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INTRODUCTION

Protein NMR and X-ray crystallography are the two prin-
cipal approaches for determining atomic resolution structures 
of macromolecules. Traditionally, NMR structure determina-
tion requires analysis of sequence-specifi c resonance assign-
ments and interpretation of multidimensional nuclear Over-
hauser effect (NOESY) spectra using these resonance assign-
ments. High-resolution three-dimensional (3D) structures are 
calculated based on distance constraints calibrated from in-
terpreted NOESY cross peaks. Due to resonance degenera-
cy, manual interpretation of NOESY cross peaks is time-con-
suming and involves signifi cant expertise. This manual anal-
ysis process is one of the signifi cant barriers challenging the 
use of NMR as a routine tool for protein structure analysis in 
structural biology and in the emerging area of structural ge-
nomics. [1]

In this study we use graph theory to formulate the NOESY 
interpretation problem, and present a novel bottom-up, topol-
ogy-constrained distance network algorithm for NOESY in-
terpretation. AutoStructure is a software suite that implements 
this topology-constrained distance network analysis algorithm 
and automatically generates 3D protein structures using NO-
ESY cross peaks, together with the structure calculation pro-
grams XPLOR/CNS [2] [3] or DYANA. [4]

Several fully automated approaches for NOESY interpre-
tation and structure calculation have been developed, includ-
ing NOAH, [5] [6] ARIA, [7] [8] CANDID, [9] a self-consist 
constraint analysis method implemented in XPLOR, [10] and 
other generally less developed programs. [11-14]The ARIA, 
CANDID, and NOAH programs utilize a top-down data in-
terpretation approach, incorporating all of the data simultane-
ously and often incorporating an ambiguous constraint strat-
egy [7] [8] to help in resolving information from potentially 
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overlapped cross peaks in the NOESY spectrum. AutoStruc-
ture uses a topology-constrained bottom-up approach, fi rst 
building structures based on intraresidue and sequential NO-
ESY data, then local structures indicated by medium-range 
interactions, then β-strand topologies, and fi nally interpret-
ing information arising from long-range packing interactions. 
This protocol, in principle, resembles the methodology that 
an expert would utilize in manually solving a protein struc-
ture by NMR.

In this article, we describe for the fi rst time the underlying 
algorithms of AutoStructure and report the performance of the 
program on three real protein NMR data sets. These three real 
protein data sets used for developing and testing AutoStruc-
ture are from three different protein fold families (i.e., main-
ly β, mainly α, and α/β folds), and range in size from 113 to 
169 amino acid residues. The NMR spectral data available for 
these three proteins vary with respect to completeness, reso-
lution, degeneracy, and spurious peaks. With these data, Au-
toStructure provides high-quality automated interpretation of 
NOESY cross peaks and generates accurate 3D structures us-
ing XPLOR/CNS or DYANA. The AutoStructure program 
has been used in more than two dozen de novo protein struc-
ture determinations, several of which have already been pub-
lished. [15-22] This program also plays a central role in the 
NMR structure analysis component of the Northeast Structur-
al Genomics Consortium ( http://www.nesg.org ) and is an in-
tegral part of an evolving process for high-throughput protein 
NMR structure analysis. [23-25] Several of the structures de-
termined with AutoStructure have subsequently been validat-
ed by independent structure determination of homologous pro-
tein structures using other methods. [26-28] These examples 
demonstrate the robustness and reliability of the program Au-
toStructure.It is also very critical for automated NOESY inter-
pretation and structure determination approaches to use a fast 
and sensitive structure quality assessment measure to evaluate 
the quality of the generated structures, and to indicate the cor-
rectness of the fold and accuracy of the structure. Here, we use 
recall, precision, and F-measure (RPF) scores, [29] a statisti-
cal method from information retrieval, to evaluate the quali-
ty of a protein structure against the NOESY and resonance as-
signment data from which the structure is derived.

ALGORITHMS

Graph Theory Formulation of the NOESY 
Interpretation Problem

Given a model 3D protein structure, a complete distance 
network G = (V, E) can be generated in which vertices (V) rep-
resent all protons of the model structure (V = {h | h is any pro-
ton from the model structure}) and edges (E) connect the verti-
ces and represent exact distance relations between proton pairs 
that are separated by at most dmax (Å) [E ={(h1, h2, d) | d < 
dmax is the distance between nodes h1 and h2}]. When dmax is 
large enough, this complete and exact proton-pair distance net-
work can be used together with the known amino acid covalent 
geometry and chirality to generate an accurate structure mod-

el using projection methods of distance geometry. [30-32] The 
process of determining sequence-specifi c resonance assign-
ments provide a set R of protein nuclei resonance frequencies 
assigned to specifi c atoms of the protein structure [R = { δ(h) 
| h is any atom of the protein and δ is its resonance chemical 
shift value}]. NOESY cross peaks (p) of intensity I represent 
resonances (δ1, δ2) of proton pairs with close distance relation-
ships [NOE ={p = (δ1, δ2, I ) | ∃ proton pairs (h1, h2), δ(h1) 
= δ1 and δ(h2) = δ2}]. In the simplest approximation, peak in-
tensity I is correlated with the interproton distance d(h1, h2) by 
I ~ d –6 for d(h1, h2) < dNOE, where dNOE is the maximum dis-
tance detected in the NOESY spectrum. If the NOESY cross 
peaks p = (δ1, δ2, I) are each interpreted by resonance assign-
ment to one or more proton pairs (h1, h2), these interpreted 
NOESY cross peaks can then be converted into a NOE-linked 
distance network GNOE = (V, ENOE), of vertices V correspond-
ing to hydrogen atoms and edges ENOE = {(h1, h2, p) | p = [δ1, 
δ2, I(d)], δ(h1) = δ1 and δ(h2) = δ2}. Edges of GNOE repre-
sent NOE cross peaks arising from interactions between pro-
tons h1 and h2. Ideally, every proton pair that is separated by 
d < dNOE will be linked by a pair of symmetric NOESY cross 
peaks. Once an extensive, self-consistent, though generally in-
complete distance network GNOE has been constructed, 3D pro-
tein structures can be generated using structure generation pro-
grams such as XPLOR/CNS or DYANA.

From sets R and NOE, an ambiguous NOE network GA-

NOE = (V, EANOE) is built, where edge EANOE = {(h1, h2, p) | p 
= [δ1, δ2, I(d)], | δ1 - δ(h1)| < Δ and | δ2 - δ(h2)| < Δ}, and Δ 
is a match tolerance for matching chemical shift values in the 
resonance assignment list, set R, with values in the NOESY 
peaks list(s), set NOE. In constructing GANOE, each NOESY 
cross peak p may be used to link more than one proton pair 
[i.e., frq(p) ≥1]. The true solution network GNOE is a subgraph 
of this GANOE. Given complete sets R and NOE, for each NO-
ESY cross peak p, at least one of its linked proton pairs be-
longs to GNOE. Inter-residue contact maps derived from GA-

NOE are potential contact maps, whereas contact maps derived 
from GNOE are true contact maps.

In this formulation, the process of NMR protein structure 
analysis from NOESY data reduces to the generation of an ac-
curate self-consistent distance network GNOE from the initial 
ambiguous NOE network GANOE. This task is complicated by 
chemical shift degeneracy, resulting in ambiguous interpreta-
tion of NOE cross peaks to multiple potential interacting pro-
ton pairs, by incompleteness in the resonance assignment list 
(set R), and by artifacts in the NOESY peak list (set NOE), 
which can result in erroneous NOESY cross peak interpre-
tations. The problem of fi nding solution network GNOE from 
GANOE is considered to be NP-complete in that enumeration 
of all possible confi gurations of assignments requires expo-
nential time. [12] [33] Accordingly, for typical protein NMR 
data sets, most computational approaches attempt to construct 
an approximate heuristic solution HGNOE to the true distance 
network GNOE, and then attempt to refi ne this approximation 
to be as close to the true GNOE as possible by various analy-
sis methods.
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AutoStructure’s Heuristic Approach

AutoStructure uses a bottom-up topology-constrained dis-
tance network analysis algorithm to build an optimal solution 
distance network HGNOE. The architecture of the overall iter-
ative processes is shown in Figure 1. The AutoStructure pro-
tocol consists of two principal algorithms: initial fold analy-
sis (cycle 1) that includes steps 1-6 in Figure 1, and iterative 
structure analysis (cycles 2-N) that includes steps 4, 7, and 
6. Following several (typically ~10) cycles of iterative struc-
ture analysis, the program RPF (step 8 in Fig. 1) evaluates 
the quality of the resulting structure by measuring its good-
ness of fi t to the NOESY peak list(s) and resonance assign-
ment list. [29] In the following sections, each of the princi-
pal steps of Figure 1 is discussed. Table I summarizes defi ni-
tions and typical values of key parameters described in each 
step of the algorithm. 

Step 1. Preparation of experimental input data

AutoStructure uses the following input data: (1) protein 
amino acid sequence and a list of resonance assignments (set 
R); (2) “NOESY peak list” of the multidimensional (i.e., 2D, 

3D, or 4D) NOESY cross peak frequencies (may be aliased) 
and intensities (set NOE); (3) a list of scalar coupling constant 
data (optional); (4) a list of amide sites exhibiting slow am-
ide 1H exchange (optional); and (5) other manually analyzed 
constraints when available, such as residual-dipolar-coupling 
(RDC), [34] disulfi de-bond, and dihedral-angle constraint 
[35] data. NOESY peak lists are generated using third-party 
automatic spectrum peak-picking programs, usually followed 
by some manual editing. Prior to analysis, the quality of com-
bined NOESY peak list and chemical shift list data are evalu-
ated using the M score statistic for data quality, as described 
below. Dimeric proteins can also be analyzed when interchain 
NOESY cross peak data are available from X-fi ltered NOESY 
experiments. [17] [18]

Step 2. Construction of initial ambiguous network 
G 0

ANOE from input data sets R and NOE

The initial ambiguous distance network G 0
ANOE, with nodes 

corresponding to all hydrogen atoms and edges corresponding 
to all possible NOESY cross peak assignments, is generated 
by matching chemical shift values of NOESY cross peaks (set 

Figure 1. Architecture of AutoStructure/AutoQF analysis processes. Initial fold analysis (cycle 1) includes steps 1-6, and it-
erative fold analysis (cycles 2–10) includes steps 4, 7 and 6. When an initial protein structure model is available as input (e.g., 
from homology modeling or manually analyzed NMR structure), step 7 is used in cycle 1. The initial ambiguous network 
G0

ANOE of step 2 is reanalyzed in each iterative cycle. RPF scores [29] (step 8) assesses the quality of NMR structures.
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NOE) with chemical shift values in the resonance assignment 
list (set R) using match tolerances defi ned by: {(h1, h2, p) | 
p = (δ1, δ2, I), |δ1 - δ(h1)| < Δerr1 and |δ2 - δ(h2)| < Δerr2}, 
where Δerr is defi ned in Table I. Because many sets of pro-
ton resonances of proteins are degenerate, multidimension-
al NMR uses the resonance frequencies of covalently bonded 
heavy atoms (i.e., 13C or 15N) as an additional fi ltering dimen-
sion to help resolve these proton degeneracies. For 3D and 4D 
NOE data sets, additional covalently bonded heavy atom di-
mensions are analyzed using a similar match-tolerance analy-
sis (Table I). Spectral aliasing is handled internally by the pro-
gram, as described in the Supplemental Material.

