditions, the affinity 
or the Gibbs free energy difference characterizes the distance from 
equilibrium. Chemical reactions are usually far from from global 
equilibrium. The fundamental equation for a chemical reaction sys-

tem operating in a steady state, such as B B'
k f

kb
→← , is 

exprf

rb

J A
J RT
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 with

ric matrix T, and the single-valued scalar function φ. The symmet-

ric matrix term is ‘degradation’ ( ) 0T S ≥q q q   [11,15], while the 

antisymmetric part is non-decaying: ( ) 0TT =q q q  . The degra-
dation is represented by the symmetric matrix S (the friction ma-
trix) and the transverse force by the antisymmetric matrix T (mass, 
magnetic fields, rotation). Ao [11] introduced φ(q) as an emerging 
property of the network and called the network potential with re-
spect to the network state variable q. It is not the usual free ener-
gy, although it plays the same role as energy function in thermody-
namics. The potential φ(q) describes what the network eventually 
like to be under all thermodynamic and other constraints, and deter-
mines the robustness of network dynamics. Consequently, the ten-
dency for optimization of network requires the minimum of poten-
tial φ(q) and without the stochastic effect in Eq. (18), no unique po-
tential function can be determined [11,15]. Eq. (19) may identify the 
dynamical structure and would be suitable for analyzing metabolic 
networks directly. 

In order to have a unique identification, Ao [11] has imposed a con-
straint on the stochastic force so the symmetric matrix in Eq. (19) to 
be semi-positive definite

( , ) ( , ') 2 ( ) ( ')  and  ( , ) 0T
j t t S t t tz z d z= − =q q q q

,     (20)
where δ(t) is the Dirac delta function. This constraint is consistent with 
the Gaussian and white noise assumption for ζ	in Eq. (18). The ma-
trix [S + T] at left hand side of Eq. (19) makes the network tend to the 
minimum of potential function φ(q), leading to an optimization. The 
stationary distribution function P0(q) for the state variable is a type 

of Boltzmann–Gibbs distribution: 0 (1/ )exp[ ( )]P Z f= − q  

with the partition function Z given by exp[ ( )]nZ d f= −∫ q q
. This allows a direct comparison with the stochastic experimental 
data at steady states. The present stochastic modeling, Eq. (19), indi-
cates two time scales: the very short one characterizing the stochas-
tic force ζ(q, t) and the time scale on which the smooth functions of 
φ(q), degradation (friction) matrix S(q) and the translocation matrix 
T(q) are well defined. This corresponds to the hierarchical structure 
of metabolic pathways [11,68-74,112]. 

The stochastic force ζ(q, t) can arise from the environmental influ-
ence on the network, or from approximations such that the continu-
ous representation of a discrete process. The friction matrix S(q) and 
the frictional force S show that the network has the tendency to ap-
proach to a steady state. The present dynamical structure theory re-
quires that the friction is always associated with the noise according 
to the relation in Eq. (20). The friction and noise are the two opposite 
sides of stochastic dynamics that are the ability to adaptation with 
friction and the ability to optimization with noise [11,30,71-74].

3.5.  Molecular motors 
Many single biochemical molecules of large proteins, such as en-

zymes (ranging from 2-100 nm), are mainly characterized by length 
scales in the nanometer-to-micrometer range and dissipation rates 
of 10–1000 kBT per second [29,114]. A single macro molecule with n 
modification sites can exist in 2n microscopic key states [25,54]. Mo-
tor proteins utilize biochemical energy to perform mechanical work. 
Recent advancements in single-molecule experimental techniques 
and the results of structural genomic projects may be very helpful 
in understanding protein functions and enzyme kinetics on the mo-
lecular scale [29,83,114-121]. However, understanding protein func-
tions requires knowledge and consideration of their multiprotein 
complex or metabolic network. This needs bridging many orders of 
magnitude in spatial and temporal dimensions [13,29,30,39,56,57]. 
Enzymes are highly specific and efficient in their acceleration of bio-
chemical reaction rates by orders of magnitude. As Baker [117] not-
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'
( , ) ( )f B b B

dP B t k P k P
dt

= − +∑ .   
     (23)
The entropy for a stochastic macromolecular mechanics becomes 

( , ) ln ( , )BS k P B t P B t dB= − ∫ . In a nonequilibrium sta-
tionary states where the probabilities are time independent (dPs/dt = 
0), the entropy production is 

1 ( )
2s rB BJ A
T

Φ = ∑ ,     
     (24)
where Jr is the flux and A is the affinity

'
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= − =  
 

.  
     (25)
The H theorem states that the entropy production is always 
positive and vanishes when the detailed balance is satisfied 

, ',f B eq b B eqk P k P= . 
Movement of the motor protein can be modeled by the Smoluchows-
ki equation [115,116] by assuming that the center of mass of the mo-
tor protein as a Brownian motion [120] with the presence of a peri-
odic energy potential

2

2
( , ) ( , ) ( ) ( , )P x t P x t F xD P x t
t xx b

 ∂ ∂ ∂
= −  ∂ ∂∂  

,  
     (26)
where P(x,t) is the probability density function of the motor protein 
at position x and for time t, D and β are the diffusion and friction 
coefficients, respectively. F(x) is the force of the potential and rep-
resent the molecular interaction between the motor protein and its 
track. The driving force for a motor protein comes from the hydro-
lysis of ATP 

2 iATP+H O ADP+P
k f

kb
→← .    

     (27)
This reaction is well characterized by a two-state Markov process (or 
more generally, m discrete states) [115]

,

.

