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Abstract
Drought is a common occurrence in Nebraska and agriculture is the primary economic sector af-
fected. Because of repeated and widespread severe drought impacts, more emphasis on drought 
risk management is warranted. This study develops an agricultural drought risk assessment model 
using multivariate techniques. The model is specific to corn and soybeans and is able to assess real-
time agricultural drought risk associated with crop yield losses at critical phenological stages prior 
to and during the growing season. The assessment results are presented in a Geographic Informa-
tion System to provide a better visualization. This model provides information in a timely manner 
about potential agricultural drought risks on dryland crop yield to decision makers ranging from 
agricultural producers to policy makers from local to national levels. 

Keywords: risk assessment, agricultural drought, discriminant analysis, Standardized Precipitation 
Index, Crop-Specific Drought Index

1. Introduction 

It is more difficult to detect the emergence of droughts compared to other natural 
hazards because of drought’s unique characteristics: its slow-onset, the absence of a 
universally accepted definition for drought, and its non-structural impacts (Wilhite, 
1992). In addition, it is more difficult to assess drought impacts in various sectors be-
cause the impacts can be regional or local. Furthermore, droughts may linger for a 
long time (a year or more), or just last for a very short time (several weeks). If a short-
term drought occurs at critical crop growth stages, the impacts on agriculture may 
be severe (Kulshreshtha and Klein, �989). Some researchers found that the impact of 
droughts on agriculture is neither immediate nor easily measured (Kumar and Panu, 
�997). 

Nebraska has experienced numerous droughts with varying magnitude, dura-
tion and extent since precipitation was first recorded in the state. Certainly, drought 
is a common occurrence in the state and agriculture is the primary economic sector af-
fected (The State of Nebraska Drought Mitigation and Response Plan, 2002). The his-
torical records reveal there is no regularity of drought cycles in Nebraska, and drought 
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can be both frequent and severe. Therefore, it is certain that drought will occur again, 
but its occurrence cannot be predicted (Agriculture Atlas of Nebraska, �977). 

Because of repeated and widespread severe drought impacts in Nebraska, more 
emphasis on drought risk management is warranted (The State of Nebraska Drought 
Mitigation and Response Plan, 2002). Nebraska’s Climate Assessment Response Com-
mittee (CARC) was established by the Nebraska Legislature in �99�. As a part of the 
CARC drought mitigation and response plan, a Risk Assessment Committee was es-
tablished “to assess the vulnerability to and likely impacts of extreme climatic events, 
particularly drought, on Nebraska’s primary economic, environmental and social 
sectors” (CARC, 2002). In support of the Risk Assessment Committee’s objectives, a 
methodology was developed for assessing vulnerability to agricultural drought in 
Nebraska (Wilhelmi, �999; Wilhelmi and Wilhite, 2002) using four criteria: (�) proba-
bility of seasonal crop moisture deficiency; (2) soil root zone available water-holding 
capacity; (3) land-use types; and (4) access to irrigation. The goal of the map illustrat-
ing agricultural drought vulnerability presented in the study was to improve deci-
sion makers’ understanding of the complex set of factors influencing drought risk. 
With improved understanding, agricultural practices could be adjusted based on re-
gional vulnerabilities. 

To improve drought risk management, identifying the causes of drought vulnera-
bility in a specific region is an important step. But this step alone is not sufficient. The 
key factors used by Wilhelmi (1999) and Wilhelmi and Wilhite (2002) to define vul-
nerability were relatively static. Also, this vulnerability analysis was not crop-specific. 
For example, seasonal crop moisture deficiency estimated in the study was based on 
the combination of various crops through crop-area-weighting. The weather prior to 
and during the crop growing season differs each year, leading to variable drought 
impacts on agriculture from year to year, and from one crop to another. To be most 
effective, drought risk assessment should also be based on actual weather informa-
tion that influences crop growth (Dietz et al., 1998) and be crop-specific. 

This study contributes to the research on agricultural risk assessment by develop-
ing an operational model in Nebraska. The premise of this study is that agricultural 
drought risk on a specific crop yield is linked to the moisture supplies prior to and 
during the growing season. The proposed model focuses on detecting potential ag-
ricultural drought risk before the crop is planted and at critical phenological stages 
during the growing season using real-time weather information. This model will pro-
vide policy makers with sufficient time to implement strategies to reduce risk poten-
tial. This information could also be used by farmers to make decisions on whether to 
purchase crop insurance (Luo et al., �994). 

2. Literature Review 

Numerous factors impose risks on agricultural production or yield, including 
droughts, floods, pests, labor shortage, price fluctuations and political factors (Dietz 
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et al., �998; Thompson and Powell, �998). Among these factors, the effect of weather 
conditions on agricultural production is significant. For instance, poor weather con-
ditions caused crop failure in the United States in �974, and in other parts of the 
world in the early �970’s (Pitter, �977). The �988 drought, the most costly weather 
disaster in United States history with damages estimated at $40 billion, seriously af-
fected corn and soybean production. According to the statistics, national corn pro-
duction was reduced by 45% from the �985–87 average, and soybean production 
dropped 26%. Agricultural losses were estimated at $�5.6 billion (Reibsame et al., 
�99�; Sundt, 2002). 