Step 3. Validation of the input data sets R and NOE, and ini-
tialization of heuristic distance network HGNOE

Before proceeding with NOESY cross peak interpreta-
tion, AutoStructure fi rst analyzes the quality, completeness, 
and self-consistency of the input resonance assignment list 
(set R) and NOESY peak list (set NOE). This is done using a 
distance network Glocal of all conformation-independent two- 
and three-bond connected NOE-linked proton pairs predict-
ed from set R. A data validation score, M score, is then cal-
culated as 

This M score represents the fraction of NOE-linked proton 
pairs with short interproton distances that are in the predict-
ed Glocal network but missing from the GANOE

0 network. The 
M score thus provides a measure of the qualities of sets R and 
NOE. Poor quality data sets that do not include most of these 
expected short-range NOESY cross peaks result in higher M 
scores; for example, a high M score (i.e., > 25%) suggests that 
at least one of the input data sets (R and/or NOE) is of in-
adequate quality and needs to be improved. Two- and three-
bond connected NOE-linked proton pairs predicted from set R 
but not included in GANOE

0 are reported to the user to further 
validate the corresponding chemical shift assignments, and/or 
identify the expected NOESY cross peaks in the correspond-
ing NOESY spectrum.

AutoStructure requires that all NOESY spectra be accu-
rately referenced relative to the values of chemical shifts re-
ported in the resonance assignment table (set R). For each 
frequency dimension, the software computes the overall av-
erage chemical shift match difference from these NOE-linked 
proton pairs of the Glocal distance network. Consistent spec-
tral referencing is achieved using these differences as glob-
al reference correction factors for the target spectrum, pro-
viding a tighter match between R and NOE, and allowing the 
use of smaller matching tolerances (Δ) for further NOESY in-
terpretation.

The heuristic HGNOE distance network is initialized from 
G0

ANOE using only NOE-linked proton pairs that are (1) well 
matched within tolerance Δi

good [|δi - δ (hi)| ≤ Δi
good], and (2) 

connected by only two, three, or four covalent bonds, [36] or 
belong to one of the HαHN(i,i + 1), HβHN(i,i + 1), or HNHN(i, i 
+ 1) sequential NOE connections, commonly observed in pro-
tein NOESY spectra. [37] These close proton pair connections 
are anticipated from the amino acid sequence of the protein. 
Generally, the match tolerance Δi

good is signifi cantly smaller 
than the match tolerances Δi

err used to construct G0
ANOE (Table 

I). A similar approach of reliably fi nding identifi able intrares-
idue and sequential NOESY peaks is often used by experts in 
the process of manual analysis of NOESY data.

Step 4. Pruning of G 0
ANOE using refi ned resonance 

assignment list R′ derived from HGNOE

In addition to the global reference correction described 
above, AutoStructure attempts to correct for site-specif-
ic chemical shift differences between resonance assignment 
R and the NOESY peak list due to interspectral variations of 
temperature and sample conditions. In HGNOE, if proton hi is 
involved in at least three assigned NOE interactions (degree 
of vertex hi ≥3), its resonance frequency δ(hi) is updated in 
a refi ned resonance assignment list R' with the median val-
ue derived from these linked NOE cross peaks. Match toler-
ances (Δi

err) for those protons with refi ned chemical shifts are 
set to a narrower tolerance Δi

allow (Table I) in G0
ANOE, and link-

ing edges with large mismatches [|δi - δ(hi)| > Δi
allow] result-

ing from these protons with updated chemical shift values are 
removed from G0

ANOE. This step simulates the expert analysis 
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process of refi ning chemical shift values to be used in NOESY 
analysis from the frequencies of interpreted NOESY cross 
peaks. The resulting “pruned G0

ANOE” is referred to as “GA-

NOE” for the rest of the steps of the cycle. In each iterative cy-
cle, the initial ambiguous network G0

ANOE is pruned based on 
a refi ned chemical shift list, and a new GANOE is generated.

Step 5. Generation of initial HGNOE and initial fold analysis

Initial fold analysis (Fig. 1), a core process of AutoStruc-
ture, builds an initial HGNOE distance network and uses this 
to construct a preliminary model of the protein structure. This 
step uses constraints indicated by identifi ed secondary struc-
ture elements and long-range fold packing considerations to 
rule-in and rule-out NOESY cross peak assignments prior to 
the actual structure generation process.

a. Pattern discovery using standard secondary struc-
ture geometry. First (step 5a in Fig. 1), secondary structures 
(β-sheets and α-helices) are identifi ed based on their char-
acteristic NOE patterns, [38] together with 13Cα and 13Cβ 
chemical shift index (CSI) [39] and scalar coupling [38] 
data. Details of algorithms developed to discover β-sheets 
and α- or 310-helices using NOE contact patterns in GANOE 
are described elsewhere. [40] These NOE contact patterns, 
characteristic of canonical secondary structures, are identi-
fi ed in GANOE and then added into the HGNOE heuristic dis-
tance network using constraints implied by unique features 
of these secondary structures identifi ed in the NMR data. 
Therefore, the HGNOE network is expanded by analysis of 
the GANOE network. At the same time, many possible NOE-
linked proton pairs that are inconsistent with the geometries 
of identifi ed secondary structures are removed from GANOE. 
In these ways, both local and long-range constraints indicat-
ed by the secondary structure topology are used to further 
build HGNOE from GANOE.

b. Identifi cation of unique connections supported by 
large numbers of potential interresidue contacts. Next 
(Step 5b in Fig. 1), a well-matched NOE-linked proton pair 
(h1, h2, p) [|δi - δ(hi)| < Δgood

i] is identifi ed as a unique con-
nection if the number of possible proton-proton interactions 
linked to the peak is unique [frq(p) = 1]. At this point, sym-
metry features of multidimensional NOESY spectra are also 
considered in order to resolve ambiguities due to chemi-
cal shift degeneracy for peaks with frq(p) > 1. Well-matched 
symmetric NOE-linked proton pairs (h1, h2, p1) and (h2, h1, 
p2), where [|δi - δ(hi)| < Δi

good, | δ1(p1) - δ2(p2)| < Δsym, and 
| δ1(p2) – δ2(p1)| < Δsym] are also identifi ed as unique con-
nections if, in the subgraph of GANOE, which consists of only 
symmetric NOE-linked proton pairs, frq(p1) = frq(p2) = 1. 
This symmetry fi lter exploits the fact that 4D NOESY in-
formation is encoded in pairs of symmetry peaks in 3D NO-
ESY spectra, and uses the symmetry features of NOESY data 
to confi rm potential assignments of 2D, 3D, or 4D NOESY 
cross peaks.

In addition, at this point, potential contact support scores 
pct(r1, r2) for each possible spatial contact between residue 

pairs indicated by the GANOE network are used to provide an 
assessment of the confi dence in the proposed contact. These 
algorithms are described in detail in the Supplementary Ma-
terial. The effect of this analysis is to utilize a potential inter-
residue contact map derived from GANOE to fi lter out weakly 
supported (but “apparently unique”) NOE-linked proton pairs 
from the initial fold analysis. This conservative process aims 
to avoid using incorrect NOESY cross peak assignments in 
generating the initial set of 3D structures that will be used in 
later stages to rule-in/rule-out other assignments. These weak-
ly supported “apparently unique” NOE-linked proton pairs 
may be added into HGNOE during the subsequent iterative fold 
analysis stage (Fig. 1; cycles 2-10), described below, if they 
are also well-supported by the tertiary conformations of inter-
mediate structures. The “potential contact support analysis” of 
AutoStructure is conceptually similar to the process of net-
work anchoring  used by the program CANDID, [9] although 
somewhat more sophisticated in that it uses knowledge of ex-
pected short distances within and between secondary structure 
elements. Details of how secondary structure and intersecond-
ary structure packing information are used in this analysis are 
presented in the Supplementary Material.

Step 6. Construction of protein model structures and 
refi nement of self-consistent HGNOE distance network

Distance constraints are directly generated from HGNOE 
by calibrating the peak’s intensities assuming a simple 
two-spin approximation, and binned into upper-bound dis-
tance classes as described by Wüthrich and coworkers. [6] 
[36] [38] Dihedral angle constraints are generated from lo-
cal NOE and scalar coupling data using the conformation-
al grid search program HYPER. [41] Hydrogen bond dis-
tance constraints are identifi ed based on analysis of amide 
hydrogen exchange data together with observations of helix 
and β-sheet NOE contact patterns, and/or tertiary 3D struc-
ture s. [38] Detailed descriptions of criteria used for iden-
tifying hydrogen bond constraints are presented in Supple-
mentary Material. Potential cis-peptide bonds {i.e., Hα - Hα 
(i, i + 1) ∈ HGNOE, and Hα - HN(i, i + 1) ∉ HGNOE or Hα - Hδ 
[i, Pro(i + 1)] ∉ HGNOE} and disulfi de bonds {i.e., Hβ - Hβ 
[Cys(i), Cys(j)] ∈ HGNOE} are identifi ed and reported to the 
user for expert analysis and validation. Cis and trans X-Pro 
peptide bonds and disulfi de bonds can be characterized by 
specifi c NOEs. [42] Proline 13Cδ chemical shifts can also be 
used to distinguish cis from trans X-Pro peptide bonds, and 
13Cβ chemical shifts can be used to distinguish reduced and 
oxidized Cys residues. After validation, these special struc-
tural features are manually added into the constraint list. Au-
toStructure generates input constraint lists suitable for ei-
ther XPLOR/CNS or DYANA for protein structure gener-
ation calculations. Structures are usually generated using a 
coarse-grain parallel calculation strategy on a Linux cluster 
(described in the Supplementary Material), although the pro-
gram can also be run on a single processor system, such as a 
Linux-based laptop computer.
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A set of N model structures that best satisfy the resulting 
constraints is next used to evaluate and refi ne the self-consis-
tency of HGNOE. First, distances between all NOE-linked pro-
ton pairs of HGNOE are calculated. For interactions involving 
two or more degenerate proton resonances (e.g., methyl pro-
tons, symmetric aromatic protons, and degenerate methylene 
protons), r–6 summation [41] is used. Proton pairs with inter-
nuclear distances that violate the corresponding constraints by 
greater than dviomin (Table I) in all of these N initial structures 
are then removed from HGNOE distance network. The result-
ing HGNOE is then used to regenerate another set of 3D mod-
el structures, which are again used for self-consistency analy-
sis. This process of identifying inconsistent constraints within 
HGNOE by 3D structure generation and analysis of consistent 
violations is repeated until no more such inconsistent proton 
pair interactions remain in HGNOE. The resulting HGNOE dis-
tance network and its corresponding model structures are thus 
considered to be self-consistent, completing cycle 1 of the Au-
toStructure analysis. The aim of this process is to generate a 
set of initial 3D structures which can be reliably used for fur-
ther interpretation of HGNOE from GANOE. The resulting self-
consistent HGNOE and initial 3D structures can then be used 
for next stage of AutoStructure, iterative fold analysis.