ATP
f ATP b ADP

ADP
f ATP b ADP

dP k P k P
dt

dP k P k P
dt

= − +

= −
    

     (28)

By introducing internal conformational states to the Brownian par-
ticle and to coupling the hydrolysis of ATP with the motor protein 
movement given in Eq. (26) leads to the following reaction-diffusion 
system for the movement of a Brownian particle with internal struc-
tures and dynamics

2

2
( , , ) ( , , ) ( ) ( , , ) ( ) ( , , ) ( ) ( , , )fnk bkn

P x n t P x n t F xD P x n t k x P x n t k x P x k t
t xx b

 ∂ ∂ ∂
= − − + ∂ ∂∂  , 

     (29)
where P(x,n,t) is the probability of a motor protein with internal state 
n and external position x, and kfnk is the transition rate constant from 
internal state n to state k when the protein is located at x. The states 

 ,    [B],    [B'],    i i rf f rb b r rf rb
i

A J k J k J J Jn m= − = = = −∑
.  

     (21)

Here A is the thermodynamic driving force called the affinity, Jrf and 
Jrb are the forward and backward reaction rates, respectively, Jr is the 
net reaction rate, and νi is the stoichiometric coefficient, which is pos-
itive for product and negative for reactants. Since Jr/Jrb + 1 = exp(A/
RT), the net reaction rate or net flow is approximately proportion-
al to the backward reaction rate Jrb: Jr = Jrb [exp(A/RT)]. Eq. (21) pro-
vides a relation between affinities, metabolite concentrations, and 
reaction flows, and is a generalization of the chemical equilibrium 
condition A = 0 and Jrf = Jrb, to the case of a chemical system occur-
ring in a nonequilibrium steady state [69,122]. Most biochemical re-
actions, however, involve many simultaneous elementary steps, and 
the change of concentration of a species would be a sum of rates of 
change due to those elementary steps in which that species takes 
place [19]. 

The reaction rate of a single enzyme molecule fluctuates, which is 
a general feature of enzymes. A single molecule turnover time that 
is the time for one enzyme molecule to complete a reaction cycle 
also fluctuates. As these fluctuations are random, their effect averag-
es to zero over a long period of time or for a large number of mole-
cules, and the MM kinetics well describe some enzymatic reactions 
[12]. Their stochastic behavior is experimentally observed, and their 
motion is unidirectional only on average and stops at the thermody-
namic equilibrium. Considerable experimental and modeling work 
exist on the dynamics of linear molecular motors such as actin-myo-
sin or the kinesin-microtubule powered by ATP as well as rotary mo-
tors such as FoF1-ATPase and bacterial flagellar powered by proton 
flow across a membrane [83,118,120]. The myosin protein is an AT-
Pase and use the chemical energy released by the hydrolysis of ATP 
to create directed mechanical motion [114]. All the myosin motor 
proteins share the same biochemical reaction pathway when hydro-
lyzing ATP [118]. They operate far from equilibrium, dissipate en-
ergy continuously, and make transitions between steady states [29]. 
The enzyme reactions are also coupled with some other processes, 
such as transport processes characterized by longer time scales. It 
is also known that the catalytic activity of enzyme molecule is very 
sensitive to its molecular conformation transitions, which may occur 
on longer time scales (seconds) compared with time scales for the 
enzymatic reactions (milliseconds) [12]. The thermodynamic driv-
ing force of an enzymatic cycle Δμ, can be extracted by the none-
quilibrium turnover time traces of single enzyme molecules in liv-
ing cells that might be measurable experimentally. From chemical 
master equations under nonequilibrium steady state, the ratio be-
tween the probability of M forward turnovers P(dnt = M) and that of 
M backward turnovers P(dnt = −M) is

( ) exp
( )

t

t B

P dn M M
P dn M k T

m = ∆
=  = −  

,   
     (22)

where M is the positive integer [28,69]. Eq. (22) is the consequence 
of microscopic reversibility and general as long as the enzyme com-
pletes a full cycle, even when the enzyme molecules exhibit more 
complex kinetic pathways [14,27,99].

In a stochastic description of a transition B B'
k f

kb
→←  

the probability of finding the system in a state of B at time t is given 
by the master equation 
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in many molecular processes [114]. In thermodynamics of small sys-
tems, a control parameter may define the system’s state [29,114]; for 
example, a motor molecule can be described by an internal config-
uration {xi} and a control parameter x (there can be finite number of 
control parameters), then u({xi },x) is the internal energy of the sys-
tem. Upon variation of the control parameter x, energy conserva-
tion yields

{ }i i xx i

u udu dx Q W
x x

d d
  ∂ ∂ = + = + ∑    ∂ ∂    

.  
     (31)
The total work done on the system is

0 ({ }, )x fW F xi x dx= ∫ ,     
     (32)
where xf is the perturbation for a time tf, and F({xi },x) is the fluctuat-

ing force acting on the molecule { }({ }, ) ( / )i xiF x x u x= ∂ ∂ . 

Since the force is a fluctuating quantity, W, Q, and Δu will also fluc-
tuate for different trajectories, and the amount of heat or work ex-
changed with the bath will fluctuate in magnitude and in sign [29]. 
Therefore, random fluctuations dominate the thermal behavior in 
small systems. The time evolution of {xi} and therefore the force will 
change from one perturbation to another, and the system will fol-
low different trajectories. A quantity that characterizes the stochas-
tic nonequilibrium process is the probability distribution of work 
values P(W) obtained along different trajectories. The average work 

over all trajectories ( )W WP W dW〈 〉 = ∫ is larger than the re-
versible work and equal to the free-energy difference ΔG between 
the equilibrium states defined at x = xf and x = 0. If we define the dis-
sipated work along a given trajectory as Wdis = W−ΔG, second law 
can be written as, Wdis ≥ 0. The equality occurs only when the pertur-
bation process is carried out infinitely slowly in a quasi-static process 
to relax to equilibrium at each value of the control parameter. On the 
other hand, nonequilibrium processes are characterized by hyster-
esis phenomena and the average work performed upon the system 
differs between a given process and its time-reversed one. Under the 
assumption of microscopic reversibility (detailed balance), fluctua-
tion theorems assert relations between the entropy production along 
a given forward process and backward process by [29,114]

( )
exp

( )
f dis

b B

P W W
P W k T

 
=  −  

,    
     (33)

where Pf(W) and Pb(−W) are the work distributions along the for-
ward and backward processes, respectively. Eq. (33) indicates that 
a steady-state system is more likely to deliver heat to the bath (W is 
positive) than it is to absorb an equal quantity of heat from the bath 
(W is negative) and hold for any finite time [29,114]. Nonequilib-
rium steady state systems always dissipate heat on average, there-
fore, Eqs. (21), (22), (30), and (33) are fundamental relations to de-
scribe them.