A close relationship exists between crop yield and water stress, and therefore, 
crop yield is a reliable indictor of agricultural drought (Kumar and Panu, �997). 
Crop yield response to water stress is a critical factor when assessing and predict-
ing agricultural drought risk. Wilhite and Neild (1982) defined agricultural drought 
in terms of plant response by using the degree of departure from the expected yield 
as an indicator of weather conditions for a given year on the assumption that crops 
are good integrators of weather and their response provides a reliable tool for mea-
suring drought. However, the relationship between crop yield and water stress is 
variable from crop to crop, making assessment and prediction complicated. Duchon 
(�986) indicated that crop yield was the outcome of both natural and managed fac-
tors. The natural factors include soil type, pests, diseases, stored soil moisture and 
daily weather during the growing season. The management factors include plant 
variety, plant density, sowing date, fertilization, irrigation and chemical treatment 
for pests and diseases. To eliminate some of this complexity, emphasis is often 
placed on a single crop grown homogeneously over the region of interest (Kumar 
and Panu, �997). 

The response of yield is dependent on the environmental conditions during the 
growing season as well as during antecedent periods. Thus, monthly total precipi-
tation for the preseason (October–March) period and April through August was in-
cluded in the model established by Starr and Kostrow (�978) for estimating the re-
sponse of spring wheat yield to anomalous climate sequences. The crop/weather 
models used by Thompson (�988) investigated the effects of climate change and 
weather variability on the yields of corn and soybeans. The Thompson study used six 
weather variables: preseason precipitation (the total from September through June), 
June temperature, July rainfall and temperature, and August rainfall and tempera-
ture to estimate crop yields. Walker (�989) developed a model using pre-growing sea-
son and growing season weather data and only near real-time weather variables were 
used in the model. The results showed that the model provided a realistic and useful 
pre-harvest yield forecast. The model that Mjelde and Penson Jr. (2000) presented to 
demonstrate the impact of the timing of good and poor crop years on financial condi-
tions in the Corn Belt region also defined previous fall and early spring as part of the 
production season. 

Additionally, the length of time scale of the variables employed in the agricultural 
drought risk assessment is critical. Pochop et al. (�975) developed a model to assess 
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the potential effects of weather modification on agricultural production in the Great 
Plains area of Wyoming. It was found that the crop-weather function was sensitive to 
short-period (i.e. days, weeks) weather events because even equal amounts of precip-
itation, distributed at different times during crop growing season, may have different 
effects on the crop. Statistical analysis was performed to determine the climatic fac-
tors that were most important to winter wheat production. The variables used in the 
model included weekly rainfall total during the growing season, an 8-week rainfall 
for the previous fall/winter period, a �7-week rainfall total beginning the growing 
season of the previous year and weekly temperature means from various times. Dietz 
et al. (�998) suggested that weekly rainfall should be investigated in drought risk as-
sessment if data allows, because the variability of the rainfall, its distribution and in-
secure start of the rainy season present high risks on dryland crops. 

The weather conditions at a given time will have differential effects on crop yield, 
either beneficial or detrimental, depending on plant types and growth stage in the 
life cycle at that time (Denmead and Shaw, �960; Starr and Kostrow, �978). Each crop 
growth stage has its own sensitivity to soil moisture stress. It was shown that wa-
ter stress prior to silking had an indirect effect on corn yield, while stress at silking 
had a more direct effect. Easterling et al. (�988) found that mild drought during the 
spring cultivating and planting period may be a positive stimulus to corn yields in Il-
linois. Excess moisture during early plant growth may limit vertical penetration of 
the root system. As a result, roots cannot reach moisture stored deeper in the soil 
and are likely to experience stress when it becomes dry during post-emergence grow-
ing stage. Hill et al. (�979) also indicated that water stress contributed differently to 
soybean yield for different growth periods, and developed a model that determines 
soybean yield as a function of moisture availability during each period of growth. 
Thompson (�988) found that corn yields were more affected by July weather, while 
soybean yield was more affected by August weather. Pochop et al. (�975) concluded 
that the greatest benefit of added rainfall to increased winter wheat production was 
during the middle portion of the growing season, while the benefits were relatively 
negligible in the early season and negative in the late season. Nullet and Giambel-
luca (�988) indicated that it would minimize the risk of drought damage on crops if 
risk analysis of seasonal agricultural drought was combined with crop growth stage 
information. 

A common tool used in agricultural drought risk assessment is the drought in-
dex, which is applied either as an individual index or in a composite with other 
indices. For example, Easterling et al. (�988) combined the Moisture Anomaly In-
dex (MAI) and Palmer Drought Severity Index (PDSI) values to reflect crop mois-
ture sensitivities. Thompson and Wehmanen (�979) employed Green Index Num-
ber (GIN) derived from remotely sensed data to detect agricultural vegetative water 
stress. The GIN is defined as the percent of pixels in a segment with a green number 
greater than �5. Walker (�989) designed a physiological-based composite drought 
index as a function of the balance between cumulative water supply and transpira-
tion demand. 
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McKee et al. (�993) developed the Standardized Precipitation Index (SPI), which 
only requires data for precipitation, based on the concept that precipitation defi-
cits over varying periods or timescales influence ground water, reservoir storage, 
soil moisture, snowpack, and streamflow. Furthermore, unlike other indices, the SPI 
was tested and diagnosed carefully and extensively for about �200 stations in the 
United States (Redmond, 2002). The SPI is employed to monitor the current status of 
droughts in Colorado by the Colorado Climate Center (CCC, 2003) and for the United 
States by the Western Regional Climate Center (WRCC, 2003) and National Drought 
Mitigation Center (NDMC, 2003). Over 40 countries are using the SPI for drought 
monitoring and drought research (D. A. Wilhite, personal communication). Further-
more, researchers demonstrated that the SPI is a good tool in detecting and moni-
toring the severe drought event that occurred in the southern Great Plains and the 
southwestern United States in �996 (Hayes et al., �999). 