Step 7. Iterative fold analysis and refi nement of HGNOE us-
ing intermediate model structures and topology constraints

This step of AutoStructure (step 7 in Fig. 1) utilizes in-
termediate 3D structures as templates to refi ne and expand 
HGNOE.

a. Fold topology constraint analysis. First, AutoStruc-
ture analyzes the topology of model structures and trims GA-

NOE down based on topology constraints implied by helical-
packing and β-sheet packing geometries. Globular protein 
molecules are formed by the close packing of α-helix and/
or β-sheet secondary structure elements. [43] The amino ac-
ids in these secondary structure elements have relatively fi xed 
conformations restricted by the constraints of the main-chain 
hydrogen bonds. The packing of these segments of second-
ary structure is also geometrically and energetically restrict-
ed. [43–47] At this stage of the AutoStructure process, pat-
terns of residue-to-residue contacts, based on constraints im-
plied by the packing of secondary structure elements [40] [43] 
[45–47] are used to further expand HGNOE from GANOE. This 
process utilizing protein-structure-based topology constraints 
represents a higher order topology-constraint analysis similar 
to that used in considering canonical secondary structures for 
NOE interpretation in the initial fold analysis process.

b. Reconstruct HGNOE distance network best support-
ed by the set of self-consistent intermediate structures. 
Next, HGNOE is further expanded by adding NOE-linked pro-
ton pairs from GANOE that are well supported by the interme-
diate 3D structures. From the N self-consistent intermediate 
structures available at the end of cycle 1, distances d(h1, h2) 
for all potential NOE-linked proton pairs (h1, h2) are calcu-
lated, as described above using r-6 summation as appropriate. 
These distances are then used to generate N graphs, Gmin(i), 
in which edges correspond to the shortest among these poten-
tial NOE-linked proton pairs or d(h1, h2) < 3 Å. For each po-
tential NOE-linked proton pair (h1, h2, p) in GANOE, a model-
support score ms(h1, h2, p) (Table I) is then computed based 
on the frequency of observing the corresponding short dis-
tance in these Gmin graphs: 

moving consistently violated constraints (as described for step 
6 above), and the process of structure generation and consis-
tent constraint analysis iterated to provide a self-consistent 
HGNOE and structure ensemble, representing the results of cy-
cle 2 (Fig. 1). These N structures from this ensemble that best 
fi t the data are then used to further expand HGNOE using the 
model support scores, as described above for well-ordered re-
gions and below for less-well-ordered regions. This process is 
iterated for several (typically eight more) cycles of HGNOE re-
fi nement and structure calculations (Fig. 1). In order to make 
smooth changes between these iterations of HGNOE, old links 

Proton pairs whose average (i.e., median value) distance is 
< dNOE, ms(h1, h2, p) > mshigh and |δi - δ(hi)| < Δallow

i (as de-
fi ned in Table I) are considered to be well-supported by these 
intermediate structures, and added into HGNOE. Well-support-
ed NOE-linked proton pairs (h1, h2, p), whose largest dis-
tance in all N intermediate structures is < dNOE and model sup-
port score ms(h1, h2, p) ≥ msmin, are also added into HGNOE. 
This process ensures that only the most well-defi ned interpro-
ton distances are considered when using intermediate struc-
tures to expand HGNOE. The resulting constraints are used to 
generate an ensemble of 3D model structures, refi ned by re-
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from the HGNOE of the previous cycle are retained only if ms 
≥ msmin, while the remaining links of the HGNOE from the pre-
vious cycle are removed. In this way, the intermediate struc-
ture is used to confi rm, and in some cases correct, NOESY 
cross peak interpretations made in earlier stages of analysis.

In less well-defi ned or loosely packed regions of interme-
diate structures, we generally observe few proton pairs with 
consistent close distances < dNOE. To improve the structure in 
these regions of intermediate structures, it is important to have 
means of ruling in correct NOESY cross peak assignments even 
for interactions separated by distances > dNOE in the interme-
diate models. In the intermediate cycles of AutoStructure anal-
ysis (typically cycles 2-7), AutoStructure allows proton pairs 
with distances > dNOE that are consistent with the fold (ms = 1) 
to be added into HGNOE, but only under certain stringent con-
ditions. The symmetry subgraph of GANOE described above is 
also pruned using intermediate structures. Well-matched proton 
pairs that were not ruled-in by the peak symmetry rules of ini-
tial fold analysis can also be added into the HGNOE network in 
the iterative fold analysis if certain stringent criteria are met. 
For example, for each ambiguous NOE cross peak in the sym-
metry subgraph, the edges that have shortest distances in the in-
termediate structures (h1, h2, p1) are identifi ed and added into 
HGNOE only if there is another nonsymmetric linkage (h3, h4, 
p2) in GANOE for the same residue contact pair.

Intermediate structures are also used to refi ne inaccura-
cies in assignments arising from orphan interresidue contacts 
in HGNOE. After four cycles of iterative fold analysis, sus-
pect long-range orphan contacts between residue pairs (r1, 
r2) are identifi ed from a contact map generated from HGNOE. 
Although these orphan contacts may be strongly support-
ed by contacts observed in the potential contact map gener-
ated for GANOE, unless they are well-supported from a contact 
map generated from HGNOE (i.e., by the intermediate struc-
tures), they are considered at this stage to be unreliable. Sus-
pect long-range orphan contacts are defi ned as those between 
residue pairs (r1, r2) that have no neighboring residue pairs 
(r1 ± 0 … 5, r2 ± 0 … 5) in the contact map of HGNOE and for 
which no neighboring residue has long range contact with any 
other residue in the contact map of HGNOE. Based on these 
criteria, potentially incorrect proton pair interactions associ-
ated with these orphan contacts are eliminated from HGNOE, 
and thus from the derived constraint list. This criterion is gen-
erally satisfi ed only for incorrect long-range contacts in poor-
ly defi ned loop regions.

Step 8. Assessment of the quality of the fi nal 3D structure

Having completed the 3D protein structure determina-
tion, we use RPF scores to evaluate the quality of the re-
sulting ensemble of structures given the experimental NMR 
data. [29] The RPF scores includes (1) recall score, which 
measures the fraction of NOE cross peaks that are consistent 
with the resulting structures, (2) precision score, which mea-
sures the fraction of back-calculated close proton-pair inter-
actions from the resulting structure that are also observed in 

the peak list, and (3) F-measure score, which provides an as-
sessment of the overall fi t between the resulting structures 
and the experimental data, assuming that the input data set 
are near complete. Also reported is a normalized F-measure 
score, the discriminating power (DP) score, which measures 
how the query structure is distinguished from a freely-rotat-
ing chain model. [29]

MATERIALS AND METHODS

Experimental NMR Data Sets Used for the Validation of 
Automated Structure Determination With AutoStructure

The manual solution structures and NMR assignments 
for FGF-2, [48] [49] MMP-1, [50] [51] and IL-13 [52] have 
been described in detail previously. Most data were collect-
ed on 600 MHz NMR systems. Briefl y, the assignments of the 
1H, 15N, and 13C resonances were typically based on the fol-
lowing 3D NMR experiments: CBCA(CO)NH, CBCANH, 
C(CO)NH, HC(CO)NH, HBHA(CO)NH, HNCO, HCACO, 
HNHA, HNCA, HCCH-COSY, and HCCH-TOCSY. [53] [54] 
The accuracy of the NMR assignments was further confi rmed 
by sequential NOEs in the 15N-edited NOESY-HMQC spec-
tra. In some cases, stereospecifi c assignments were obtained 
for many β-methylene protons, and methyl groups of Val and 
Leu residues. These solution structures were based primarily 
on the experimental distance and torsion angle restraints de-
termined from the following series of spectra: HNHA, HNHB, 
HACAHB-COSY, 3D 15N- and 13C-edited NOESY.

The manual FGF-2 structure was calculated on the basis of 
2865 experimental NMR restraints consisting of 2486 approx-
imate interproton distance restraints, 50 distance restraints 
for 25 backbone hydrogen bonds, and 329 torsion angle re-
straints consisting of 118 φ, 99 ψ, 84 χ1, and 28 χ2 torsion an-
gle restraints. The manual MMP-1 structures were calculat-
ed on the basis of 3333 experimental NMR restraints consist-
ing of 2493 approximate interproton distance restraints, 84 
distance restraints for 42 backbone hydrogen bonds, 426 tor-
sion angle restraints comprised of 155 φ, 134 ψ, 103 χ1, and 
34 χ2 torsion angle restraints, 125 3J(HN - Hα) restraints, and 
153 Cα and 136 Cβ chemical shift restraints. The manual IL-
13 structures were calculated on the basis of 2848 experimen-
tal NMR restraints consisting of 2248 approximate interpro-
ton distance restraints, 100 distance restraints for 50 back-
bone hydrogen bonds, 299 torsion angle restraints comprised 
of 104 φ, 105 ψ, 66 χ1, and 24 χ2 torsion angle restraints, 96 
3J(HN - Hα) restraints, and 104 Cα and 101 Cβ chemical shift 
restraints. These three structures were calculated using the hy-
brid distance geometry-dynamical simulated annealing meth-
od of Nilges et al., [55] with minor modifi cations [56] using 
the program XPLOR. [3] For the MMP-1 and IL-13 manu-
al structures, the method was adapted to incorporate pseudo-
potentials for 3J(HN - Hα) coupling constants, [57] secondary 
13 Cα/13Cβ chemical shift restraints, [58] and a conformational 
database potential. [59] [60] Additionally, for the IL-13 man-
ual structure, a pseudopotential for the radius of gyration [61] 
was incorporated into the structure calculations.
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RESULTS

Analysis of FGF-2, MMP-1, and IL-13 Using 
AutoStructure

AutoStructure was developed and tested using experimen-
tal input data sets for three distinctly different proteins: hu-
man basic fi broblast growth factor (FGF-2), [48] [49] the in-
hibitor-free catalytic fragment of human fi broblast collage-
nase (MMP-1), [50] [51] and human interleukin-13 (IL-13). 
[52] The completeness of resonance assignments for these 
proteins are between 90% and 95%, and the input M scores 
of overall data quality range from 0.06 to 0.21 (Table II). For 
each AutoStructure calculation, the raw uninterpreted NOESY 
peak lists were used, and 10 iterative cycles of AutoStructure 
were performed. Table III (A) provides a summary of results 
for these 10-cycle AutoStructure/XPLOR calculations. Be-
tween 83% and 86% of all peaks in these NOESY peak lists 
were assigned by AutoStructure. F-measure scores for the 
three data sets range from 89% to 93%, and the DPs range 
from 79% to 85%, indicating good agreement between these 
fi nal structures and the input NMR data. For all proteins, low 
root-mean-square deviations (RMSDs) across the fi nal struc-
tures were obtained, which, by conventional criteria, are in-
dicative of high-precision structure determinations. 

The evolution of various quality parameters determined 
during the course of 10 AutoStructure cycles is illustrated in 
Figure 2 for the three proteins tested. In cycle 1, > 40% of 
NOESY cross peaks were assigned without using any inter-
mediate 3D model structures to guide the assignment process. 
At this point in the analysis, 3–7% of the resulting NOE dis-
tance constraints are long-range constraints. The initial folds 
for the three data sets, prior to using the initial 3D structure 
for further NOESY cross peak interpretation, have overall fi t-
ness F-measure scores > 80%, and discriminating power DP 
score > 40% (Fig. 2). Stereoimages showing convergence of 
these initial folds are presented in Figure 3(a). By the end of 

cycle 2, and using initial structures to guide additional assign-
ments, more than 65% of NOESY peaks were assigned, the 
overall fi tness F scores are > 85%, and the DP scores are > 
60% (Fig. 2). At this point, the structures are reasonably well 
converged with RMSDs within each ensemble of < 3 Å for all 
heavy atoms in secondary structure regions [Figs. 2 (b) and 
3b)]. During cycles 3 through 10, additional peaks were in-
terpreted based on the intermediate structures, resulting in a 
monotonic decrease in RMSD (Fig. 2). The rates of change of 
the F-measure and DP scores are slower after cycle 2, as the 
resulting refi nement involves only small changes in the pro-
tein structures. Figure 3 (c) shows the well-converged struc-
tures from the fi nal cycle. All three of the resulting ensembles 
have good quality assessment scores, with F-measure scores 
ranging from 89% to 93% and DP scores > 75%. 

