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Piezoelectric sensors can measure vibrations of solid structures very accurately. A model of a
cantilevered beam, with a ZnO film on one side is presented. Both viscous and internal damping are
considered. The output of the sensor is modeled and matched with experimental results by adjusting
the damping parameters. A theoretical formulation for damage is introduced. Experimental results
for a damaged beam confirm the shift in frequencies to lower values. The model is used to identify
the extent of the damage. ©1996 American Vacuum Society.

I. INTRODUCTION

Transverse vibrations of cantilevered beams have been the
subject of numerous studies. This system is more amenable
to a mathematical analysis than more complex structures and
has therefore served as basis for different studies in the fields
of vibration and damage detection in structures. Banks and
Inman1 used the cantilevered beam to study different damp-
ing mechanisms. They estimated the damping coefficients by
using a least squares method on experimental time histories
of beam vibrations. These damping coefficients were used in
the analytical vibration model that was used to numerically
simulate the dynamic response of the system and then com-
pared to the experimental results. Rizos and Aspragathos2

used the cantilevered beam to study the inverse problem of
crack location: determining the position and size of the crack
from the sensor signal. This system also forms the basis for
the development of materials with self-diagnostic capabili-
ties ~Viljoen and van Rensburg3!. It is well known that local
damage changes the natural vibration frequency of a cantile-
vered beam~cf. Adamset al.4!. A very important aspect in
the development of a self-diagnostic material is therefore ac-
curate measurement of the natural frequencies.

Piezoelectric sensors in the form of a thin film could po-
tentially be used as a sensing device by directly measuring
the voltage output generated by the strained film. In studies
on the use of natural frequencies to detect damage~Yuen,5

Adamset al.,4 and Cawley and Adams6!, the role of damping
was not taken into account. Damping plays a very important
role in natural vibrations since it has an influence on the
natural frequencies, and even in the most simple form of
damping~external viscous!, the primary mode could become
undetectable because it is overdamped. In contrast to viscous
damping, strain rate damping~Kelvin–Voigt damping! at-

tenuates the different modes at different rates. Higher modes
are damped out at a faster rate than lower modes. Banks and
Inman1 also discussed two other forms of internal damping,
namely, time hysteresis and spatial hysteresis. These two
forms of damping do not permit analytical solutions, even
for the cantilevered beam system, and one has to resort to
numerical methods.

In this article we analyze the natural vibrations of a can-
tilevered beam with the consideration of both viscous and
Kelvin–Voigt damping. Analytical solutions are obtained for
the problem, which includes both damping mechanisms. Ex-
perimental measurements of a beam, coated with a thin ZnO
layer that serves as the piezoelectric sensor, are compared
with the theoretical results. A least squares method is used to
identify the damping parameters and excellent agreement is
found between theoretical and experimental values. A model
for the description of damage is also presented and the theo-
retical model is used to quantify the extent of the damage.

II. ZnO DEPOSITION

A ZnO thin film was deposited onto a polished 304 stain-
less steel beam, measuring 145314.530.89 mm by dc reac-
tive magnetron sputtering for a period of 3 h. See Table I for
a summary of the deposition conditions. The sputtering was
done in a mixed Ar–O2 atmosphere using a bell-jar type dc
magnetron sputtering system~Kurt J. Lesker Co.! with a zinc
~99.9% pure! target~disk! with a diameter of 50 mm and a
thickness of 3.2 mm. The substrate was positioned parallel to
the target surface at a distance of about 88 mm. No heating
of the substrate, other than that caused by the sputtering pro-
cess, was done during the ZnO film deposition, and no bias
voltage was applied to the substrate. The sputtering system
was evacuated to a base pressure of 231025 Torr by using a
turbo pump backed by a roughing pump. No presputtering
was done to remove the natural oxide layer on the target
surface, since no shutter was available at the time. After the
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base pressure had been reached, argon~sputtering gas! and
oxygen~reactive gas! were introduced to the vacuum cham-
ber through two separate control valves. These valves were
controlled by an MKS volumetric flowrate controller, which
kept the flowrates at the predetermined optimum setpoints
for the deposition of good quality ZnO films. After the pres-
sure had stabilized at about 0.8 Pa~gauge pressure!, the sput-
tering was started with the sputtering current controlled at 40
mA. The film adherence was found to be very good and no
problems with peeling were experienced.