An important characteristic of the SPI is that it can be used to monitor dry and 
wet periods over a wide spectrum of time scales, allowing users the opportunity 
to choose the time scale most appropriate for their particular application to com-
pute the SPI (Edwards and McKee, �997). Originally, the time scale of the SPI was a 
monthly step ranging from � to 72 months. For an agricultural drought risk study, 
a monthly time scale is too long because crop growth stages are generally based on 
days or weeks. Recently, scientists in the Computer Science and Engineering De-
partment of University of Nebraska-Lincoln developed a program in collaboration 
with the NDMC and the High Plains Regional Climate Center (HPRCC) to calcu-
late a weekly SPI. As mentioned by McKee et al. (�993), agricultural droughts typ-
ically have a much shorter time scale than hydrological droughts. Therefore, the 
weekly SPI should be more appropriate in agricultural drought risk studies than 
the monthly value. 

Meyer et al. (1993a) developed a Crop-Specific Drought Index (CSDI) by creatively 
integrating four critical factors: crop specificity, soil specificity, the ratio of water con-
sumed by the crop to that consumed potentially, and the growth stage during which 
the stress occurs. The CSDI was originally developed for corn (Meyer et al., �993a), 
and then extended to soybeans (Meyer and Hubbard, �995), wheat (Xu, �996), and 
sorghum (Camargo and Hubbard, �999). 

The definition of CSDI is based on the ratio of actual evapotranspiration to poten-
tial evapotranspiration: 

(�)

where ETcalc and ETpc are the calculated and the potential evapotranspiration (mm) 
for the crop at each growth period; n the number of periods chosen to represent the 
crop’s growth cycle; λi the relative sensitivity of the crop to moisture stress during 
the ith period of growth; Ypred and Ypot are predicted and potential yields. Equation 
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(�) can also predict yield by computing the product of predicted CSDI and poten-
tial yield. 

Results showed that the CSDI performed well over a range of climatic conditions 
and geographical locations in the United States. Advantages were found in using the 
CSDI in drought monitoring and assessment over other drought indices such as PDSI 
and Crop Moisture Index (CMI) (Meyer et al., 1993b). First, the CSDI is crop specific. 
Thus, the CSDI values can be directly linked to drought impact on the specific crops 
of interest. Also, the impact of drought on crop yield can be assessed at critical stages 
during the growing season. Therefore, the CSDI is a good surrogate index for agricul-
tural drought potential. 

Each drought index is designed for specific conditions and for a specified pur-
pose. No single drought index can work in all circumstances. There is a tendency to 
evaluate drought severity using several indices or variables. For instance, Colorado 
is monitoring its water resources using a combination of the SPI, Surface Water Sup-
ply Index (SWSI) and Palmer indices (Hayes et al., 2000). Wilhite (2000) pointed out 
that it is important to use appropriate and reliable drought indices in decision mak-
ing. Consulting more than one index before making a decision, therefore, is neces-
sary and critical. To better track and assess the severity of droughts, the scientists in 
the NDMC, Climatic Prediction Center (CPC) and U.S. Department of Agriculture 
(USDA) developed an integrated Drought Monitor product. This system is a synthe-
sis of several different scientific drought indices including the Palmer Drought In-
dex, CMI, CPC Soil Moisture Model, USGS Daily Stream-flow, Percent of Normal 
Precipitation, USDA/NASS Topsoil Moisture, and a remotely sensed Satellite Vege-
tation Health Index (NDMC/NOAA/USDA Drought Monitor, 2003; Svoboda et al. 
2002). 

A Geographic Information System (GIS) allows spatial analysis and complex over-
lays of data on the location, topology and attributes of spatial objects (Ger-main, 
�996). GIS has the capability to generate an improved agricultural drought moni-
toring system that integrates various factors that contribute to drought impacts, and 
present the results in a timely and appropriate manner for policy makers (Lourens 
et al. �997, de Jager et al., �998, and de Jager et al., 2000). With a GIS-based map of 
drought vulnerability, it is easier for policy makers, agricultural producers and oth-
ers to visualize the hazard and communicate with each other (Wilhelmi, �999; Wil-
helmi and Wilhite, 2002). 

3. Model Development 

Based on the literature review, the proposed model was developed to possess the fol-
lowing characteristics. First, the model needed to be crop-specific. The model was de-
veloped specifically for corn and soybeans because these two are the main crops in 
Nebraska and they also exhibit different sensitivities to water stress (Wilhite, �982). 
Second, the model assessed drought risks at critical phenological stages during crop 
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development, providing risk information in a timely manner. Third, drought risk was 
associated with crop yield losses. Fourth, weekly weather information during the 
growing season as well as during antecedent periods were considered as factors con-
tributing to the risks. Fifth, the model used existing drought indices as moisture sup-
ply indicators before and during the growing season. Sixth, all the studies were un-
dertaken at a county-level resolution. Finally, the assessment results were presented 
in a GIS to provide a better visualization. 