4.1.  Application to the FoF1-ATPase molecular motor
ATP is synthesized by rotational catalysis in the F1 domain of mito-

chondrial FoF1-ATPase [125-127] shown in Figure 2. The domain FO 
consists of one a, two b and a ring of 9–15 subunits c depending on the 
species. The subunits c form a ring, connected to the domain F1 via the 
subunit ε and then γ and two subunits b and δ. Water-soluble F1 do-
main has the subunits α3β3γδε. Catalytic nucleotide-binding sites are 
formed by each of three subunits β. The chirality (handedness) of the 
molecular complex is essential for its unidirectional rotation [56,128]. 

n and k, such as attached and detached states, driven by the ATP hy-
drolysis leads to a biased motion of the motor protein, in which the 
chemical energy of the hydrolysis of ATP is converted to the me-
chanical motion of the motor protein [41,114-116]. In general, the sta-
tionary solution of Eq. (29) will be a nonequilibrium steady state with 
positive entropy production and heat generation. Qian [116] consid-
ered the possibility of the proteins internal conformational change 
due to the external work in Eq. (29), while Andrieux and Gaspard 
[50] extended the analysis to the rotating molecular motors. 

4.  Fluctuation theorems
The fluctuation theorems state that the ratio of the probabilities for 

forward and backward displacements is related to the rate of entro-
py production during a given time [12,28,50,98,101,105]. These theo-
rems provide a quantitative description of entropy production in fi-
nite systems and relate the probability of observing a process of du-
ration t with entropy production Φt = σ to that a process with the 
same magnitude of entropy change, but where the entropy is con-
sumed rather than produced, by [26,27,114]

( ) exp
( )

t

t

P
P RT

s s
s

Φ =  =  Φ = −  
.    

     (30)

where the rate of exponential growth is equal on average to the ther-

modynamic entropy production σ (1/ ) 0i i iT A J= ≥∑ . This is 
known as the Crooks stationary fluctuation theorem [123-124], and 
establishes that entropy production can be related to the dynami-
cal randomness of the stochastic processes. Therefore, the fluctua-
tion theorem strongly relates the statistics of fluctuations to the non-
equilibrium thermodynamics through the entropy production esti-
mations by the second law of thermodynamics. The theory predicts 
that entropy production will be positive as either the system size 
or the observation time increases and the probability of observing 
an entropy production opposite to that dictated by the second law 
of thermodynamics decreases exponentially. The Crooks fluctuation 
theorem was used to estimate the free energy difference associated 
to the unfolding of a RNA molecule [124]. Andrieux and Gaspard 
[50] also, experimentally proved that the probabilities of the time-
reversed paths decay faster than the probabilities of the paths them-
selves and the thermodynamic entropy production arises from the 
breaking of the time-reversal symmetry of the dynamical random-
ness. Self-organizing processes of biochemical cycles produce less 
entropy leading to the higher probability distribution of the oppo-
site values of the fluxes (negative entropy production) and increased 
capacity for collective behavior and robustness [48,99]. 

If it is applied to the transient response of a system, the theorem is 
referred to as the transient fluctuation theorem, which bridges the 
microscopic and macroscopic domains and links the time-reversible 
and irreversible descriptions of processes [26,27,83]. The transient 
fluctuation theorem describes how irreversible macroscopic behav-
ior evolves from time-reversible miscroscopic dynamics as either the 
observation time or the system size increases and how the entropy 
production can be related to the forward and backward dynamical 
randomness of the trajectories or paths of systems as characterized 
by the entropies per unit time [27,28]. The new theorems and experi-
mental techniques serve as a basis for the nonequilibrium thermody-
namics analyses of small systems, such as mesoscopic systems. Con-
sequently, the mesoscopic theory of stochastic macromolecular me-
chanics [39] and macroscopic nonequilibrium thermodynamics can 
have a wide range of applications to cellular and molecular biolo-
gy [10,29,31,42]. 

The thermal bath allows macromolecules to exchange energy with 
the molecules of the solvent through the breakage of weak molecular 
bonds that trigger the relevant conformational changes. The amount 
of energies involved in single macromolecules are few tens of kBT, 
small enough for thermal fluctuations over timescales to be relevant 



nonequilibrium ThermoDynamics moDeling of coupleD biochemical cycles in living cells  965

× 10−23 J/K is the Boltzmann constant and T = 300 K is the environ-
ment temperature [130]. At some point when the head of kinesin is 
free it has many more available states than when it is docked, and so 
it also has larger entropy. Therefore docking must be accompanied 
by an entropy decrease leading to a spatial order and heat loss Q to 
the environment. The distance between the attachment sites on the 
microtubule is δ	= 8 nm. Kinesin can exert a constant force, mostly 
independent of the opposing external force. Otherwise, the free head 
is caught up in the thermal Brownian motion generated by the envi-
ronment: the free head can dock in the intended site, in which case 
the step is successfully completed, or else it may be dragged back to 
its initial position. The probability of a successful forward step over 
that of backward step is [129,130]

exp [ ]
2

f
st

r B

P
F F

P k T
d 

= − 
 

,    
     (37)

where Fst ≈ 7 pN is the stalling force. Eq. (37) shows that the maxi-
mum work kinesin can do against the external force is Fstδ	≈ 13.3kBT, 
which is close to half of the available energy of 25kBT. 