III. VIBRATION MEASUREMENTS

The piezoelectric properties of ZnO film enable it to act as
a sensor~when the film experiences strain, a voltage differ-
ence is created across the film! and also as an actuator~when
an electric field is applied across the film, it is deformed!.
For the purpose of the vibration measurements, only the
sensing ability of the film was used. One end of the stainless
steel beam with the ZnO film sputtered onto one side was
clamped, while the other end was left free to vibrate. A patch
of carbon fibers was glued onto the ZnO film with an epoxy
glue to serve as an electrode at the top of the ZnO film. The
stainless steel beam itself served as the electrode at the bot-
tom of the film~see Fig. 2 for the experimental setup!. These
two electrodes were connected to a digital oscilloscope to
measure the difference in voltage across the film. The beam
was given an initial displacement of about 75 mm at its free
end and released to vibrate at its natural frequency. The volt-
age signal initiated by the vibration was captured on the
oscilloscope and compared to the theoretical signal predicted
by the model. The signal clearly shows the primary vibration
mode of the beam with the secondary and tertiary vibration
modes superimposed on it~see Fig. 3!. It is also clear~see
Fig. 3! that the tertiary mode is damped out after a few
oscillations.

IV. FILM CHARACTERIZATION

The ZnO film was characterized by analyzing its crystal-
linity and crystallographic orientation using x-ray diffraction
~XRD!. It is known that crystalline ZnO with a hexagonal
wurtzite crystal structure~and 6 mm symmetry! is ann-type
semiconductor. It has a preferential crystallographic orienta-
tion of ~0002! and is piezoelectric~Aeugleet al.7!. ZnO ex-
hibits strong self-texturing even when deposited onto amor-
phous substrates and at room temperature~Yamamoto

et al.8!. The XRD analysis of the film showed a sharp~0002!
diffraction peak~2u534.42°! for the ZnO film, which im-
plies that the film is highly crystalline and that the crystals
are oriented with theirc axes perpendicular to the stainless
steel substrate. The film is therefore expected to be piezo-
electric. An XRD pattern of the film for the conditions listed
in Table I is shown in Fig. 1.

V. MODEL FOR A CANTILEVERED PLATE

We only consider one-dimensional transverse vibrations.
It is assumed that the plate can be modeled as a one-
dimensional continuum. Reismann9 showed that in the case
of pure bending, the solution for the plate problem ap-
proaches the solution for a beam as the width becomes
smaller. In this study, we consider a stainless steel beam
with dimensions L:W:H ~length:width:thickness!
5~0.145:0.0145:0.00089!. Let lm denote the mass per unit
length of the plate~lm5rWH! andD the flexural stiffness
with D5EYI , whereI5WH3/12 ~moment of inertia! andEY

is the Young’s modulus for stainless steel 304. Defining
the dimensionless variablesx5X/L, u5U/L, and
t 5 tAD/L4lm, the transverse displacement is given by

]2u

]t2
1avd

]u

]t
1aKVd

]5u

]t]x4
52

]4u

]x4
. ~1!

The viscous damping parameteravd is defined in terms of
the viscous damping coefficientC asCL2/AlmD; likewise,
we define the Kelvin–Voigt damping parameteraKVd in
terms of the Kelvin–Voigt damping coefficientCK as
CKI /L

2AlmD. The boundary conditions at the fixed end are

u5
du

dx
50, x50, ~2!

and at the free end

]2u

]x2
1aKVd

]3u

]x2]t
50, x51, ~3!

]3u

]x3
1aKVd

]4u

]x3]t
50, x51. ~4!

TABLE I. Deposition conditions.

Item Value

Carrier gas Ar
Substrate temperature Ambient
Chamber pressure 6–7 mTorr
Substrate height
~above target!

85 mm

Plasma current 40 mA
Deposition time 3 h
O2:Ar ratio 1:10

FIG. 1. XRD diagram of ZnO film sputtered on stainless steel substrate.
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The solution can be written in the form

u~x,t!5V~x!S~t!.

Since the problem is linear and homogeneous,S(t) must
have the form

S~t!5evt, ~5!

wherev is a complex value that is still to be determined.
Substitution of the above form foru(x,t) reduces Eq.~1! to
an ordinary differential equation:

d4V~x!

dx4
~11aKVdv!1~v21avdv!V50. ~6!