It is not the purpose of this article to introduce the procedures of the model devel-
opment in detail. For more details regarding to the methodology, see Wu (2002). The 
main aim of this article is to present the characteristics of the newly-developed model 
in agricultural risk assessment. 

3.1. Data Preparation 

The fundamental goal of the proposed model was to establish a predictable relation-
ship between moisture supplies prior to and during the growing season and the ag-
ricultural impacts of the moisture supplies on a specific crop at critical phenological 
stages. 

The indicators of the moisture supplies prior to and during the growing season 
were represented by two existing drought indices. The SPI was chosen because it is 
a precipitation-only index and can be calculated for multiple time scales. The flexi-
ble time scales of the SPI make it easier to compute the index matching a crop’s phe-
nological cycle while providing the moisture supply status along with crop growth 
stages. The CSDI was chosen as a partner to the SPI because the CSDI links specific 
crop responses to drought, making it possible to be a crop-specific risk assessment 
model. For details on the calculation of the SPI and CSDI, see Edwards and McKee 
(�997) and Meyer et al. (�993a). All the weather data to calculate the indices were ob-
tained from the HPRCC (2003). 

The SPI values at high frequency time scales reflect moisture supply more pre-
cisely than that with lower frequency. As a result, the time scales of the SPI that 
were included in the study were: �-, 2-, 3-, 4-, 5-, 6-, 7-, 8-, 9-, �0-, ��-, �2-, �4-, �6-
, �8-, 20-, 22-, 24-, 26-, 28-, 30-, 32-, 36-, 40-, 44-, and 52-weeks. Then the 26 individ-
ual SPI values were combined into 4 variables by summing the SPI values at very 
short, short, medium and long time scales because the impact of drought on agri-
culture is an accumulated consequence and the SPI sums are measurements of ac-
cumulated magnitude of the drought. In addition, Principal Components Analysis 
(PCA) was performed on the 26 SPI values to extract the first three PCs, which ac-
count for most of the variance of the original 26 SPI values. The four SPI sums, as 
well as the first three PCs, were determined as the general feature variables for fur-
ther analysis in the study, indicating moisture supplies before and during the crop 
growing season. The final feature variables used for each critical stage were deter-
mined by the contributions of the variables in indicating impacts of water stress on 
crop yield. For a specific stage, the feature variables may change because some vari-
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ables from the previous stages may be retained, variables from the current stage 
may be added and redundant variables may be removed. Tables I and II show the 
lists of the variables selected by statistical approaches for each stage for corn and 
soybeans, respectively. 

The indicator of agricultural drought risk because of limited moisture supplies 
was represented by the residuals of the detrended yield because the residual vari-
ation reflects the effects of weather on yield (Dennett et al., �980; da Mota, �983), 
and the residuals amplify yield departures from normal, making the variability of 
yield more obvious. Although corn and soybeans are planted in most of Nebras-
ka’s counties, this study concentrated on the leading production counties, which 
were identified as those that consistently contained 90% of the total acreage har-
vested for dryland corn or soybeans during �97�–2000. The non-irrigated yields 
of corn for grain and soybeans of each leading county in Nebraska were obtained 
from the online database of the National Agricultural Statistics Service (NASS) of 
the USDA (2003). A positive yield residual means the yield is above the 30-yr av-
erage yield, while a negative residual means the yield is below the average yield. 
The bigger the absolute value of yield residual, the bigger the departure from the 
average yield. A year was identified as a high drought risk year when the corre-
sponding crop yield residual was smaller than −0.5. Otherwise, the year was a 
low risk year. 

The critical phenological stages to make the risk assessments were determined as 
follows. The combined phenological growth periods used in the CSDI for corn in-
cluded vegetative, ovule, reproduction, and ripening, and for soybeans included veg-
etative, blooming, pod formation, pod fill, and ripening. Besides these periods de-
fined in the CSDI, this study defined one more period, pre-plant period, for both corn 
and soybeans. The pre-plant period was the �-yr period before crop emergence. In 
this paper, pre-planting denotes the period before corn emergence, stage � denotes 
vegetative period, stage 2 ovule, stage 3 reproduction, and stage 4 ripening. The same 
case holds for soybeans, using pre-planting and stages � through 5 to denote the pe-
riod before soybean emergence and the five periods. 

3.2. Rationale of Model Development 

One of the tasks of this study was to establish a predictable relationship between the 
indicators of moisture supply represented by the SUMs and PCs of the SPI and CSDI 
and the indicator of risks represented by two categorical yield residual variables: low 
and high risk year. From a statistical point of view, this is the case of categorical de-
pendent variables (i.e. low and high risk year) and a set of independent variables 
(e.g., the SUMs and PCs of the SPI and CSDI). The goal is to assign a year of interest 
to one of the two previously defined groups in terms of drought risk according to the 
known SPI and CSDI. Discriminant analysis is a statistical technique for classifying 
individuals or objects into mutually exclusive and exhaustive groups on the basis of a 
set of independent variables (Johnson and Wichern, �998). 
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Table I. Feature variables used in the discriminant analysis at each critical phenological stage for 
corn 

Variables  Pre-planting  Stage�  Stage2  Stage3  Stage4 
 (�7th week)  (26th week)  (29th week)  (33rd week)  (39th week) 

