Characterization of a Polymer Surface With Sequentially Immobilized Proteins

Anuradha Subramanian
Department of chemical Engineering, University of Nebraska Lincoln, asubramanian2@unl.edu

Tarlan Mammedov
University of Nebraska - Lincoln, tmammedov2@unl.edu

Karl E. Kador
University of Nebraska - Lincoln

Follow this and additional works at: http://digitalcommons.unl.edu/cbmesubramanian
Part of the Chemical Engineering Commons

http://digitalcommons.unl.edu/cbmesubramanian/6
Characterization of a polymer surface with sequentially immobilized proteins

Anu Subramanian, Tarlan Mammedov, and Karl E. Kador

University of Nebraska—Lincoln, Lincoln, Nebraska, USA

Corresponding author — A. Subramanian, asubramanian2@unl.edu

To overcome the procoagulant processes on the surfaces of biomaterials, surface modifications have been undertaken to achieve hemocompatibility characteristics that are comparable to the native endothelium. Our immediate goal in this paper is to design and develop strategies to inhibit thrombin activation on biomaterial surfaces. We will use biodurable polyurethane (PU) as the background polymer and synthesize biomaterial surfaces containing two immobilized recombinant proteins. To attain our objective, we have first undertaken the surface modification of biodurable polyurethane (chronoflex-AR) to enable the sequential immobilization of proteins via a bi-dentate bridge, a novel modification strategy. We have verified the creation of the bridge by surface FT-IR conducted on each intermediate and the product of the synthesis. We estimate a yield of 0.25 μmol of the proposed bi-dentate bridge/cm² polyurethane. We have characterized the protein binding on modified PU surfaces by immunofluorescence microscopy. As expected, no visible fluorescence was detected on unmodified surfaces, while PU surfaces that has immobilized proteins via the bridge gave fluorescent signals, indicating the successful immobilization as per design. Results on surface modification and characterization of the resultant surface by FT-IR and dynamic mechanical analyses and immunofluorescence microscopy will be presented.