The boundary conditions are

V5
dV

dx
50, x50, ~7!

d2V

dx2
5
d3V

dx3
50, x51. ~8!

Sincev 5 21/aKVd does not permit nontrivial solutions of
Eqs. ~1!–~4!, we can define the complex numberZ
( [ uZueiu) as follows:

Z52
v21avdv

11aKVdv
. ~9!

The general solution to Eq.~6! is

V5(
j51

4

Aje
l j x, ~10!

wherel j is given by~de Moivre’s theorem!

l j5uZu1/4ei @u12p~ j21!#/4

and

u5arg~Z!.

Applying the boundary conditions~7! and~8! to the solution
in Eq. ~10! gives the homogeneous system of equations

Mā50̄,

where

ā5F A1

A2

A3

A4

G
andM is defined as

M5F 1 1 1 1

l1 l2 l3 l4

l1
2el1 l2

2el2 l3
2el3 l4

2el4

l1
3el1 l2

3el2 l3
3el3 l4

3el4

G .
A nontrivial solution will exist if and only if

detM50. ~11!

The boundary conditions~7! and ~8! are the same as for the
case of no damping. Therefore, Eq.~11! can also be stated as

cos~l!cosh~l!521. ~12!

There exists an infinite number of solutions to Eq.~12! @or
Eq. ~11!#. Let lk denote thekth solution; hence,

Vk5A1 cos~lkx!1A2 cosh~lkx!1A3 sin~lkx!

1A4 sinh~lkx!. ~13!

Note that el1
kx [ cos(lkx), el2

kx [ cosh(lkx), el3
k

[sin(lkx), el4
kx[sinh(lkx).

It follows from Eq.~9! that two solutionsvk1 andvk2 are
associated withlk:

v21@avd1aKVd~lk!4#v1~lk!450. ~14!

In general, we can write the eigenfunction for the transverse
beam vibrations as

u5 (
k51

4

uk5 (
k51

4

Vk~e
vk1t1Bke

vk2t!. ~15!

The orthogonality of the eigenfunctionsVk is trivial to prove
and they are complete; hence, they can be used as a basis to
approximateu(0, x).

We assume that the initial state is the equilibrium solution
for a constant load at the free end:

u~0,x!5h~ 3
2x

22 1
2x

3!, ~16!

]u~0,x!

]t
50, ~17!

whereh is a dimensionless displacement at the free end. The
initial velocity is zero@Eq. ~17!# and

Bk52vk1 /vk2 .

For this choice of initial condition, the Fourier coefficients
converge rapidly and the first four eigenmodes~k51,...,4!
give a good approximation of the initial state. This model is
used to approximate the transverse displacement of the beam
undergoing free vibration after an initial displacementh.

VI. COMPARISON BETWEEN EXPERIMENTAL AND
THEORETICAL RESULTS

The damping parameters are not knowna priori and there
do not exist theoretical or empirical relations to estimate
them. The best option is to compare our experimental and
theoretical sensors’ output and reconcile the two data sets by
fitting the two unknown damping parameters using a least
squares method. A similar approach was followed by Inman
and Banks1 to identify the parameters of various damping
mechanisms in composite beams. In order to do the param-
eter identification, it is necessary to model the piezoelectric
behavior of the thin film. In the following section we will
give a brief description of the model for the piezoelectric
sensor.
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A. Model for sensor output

When the plate is vibrating freely, the stress tensor is

T5F T1 0 T5

0 0 0

T5 0 0
G . ~18!

The strain tensor is given by~Auld10!

S5sT, ~19!

wheres is the compliance tensor for the beam. We assume
that no slip occurs across the metal–ZnO interface. There-
fore, strain is continuous.

In order to measure the electric field across the ZnO film,
it is necessary to mount an electrode on top of it. A small
rectangular section of the film is wetted with an epoxy resin
and carbon fibers are placed on the resin, as shown in Fig. 2.
The substrate~stainless steel 304! acts as the one electrode
and the carbon fiber patch as the other electrode. Measuring
from the fixed end, the electrode extends fromL1 to L2 . It is
also assumed that no electric fields exist in the transverse
directions of the ZnO film and thec axis of the polycrystal-
line film is oriented in the direction normal to the beam.
~This assumption is quite valid in light of the strong self-
texturing of ZnO to grow with thec axis normal on both
amorphous and single crystal substrates.! Under open-circuit
conditions, the following relationship holds for thez compo-
nent of the dielectric displacement vectorD ~see Fig. 2 for
axis orientation!,

E DzdA50, ~20!

where*dA is evaluated over the surface of the electrode. It
follows from the relation between dielectric displacement,
electric field, and strain,

Dz5ezz
S Ez1ez1S111ez3S331ez1S22 ~21!

that

E Ezezz
S dA1E ~ez1S111ez1S221ez3S33!dA50. ~22!