SUM1 of 17th week’s SPI  √
SUM2 of 17th week’s SPI  √
SUM3 of 17th week’s SPI  √
SUM4 of 17th week’s SPI   √   
SUM� of 26th week’s SPI  
SUM2 of 26th week’s SPI   √ √
SUM3 of 26th week’s SPI   √
SUM4 of 26th week’s SPI   √
SUM1 of 29th week’s SPI    √ √
SUM2 of 29th week’s SPI    √ √
SUM3 of 29th week’s SPI    √
SUM4 of 29th week’s SPI    √ 
SUM� of 33rd week’s SPI     
SUM2 of 33rd week’s SPI     √ √
SUM3 of 33rd week’s SPI     √
SUM4 of 33rd week’s SPI     √
SUM� of 39th week’s SPI      
SUM2 of 39th week’s SPI  
SUM3 of 39th week’s SPI      √  

SUM4 of 39th week’s SPI  
First PC of 17th week   √
Second PC of 17th week  √ √
Third PC of 17th week  √
First PC of 26th week   √ √
Second PC of 26th week   √
Third PC of 26th week   √
First PC of 29th week    √ √ √
Second PC of 29th week    √ √
Third PC of 29th week  
First PC of 33rd week     √ √
Second PC of 33rd week     √
Third PC of 33rd week  
First PC of 39th week      √
Second PC of 39th week      √
Third PC of 39th week      
CSDI-stage�     
CSDI-stage2    √ √ 
CSDI-stage3     √
CSDI-stage4      √

SUM� of �7th week’s SPI denotes the sum of the �7th week’s SPI values at �-, 2-, 3-and 4-week. SUM2 
of �7th week’s SPI denotes the sum of the �7th week’s SPI values at 5-, 6-, 7-, 8-, 9-, and �0-week. 
SUM3 of �7th week’s SPI denotes the sum of the �7th week’s SPI values at ��-, �2, �4-, �6-, �8-, 20-, 
22-, 24-, 26-, 28-, 30-and 32-week. SUM4 of �7th week’s SPI denotes the sum of the �7th week’s SPI 
values at 36-, 40-, 44, and 52-week. First PC of 17th week denotes the first principal component of the 
�7th week’s SPI. Second PC of �7th week denotes the second principal component of the �7th week’s 
SPI, and so on.
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Table II. Feature variables used in the discriminant analysis at each critical phenological stage for 
soybeans 

                                            Pre-planting       Stage�     Stage2     Stage3     Stage4     Stage5 
Variables  (�9th week)  (26th week)  (28th week)  (32nd week)  (35th week)  (40th week) 

SUM1 of 19th week’s SPI  √  √  √  √  √ 
SUM2 of 19th week’s SPI  √  √  √   √ 
SUM3 of 19th week’s SPI  √  √    √ 
SUM4 of 19th week’s SPI  √  √    
SUM1 of 26th week’s SPI     √  
SUM2 of 26th week’s SPI     √  √ 
SUM3 of 26th week’s SPI    √   
SUM4 of 26th week’s SPI    √  √  
SUM1 of 28th week’s SPI    √  √  
SUM2 of 28th week’s SPI   √  √  √ 
SUM3 of 28th week’s SPI    √   √ 
SUM4 of 28th week’s SPI    √   √ 
SUM1 of 32nd week’s SPI    √  √ 
SUM2 of 32nd week’s SPI     
SUM3 of 32nd week’s SPI    √   
SUM4 of 32nd week’s SPI     
SUM1 of 35th week’s SPI       √ 
SUM2 of 35th week’s SPI       √
SUM3 of 35th week’s SPI 
SUM4 of 35th week’s SPI     √
SUM� of 40th week’s SPI  
SUM2 of 40th week’s SPI   
SUM3 of 40th week’s SPI    
SUM4 of 40th week’s SPI       √ 
First PC of 19th week  √ √ √
Second PC of 19th week  √  √ √ √
Third PC of 19th week  √ √ √ √ √
First PC of 26th week   √
Second PC of 26th week   √ √ √
Third PC of 26th week      √
First PC of 28th week     √  √
Second PC of 28th week     √
Third PC of 28th week 
First PC of 32nd week     √  √
Second PC of 32nd week     √
Third PC of 32nd week     √
First PC of 35th week      √ √
Second PC of 35th week      √
Third PC of 35th week      √
First PC of 40th week       √
Second PC of 40th week       √
Third PC of 40th week 
CSDI-stage�    
CSDI-stage2    √ √ √
CSDI-stage3     √ √
CSDI-stage4      √
CSDI-stage5       √

The previous definitions hold.
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Two discriminant analysis techniques were employed: one was the canonical dis-
criminant analysis, which helped visualize the possibility to discriminate the obser-
vations belonging to the high risk group from those belonging to the low risk group 
on the basis of the feature variables derived from the SPI and CSDI for both corn and 
soybeans at each selected phenological time stage; the other technique was the clas-
sificatory discriminant analysis, through which a classification rule was established 
to classify observations into the two predefined groups on the basis of the feature 
variables. 