To obtain the free energy change associated to one step from ob-
servable data, the Crooks fluctuation theorem can be used. Assum-
ing the macroscopic initial and final states 1 and 2 are the initial and 
final states, respectively in the kinesin cycle, and the external param-
eter λ	measures the progress of the molecule from one pair of dock-
ing sites to the next. A backward step implies as that the work (W 
= Fδ) is reversed. For the free energy G, the Clausius inequality im-
plies W	≤	−ΔG	 in any isothermal process. The system depends on 
some time dependent external parameter λ. Initially the system is at 
state 1. If the Pf is the probability that the system ends up in state 2, 
giving out work W and the Pr is the probability that the system, now 
starting from state 2, ends up in state 1 giving out work −W when 
the evolution of λ	is reversed, the Crooks fluctuation theorem states 
that [131]

1exp [ ]f

r B
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G W

P k T
 −

= ∆ + 
 

.    
     (38)

The Crooks fluctuation theorem of Eq. (38) with the probability ratio 
given in Eq. (37) implies that

[ ]
2 stG F Fd−

∆ = + ,     
     (39)
where ΔG	is the maximum work which may be extracted from the 
system at constant temperature. Ideally, all the energy available to 
the kinesin at the start of the cycle (2δFst = 26.6kBT) is dissipated or 
goes to into the reversible work [130]. For isothermal docking we 
have Sfree	−	Sdock = (δ/2T)[3Fst	−	F], where Sfree and Sdock are the entropies 
of the free head and docked states, respectively. Not all the available 
work is actually extracted: some of it is left to be dissipated as heat, 
for example by opposing the viscous drag or as excess kinetic ener-
gy to be absorbed by the docking site. Beside that, the cycle may fail, 
with the kinesin stepping backwards rather than forward. Therefore 

the actual average work is W F d〈 〉 = 〈 〉 , where d〈 〉 is the aver-
age displacement given by [131]

tanh [ ]
4 st
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〈 〉 = − 
 

.   
     (40)

This analysis illustrates the estimation of the free energy change of 

At equilibrium condensed phase, the rotation of motor has equal 
probabilities of forward and backward motions based on the princi-
ple of detailed balance. Therefore, unidirectional motion results only 
when the motor is at nonequilibrium state because of some chemi-
cal or electrochemical force; hence the motion of motor is a dissipa-
tive process taking place at nanoscale and affected by thermal fluc-
tuations [128]. The cycle of the motor corresponds to the full revo-
lution (360o) with s = 6 substeps and to the hydrolysis of three ATP 
molecule [50,126-128]

1 2
1 2 i

1 2
ATP+M M M ADP+P

k kf f
i i ik kb b

+ +→ → +← ← ,  
 
(i = 1,3,5, and M7 = M1)   (34)

where Mi shows the six successive states of hydrolytic motor [50]. 
The chemical affinity generates fluctuating flows, which can be the 
rate of chemical reaction, or the velocity of a linear molecular motor, 
or the rotation rate of a rotary motor. According to the fluctuation 
theorem [50], the probability of backward substeps (s) is given by 
P(−s) = P(s) exp [−sA/(6kBT)] where the affinity A is [50,128]

i

[ATP]3 3 ln
[ADP][P ]
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BA G k T
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 ,    

     (35)

with the standard free enthalpy of hydrolysis 

ATP ATP Pi 50 pN nmo o o oG G G G∆ = ∆ − ∆ − ∆ ≅ at pH 

= 7 and T = 23oC [129]. Equilibrium concentrations obey
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= 4.89 10-6 /M.  

     (36)

Under physiological conditions, the concentrations are about [ATP] 
≈ 10-3 M, ([ATP]eq ≈ 4.89 10-13 ), [ADP] ≈ 10-4 M, and [Pi] ≈ 10-3 M, hence 
the motor runs in a highly nonlinear regime, that is far from equilib-
rium, with an affinity A ≥ 40 kBT [50,128,129]. In this regime, the fluc-
tuation theorem shows that the backward steps are rare, and unidi-
rectional motion can overwhelm erratic Brownian motion [50,128]. 
During the unidirectional motion the motor undergoes a cycle of in-
tramolecular transformations, in which its three dimensional struc-
ture changes with time [50] leading to a temporal ordering as the 
feature of systems driven far from equilibrium. Some future applica-
tions of the fluctuation theorem to molecular machines may be sin-
gle-molecule pulling experiments on RNA, DNA, proteins, and oth-
er polymers to determine their free-energy landscapes. The fluctua-
tion theorem is satisfied along the thermodynamic branch (Figure1.) 
of near and far from equilibrium regions, and shows that the ratio of 
the probability of a forward rotation of the shaft to the probability of 
backward rotation determines the thermodynamic force, affinity, as 
the key information for the nonequilibrium thermodynamics of mo-
lecular motors [50,128].

4.2.  Application to molecular motor kinesin
Kinesin is a large protein which can attach to a load on one end and 

has two heads on the other end, and performs an asymmetric hand 
on hand walk along a microtubule leading to effectively dragging 
the load against an external force F and the viscous drag from the en-
vironment. Each step in this walk corresponds to a cycle. Therefore, 
kinesin converts chemical energy released by the hydrolysis of one 
ATP molecule into useful work. The amount of energy released by 
the hydrolysis of one ATP molecule is around 25kBT, where kB = 1.4 
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nized to cellular ATP utilization:

+ +
i in 2 outADP+P + H =ATP+H O+ Hn n ,    

     (41)
where ‘in’ and ‘out’ denote two phases separated by a membrane, and 
n is the ratio H+/ATP, showing the level of transmembrane proton 
transport for each ATP to be synthesized by rotational catalysis in the 
F1 domain of mitochondrial FoF1-ATPase [125-127] shown in Figure 2.