Using an average electrical field strengthĒz , integration
leads to the following equation:

Ēzezz
S A52E

L1

L2S ez1s11d2udx2
EY

H

2L
1ez1s22

d2u

dx2
EY

H

2L

1ez3s33
d2u

dx2
EY

H

2L DdxL3 , ~23!

where L3 is the width of the electrode. This leads to an
equation for the average electric field between the stainless
steel beam and the carbon fiber electrode:

Ēz5EY

H

2L Fez1s11S dudxD
L1

L2

1ez1s22S dudxD
L1

L2

1e23s33S dudxD G Y ezz~L22L1!L3 , ~24!

anddu/dx is obtained from the analytical solution~15!. The
permittivity and piezoelectric stress tensors are given bye
ande respectively~see Auld10!. If the film thickness ishf ,
the signal output can be expressed in volts:V5Ēzhf . This
signal can then be compared with the experimental output.

B. Evaluation of damping parameters

It follows from Eq. ~14! that the following relationship
holds betweenavd andaKVd :

avd1~lk!4aKVd522vR . ~25!

Note thatv5vR1iv I andZ5l4.
This linear relationship implies that we only have to fit

one parameter. In Fig. 3 a normalized experimental sensor
output is given for the beam used in this study. It was mea-
sured with an oscilloscope and the signal was transferred to a
computer for further processing. A Fourier analysis was used
to calculate the primary frequencyv I153.51595. The first
root of Eq.~12! is l1512.3624, and using the relationship

FIG. 2. Schematic of cantilevered beam with sensor.

FIG. 3. Experimental output of sensor.
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l1
45vR

21v I
2, ~26!

vR was used as20.02144. It is of paramount importance to
evaluatev I accurately. The signal attenuation is determined
by vR , and it follows from Eq.~26! that inaccuracies in the
evaluation ofv I affect the value ofvR .

The linear relationship betweenaKVd andavd also pro-
vides upper bounds on the values of both damping param-
eters

aKVd<22vR /l1
4,

avd<22vR .

In the absence of the internal damping mechanism, the well-
known resultavd522vR is obtained. It can be concluded
from Eq. ~25! that an increase in the Kelvin–Voigt damping
parameter leads to a decrease in the viscous damping param-
eter. It is known that higher frequencies are damped more
strongly in the presence of Kelvin–Voigt damping, which is
also quite apparent from Eq.~25!.

The experimental and theoretical output are defined as
VE(t) andVT(t), respectively. The function

F~avd!5AE
t1

t2

@VE~s!2VT~s!#2 ds ~27!

is minimized whenavd has the valueavdm . In Fig. 4 the
experimental and theoretical curves are shown for
avdm50.04245. The value foraKVd is 3.46931025. The ex-
perimental output is simulated quite well by the model.
Small discrepancies exist in the amplitude of the second
eigenfunction. Excellent agreement is found between the ex-
perimental and model values of the higher frequencies. The
system is now characterized.

VII. EXPERIMENTAL AND THEORETICAL
ASSESSMENT OF DAMAGE

Damage in the beam will be modeled as an elastic joint.
Consider a local section of the plate, with lengthl!L. In this
section,D differs from the rest of the plate and is denoted as
Dl . Define

d5 lim
l→0

lD

DlL
~28!

as a dimensionless measure of the magnitude of the damage.
As a linear approximation, it can be shown that the following
jump condition holds acrossl ,

F]U]x G5d
]2U

]x2
. ~29!

@Note that@•#[~•!12~•!2.#
In dimensionless form, the damage is located atx5g.

The conditions at the elastic joint are

@V#5S dVdxD2d
d2V

dx2
5S d2Vdx2 D5S d3Vdx3 D50, x5g. ~30!

This definition of damage, which appears in the one-
dimensional model only pointwise, is not associated with a
specific form of damage. Any damage such as delamination
~for composite beams!, cracks, or notches with a reduction in
the moment of inertia or work-hardened area with different
Young’s modulus is included in this definition, provided that
the domain of damage is small~i.e., l!L!. Note that if this is
not the case, then the beam can be modeled as three con-
nected sections with different physical properties in the re-
gion associated with damage.