The classificatory discriminant analysis generated a risk-discriminant model at 
each stage. For example, the risk-discriminant model for corn at pre-planting gener-
ated by the classificatory discriminant analysis was: 

D = β�(SUM��7) + β2(SUM2�7 + β3(SUM3�7) + β6(PC2�7) +β7(PC3�7) + C, (2) 

where D is the discriminant score, SUM��7 is SUM� of �7th week, PC2�7 is the sec-
ond PC of �7th week’s SPI values, and so on; β is the discriminant function weight, 
and C is the intercept. For a year of interest, a discriminant score D was computed 
by the model. The year of interest was grouped into the high risk year classification 
if D was smaller than zero, otherwise the year was grouped into the low risk year 
classification. 

4. Validation of the Model 

The performance of the risk-discriminant model was validated by estimating accu-
rate rates with independent data. The accurate rate is the probability of correct classi-
fication. The validation of the model was accomplished in three ways: 

First, the risk-discriminant model was derived by part of the data from the lead-
ing counties for both corn and soybeans during �97�–2000. Then the model was vali-
dated by the data of the remaining counties in the same period. 

Second, the model was derived for both corn and soybeans using the data during 
�97�–�995 and validated using the data during �996-2000. 

Third, the model was validated by assessing drought risks for corn in a few severe 
drought years (�974, �980, �988) and a dry-wet mixed year (200�). 

5. Results 

The canonical and classificatory discriminant analysis described above were per-
formed for each of the leading counties and the derived risk-discriminant model was 
validated using three kinds of training datasets and test datasets. The results are pre-
sented below. 

Figures � and 2 show the plots of canonical variables of each stage for both corn 
and soybeans, respectively. The first and second canonical variables are the linear 
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combinations of the feature variables that have the highest possible multiple corre-
lation with the groups. As can be seen, for corn at earlier stages, the first and second 
canonical variables do not separate the observations from the two groups effectively. 
Overlap between the low and high risk groups is significant. As the growth period 
progresses, however, the separation between the two groups becomes more obvious. 
The observations from the high risk group mostly cluster on the left side of the plots, 
while the observations from the low risk group cluster on the right side. For soy-
beans, the tendency of separation becomes clearer from stage 3 on. 

Figure 1. Plots of the first vs. second canonical variables at pre-planting through stage 4 for corn. 
Black stars denote the high risk year, gray triangles denote the low risk year. Can1 is the first canon-
ical variable. Can2 is the second canonical variable. 
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Therefore, based on the canonical discriminant analysis, it was possible to discrim-
inate the high risk group from the low risk group on the basis of the feature variables 
derived from the SPI and CSDI for both corn and soybeans, especially during later 
stages. Through the classificatory discriminant analysis, a classification rule was es-
tablished and applied to the test datasets. 

The average accurate rates based on all the test datasets are shown in Tables III 
and IV for corn and soybeans, respectively. The accurate rates are shown in this way: 
at pre-planting for corn, for instance, 67.4% of the observations are correctly assigned 
into the low risk group based on the model, while 63.�% are correctly assigned into 

Figure 2. Plots of the first vs. second canonical variables at pre-planting through stage 5 for soy-
bean. Black stars denote the high risk year, gray triangles denote the low risk year. Can1 is the first 
canonical variable. Can2 is the second canonical variable. 
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the high risk group. Therefore, the average possibility to correctly classify observa-
tions for corn at pre-planting is 65.3%. 

It was not a surprise that the accurate rates are lower at pre-planting than they 
are during the later stages, because future weather during the growing season is un-
certain at this time. However, there is an about 65% possibility to successfully assess 
drought risk on dryland corn yield prior to the growing season, indicating that pre-
planting weather does have an impact on corn’s final yield. Some researchers fore-
casted yield at very early growth stage using “combined information,” which was 
the actual pre-planting weather data combined with the historical growing season 
weather data, or combined with the growing season weather forecast data (Luo et al., 
�994; Duchon, �986). Using weather data for pre-planting alone to assess drought risk 
on the crop’s final yield has not been reported. The results of this study reveal that it 
is possible to assess drought risk on corn yield using weather information prior to the 
growing season. 

Generally, the accurate rates increase as the growth stages progress for corn. At 
stage 2, the average rate for the high and low risk classifications reaches 84.3%. The 
possibility increases to 89% at stage 3 and increases slightly to 89.5% by stage 4. This 
indicates that weather in the last growth stage plays only a minor role in the risk as-
sessment because corn that is near to maturity does not respond to water stress as 
much as it did during previous stages. 

Like corn, the accurate rates of soybeans increase as the crop develops. However, 
the accurate rates in both the high and low risk classifications of soybeans are lower 
than that of corn at all the stages, indicating the relationship between soybean yield 

Table III. Average accurate rates of the risk assessments for the three kinds of test datasets 
for corn

Stages  Groups                 Correct rates of        Average accurate 
                                each group (%)       rates of each stage 

Pre-planting  Low risk  67.4  65.3 
 High risk  63.�  

Stage�  Low risk  79.4  73.9 
 High risk  68.4  

Stage2  Low risk  85.5  84.3 
 High risk  83.2  

Stage3  Low risk  88.3  89.0 
 High risk  89.7  

Stage4  Low risk  86.7  89.5 
 High risk  92.3  
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and weather at earlier growth stages is not as close as corn. In other words, soybeans 
have the capacity to recover from water stress. 

To provide a better visualization of the agricultural drought risk assessment, the 
results were presented in a GIS. To create a state risk assessment map, three data lay-
ers were required: a map of Nebraska county boundaries, a map of leading counties 
in crop harvesting, and a map of assessment results of each county with two classes: 
high and low risk. These data layers were processed and then combined to produce 
one coverage in ArcMap within ArcGIS 8.2 (Environmental Systems Research Insti-
tute, Inc.). 