Comparison of FGF-2, MMP-1, and IL-13 Structures 
Analyzed by AutoStructure and Other Methods

FGF-2 contains 11 antiparallel β-strands comprising three 
β-sheets (Fig. 4, top). [49] AutoStructure identifi ed 10 of the 
11 β-strands and the proper alignments of the β-sheets dur-
ing cycle 1, initially missing the small three-residue β-strand 
(strand 10) and three small β-sheet alignments involving two 
or three interstrand hydrogen bonds. However, all of the struc-
tural features of FGF-2 were accurately characterized by the 
end of the iterative analysis process. The mean coordinate dif-
ferences between the fi nal AutoStructure analysis [FGF-2a, 
Fig. 4 (a), top] and the published manual analysis [FGF-2b, 
Fig. 4 (b), top] are 0.5 Å for backbone atoms and 0.7 Å for all 
heavy atoms of secondary structure elements [Table III (C)]. 
As summarized in Table III, the NOE distance constraints ob-
tained with AutoStructure are overall in good agreement with 
the structures determined by manual analysis. About 4% of 
distance constraints interpreted by AutoStructure have viola-
tions > 1.0 Å compared to structures determined by manual 
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analysis and vice versa. Most of these differences are in re-
gions of the structure that are not well defi ned and do not have 
a signifi cant impact on the 3D structure. However, more than 
twice the number of (manually defi ned) dihedral angle con-
straints were used in the manual analysis. Accordingly, resi-
dues in loop regions are somewhat better defi ned in the struc-
tures determined by manual analysis than by AutoStructure 
analysis. Comparison of the 1.9-Å resolution X-ray crystal 
structure of FGF-2 [FGF-2c, Fig. 4 (c), top] [62] with both the 
AutoStructure and manually determined NMR structures, re-
spectively [Fig. 4(a and b), top], indicate that the NMR struc-

tures determined manually and by AutoStructure are about 
equally similar to the X-ray crystal structure, with backbone 
mean coordinate differences to this crystal structure of 0.5 ± 
0.1 Å [Fig. 4(d), top]. Both the RPF scores and Ramachan-
dran plot analysis from Procheck [63] summarized in Table 
III indicate that FGF-2 structures determined by the careful 
manual analysis fi t the NOESY data slightly better and have 
slightly better stereochemical qualities compared to the struc-
ture automatically generated by AutoStructure. 

The MMP-1 protein structure has three helices and eight 
β-strands as identifi ed by manual anaysis. [51] AutoStructure 
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correctly identifi ed all secondary structure elements of MMP-
1 during cycle 1. The mean backbone coordinate differenc-
es for residues in secondary structures between the fi nal cy-
cle of AutoStructure analysis [MMP-1a, Fig. 4(a), center] and 
the manual analysis [MMP-1b, Fig. 4(b), center] is < 1.0 Å 
[Table III(C)]. MMP-1 protein has one calcium and two zinc 
binding sites, and a nearby ligand-binding site [MMP-1c, Fig. 
4(c), center]. [51] [64] These regions are not well defi ned in 
the structures determined by AutoStructure [Fig. 3(c), center], 
due largely to the exclusion of these calcium and zinc ions in 
the automated structure calculation process. Manual structure 
analysis also observed only sequential or short-range NOEs 
for these residues; the addition of zinc and calcium ions and 
the associated distance constraints are important in establish-
ing the proper local structures with a resulting lower RMSD 

values for these regions during the manual structure calcu-
lation [Fig. 3(d), center]. [51] Dynamic studies of inhibitor-
free MMP-1 shows that the loop region of residues 138-144 
is mobile, with dynamic order parameters S2 < 0.6. [50] This 
is consistent with the structure determined by AutoStructure 
[Fig. 3(c). center, indicated by an arrow]. About 4% of con-
straints determined by AutoStructure have violations > 1.0 Å 
compared to structures determined by manual analysis, though 
most of these differences are in the regions of the structure 
that are not well defi ned. A slightly higher number of the man-
ually derived constraints (~5%) are violated by > 1.0 Å in 
the structures determined by AutoStructure, again mostly in 
not well-defi ned regions. As for FGF-2, more than twice the 
number of dihedral angle constraints were used in the manu-
al analysis. Residues in loop regions are also better defi ned in 

Figure 2. Evolution of characteristic parameters for NMR structures in the course 
of the 10 cycles of structure calculation for FGF-2 (blue), MMP-1 (green), and IL-13 
(red). (a) RMSD for heavy atoms in the secondary structure. (b) Mean difference 
from manually determined NMR structures for heavy atoms in the secondary struc-
ture. (c) Percentage of peaks assigned. (d) F-measure score. (e) DP score. Cycle 0 is 
the conformational state before starting AutoStructure analysis, corresponding to an 
ensemble of random-coil chains whose RMSD within the ensemble is 10 Å and mean 
coordinate difference to the fi nal structure is 10 Å.
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the structures determined by manual analysis than by Auto-
Structure analysis [Fig. 3(d), center]. Comparison of the 1.56-
Å resolution X-ray structure of MMP-1 complexed with a hy-
droxamate inhibitor [Fig. 4(c), center] [64] with both the Au-
toStructure and manually determined NMR structures MMP-
1, respectively [Fig. 4(a and b), center], indicate that the NMR 
structures determined manually and by AutoStructure are 
about equally similar to the X-ray crystal structure, with back-
bone mean coordinate differences to this crystal structure of 
0.5 ± 0.1 Å [Fig. 4 (d), center]. As for FGF-2, the RPF scores 
and Procheck Ramachandran analysis summarized in Table III 
indicate that MMP-1 structures determined by careful manual 
analysis fi t the data slightly better and have better stereochem-
ical qualities compared to the structures generated automati-
cally by AutoStructure.

The IL-13 protein structure contains four -helices and 
two β-strands. [52] AutoStructure correctly identifi ed all sec-
ondary structure elements during cycle 1. The two disulfi de 
bonds were identifi ed during the course of the structure anal-
ysis of IL-13 by AutoStructure and, as in the manual structure 
analysis, were incorporated in the further structure calcula-
tions. AutoStructure identifi ed more NOE distance constraints 
per residue for IL-13 than for FGF-2 and MMP-1 (Table III). 
There are three potential contributing factors for this perfor-
mance (Table II): (1) IL-13 has more complete resonance as-
signments (94%), and a much larger number of stereospecifi c 
isopropyl methyl resonance assignments; (2) despite IL-13’s 

smaller size, the input data set has more NOE peaks in the 
peak lists, especially for 13C-NOESY; (3) the quality of the in-
put data (M score = 6–7%) is much better for IL13 than for the 
other proteins tested. Interestingly, the total number of NOE 
distance constraints from AutoStructure analysis is also much 
higher than the total number from manual analysis (Table III). 
The mean coordinate differences for well-ordered heavy atoms 
of IL-13 structures determined by AutoStructure and manual 
analyses are < 1.0 Å. About 4% of the constraints from manu-
al analysis have violations > 1.0 Å, compared to the structures 
generated by automated analysis. A slightly higher number of 
constraints (~6%) identifi ed by automated analysis are vio-
lated by > 1.0 Å when compared with structures determined 
by manual analysis. As in the other systems tested, most of 
these differences are in the regions of the structure that are not 
well defi ned, and they do not signifi cantly affect the overall 
structure. Again, more than twice the number of dihedral an-
gle constraints were used in the manual analysis. Comparison 
with another IL-13 NMR structure [IL-13c, Fig. 4(c), bottom] 
[65] indicates that the NMR structures determined manually 
and by AutoStructure using the same NOESY data are about 
equally similar to a second independently determined manu-
al NMR structure, with backbone mean coordinate differences 
to this independent NMR structure of 1.0 ± 0.1 Å (Fig. 4, bot-
tom). RPF scores (Table III) indicate that the structures gen-
erated by automated methods fi t the data better than the struc-
tures determined by manual analysis. However, PROCHECK 

Figure 3. Structures of FGF-2, MMP-1 and IL-13 proteins generated by the AutoStructure/XPLOR pro-
cess. (a) AutoStructure/XPLOR cycle 1, (b) cycle 2, and (c) cycle 10. (d) Manually analyzed NMR 
structures available from the PDB. β-strands are indicated in blue, helices in red.
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Ramachandran analysis indicates that IL-13 structures deter-
mined by the careful manual analysis have slightly better ste-
reochemical qualities compared to the structure generated by 
AutoStructure.

We also tested these three input data sets using Auto-
Structure with DYANA for structure generation, in place of 
XPLOR. Similar results were obtained in these AutoStructure/
DYANA calculations, with small mean coordinate differenc-
es between automated and manually analyzed structures. The 
AutoStructure/DYANA fi nal structures have slighter small-
er RMSDs within the ensemble, compared to AutoStructure/
XPLOR. While it took 3-4 h to run a 10-cycle AutoStructure/
DYANA calculation on a 14-node 1600 MHz Linux Athlon 
CPU cluster, the 10-cycle AutoStructure/XPLOR simulations 
each required ~ 20-25 h on the same Linux cluster.

Examples of De Novo Structure Determinations 
With AutoStructure

The AutoStructure program has been used in more than 
two dozen de novo protein structure determinations that 
have been deposited in the Protein Data Bank (PDB), sever-
al of which have already been published. [15–22] Figure 5(a) 
shows examples of these protein structures analyzed using 
AutoStructure [15] [20] [22] (group I), which could subse-

quently be validated by independently determined NMR or X-
ray crystallographic structures of homologous proteins (group 
II). [26–28] At the time when group I structures were fi rst de-
termined and deposited into PDB, the group II structures were 
not yet released from the PDB and were not available to pro-
vide guidance for de novo structure determination of group I 
proteins. After the group II homolog structures were released 
by the PDB, we compared the differences between these two 
groups using the program CE. [66] The backbone RMSDs be-
tween the two groups are between 2.0 and 3.0 Å. [66] These 
good agreements demonstrate the robustness and reliability of 
the program AutoStructure. 

AutoStructure has also been used for homodimeric pro-
tein structure analysis. [17] [18] Figure 5(b) shows a repre-
sentative example, the solution NMR structures of TM1bZip 
N-terminal segment of human α-tropomyosin determined 
with AutoStructure. [17] The superposition of all heavy at-
oms [Fig. 5(b), top-right] reveals classic coil-coil side-chain 
contact patterns.

DISCUSSION

Fold Analysis

AutoStructure uses a bottom-up algorithmic approach, in-
corporating expert knowledge to guide the search for NOESY 

Figure 4. Ribbon diagrams of representative structures of FGF-2, MMP-1, and IL-13 proteins used for the 
validation of the AutoStructure/XPLOR process: (a) fi nal structures from cycle 10; (b) structures deposited 
in PDB, analyzed using the same NMR data set; (c) structures determined by X-ray crystallography or third 
NMR group; (d) mean coordinate differences (Å) in the secondary structure region between structures (c) and 
structures (a) and (b). In each structure comparison, fi rst value is the RMSD differences for backbone atoms 
and value following the / symbol is the RMSD differences for heavy atoms.
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cross peak assignments and a self-consistent network of dis-
tance constraints. Rules for fold analysis are derived from 
knowledge of regular helix and β-sheet geometries, and stan-
dard models of packing between secondary structure elements. 
[43] For example, interstrand alignments within the β-sheet 
are identifi ed directly from backbone subgraphs of GANOE in 
cycle 1 prior to the generation of an initial fold. Short β-sheet 
alignments may be missed, as their backbone subgraphs are 
too small to be detected reliably, but these are generally iden-
tifi ed in later stages of iterative analysis using intermediate 
3D structures. This β-sheet alignment method is very impor-
tant for analysis of β and α/β protein structures. In the exam-
ples of FGF-2 and MMP-1 used in this study, all of the ma-
jor β-sheet alignments are correctly identifi ed in cycle 1 prior 
to initial structure-generation calculations. On the other hand, 
packing at helix-helix interfaces generally use ± 1n, ± 3n, and 
± 4n rows and involves mainly side-chain atoms. [43] These 
helix-helix packing interactions are identifi ed by unique NO-

ESY crosspeak assignments made in cycle 1 and from con-
straints implied by intermediate 3D structures during iterative 
cycle analysis. It is hard to reliably identify helix packing di-
rectly from GANOE prior to generating an initial structure, due 
to side-chain packing variability.

About 5–10% of helix conformations in proteins are 
310-helices, which generally tend to occur at the termini of 
α-helices. Loose helical dihedral angle constraints, which 
support both 310-helix and α-helix conformations, are used 
for residues identifi ed as helical from chemical shift, sca-
lar coupling, and other NMR data. Hydrogen bond con-
straints O(i) - HN(i + 4) for α-helix residues are added only 
if HαHN(i, i + 4) interactions are present in HGNOE or the 
hydrogen bond is detected from the intermediate structures. 
Thus, AutoStructure can properly distinguish 310- and α-
helix conformations when (and if) the NOESY data distin-
guish these structures.