5.1.  Linear nonequilibrium thermodynamics analysis of oxidative phos-
phorylation

In the last five decades, various new approaches in thermodynam-
ics, non-equilibrium thermodynamics and network thermodynam-
ics have been developed to understand and describe the bioener-
getics [21,31,41,51]. These approaches are based on the irreversible 
character of flows and forces of an open system. Experimental inves-
tigations revealed that the linear nonequilibrium thermodynamics 
(LNET) formulations are capable of describing thermodynamically 
coupled flow and reaction processes of OP, mitochondrial H+ pumps, 
and (Na+ and K+)-ATPase (see Figure 3b), because mainly due to en-
zymatic feedback [12,31,32,44-48,125,126]. Moreover, the LNET for-
mulations do not require the detailed mechanism of the coupling. 
Kinetic descriptions and considerations, on the other hand, may lead 
to a loss of the generality characteristics of thermodynamic formula-
tions, since the kinetics is based on specific models [44].

Stucki et al. [45] applied the LNET theory of linear energy converters 
using the following approximate representative linear phenomenolog-
ical relations of the OP without a load (J = 0), and shown in Figure 3a:

o o o po pJ L X L X= +  ,     
     (42)

p po o p pJ L X L X= + .     
     (43)
Here Jo and Jp are the oxygen flow rate and the ATP production rate, 
respectively, while Xo and Xp show the redox potential for oxidazible 
substances and the phosphate potential, respectively [31,41]. The in-
dependent flows and forces are identified by the entropy production 

equation 0o o p pJ X J XΦ = + > , so the cross coefficients, 
Lop and Lpo, obey Onsager’s reciprocal rules, which states that Lop = Lpo. 
Stucki [133] and later Cairns et al. [134] experimentally proved the 
approximate linearity of reactions in OP within the range of phos-
phate potentials of practical interest [31,46,133]. The degree of cou-
pling is defined by [135] 

1/ 2         0< 1
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     (44)

and indicates the extent of overall coupling of the ATP production 
driven by the respiration cycle in the inner membrane of mitochon-
dria. By defining the phenomenological stoichiometry (the phenom-
enological stoichiometry Z differs from the molecular stoichiome-
try in kinetics) by

1/2
o

p

LZ
L

 
=   
 

,      
     (45)
and by dividing Eq. (42) by Eq. (43), we obtain the flow ratio j = Jo/
(JpZ) in terms of the force ratio x=(XoZ/Xp) as follows

 
1

x qj
qz
+

=
+

.      
     (46)

nonequilibrium dynamics of kinesin by using the Crooks fluctua-
tion theorem. 

5.  Bioenergetics 
Bioenergetics is concerned with the energy production, conserva-

tion, and conversion processes in living cells [41,51]. The clusters of 
orthologous gene database have identified 210 protein families in-
volved in energy production and conversion; they show complex 
phylogenetic patterns that cause diverse strategies of energy conser-
vation [132]. The respiration chain generates energy by the oxida-
tion of reducing equivalents of nutrients (nicotinamide adenine nu-
cleotides NADH and the flavin nucleotides FADH2), which is con-
served as the ATP through the oxidative phosphorylation (OP) in 
the inner membrane of the mitochondria. Cytochrome c oxidase, ter-
minal enzyme of the chain reduces oxygen to water with four elec-
trons from cytochrome c and four protons taken up from the matrix 
of mitochondria, and pumps protons from the matrix into the inter-
membrane space, causing an electrochemical proton gradient across 
the inner membrane, which is used by the FoF1-ATPase to synthesize 
ATP. There is also another cycle (the Q cycle) around the cytochrome 
bc1 complex, which causes substantial proton pumping. Synthesis of 
ATP is an endergonic reaction and hence, conserves the energy re-
leased during biological oxidation–reduction reactions. As Figure3a 
illustrates, respiration cycle drives the ATP production through the 
thermodynamically coupling mechanisms in the OP. On the other 
hand, photosynthesis, driven by light energy, also leads to produc-
tion of ATP through electron transfer and photosynthetic phospho-
rylation. Hydrolysis of one mole of ATP is an exergonic reaction re-
leasing 31 kJmol at pH = 7. This energy drives various energy-de-
pendent metabolic reactions and the transport of various ions such 
as H+, K+ and Na+. Synthesizing of ATP is matched and synchro-

(a)

(b)
Figure 2. (a) ATPases are a class of enzymes that catalyze the synthesis and hy-
drolysis of adenosine triphosphate (ATP); (b) structural formula of ATP. The 
domain FO consists of one a, two b and a ring of 9–15 subunits c depending 
on the species. The subunits c form a ring, connected to the domain F1 via the 
subunit ε and then γ and two subunits b and δ. Water-soluble F1 domain has 
the subunits α3β3γδε. Catalytic nucleotide-binding sites are formed by each of 
three subunits β [125-127].
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,  ,  ,and ec ec
f p f pq q q q [31,32,41].

of coupling on the optimum efficiency [41,133,137,138]. If the sys-
tem has to maximize the ATP production at optimal efficiency then 
qf = 0.786. Instead, if the system has to maximize the power output 
at optimal efficiency, the output function f = (JpXp)opt occurs at qp = 
0.91. If the additional constraint of efficient ATP synthesis (minimal 
energy cost) is imposed, then the economic ATP flow and economic 

power output occur at  ec
fq = 0.953 and  ec

pq  = 0.972, respectively 
[31,133]. The dynamic properties of OP based on the eigenvalue sen-
sitivity analysis of a nonequilibrium thermodynamic model of OP, 
for the parameters characteristic for liver of starved rats in vivo, in-
dicates that the sensitivity of OP to a fluctuating ATP utilization is 
minimal at a degree of coupling q = 0.95. This means that the phos-
phate potential is highly buffered with respect to fluctuating ener-
gy demands at the degree of coupling, which is very close to the val-

ue of  ec
fq , at which net ATP production of OP occurs at the mini-

mal energy cost [52].