The risk assessment maps for corn in �974 are shown in Figure 3. Counties in white 
on the maps mean no, or minimal, dryland corn acres were planted. The numbers ap-
pearing on the counties denote actual corn yield residuals for 1974. As defined previ-
ously, a county experiences a high agricultural drought risk if its yield residual is be-
low −0.5. The calculated yield residuals of 1974 were all below −0.5, indicating corn 
yields of all the leading counties belonged to the high risk group in this year. Coun-
ties in gray were identified by the model to have low risks on dryland corn yield at a 
specific stage, while counties in dark gray were identified to have high risks on dry-
land corn. 

As shown in Figure 3, at pre-planting (end of April), only ten of the leading 
counties are assigned into the high risk group. The accurate rate is only 24%. At 
stage � (end of June), more counties are assigned into the high risk. The accurate 
rate increases to 43%. At stage 2 (later July), all the counties in eastern and central 

Table IV. Average accurate rates of the risk assessments for the three kinds of test datasets 
for soybeans

Stages          Groups              Correct rates of        Average accurate 
                                     each group (%)      rates of each stage 

Pre-planting  Low risk  48.5  57.� 
 High risk  65.8  

Stage�  Low risk  54.0  63.6 
 High risk  73.3  

Stage2  Low risk  65.8  64.0 
 High risk  62.2  

Stage3  Low risk  8�.7  77.5 
 High risk  73.3  

Stage4  Low risk  85.6  85.3 
 High risk  85.�  

Stage5  Low risk  8�.8  85.9
   High risk       90.�
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Nebraska are assigned into the high risk group and the accurate rate reaches 97.6%. 
All the counties are assigned into the high risk group by stage 3 with a accurate rate 
of �00%. At the last stage (end of September), the accurate rate is the same as it was 
at stage 2. 

Nebraska experienced a hot and dry growing season in 2002, which caused an ag-
ricultural loss of $�.2 billion (IANR, 2003). Figure 4 shows the risk assessment maps 
from pre-planting to stage 4 for 2002. As indicated, the number of the counties in the 
high risk group increases with time and high risk areas spread from west to east. It 
can be seen that only a few counties on the northeastern corner of the State have low 
risks on corn yield in stage 2 and 3 (later July and August). By the end of Septem-
ber (stage 4), all the leading counties are assessed to have high risk except for Burt 
County, indicating that most of the leading counties in dryland corn planting are as-
sessed to have high risks on corn yield in 2002. Thus, it can be concluded that corn 
yield of 2002 would be much lower than normal in most of the dryland-corn-planting 
counties due to the extreme drought. On the other hand, the risk assessment by the 
model for soybeans in 2002 was not as bad as that for corn. However, half of the lead-
ing counties in soybean planting in eastern Nebraska were shown to have had high 
agricultural drought risk. 

The final 2002 yields became available online by the end of May 2003 while this ar-
ticle was being prepared. All 2002 county corn yield residuals were below −0.5 except 
for Thurston County, which had a yield residual of −0.4�. 

6. Summary 

An agricultural drought risk assessment model was developed for corn and soybeans 
on the basis of feature variables derived from the SPI and CSDI using multivariate 
techniques. This model can be used to assess real-time agricultural drought risk on 
specific crops at critical stages prior to and during the growing season by retaining 
previous, and adding current, weather information as the crop passes through the 
various growth stages. Based on the research and results of the analyses, the agricul-
tural drought risk discriminant model presented in this study improves agricultural 
drought assessment in the following ways. 

First, the model integrates two existing drought indices, the SPI and CSDI, because 
the SPI can be used to monitor drought over a wide spectrum of time scales (from �-
week to a few yrs), which reflect the amount, timing and distribution of moisture 
supply before and during the growing season precisely; and because the CSDI links 
specific crop phenological information. 

Second, the model uses pre-planting weather information as one of the periods to 
assess drought risk on final crop yield at the stage before crop is planted, providing a 
valuable indication of drought risk in sufficient time for policy makers. 

Third, five stages for corn and six stages for soybeans are determined to be the 
critical stages to assess drought risk based on the statistics of actual crop pheno-
logical conditions. Once the model is put into operation, the risk assessment map 
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can be produced at the critical stages, providing information in a timely manner 
about potential agricultural drought risk on dryland crop yield for policy makers 
and others. 

Fourth, the feature variables used in each stage are not static. As crop develop-
ment progresses, variables that indicate the status of moisture supply conditions are 
added. At the same time, variables that describe moisture supply of previous stages 
are retained. 

Fifth, this study sets up a framework to assess drought risk on crops on the ba-
sis of feature variables derived from drought indices. It is not necessary to use the 
indices employed and the exact growth stages defined in this study. For another re-
gion in which data is limited for calculating the indices and crop phenology is dif-
ferent from Nebraska, the drought indices that best fit this region can be used as 
substitutes, and growth stages that match crop phenological information in the re-
gion can be defined. 

Sixth, drought risk assessment maps can be presented by combining the data 
layers in a GIS, providing a better visualization of agricultural drought risk 
assessment. 