The presence of minor species, or of alternate conforma-
tions in slow equilibrium, is a general challenge not only for 
automated NMR structure analysis but also for manual analy-
sis. Identifi cation of minor species or alternate conformations 
requires combined analysis of NOE and resonance assign-
ments. AutoStructure is not able to identify the presence of 
minor species or alternate conformations. AutoStructure is de-
signed to fi nd an optimum self-consistent set of NOE assign-
ments matching to the resonance assignment list, and edges 
with large mismatches (which may arise because of the pres-
ence of minor species or alternate conformations) may be con-
sidered to be inconsistent with the resonance assignment list, 
and will therefore not be assigned.

One major assumption used by AutoStructure is that for 
most protein structures, a “low resolution” initial fold can 
be built from spectral data providing secondary structure in-
formation and a small portion of “unique” long-range NOE-
linked proton pair interactions. As we have shown else-
where, [16] this assumption is valid for small proteins even 
for minimum constraint approaches in which only the HN-
HN, HN-Hmethyl, and Hmethyl-Hmethyl NOEs are assigned. [16] 
[67] For proteins with few secondary structure elements, a 
higher proportion of “unique” NOE-linked proton pair inter-
actions are generally required.

Quality Control of the NMR Data, AutoStructure 
Trajectories, and the Derived Structures

The input data (both set R and set NOE) quality for Auto-
Structure calculations is assessed by the M score. Reliable Au-
toStructure calculations require M score values < 25%; that is, 
> 75% of the two- and three-bond connected peaks predicted 
from set R should be observed in GANOE. Best performance is 
observed with data providing M scores < 10%. The input peak 
list (set NOE) should contain at least 90% real cross peaks, 
and the input resonance assignments (set R) must be more 
than 85% complete. For each aromatic residue, at least one ar-
omatic side-chain proton should be assigned in order for Au-
toStructure to defi ne ring packing.

Figure 5. Examples of de novo structure determinations with Auto-
Structure. (a) Top (group I): ribbon diagrams of representative so-
lution NMR structures analyzed with AutoStructure: 30S ribosom-
al protein S28E from Pyrococcus horikoshii (PDB: 1NY4), [22] dy-
nein light chain Lc8 from Drosophila (PDB: 1RHW), [20] and ribo-
some-binding factor A (RbfA) from Escherichia coli (PDB: 1KKG) 
[15] (left to right). Bottom (group II): ribbon diagrams of representa-
tive homologus protein structures analyzed subsequentialy and inde-
pendently using other methods: Solution NMR structure of 30S ribo-
somal protein S28E from Methanobacterium thermoautotrophicum 
(PDB: 1NE3), [26] solution NMR structure of Lc8 from Rattus nor-
vegicus (PDB: 1PWJ), [27] and X-ray crystallography structure of 
RbfA from Haemophilus infl uenzae (PDB: 1JOS). (b) Solution NMR 
structures of TM1bZip N-terminal segment of human α-tropomyo-
sin determined with AutoStructure [17] (PDB: 1IHQ). The top pan-
els show superpositions of backbone (left) and all heavy (right) at-
oms, respectively. Secondary structures are colored in red. The bot-
tom panel shows ribbon diagrams of one representative structure.
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Good initial folds have a DP score > 0.40 at the end of cy-
cle 1, and > 0.60 at the end of cycle 2; intermediate structures 
providing lower DP values may have incorrect local or global 
fold topology, and require better quality input data. Structures 
exhibiting lower quality scores at this stage require refi ne-
ment of NOESY peaks lists and/or resonance assignment lists. 
Once structures can be generated in cycles 1 and 2 with rea-
sonable DP scores and other statistics which indicate they are 
self-consistent and reliable, we typically run a full AutoStruc-
ture calculation of 10 cycles. The quality of NOESY peak lists 
and resonance assignment lists can often be improved further 
by examining the output of AutoStructure. The fi nal structures 
calculated from AutoStructure should have F-measure score > 
0.90 and DP score > 0.70, [29] given near complete input data 
sets (M < 25%). Other factors used to judge the quality of fi -
nal-cycle AutoStructure models include backbone RMSD val-
ues for well-defi ned segments in the fi nal ensemble of struc-
tures ≤ 1Å, > 10 conformationally restricting constraints per 
residue, > 80% of NOESY peaks assigned in the fi nal cycle, 
and low energies from XPLOR/CNS calculations or small tar-
get function values from DYANA (< 10 Å2).

Utility of AutoStructure for Model-Based Peak 
Picking and Structure Refi nement

Peak lists do not have to be perfect. AutoStructure can 
handle the presence of artifactual peaks and incompleteness 
to some degree; however, inaccurate or imprecise peak pick-
ing can considerably limit the performance of the program. In-
tense solvent lines, ridges and/or sinc wiggles should be man-
ually inspected and remove from the peak lists. At step 3, Au-
toStructure reports list of expected peaks that are separated 
by two-bond or three-bond connectives, but missing from the 
peak list for manual validation of both the qualities of the peak 
picking and the resonance assignments. At step 8, RPF scores 
[29] are used to compare the 3D structure with the NOESY 
peak list data, and to assess the quality of the fi nal 3D struc-
tures. RPF scores report to the user: (1) NOESY peak list en-
tries inconsistent with the 3D structure, and (2) NOESY peaks 
that are expected because the corresponding proton pairs are 
close in the 3D structure, but which are missing from the NO-
ESY peak lists. This information can be used to improve the 
peak picking process and refi ne the NOESY peaks lists.

Refi nement by restrained molecular dynamics in explic-
it solvent [68] can also improve the sterochemical quality of 
the fi nal 3D structures generated by AutoStructure/XPLOR. 
We have further refi ned the structures of FGF-2, MMP-1, 
and IL-13 generated by AutoStructure using constrained en-
ergy minimization in a water environment. These results are 
summarized in a Supplementary Table S1. The stereochem-
ical qualities of refi ned structures are improved; in fact, the 
resulting refi ned structures of FGF-2 and IL-13 have slight-
ly better sterochemical qualities than the structures deter-
mined by the manual analysis. RPF scores, which compare 
the structures to the NOESY peak lists, are also slightly im-
proved with energy refi nement, indicating that these refi ned 
structures equally/or better fi t with the input data set. How-

ever, despite these excellent results with FGF-2, MMP-1, and 
IL-13, protein NMR structures generated with AutoStructure 
should be considered to be a good starting point for manual 
refi nement and validation of NOESY crosspeak assignments, 
rather than a fi nal result.

Utility of AutoStructure for Facilitating Analysis of 
Resonance Assignments

AutoStructure can also be used to facilitate and validate 
resonance assignments. For example, given backbone reso-
nance assignments and 3D 15N-NOESY peak lists, AutoStruc-
ture can assign all backbone related intra and sequential NOEs 
and identify all secondary structure elements. These backbone 
related intra and sequential NOE connectivities provide a 
cross-validation of backbone sequential connectivity derived 
from triple resonance methods. Given near complete back-
bone and side-chain resonance assignments and 3D HCCH-
COSY peak lists, AutoStructure can assign all peaks in the 3D 
HCCH-COSY peak lists for validation of the two-bond and 
three-bond connectivity of the side-chain resonances.

Comparison With Other Automated NOESY 
Analysis Software

AutoStructure uses a bottom-up approach to NOESY data 
analysis, building HGNOE piece-by-piece from GANOE using 
topology constraint networks, which distinguishes it from oth-
er successful NOESY interpretation programs. For example, 
the program ARIA [7] [8] uses a top-down approach to fi nd an 
optimal solution HGNOE, directly initiating HGNOE from GA-

NOE (HGNOE = GANOE). Model structures are then built from 
HGNOE using ambiguous constraint [7] [8] strategies. HGNOE 
is iteratively trimmed using the resulting model structures by 
removing edges whose linking proton pairs are far apart in the 
intermediate model structure. Underlying the top-down am-
biguous constraint strategies of ARIA is a key correctness 
assumption that for each NOE cross peak, at least one of its 
potentially linked proton pairs belongs to the correct solu-
tion GNOE. [7] [8] Noise peaks in the NOESY peak lists and 
missing resonance assignments generally violate this assump-
tion. The program CANDID [9] also uses top-down ambigu-
ous constraint strategies, but in addition employs network an-
choring and constraint-combination methods, minimizing del-
eterious effects when this correctness assumption is not sat-
isfi ed. The correctness assumption and top-down approaches 
generally require high-quality input R and NOE sets (e.g., the 
R set needs to be nearly complete and most NOE cross peaks 
should be real). [9] [69] CANDID’s network anchoring and 
constraint-combination methods still require some 90% com-
plete resonance assignments, almost complete aromatic side-
chain assignments, low percentage of noise peaks, and small 
chemical shift variations. [69] [70] For both ARIA and CAN-
DID, it is also important to obtain a well-converged initial fold 
(RMSD < 3.0 Å) directly from GANOE. [69] [70]

AutoStructure’s novel bottom-up topology-constrained ap-
proach distinguishes it from ARIA and CANDID. By incorpo-
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rating rules of structural and topological constraints that are sim-
ilar to those used by a human expert in the structure determina-
tion process, the correctness assumption described above is less 
critical for most algorithms in AutoStructure. During the Auto-
Structure initial fold analysis, most NOE-linked proton pairs 
are identifi ed by consistency analysis of polypeptide geome-
try and fold topology. Although the above correctness assump-
tion is critical in interpreting “unique connections” [step 5b in 
Fig. 1], the potential contact support analysis fi lters out weakly 
supported, but otherwise unique, connections. Moreover, these 
“unique connections” identifi ed in step 5b (Fig. 1) account for 
only 5–10% of total edges in HGNOE at the end of cycle 1. Au-
toStructure also provides tools to manually validate against the 
frequency-domain spectra the “correctness assumption” for a 
small list of critical “uniquely connected” peaks that are con-
sistently violated in the initial fold analysis. HGNOE is then built 
up by iteratively adding linkages that are consistent with the in-
termediate fold topology and 3D models. It is possible to rule-
in false interactions that may generate local distortions, but only 
if they are well supported by the intermediate structures. Noise 
and other artifacts in the NOESY peak list minimally affect Au-
toStructure analysis, as these noise peaks are generally not sup-
ported by the topology constraint networks and/or intermediate 
structures. Additional experimental information, including di-
hedral angle, hydrogen bond, and RDC constraints, can also be 
used by the program to avoid local structure distortions and to 
identify inconsistent “noise peaks” in the NOESY peak lists. In 
these ways, AutoStructure uses constraint satisfaction methods 
[71] to provide self-consistent analysis of the NMR data. At any 
given point of execution, the search engine of AutoStructure 
rules-in only those candidate NOE assignments that are highly 
consistent with the topology constraint networks or current par-
tial solution. This approach makes the program less sensitive to 
the effects of spectral artifacts and incompleteness of the reso-
nance assignments.

From assigned resonances, AutoStructure identifi es sec-
ondary structures, including β-sheet alignments, using a 
graph-based pattern discovery method derived from second-
ary structure networks fi rst characterized by Wüthrich. [38] 
The program JIGSAW also utilizes a novel algorithm to iden-
tify graph-based secondary structure patterns from unassigned 
resonances in order to determine sequence-specifi c resonance 
assignments within these secondary structures. [14] Both Au-
toStructure and JIGSAW use similar secondary structure pat-
terns for constraint propagation, but the pattern discovery 
methods and the objectives of the two programs are different.