5.2.  Chemomechanical energy transduction
A motor’s n-dimensional state space having an energy E may be de-

scribed by a set of parameters (a1,a2,.,an) that represent variable struc-
tural elements, like the bond angles in a motor’s carbon skeleton or 
amino acid chains E(a1,a2,.,an). These structures are dynamic; they 
fluctuate about an energy minimum upon motor biochemical transi-
tion, such as ATP binding and product(s) release. For example, ATP 
hydrolysis can occur through a spontaneous pathway in solution or 
through an enzyme-catalyzed pathway. Regardless of the pathways 
the free energy changes by ΔGATP. However, through an uncatalyzed 
pathway, ΔGATP is lost entirely as heat, where as through a motor 
catalyzed reaction pathway ΔGATP consists of heat Q and external 
work Wext, while some other earlier models assume that ΔGATP is af-
fected by internal work Wint [24,31,117]. A motor enzyme system is 
bathed within the ligand solution system where free ATP molecules 
are hydrolyzed and the forcing potential exists in the bulk ligand 
system not in the motor system. Thus, how a motor enzyme converts 
ΔGATP into mechanical work depends on how a motor enzyme inter-
acts with the solution system. One simple approach used in solution 
thermodynamics may be to treat a biochemical transition as Mark-
ovian steps between discrete biochemical states, which are a collec-
tion of structural states within a given energy well and has a dis-
crete energy level corresponding to the Boltzmann weighted aver-
age of the energies of all structural states. The chemical potential of 

a biochemical state is ln Po
i i MiRTm m= + , where o

im  is the 

The efficiency of the linear energy conversion of OP may be defined 
as the ratio of output power to input power and in terms of the de-
gree of coupling, and given by

 
(1/ )

p p

o o

J X x q
J X q x

h
+

= − = −
+

.    
     (47)
There are two stationary states called the static head (sh) in which 
the net rate of ATP vanishes and the level flow (lf) in which the phos-
phate potential vanishes. The value of efficiency reaches an opti-
mum value between these two stationary states and is a function of 
the degree of coupling only

( )
2

2
2

2
 = tan ( /2) 

1 1
opt

q

q
h a=

+ −
,   

     (48)

where arcsin( )qa =  [31,32,41,45, 52,133-135]. The value of x at 
ηopt becomes [133]

2
 

1 1
 

opt
qx

q
= −

+ + .     
     (49)
The value of q can be calculated from the measurements of oxy-
gen flows at static head (sh) (Jo)sh and at uncoupled state (unc) (Jo)unc 
where the proton gradient vanishes and the respiration cycles is un-
coupled from the OP [134]:

sh unc1 ( ) /( )o oq J J= − .    
     (50)
For example, the overall degree of thermodynamic coupling is high-
er for a rat liver mitochondrion (0.955 ±0.021) than for brain (0.937 
±0.026) or hearth (0.917 ±0.037) [134].
Stucki [134 ] analyzed the required degrees of coupling of OP, when 
the ATP production is coupled to a load such as hydrolysis of the 
ATP (see Figure 3b), for the optimum production functions f for the 

ATP and output power given by tan ( / 2)cos( )mf a a=  [133]. 
The optimum production functions and the associated constants are 
described in Table 3, while Figure 4 shows the effect of degree 
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istic parameter values and equal diffusion coefficients of ATP and 
ADP. They showed that a model of the enzymatic step catalyzed 
by phosphofructokinase (PFK), a step which is responsible for the 
appearance of homogeneous oscillations in the glycolytic pathway, 
displays Turing patterns with an intrinsic length-scale (10 μm) that 
is smaller than a typical cell size. All the parameter values are ful-
ly consistent with classic experiments on glycolytic oscillations with 
equal diffusion coefficients for ATP and ADP. They identified the 
enzyme concentration and the glycolytic flux as the possible regu-
lators of the pattern. The emergence of these patterns can be traced 
back to the differential interactions of ATP and ADP with PFK and 
its complexes. The key enzymatic step responsible for glycolytic os-
cillations may also provide a robust mechanism for the formation of 
steady state inhomogeneities in the concentration of ATP and ADP 
at the cellular and supracellular level [142]. The patterns can fit in-
side a typical cell and that the time it takes for the patterns to form 
is relatively short (of the order of minutes). The formation of Tur-
ing patterns in this biochemical pathway could then be related to 
organizing centers in eukaryotic cells, playing a role during cell di-
vision. As the Turing patterns have an intrinsic length-scale, there 
could be zero, one, or several spots of high [ATP] concentration in-
side the cell, depending on the relationship between the cell and the 
pattern sizes [143]. 
Studies reveal that the reaction rate of a single enzyme molecule 
fluctuates over orders of magnitude, and chemical reactions may be 
modeled as thermally-driven Markovian transitions from one molec-
ular state to another. The time spent in each molecular state fluctu-
ates around a characteristic time scale that is a function of the height 
of the energy barrier between the states. The strong temporal corre-
lations between turnover times in single enzyme reactions suggest a 
coupling between the catalytic reaction and some other process such 
as transport processes that are characterized by longer time scales. 

6.1.  Linear nonequilibrium thermodynamics modeling
Modeling equations for thermodynamically and mathematically 
coupled systems of biochemical reaction–diffusion with heat flows 
may improve our understanding of some natural processes, such as 
molecular pumps. Consider a reversible homogeneous elementary 

standard chemical potential at standard temperature, pressure, ionic 
strength, pH, etc., and PMi is the probability that motor occupies state 
i. The free energy of solution ligand system is

i[ADP][P ]( ) ln
[ATP]

o
ATP ADP Pi ATP ATPG n G RTm m m m

 
∆ = ∆ = + − = ∆ +  

 ,   
     (51)

int extn nW W Qm∆ = + +  or  int( ) extn W W Qm∆ − = +
.     
     (52)
Earlier motor models suggested that a motor’s work producing 
mechanisms are formally separated from its enzymatic mechanisms, 
while new models suggest that a motor’s working step can consist 
of compliant regions within the motor and track (Wint), performed 
by that step in stretching motor and track elastic elements, and the 

m∆  is partitioned between the Wint and Wext [117].  