The problem can also be solved by separation of vari-
ables, with the additional complexity that different solutions
exist on either side ofx5g. The existence condition@Eq.
~12!# is augmented to include the continuity and jump con-
ditions @Eq. ~30!# at the elastic joint~see Viljoen and van
Rensburg3 for more details!. However, we make the assump-

FIG. 5. Experimental output of a damaged and an undamaged beam.FIG. 4. Comparison between experimental and theoretical output.
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tion that the damping parameters do not change in the pres-
ence of the elastic joint. When an elastic joint develops, it is
associated with a decrease in the frequencies. This phenom-
enon is well known~cf. Adamset al.4!. In Fig. 5 the experi-
mental signal output of a damaged and undamaged beam is
shown. In this particular case, the damage consisted of four
holes~1.5 mm diameter! that were drilled in the beam at a
distance 0.0109 m from the fixed end. The shift in frequen-
cies is quite obvious.

In order to quantify the damage, we used the theoretical
model with the damping parameters determined in the previ-
ous section. Using the parameter for damage to minimize the
L2 norm of the difference between the theoretical and ex-
perimental results,d was found to be

d50.059.

VIII. CONCLUSIONS

The natural vibration of a stainless steel beam was studied
by experimental and theoretical methods. A thin piezoelectric
film of ZnO was sputtered on one side of the beam. The
beam was clamped at one end and perturbed at the free end.
A potential developed across the film during the vibration
and it was measured. A mathematical model was also devel-
oped for this system and two forms of damping were consid-
ered, viscous damping and Kelvin–Voigt damping. The dif-
ference between the normalized theoretical and experimental
output was minimized in the least square sense to find the
viscous damping parameter. The damping parameters for this
system are

avd50.04245,

aKVd53.46931025.

Although the internal damping is small, it is an important
mechanism in the damping of higher frequencies. The at-
tenuation of the signal is determined byvR , since

vR5
2@0.042451~lk!433.46931025#

2

scales with ~lk!4, higher frequencies are damped much
faster.

The experimental output of a damaged beam was mea-
sured and compared with an undamaged beam and the sensor
measured the shift in frequencies. A theoretical model of
damage was also described and the signal output was calcu-
lated. The vibration of the beam was measured experimen-
tally by the sensor and compared with the model sensor out-
put. The parameter that quantifies the damage was
calculated. Piezoelectric films of ZnO measure the frequen-
cies of a vibrating beam very efficiently; it is sensitive to-
wards structural changes in the beam and in combination
with a theoretical model it can be used to determine and
assess damage in structures.

APPENDIX A: NOMENCLATURE

C: viscous damping coefficient~kg/ms!.
CK : Kelvin–Voigt damping coefficient~kg/ms!.
s: compliance tensor~1/Pa!.
D: plate flexural rigidityEYI ~Pa m4!.
Dz : z component of dielectric displacement vector

~coulomb/m2!.
Ez : z component of electric field~V/m!.
EY : longitudinal Young’s modulus~Pa!.
ezi : elements ofz component of piezoelectric stress ten-

sor ~coulomb/m2!.
H: thickness of plate~m!.
h: dimensionless initial displacement of free end.
hf : thickness of ZnO film~m!.
I : moment of inertiaWH3/12~m4!.
L: length of plate~m!.
L1,2: position of electrode in thex axis ~m!.
L3 : width of electrode~m!.
S: strain tensor.
T: stress tensor~Pa!.
U: transversal displacement~m!.
u: dimensionless transverse displacement~U/L!.
X: dimensional distance along thex axis ~m!.
x: dimensionless distance along thex axis.
t: time ~s!.
V: output of signal~V!.
V(x): solution of Eq.~6!.
W: width of plate~m!.

APPENDIX B: GREEK SYMBOLS

avd : dimensionless viscous damping coefficient,
CL2/AlmD.

aKVd : dimensionless Kelvin–Voigt damping coefficient,
CK /L

2AlmD.
ezz: normal z component of permittivity tensor~farad/

m!.
lm : mass per unit length of plate~kg/m!.
v: dimensionless frequency.
r: density of beam~kg/m3!.
t: dimensionless timet(AD/L4lm).
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