CONCLUSIONS
This article presents a novel bottom-up topology-con-

strained distance network analysis algorithm for NOE inter-
pretation. AutoStructure incorporates a new statistical meth-
od, RPF scores, [29] for comparing 3D protein structures 
against the NMR input data, and for quality assessment of the 
assignment trajectories and fi nal NMR structures. Using these 
algorithms, AutoStructure has been evaluated using three dif-
ferent human protein NMR test data sets: FGF-2, IL-13, and 

MMP-1, ranging in size from 113 to 169 amino acid residues. 
The mean coordinate differences between structures deter-
mined by AutoStructure and by manual analysis (0.5–0.8 Å 
for backbone atoms of ordered residues) demonstrate good ac-
curacy of these automated methods. While protein structures 
generated by careful manual analysis generally exhibit some-
what better stereochemical quality and RPF structure quality 
scores, [29] as we have shown elsewhere, [25]automatically 
generated NOESY peak list assignments and 3D structures by 
AutoStructure provide an excellent starting point for careful 
structure refi nement. The AutoStructure/RPF output also pro-
vides rich information in the form of site-specifi c recall (fl ag-
ging NOESY peaks inconsistent with the 3D structure) and 
precision (fl agging close contacts in the 3D structure that are 
not supported by data in the NOESY peak lists) scores that 
can be used to improve the interpretation of NOESY spec-
tra and to refi ne the NOESY peak and resonance assignment 
lists. This process of iterative structure analysis, RPF anal-
ysis, refi nement of NOESY peaks lists by visual inspection, 
and reassignment of NOESY cross peaks with AutoStructure 
provides a means of using the AutoStructure and RPF soft-
ware together to refi ne the protein NMR structure. Moreover, 
as the bottom-up algorithms used by AutoStructure are quite 
different from the top-down methods used by CANDID and 
ARIA, these different methods will exhibit different strengths 
and weaknesses, and complementary use of multiple automat-
ed analysis methods in parallel can also provide a consensus 
approach for validating NOESY peak list assignments. [25] 
The AutoStructure program is currently being used by several 
NMR groups, and over the last few years, more than two doz-
en protein structures have been determined using AutoStruc-
tures. [15–22]

Software Availability

AutoStructure for automated NOESY data interpretation and 
structure calculation with DYANA or XPLOR/CNS is avail-
able from the authors upon request.

Acknowledgements

We thank J. Aramini, C. Kulikowski, H. Moseley, P. Rossi, D. 
Snyder, G. V. T. Swapna, and T. Szyperski for helpful discus-
sion and comments on the manuscript. We also thank G. M. 
Clore and N. Tjandra for kindly providing NIH version 1.1.2 
of X-PLOR.

References

1 Montelione GT, Zheng D, Huang YJ, Gunsalus KC, Szyperski T. 
Protein NMR spectroscopy in structural genomics. Nat Struct Biol 
2000; 7: 982-985. 

2 Brünger AT, Adams PD, Clore GM, DeLano WL, Gros P, Grosse-
Kunstleve RW, Jiang JS, Kuszewski J, Nilges M, Pannu NS, Read 
RJ, Rice LM, Simonson T, Warren GL. Crystallography & NMR 
system: a new software suite for macromolecular structure determi-
nation. Acta Crystallogr D Biol Crystallogr 1998; 54: 905-921. 

3 Brünger AT. X-PLOR, Version 3.1: a system for X-ray crystallogra-
phy and NMR. New Haven: Yale University Press; 1992. 



602                                            HUANG ET AL. IN PROTEINS: STRUCTURE, FUNCTION, AND BIOINFORMATICS 62 (2006)

4 Güntert P, Mumenthaler C, Wüthrich K. Torsion angle dynamics for 
NMR structure calculation with the new program DYANA. J Mol 
Biol 1997; 273: 283-298. 

5 Mumenthaler C, Braun W. Automated assignment of simulated and 
experimental NOESY spectra of proteins by feedback fi ltering and 
self-correcting distance geometry. J Mol Biol 1995; 254: 465-480. 

6 Mumenthaler C, Güntert P, Braun W, Wüthrich K. Automated com-
bined assignment of NOESY spectra and three-dimensional protein 
structure determination. J Biomol NMR 1997; 10: 351-362. 

7 Nilges M. Calculation of protein structures with ambiguous distance 
restraints: automated assignment of ambiguous NOE crosspeaks and 
disulphide connectivities. J Mol Biol 1995; 245: 645-660. 

8 Nilges M, Macias MJ, O’Donoghue SI, Oschkinat H. Automated 
NOESY interpretation with ambiguous distance restraints: the re-
fi ned NMR solution structure of the pleckstrin homology domain 
from beta-spectrin. J Mol Biol 1997; 269: 408-422. 

9 Herrmann T, Guntert P, Wüthrich K. Protein NMR structure deter-
mination with automated NOE assignment using the new software 
CANDID and the torsion angle dynamics algorithm DYANA. J Mol 
Biol 2002; 319: 209-227. 

10 Kuszewski J, Schwieters CD, Garrett DS, Byrd RA, Tjandra N, Clo-
re GM. Completely automated, highly error-tolerant macromolec-
ular structure determination from multidimensional nuclear Over-
hauser enhancement spectra and chemical shift assignments. J Am 
Chem Soc 2004; 126: 6258-6273. 

11 Gronwald W, Moussa S, Elsner R, Jung A, Ganslmeier B, Trenner J, 
Kremer W, Neidig KP, Kalbitzer HR. Automated assignment of NO-
ESY NMR spectra using a knowledge based method (KNOWNOE). 
J Biomol NMR 2002; 23: 271-287. 

12 Adler M. Modifi ed genetic algorithm resolves ambiguous NOE re-
straints and reduces unsightly NOE violations. Proteins 2000; 39: 
385-392. 

13 Grishaev A, Llinas M. CLOUDS, a protocol for deriving a molec-
ular proton density via NMR. Proc Natl Acad Sci USA 2002; 99: 
6707-6712. 

14 Bailey-Kellogg C, Widge A, Kelley JJ, Berardi MJ, Bushweller JH, 
Donald BR. The NOESY jigsaw: automated protein secondary struc-
ture and main-chain assignment from sparse, unassigned NMR data. 
J Comput Biol 2000; 7: 537-558. 

15 Huang YJ, Swapna GV, Rajan PK, Ke H, Xia B, Shukla K, Inouye 
M, Montelione GT. Solution NMR structure of ribosome-binding 
factor A (RbfA), a cold-shock adaptation protein from Escherichia 
coli. J Mol Biol 2003; 327: 521-536. 

16 Zheng D, Huang YJ, Moseley HN, Xiao R, Aramini J, Swapna GV, 
Montelione GT. Automated protein fold determination using a mini-
mal NMR constraint strategy. Protein Sci 2003; 12: 1232-1246. 

17 Greenfi eld NJ, Huang YJ, Palm T, Swapna GV, Monleon D, Mon-
telione GT, Hitchcock-DeGregori SE. Solution NMR structure and 
folding dynamics of the N terminus of a rat non-muscle alpha-tropo-
myosin in an engineered chimeric protein. J Mol Biol 2001; 312: 
833-847. 

18 Greenfi eld NJ, Swapna GV, Huang Y, Palm T, Graboski S, Mon-
telione GT, Hitchcock-DeGregori SE. The structure of the carbox-
yl terminus of striated alpha-tropomyosin in solution reveals an un-
usual parallel arrangement of interacting alpha-helices. Biochemis-
try 2003; 42: 614-619. 

19 Bayro MJ, Mukhopadhyay J, Swapna GV, Huang JY, Ma LC, Sine-
va E, Dawson PE, Montelione GT, Ebright RH. Structure of anti-
bacterial peptide microcin J25: a 21-residue lariat protoknot. J Am 
Chem Soc 2003; 125: 12382-12383. 

20 Makokha M, Huang YJ, Montelione GT, Edison AS, Barbar E. The 

solution structure of the pH-induced monomeric dyein light chain 
LC8 from Drosophila. Protein Sci 2004; 13: 727-734. 

21 Ramelot TA, Ni S, Goldsmith-Fischman S, Cort JR, Honig B, Ken-
nedy MA. Solution structure of Vibrio cholerae protein VC0424: 
a variation of the ferredoxin-like fold. Protein Sci 2003; 12: 1556-
1561. 

22 Aramini JM, Huang YJ, Cort JR, Goldsmith-Fischman S, Xiao R, 
Shih LY, Ho CK, Liu J, Rost B, Honig B, Kennedy MA, Acton TB, 
Montelione GT. Solution NMR structure of the 30S ribosomal pro-
tein S28E from Pyrococcus horikoshii. Protein Sci 2003; 12: 2823-
2830. 

23 Huang YJ, Moseley HN, Baran MC, Arrowsmith C, Powers R, Teje-
ro R, Szyperski T, Montelione GT. An integrated platform for auto-
mated analysis of protein NMR structures. Methods Enzymol 2005; 
394: 111-141. 

24 Baran MC, Huang YJ, Moseley HN, Montelione GT. Automat-
ed analysis of protein NMR assignments and structures. Chem Rev 
2004; 104: 3541-3556. 

25 Liu GS, Shen Y, Atreya HS, Parish D, Shao Y, Sukumaran DK, Xiao 
R, Yee A, Acton TB, Arrowsmith CH, Montelione GT, Szyperski T. 
NMR data collection and analysis protocol for high-throughput pro-
tein structure determination. Proc Natl Acad Sci USA 2005; 102: 
10487-10492. 

26 Wu B, Yee A, Pineda-Lucena A, Semesi A, Ramelot TA, Cort JR, 
Jung JW, Edwards A, Lee W, Kennedy M, Arrowsmith CH. Solu-
tion structure of ribosomal protein S28E from Methanobacterium 
thermoautotrophicum. Protein Sci 2003; 12: 2831-2837. 

27 Wang W, Lo KW, Kan HM, Fan JS, Zhang M. Structure of the mo-
nomeric 8-kDa dynein light chain and mechanism of the domain-
swapped dimer assembly. J Biol Chem 2003; 278: 41491-41499. 

28 Rubin SM, Pelton JG, Yokota H, Kim R, Wemmer DE. Solution 
structure of a putative ribosome binding protein from Mycoplasma 
pneumoniae and comparison to a distant homolog. J Struct Funct 
Genomics 2003; 4: 235-243. 

29 Huang YJ, Powers R, Montelione GT. Protein NMR recall, preci-
sion, and F-measure scores (RPF scores): structure quality assess-
ment measures based on information retrieval statistics. J Am Chem 
Soc 2005; 127: 1665-1674. 

30 Wako H, Scheraga HA. Visualization of the nature of protein fold-
ing by a study of a distance constraint approach in two-dimensional 
models. Biopolymers 1982; 21: 611-632. 

31 Sippl MJ, Scheraga HA. Solution of the embedding problem and de-
composition of symmetric matrices. Proc Natl Acad Sci USA 1985; 
82: 2197-2201. 

32 Havel TF, Kuntz ID, Crippen GM. The combinatorial distance ge-
ometry method for the calculation of molecular conformation: I. A 
new approach to an old problem. J Theor Biol 1983; 104: 359-381. 

33 Cormen TH, Leiserson CE, Rivest RL. Introduction to algorithms. 
Cambridge, MA/New York: MIT Press/McGraw-Hill; 1990. 

34 Tjandra N, Bax A. Direct measurement of distances and angles in 
biomolecules by NMR in a dilute liquid crystalline medium. Science 
1997; 278: 1111-1114. 

35 Cornilescu G, Delaglio F, Bax A. Protein backbone angle restraints 
from searching a database for chemical shift and sequence homolo-
gy. J Biomol NMR 1999; 13: 289-302. 

36 Wüthrich K, Billeter M, Braun W. Pseudo-structures for the 20 com-
mon amino acids for use in studies of protein conformations by mea-
surements of intramolecular proton-proton distance constraints with 
nuclear magnetic resonance. J Mol Biol 1983; 169: 949-961. 

37 Billeter M, Braun W, Wüthrich K. Sequential resonance assignments 
in protein 1H nuclear magnetic resonance spectra: computation of 



TOPOLOGY ALGORITHM FOR PROTEIN STRUCTURE DETERMINATION FROM NOESY                                               603

sterically allowed proton-proton distances and statistical analysis 
of proton-proton distances in single crystal protein conformations. J 
Mol Biol 1982; 155: 321-346. 

38 Wüthrich K. NMR of proteins and nucleic acids. New York: Wiley; 
1986. 

39 Wishart DS, Sykes BD. The 13C chemical-shift index: a simple 
method for the identifi cation of protein secondary structure using 
13C chemical-shift data. J Biomol NMR 1994; 4: 171-180. 