6.  Reaction-diffusion systems
Thermodynamically coupled transport and rate processes are very 

common in biochemical cycles, and require a thorough analysis by 
accounting the induced flows by cross effects [139-144], such as the 
hydrolysis of ATP coupled to the processes transporting substrates 
and maintaining the essential thermodynamic forces in active trans-
port illustrated in Figure 3b. For example, Ca+2-ATPase in the plas-
ma membranes of most cells pumsp Ca+2 against a steep concentra-
tion gradient out of cytosol, while simultaneously counterports H+ 
ions [44]. 

In 1952, Turing proposed a hypothetical sequential route for cell 
differentiation, based on a reaction diffusion process [140], which 
was verified later [141]. Starting from a spatially uniform state Tur-
ing proved that stable inhomogeneities in ‘‘morphogen’’ concentra-
tion could spontaneously emerge through a diffusion-driven sym-
metry breaking instability [48,78,142,143]. The general concept be-
hind Turing patterns involves a combination of short-range activa-
tion and large-range inhibition. Stirrer and Dawson [142] showed 
the existence of cell-sized Turing patterns in glycolysis, using real-

Table 3
Production functions with the consideration of conductance matching [45,134,135]

Production Function Loci of the Optimal Efficiency States q Energy cost 

1. Optimum rate of ATP production:

( )p o oJ q x ZL X= + .    

From the plot of Jp vs x:

opt( ) tan( / 2)cosp o oJ ZL Xa a= .

qf = 0.786
α = 51.83o

 
No
η= cons.

2. Optimum output power of OP:

2( )p p o oJ X x q x L X= + .

From the plot of JpXo vs x:

2 2
opt( ) tan ( / 2)cosp p o oJ X L Xa a= .          

qp = 0.910
α = 65.53 o

 
No
η= cons.

3. Optimum rate of ATP production at minimal 
energy cost:

2( )
1p o o

x q xJ ZL X
xq

h
+

= −
+

. 

From the plot of J1 η vs. x:

3
opt 0 0( ) tan ( / 2)cospJ ZL Xh a a= .             

ec 0.953fq =  
α = 72.38 o

Yes

4. Optimum output power of OP at minimal energy 
cost:

2 2
2( )

1p p o o
x q xJ X L X

xq
h

+
= −

+
.

From the plot of J1 X1 η vs x:

4 2
opt( ) tan ( / 2)cosp p o oJ X L Xh a a= .

ec 0.972pq =   
α = 76.34 o

Yes
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sure ( 0=µ∇+µ∇ PPSS CC ), and no volume flow condition 

( 0=+ PPSS VV JJ ), where Vi is the partial molar volume of 
species i, the local rate of entropy production of such a system is 
[21,59,146,147]: 

011
2 ≥+∇λ−∇





−=Φ

T
AJC

T
T

T
rSSSSq JJ , 

     (57)
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Equation (57) identifies the independent conjugate flows Ji and 
forces Xk to be used in the linear phenomenological equations when 
the system is in the vicinity of global equilibrium. Linear flow-force 
relations are valid when the Gibbs free energy ranges less than 1.5 
kJ/mol for chemical reactions [31,32,48,49]. The formalism of LNET 
can be used in wider ranges (over a 7 kJ mol-1) than usually expected 
with an error in the reaction velocity less than 15% [28,31,45-49] for 
some reactions and for selected biological pathways. The linear phe-
nomenological equations become [21,41,45,82]

, ,S S e S T e Sr
AD C D T
T

= − ∇ − ∇ +J L ,   
     (58)

,q D e S e qr
AD C k T
T

= − ∇ − ∇ +J L ,   
     (59)

,
2

1 1 f S eq
r rS S S rq

k C AJ C T
T R TT
l= − ∇ − ∇ +L L , 

     
     (60)
where DT,e and DD,e are related to the thermal diffusion and the Dufour 
effect, respectively and represent cross effects due to thermodynam-
ic coupling, and ke is the effective thermal conductivity [146,147]. On-
sager’s reciprocal relations states that Lik = Lki (i ≠ k) if Ji and Jk have the 
same parity under time reversal, and Lik = -Lki if Ji and Jk have the oppo-
site parity. For the nonvanishing cross coefficients Lik, all the forces con-
tribute for each flow. In the absence of pertinent symmetries or invari-
ances, all types of cross-couplings are possible. If the structure of the 
system is invariant with respect to some or all of the orthogonal trans-
formations, then the invariance will eliminate certain cross-couplings 
and their cross-coefficients will vanish. Here, Eqs. (58) to (60) take into 
account the thermodynamic couplings between vectorial processes 
and between vectorial and scalar processes, which is possible in an 
anisotropic medium according to the Curie-Prigogine principle [48]. 
For example, in active transport in biological cells, the hydrolysis of 
ATP is coupled with the flow of sodium ions outside of the cell (Figure 
3b) and the flow direction is controlled by the structure of the mem-
brane and coupling mechanisms in mitochondria. The medium may be 
locally isotropic, although it is not spatially homogenous. In this case, 
the coupling coefficients are associated with the whole system [31,48].

If we consider the change of affinity with time at constant temper-
ature and pressure, we have 

dt
dC

C
A

dt
dA S

PTS ,








∂
∂

= .     
     (61)

reaction between a substrate (S) and a product (P) S P
f

b

k

k
→← . 

This type of reaction system is common in chemical and biological 
systems, such as unimolecular isomerization [48], enzyme kinetics 
[31], and racemization of molecules with mirror-image structures 
[48]. The well known balance equations are

rSS
S J
t

C
ν+⋅−∇=

∂
∂ J ,    

     (53)

rPP
P J
t

C
ν+⋅−∇=

∂
∂ J ,    

     (54)

rrqp JH
t
Tc )( ∆−+⋅−∇=
∂
∂

ρ J ,   
     (55)
where Ji is the vector of mass flows for species i, Jq the vector of re-

duced heat flow 
1

n
q i i

i
H

=
= − ∑J q J , q is the total heat flow, iH  

the partial molar enthalpy of species i, and ΔHr the heat of reaction, 
Ci the concentration of species i, cp the heat capacity, and ρ is the den-

sity. The reaction velocity is r
P

P

S

S J
dt

dC
dt

dC
=

ν
=

ν
, and the para-

meters νS and νP are the stoichiometric coefficients, which are nega-
tive for reactants (νS = −1). 