40 Huang YJ. Automated determination of protein structures from NMR 
data by iterative analysis of self-consistent contact patterns. New 
Brunswick, NJ: Rutgers University; 2001. 

41 Tejero R, Monleon D, Celda B, Powers R, Montelione GT. HYPER: 
a hierarchical algorithm for automatic determination of protein di-
hedral-angle constraints and stereospecifi c C beta H2 resonance as-
signments from NMR data. J Biomol NMR 1999; 15: 251-264. 

42 Wüthrich K, Billeter M, Braun W. Polypeptide secondary structure 
determination by nuclear magnetic resonance observation of short 
proton-proton distances. J Mol Biol 1984; 180: 715-740. 

43 Chothia C. Principles that determine the structure of proteins. Annu 
Rev Biochem 1984; 53: 537-572. 

44 Chou KC, Nemethy G, Rumsey S, Tuttle RW, Scheraga HA. Inter-
actions between an alpha-helix and a beta-sheet: energetics of alpha/
beta packing in proteins. J Mol Biol 1985; 186: 591-609. 

45 Cohen FE, Sternberg MJ, Taylor WR. Analysis and prediction of the 
packing of alpha-helices against a beta-sheet in the tertiary structure 
of globular proteins. J Mol Biol 1982; 156: 821-862. 

46 Chothia C, Levitt M, Richardson D. Helix to helix packing in pro-
teins. J Mol Biol 1981; 145: 215-250. 

47 Janin J, Chothia C. Packing of alpha-helices onto beta-pleated sheets 
and the anatomy of alpha/beta proteins. J Mol Biol 1980; 143: 95-
128. 

48 Moy FJ, Seddon AP, Campbell EB, Bohlen P, Powers R. 1H, 15N, 
13C and 13CO assignments and secondary structure determination of 
basic fi broblast growth factor using 3D heteronuclear NMR spec-
troscopy. J Biomol NMR 1995; 6: 245-254. 

49 Moy FJ, Seddon AP, Bohlen P, Powers R. High-resolution solu-
tion structure of basic fi broblast growth factor determined by mul-
tidimensional heteronuclear magnetic resonance spectroscopy. Bio-
chemistry 1996; 35: 13552-13561. 

50 Moy FJ, Pisano MR, Chanda PK, Urbano C, Killar LM, Sung M-
L, Powers R. Assignments, secondary structure and dynamics of the 
inhibitor-free catalytic fragment of human fi broblast collagenase. J 
Biomol NMR 1997; 10: 9-19. 

51 Moy FJ, Chanda PK, Cosmi S, Pisano MR, Urbano C, Wilhelm J, 
Powers R. High-resolution solution structure of the inhibitor-free 
catalytic fragment of human fi broblast collagenase determined by 
multidimensional NMR. Biochemistry 1998; 37: 1495-1504. 

52 Moy FJ, Diblasio E, Wilhelm J, Powers R. Solution structure of hu-
man IL-13 and implication for receptor binding. J Mol Biol 2001; 
310: 219-230. 

53 Clore GM, Gronenborn AM. Multidimensional heteronuclear nu-
clear magnetic resonance of proteins. Methods Enzymol 1994; 239: 
349-362. 

54 Bax A, Vuister GW, Grzesiek S, Delaglio F. Measurement of homo- 
and heteronuclear J couplings from quantitative J correlation. Meth-
ods Enzymol 1994; 239: 79-105. 

55 Nilges M, Gronenborn AM, Brüenger AT, Clore GM. Determination 
of three-dimensional structures of proteins by simulated annealing 

with interproton distance restraints: application to crambin, potato 
carboxypeptidase inhibitor and barley serine proteinase inhibitor 2. 
Protein Eng 1988; 2: 27-38. 

56 Clore GM, Appella E, Yamada M, Matsushima K, Gronenborn AM. 
Three-dimensional structure of interleukin 8 in solution. Biochemis-
try 1990; 29: 1689-1696. 

57 Garrett DS, Kuszewski J, Hancock TJ, Lodi PJ, Vuister GW, Gronen-
born AM, Clore GM. The impact of direct refi nement against three-
bond HN-C.alpha.H coupling constants on protein structure deter-
mination by NMR. J Magn Reson B 1994; 104: 99-103. 

58 Kuszewski J, Qin J, Gronenborn AM, Clore GM. The impact of di-
rect refi nement against 13Cα and 13Cβ chemical shifts on protein 
structure determination by NMR. J Magn Reson B 1995; 106: 92-
96. 

59 Kuszewski J, Gronenborn AM, Clore GM. Improving the quality of 
NMR and crystallographic protein structures by means of a confor-
mational database potential derived from structure databases. Pro-
tein Sci 1996; 5: 1067-1080. 

60 Kuszewski J, Gronenborn AM, Clore GM. Improvements and exten-
sions in the conformational database potential for the refi nement of 
NMR and X-ray structures of proteins and nucleic acids. J Magn Re-
son 1997; 125: 171-177. 

61 Kuszewski J, Gronenborn AM, Clore GM. Improving the packing 
and accuracy of nmr structures with a pseudopotential for the radius 
of gyration. J Am Chem Soc 1999; 121: 2337-2338. 

62 Zhu X, Komiya H, Chirino A, Faham S, Fox GM, Arakawa T, Hsu 
BT, Rees DC. Three-dimensional structures of acidic and basic fi -
broblast growth factors. Science 1991; 251: 90-93. 

63 Laskowski RA, Rullmannn JA, MacArthur MW, Kaptein R, Thorn-
ton JM. AQUA and PROCHECK-NMR: programs for checking the 
quality of protein structures solved by NMR. J Biomol NMR 1996; 
8: 477-486. 

64 Spurlino JC, Smallwood AM, Carlton DD, Banks TM, Vavra KJ, 
Johnson JS, Cook ER, Falvo J, Wahl RC, Pulvino TA, Wendoloski 
JJ, Smith DL. 1.56 Å structure of mature truncated human fi broblast 
collagenase. Proteins 1994; 19: 98-109. 

65 Eisenmesser EZ, Horita DA, Altieri AS, Byrd RA. Solution structure 
of interleukin-13 and insights into receptor engagement. J Mol Biol 
2001; 310: 231-241. 

66 Shindyalov IN, Bourne PE. Protein structure alignment by incre-
mental combinatorial extension (CE) of the optimal path. Protein 
Eng 1998; 11: 739-747. 

67 Clore GM, Starich MR, Bewley GA, Cai M, Kuszewski J. Impact of 
residual dipolar couplings on the accuracy of NMR structures deter-
mined from a minimal number of NOE restraints. J Am Chem Soc 
1999; 121: 6513-6514. 

68 Linge JP, Williams MA, Spronk CA, Bonvin AM, Nilges M. Re-
fi nement of protein structures in explicit solvent. Proteins 2003; 50: 
496-506. 

69 Jee J, Güntert P. Infl uence of the completeness of chemical shift as-
signments on NMR structures obtained with automated NOE assign-
ment. J Struct Funct Genomics 2003; 4: 179-189. 

70 Ferentz AE, Wagner G. NMR spectroscopy: a multifaceted approach 
to macromolecular structure. Q Rev Biophys 2000; 33: 29-65. 

71 Russell SJ, Norvig P. Artifi cial intelligence : a modern approach. 
Englewood Cliffs, NJ: Prentice-Hall; 1995. 

 



PROTEINS 
Revised v2 06/28/05 

Revised 

Supplemental Material for: 

A topology-constrained distance network algorithm for 
protein structure determination from NOESY data 

 

Yuanpeng Janet Huang1, Roberto Tejero1,∋, 

Robert Powers2 and Gaetano T. Montelione1, 3* 

 

1Center for Advanced Biotechnology and Medicine and 

Department of Molecular Biology and Biochemistry 

Rutgers University, Piscataway, NJ 08854-5638 

 
2Department of Chemistry 

University of Nebraska-Lincoln 

Lincoln, NE 68588 

 
3Department of Biochemistry, Robert Wood Johnson Medical School, 

Univ. of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854-5638 

 
∋Present address: Departamento de Química Física., Universidad de Valencia, Dr. 

Moliner, 50646100-Burjassot (Valencia), SPAIN 

 
* To whom correspondence should be addressed: 
 Prof. Gaetano T. Montelione 
 CABM, Rutgers University 
 679 Hoes Lane 
 Piscataway, NJ 08854-5638 
 Phone: 732-235-5321   Fax: 732-235-5633 
 e-mail: guy@cabm.rutgers.edu 

-S1- 



PROTEINS 
Revised v2 06/28/05 

Supplemental Descriptions of AutoStructure Algorithms 

Analysis of spectral aliasing and construction of ambiguous network G0
ANOE  from 

input data sets R and NOE  

AutoStructure supports input NOESY peaks lists with extensive aliasing, without 

the need to “unfold” these spectral data prior to analysis.  For every peak p = (δ1, δ2, I) ∈ 

NOE, an aliasing order (i.e. maximum fold of aliasing) mi is calculated for each 

frequency dimension i by  

                     

where δobs(i) is the observed chemical shift, δup(i) and δdown(i) are the most upfield and 

downfield chemical shifts in the resonance assignment table for the ith dimension, and 

swi is its acquired spectral sweep width. The aliasing order mi is zero for unaliased 

chemical shifts. A temporary list of possible corresponding “unfolded” chemical shifts 

(δi) in each frequency dimension is then generated by equation (2). 

                                    

where n ∈ 0..mi. The possible values n used in Eqn. 2 for each dimension can be 

restricted if the sign (i.e. positive or negative) of the intensity indicates an even or odd 

aliasing order in that frequency dimension 1. Each possible value δi is then matched with 

atoms from set R within error tolerance ∆erri (Table 1).  
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Calculation of potential contact scores pct(r1, r2)  

AutoStructure utilized dynamically-generated residue-residue contact map 

information to rule out incorrect NOESY cross peak assignments and to rule-in 

structurally-consistent assignments.  This step of is conceptually similar to the process of 

“network anchoring” used by the program CANDID9, though somewhat more 

sophisticated in using knowledge of expected short distances within and between 

secondary structure elements.   All NOE-linked proton pairs in GANOE are assigned a 

linking score (default value = 1) which provides an assessment of the densities of 

potential interproton connections for that protein pair across GANOE. For example, NOE 

peaks that are identified as having a symmetric peak in the NOESY data set, and thus 

validated, are assigned a linking score of 2. In this contact map analysis, methylene 

protons with different chemical shift values but attached to the same heavy atom are 

grouped together. We define the maximum number of NOE cross peaks linking any two 

heavy atom groups (maxheavy) as 2 × total number of observed proton chemical shifts 

associated with these two groups. For example, between two methylene groups with four 

distinct 1H chemical shifts, maxheavy = 8. If the number of the linking peaks found in 

GANOE is less than maxheavy/2, all these peaks are treated at this stage as providing a 

sparsely supported linkage (linking score = 0) and are excluded from the following 

potential contact support analysis. For each potential residue contact pair (r1, r2), a 

potential contact supporting score pct(r1, r2) providing an assessment of the confidence 

in the proposed contact, is calculated: 
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pct(r1, r2) = 0 if one of the residue pair is charged and another is hydrophobic 

pct(r1, r2) = 0 if the number of interactions between different (or non-degenerate) 

protons of residue r1 and different (or non-degenerate) protons of residue 

r2 ≤ 2   

otherwise,          Eqn. 3 

pct(r1, r2) = ∑ linking scores of all NOE-linked proton pairs from GANOE(r1, r2)   

where the second condition is a means of avoiding incorrect interpretations due to 

missing resonance assignments in R. 

 

Apparently unique (frq(p) = 1) connections (h1, h2, p) from residue pairs (r1, r2) 

are added into HGNOE only if the potential contact support score pct(r1,r2) ≥ pctcutoff 

(potential contact support score cutoff, Table 1), or pct(r1,r2) ≠ 0 and ∃(r3, r4), pct(r3,r4) 

≥ pctcutoff-n (potential contact support score cutoff for neighboring residue contacts, Table 

1), where (r3, r4) is a neighboring residue pair of  the (r1, r2) pair in the contact map. For 

backbone protons, protons of small residues such as Gly and Ala, and peripheral protons 

like Hε of Met which have lower densities of interresidue 1H-1H contacts, the cutoff 

threshold for pctcutoff is set lower than for other interactions. If the (r1, r2) residue pair is 

involved in helical-helical packing, supporting neighbor residue contacts includes residue 

pairs (r1, r2+i) and (r1+i, r2) (i∈{1, 4, -3}). For other types of contacts, supporting 

neighbor contacts include residue pairs (r1±i, r2± j) (1≤ i+j ≤ 2, i ∈ {0,1,2}, j ∈ {0,1,2}).  
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Distance constraint generation  

Interproton distances (d) between HN, Hα, and Hβ atoms are calibrated from the 

NOESY cross peak intensities (I), assuming the simple isolated two-spin pair 

approximation  

             Eqn. 4      

where constant k depends on the scaling of the NOESY spectrum (see below), and is 

converted into four distance constraint ranges, viz ≤ 2.5 Å, ≤  3.0 Å, ≤  4.0 Å, and ≤  5.0 

Å.2  Prior to binning, all the calibrated interproton distances are increased by 10%. All 

other NOESY-derived distance constraints involving side chain atoms are assigned to 

upper-bound values of 5.0 Å without calibration. We use loose upper bound constraints 

not only to compensate for NOESY cross peaks whose intensities are affected by either 

spin diffusion or partial overlapping, but also to allow molecules to overcome local 

minima in the search for a global minimum with respect to both the NMR-derived 

constraints and conformational energy.3  For interacting groups of degenerate methylene 

or methyl protons, intensities of the corresponding NOESY cross peaks are divided by a 

factor of 2 or 3, respectively, and then calibrated using the isolated two-spin pair 

approximation (Eqn. 4). Similarly, in cases where multiple NOE interactions are assigned 

to a single NOESY cross peak, the NOESY cross peak intensities are first divided by the 

total number of multiple constraints and then calibrated using the isolated two-spin pair 

approximation calibration. In all cases, the sum of van der Waals radii (1.8Å) is used as 

the lower-bound distance limit.  Upper- and lower- bound distance limits are then 

generated in a format suitable for input to structure generation programs with standard 
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pseudo-atom corrections4, as needed. 

 

The scaling factor k of equation (4) is estimated based on the observation that the 

spatial distribution of hydrogen atoms in different globular proteins is closely similar 5. 

Specifically, where the average intensity is computed from all 

non-diagonal NOESY cross peaks of GANOE, and the average distance value for 

NOEs among the backbone and Hβ protons is assumed to be similar for all globular 

proteins . In order to estimate , we selected 20 sets of high-resolution crystal 

protein coordinates from Protein Data Bank and computed all interproton backbone and 

Hβ protons distances d < 5 Å. The relevant average value, ≈0.0018 Å-6, 

corresponds to an average distance between backbone HN, Hα, and Hβ protons giving rise 

to an NOE interaction of ~ 3.8 Å.  The value of the parameter can be adjusted for 

specific NOESY data sets, as required16. 

 

Dihedral angle constraint generations  

 Dihedral angle constraints are generated using the conformational grid search 

program HYPER 6, which is incorporated as part of the AutoStructure process. HYPER 

calculates the set of φ and ψ dihedral angles and stereospecific assignments of β 

methylene protons that are consistent with a combined analysis of vicinal scalar coupling 

constants, and local intra-residue and sequential NOE data calibrated using the isolated 

two-spin pair approximation. Loose dihedral angle constraints from the identified 

segments of secondary structures are also used in HYPER as a prior information:  –95° < 
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φ < -35° and -70°< ψ  < 0° for residues adopting helical conformations, -180° < φ < -75° 

and 65° < ψ < 175° for residues adopting β-sheet conformations. For the three test data 

sets, loose dihedral angle (±40° for φ, ±50° for ψ) of high confident (score =10) dihedral 

angles derived from Cα/Cβ chemical shifts 7 are also used as constraint input. Some of 

these input dihedral angle constraints, which were violated in the intermediate structures, 

were removed for final structure calculations.   

 

Identification of hydrogen bonds  

 Backbone-backbone (bb/bb) hydrogen bond constraints O(i) -HN(i+4) for α-helix 

residues are added only if the characteristic proton pair interactions HαHN(i, i+4) are 

presented in HGNOE , or the hydrogen bond is consistently detected in intermediate 

structures, as described below. Characteristic bb/bb hydrogen bonds that are consistent 

with β-sheet  NOE patterns and for which HN donors are indicated by slow amide 1H 

exchange data, are also identified and used in the structure calculation 2. When slow 

amide 1H exchange data are not available, postulated hydrogen bond distance constraints 

derived on the basis of well-characterized characteristic β-sheet NOE patterns 2 are used 

in the structure calculation. During iterative fold analysis, additional bb/bb hydrogen 

bond constraints are identified when all of the following conditions are satisfied: (i) HN 

donors are included in the slow amide 1H exchange list, (ii) O-H distance < 2.4 Å and 

angle H-N-O < 35° in at least 20% of the ensembles 8, (iii) the hydrogen bond residue 

pair is at least two residues apart, (iv) they have nearby assigned NOE interactions, and 

(v) both the donor and acceptor are not involved in other possible hydrogen-bonded 

interactions. Although bifurcated hydrogen bonds do occur in protein structures, in order 
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to avoid potential errors, the current version of the AutoStructure software does not 

provide for bifurcated hydrogen-bond constraints. The upper / lower-bound constraints of 

these identified hydrogen bonds for Oi to HN
j and Nj are set to 2.3 / 1.5 Å and 3.3 / 2.4 Å, 

respectively.  

 

Parallel structure calculation using XPLOR/CNS or DYANA  

AutoStructure can generate input constraint files for either XPLOR/CNS, or 

DYANA for protein structure calculations. In each cycle, a large number (typically 64) of 

XPLOR/CNS or DYANA calculations are submitted to a Linux cluster and the best 

representative conformations (typically 10) with lowest energies or smallest target 

functions are selected for analysis in the next step. Our Linux cluster used is based on  

loosely-coupled dual 1600 MHz Athlon computers, managed by a distributed queuing 

system. Both PBS and DQS queuing systems are currently supported. A part of 

AutoStructure called CreateProc is responsible for managing the calculation, assigning 

different seed numbers for course grain parallel calculations, setting the calculation 

program and protocol to use, and activating the additional input data (e.g., residual 

dipolar coupling, chemical shifts, etc. ) as needed.  

 

The protocols for XPLOR 9 structure calculations are based on the standard 

schemes distributed with the program and modified for calculations using the Linux 

cluster.  These protocols are loosely related to the original hybrid distance geometry-

dynamical simulated annealing method of Nilges et al 10,11 using the XPLOR 12 program. 

In our case initial structures can be taken from previous models, generated from an 
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extended conformation, or generated randomly.  In the calculations described in this 

paper, we used randomly-generated initial coordinates.  Next, a high temperature 

(Cartesian space) dynamics simulation is run to allow for good sampling of 

conformational space. During this stage, weights on covalent structure elements (bonds, 

angles, etc) are slowly increased from small initial values where van der Waals forces are 

applied only to Cα atoms, allowing other atoms to pass through each other in order to 

satisfy the experimentally derived data. Once the structure generation is complete, a high-

temperature annealing stage takes place to explore conformational space. After the high 

temperature stage, special care is taken in the slow cooling stages by incorporating 

pseudopotentials for 3J(HN-Hα) coupling constants 13, secondary 13Cα/13Cβ chemical shift 

restraints,14  and a conformational database potential 15,16.  The target function that is 

minimized during restrained minimization and simulated annealing comprises only 

quadratic harmonic terms for covalent geometry, 3J(HN-Hα) coupling constants and 

secondary 13Cα/13Cβ chemical shift restraints, square-well quadratic potentials for the 

experimental distance, torsion angle restraints, and a quartic van der Waals term for non-

bonded contacts.  All peptide bonds were constrained to be planar and trans unless 

otherwise indicated by experimental data.  There were no hydrogen-bonding, 

electrostatic, or 6-12 Lennard-Jones empirical potential energy terms in the target 

function.  The force constant for the conformational database was kept relatively low 

throughout the simulation to allow the experimental distance and torsional angle 

restraints to predominantly influence the resulting structures.  The force constants for the 

NOE and dihedral restraints were 30 times and 10 times stronger, respectively, then the 

force constants used for the conformational database. Upon completion of the simulation, 
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an energy evaluation (no minimization) including all potential energy function terms is 

carried out to obtain an estimation for the total energy of the calculated structures. 

Similar protocols for CNS structure calculations with AutoStructure are described 

elsewhere.17  

 

For DYANA structure calculations, standard protocols were used. Each structure 

calculation used the fast DYANA torsion angle dynamics algorithm with the standard 

simulated annealing schedule with 4000 torsion angle dynamics, where no special 

simulated annealing strategies were taken. 

 
Refinement of structures generated by AutoStructure using XPLOR with restrained 

molecular dynamics in explicit solvent  

We also energy- refined the structures of FGF-2, MMP-1 and IL-13 generated by 

AutoStructure/XPLOR using the program CNS18 by calculating a short restrained 

molecular dynamics in explicit solvent, using the protocol described by Linge et al.19.  

The NMR conformers were immersed in a 8 Ǻ shell of ‘TIP3P water’ molecules. The 

solvated protein was first heated in 200 MD steps from 100 to 500K, followed by a short 

refinement run of 1,000 MD steps at 500K. Finally, the system was cooled in 2,000 MD 

steps from 500 to 25 K followed by a very short energy minimization. The 

PARALLHDG5.3 force field described by Linge et al.19 was used.    

  

 Table S1 shows that the stereochemical qualities of the energy refined structures 

are improved.  In fact, the refined structures of FGF-2 and IL-13 have slightly better 

stereochemical qualities20 than the structures determined by the manual analysis. RPF 
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scores21 are also slightly improved which indicates that these refined structures equally/or 

better fit with the input data set. The MOLPROBITY clash scores 22 for final structures 

calculated with AutoStructure/XPLOR are, however, slightly higher than the manually-

determined structures after refinement (data not shown), suggesting that structures 

generated with carefully-manually assigned constraints are somewhat more accurate than 

those generated by the fully automated method.    
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Table S1. Analysis of structure quality scores before and after CNS refinement 

Protein FGF-2 MMP-1 IL-13 

ProCheck20 G-factors(phi-psi only /all 

dihedrals) 

   

            AS-before refinement -1.09/-1.03 -0.74/-0.93 -0.17/-0.56 

            AS-after refinement -0.85/-0.74 -0.42/-0.54 0.04/-0.24 

            Manual analysis -0.99/-0.78 0.04/-0.24 -0.06/0.02 

RPF21 Analysis (R/P/F/DP)    

            AS-before refinement 94.2/92.1/93.2/85.4  88.6/89.2/88.9/79.5  87.3/96.9/91.9/79.8 

            AS-after refinement 94.3/92.3/93.3/85.8 89.2/89.3/89.2/80.7 87.0/97.3/91.8/79.5 

            Manual analysis 94.5/92.6/93.5/86.2 88.9/89.6/89.2/80.7 82.5/97.1/89.2/72.3 

ProCheck20 Ramachandran Statistics     

            AS-before refinement 75.0/23.9/1.0/0.0 81.7/18.0/0.3/0.0 90.4/9.3/0.1/0.1 

            AS-after refinement 85.7/14.1/0.3/0.0 86.6/13.1/0.3/0.0 92.8/7.2/0.0/0.0 

            Manual analysis 77.5/21.5/1.0/0.0 90.1/9.8/0.31/0.0 91.1/8.0/0.9/0.0 
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