Fick’s law is incomplete when used to describe the flows of charged 
particles. The migrational flows of ions are driven by the electric 
field which is generated internally by the flows of ions of unequal 
mobilities [144,145]. The electric field slows down the more mobile 
ions and speeds up the less mobile ions in order to maintain elec-
troneutrality along the diffusion path. Acidic solutions containing 
ions with widely different mobilities generate rather large electric 
fields; for example, the mobility of the H+ ions is typically five to ten 
times larger than the mobilities of the other ions [144]. Therefore, re-
actions consuming or producing H+ ions produce sharp gradients in 
concentrations of H+ ions and hence substantial electric fields. This 
would provide driving forces for the coupled diffusion of other ions 
in the solution. The Nernst-Planck equation include the coupled in-
duced flows of the ionic species i beside the pure-diffusion flows 

( / )i ie i i ie iD C F RT z D C= − ∇ +J E .   
     (56)
where E is the electric field, F the Faraday constant, R the gas con-
stant, T the temperature, zS the charge number of species S, and Die is 
the effective diffusivity for component i. The Nernst-Planck equation 
does not include changes in the ionic diffusion coefficients caused 
by electrophoresis and changes in the driving forces caused by the 
variation in the ionic activity coefficients in the solution. However, 
the correction due to Eq. (56) is mostly satisfactory, especially in di-
lute solutions of univalent electrolytes, and when the diffusion coef-
ficients DSe of solution species are estimated from ionic conductivi-
ties or deduced from diffusion measurements on binary solutions of 
single electrolytes [144].

Chemical reaction-diffusion systems with heat effects represent 
open and nonequilibrium systems with thermodynamic forces of 
temperature gradient, concentration gradient, and affinity. By us-
ing the Gibbs-Duhem equation at constant temperature and pres-
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[6]. Accuracy of the solutions obtained from Eqs. (63) and (64) de-
pends on the reliable data, such as the effective transport coefficients 
and cross coefficients. Some degrees of imperfections due to paral-
lel pathways of reaction or intrinsic uncoupling within the pathway 
itself may lead to leaks and slips in mitochondria [45,48]. Some spe-
cial cases of coupled phenomena may be: (1) Coupled phenomena at 
stationary state, (2) No coupling between the heat flow and chemi-
cal reaction: Lrq = Lqr = 0, and (3) No coupling between the mass flow 
and chemical reaction: LrS = LSr = 0 [82,146]. 

During a diffusion-controlled reaction, matter may be transport-
ed through an interface, which separates the reactants and the prod-
uct. The progress of the reaction may be affected by the morpholo-
gy of the interface with complicated structure, which controls the 
boundary conditions for the transport problem. Morphological sta-
bility of interfaces in nonequilibrium systems may lead to self-orga-
nization and/or pattern-formation in biological, physical, and chem-
ical systems [48]. 

Since the dynamic behavior of a reaction-transport system may 
be more apparent with the state-space diagrams, the tempera-
ture and concentration profiles may be replaced with the spatial 

integral averages obtained from 
1
0'( ) ( , )z dzq t q t= ∫  and 

1
0'( ) ( , )z dzj t j t= ∫ . Some results of approximate solutions 

to mathematically and thermodynamically coupled equations of 
(63) and Eq. (64) and the state-space diagrams are given elsewhere 
[82,146].

7.  Conclusions
Component biology of a single macromolecule and systems biolo-

gy of biochemical cycles represent nonequilibrium, stochastic, cou-
pled, open, and dissipative structures with diverse of spatial and 
time scales. The data collected from experiments on genomics and 
metabolomics help identifying biochemical reaction mechanisms, 
the functions of individual molecules, and their interactions in reg-
ulatory biochemical cycles and networks. The self-organizing pro-
cesses and certain functions are linked in any scale in biology; they 
are dissipative and operate under various constraints, hence they are 
maintained by continuous supply of outside and inside material, en-
ergy, and information. Any modeling approach should take into ac-
count the stochastic, self organizing, and dissipative nature of bio-
chemical cycles by focusing on their collective behaviors and prin-
ciples. The fluctuation theorems describe how irreversible macro-
scopic behavior evolves from time-reversible microscopic dynamics 
as either the observation time or the system size increases, and en-
tropy production can be related to the dynamic randomness of the 
stochastic systems. Modeling approaches for reaction-diffusion sys-
tems with heat effects can also describe some of the thermodynami-
cally coupled transport and rate processes of biochemical cycles. On 
the other hand, the distance from global equilibrium is another im-
portant controlling parameter on the behavior and evolution of bi-
ological systems and should be considered in the modeling. How-
ever, many of these approaches are in their early stages of their de-
velopment and no single computational or experimental technique 
is able to span all the relevant and necessary spatial and temporal 
scales. Wide range of experimental and novel computational tech-
niques with high accuracy, precision, coverage, and efficiency are 
necessary for understanding biochemical cycles and networks, en-
zyme kinetics, and molecular motors.
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Eq. (62) shows that affinity changes by rate of matter exchanged with 
the surrounding and chemical reaction velocity; therefore, the terms 
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The parameters ε, σ, ω, and κ are associated with the cross coeffi-
cients and hence control the induced flows because of the coupled 
reaction-transport system. Specifically, the ε and ω control the cou-
pling between mass and heat flows, while the σ and κ control the 
coupling between the chemical reaction and mass flow, and chem-
ical reaction and heat flow, respectively. Therefore, induced effects 
due to various coupling phenomena can increase the possibility that 
the system may evolve to multiple states and diversify its behavior 
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