Additional research is needed to improve the operational assessment capability of 
this model. For example, it is necessary to extend the two groups to multiple groups, 
like non-, low-, moderate-and high-risk groups. It would also be useful to employ 
more sophisticated statistical multivariate techniques to detect the best feature vari-
ables and improve the accuracy of assessment. Remotely sensed data could also be 
included as a feature variable. Using weather information that more accurately rep-
resents the actual climate conditions in the area where the yield is obtained could im-
prove assessment accuracy. Furthermore, it would be better to assess drought risk on 
a spatial resolution that is finer than the county level, because climate and crops vary 
within a county. 

References 

Agriculture Atlas of Nebraska: �977, University of Nebraska Press, ��0 pp.
Camargo, M. B. P. and Hubbard, K. G.: �999, Drought sensitivity indices for a Sorghum Crop, Jour-

nal of Production Agriculture 12(2), 3�2–3�6. 
CARC, Climate Assessment and Response Committee: 2002, http://carc.nrc.state.ne.us/carcunl/ 
CCC, Colorado Climate Center: 2003, http://ccc.atmos.colostate.edu/standardizedprecipitation.

shtml 
da Mota, F. S.: �983, Weather-technology models for corn and soybean in the south of Brazil, Agri-

cultural Meteorology 28, 49–64. 
de Jager, J. M., Potgieter, A. B., and van den Berg, W. J.: �998, Framework for forecasting the extent 

and severity of drought in maize in the Free State Province of South Africa, Agricultural Sys-
tems 57, 35�–365. 

de Jager, J. M., Howard, M. D., and Fouche, H. J.: 2000, Computing drought severity and forecasting 
its future impact on grazing in a GIS, In: D. A. Wilhite (ed.), Drought: A Global Assessment, 
Chap. 20, Routledge, London, pp. 269–278. 



20 Wu & Wi l h i te i n Na tu r a l Ha z a r d s 33 (2004)  

Denmead, O. T. and Shaw, R. H.: �960, The effects of soil moisture stress at different stages of 
growth on the development and yield of corn, Agronomy Journal 52, 272–274. 

Dennett, M. D., Elston, J., and Diego Q, R.: �980, Weather and yields of tobacco, sugar beet and 
wheat in Europe, Agricultural Meteorology 21, 249–263. 

Dietz, T. J., Put, M., and Subbiah, S.: �998, Drought risk assessment for dryland agriculture in semi-
arid Telangana, Andhra Pradesh, India, In: H. J. Bruins (ed.) The Arid Frontier: Interactive 
Management of Environment and Development, Chap. 8, Kluwer Academic Publishers, Dor-
drecht, Netherlands, pp. �43–�6�. 

Duchon, C. E.: �986, Corn yield prediction using climatology, Journal of Climate and Applied Mete-
orology 25, 58�–590. 

Easterling W. E., Warren, S. A. P., Guinan, P., and Shafer, M.: �988, Improving the detection of ag-
ricultural drought: A case study of Illinois corn production, Agricultural and Forest Meteorol-
ogy 43, 37–47. 

Edwards, D. C. and McKee, T. B.: �997, Characteristics of 20th century drought in the United States 
at multiple time scales, Atmospheric Science Paper No. 634, May, �-30. 

Germain, R. J.: �996, Drought management using a geographical information system, M.S. Thesis, 
College of Engineering and Technology, Ohio University. 

Hayes, M., Wilhite, D. A., Svoboda, M., and Vanyarkho, O.: �999, Monitoring the �996 Drought us-
ing the standardized precipitation index, Bulletin of the American Meteorological Society 80(3), 
429-438. 

Hayes, M., Svoboda, M., and Wilhite, D. A.: 2000, Monitoring drought using the standardized pre-
cipitation index, In: D. A. Wilhite (ed.), Drought: A Global Assessment, Chap. �. Routledge, 
London, pp. �68–�80. 

HPRCC, High Plains Regional Climate Center: 2002, http://hprcc.unl.edu/ 
Hill, R. W., Johnson, D. R., and Ryan, K. H.: �979, A model for predicting soybean yields from cli-

mate data, Agronomy Journal 71, 25�–256. 
IANR, Institute of Agriculture and Natural Resources, University of Nebraska – Lincoln, 2003. 

http://ianrnews.unl.edu/static/030��62.shtml 
Johnson, R. A. and Wichern, D. W.: �998, Applied Multivariate Statistical Analysis, 4th Edition. 

Prentice Hall, Upper Saddle River, New Jersey, 8� pp. 
Kulshreshtha, S. N. and Klein, K. K.: �989, Agricultural drought impact evaluation model: A sys-

tems approach, Agricultural System 30, 8�–96. 
Kumar, V. and Panu, U.: �997, Predictive assessment of severity of agricultural droughts based on 

agro-climatic factors, Journal of the American Water Resources Association 33(6), �255–�264. 
Lourens, U. W. and de Jager, J. M.: 1997, A computerized crop-specific drought monitoring system: 

Design concepts and initial testing, Agricultural System 53, 303–3�5. 
Luo, H., Skees, J. R., and Marchant, M. A.: �994, Weather information and the potential for intertem-

poral adverse selection in crop insurance, Review of Agricultural Economics 16(3), 44�–45�. 
McKee, T. B., Doesken, N. J., and Kleist, J.: �993, The relationship of drought frequency and du-

ration to time scales, Proceedings of the Eighth Conference on Applied Climatology, Boston: 
American Meteorological Society, pp. �79–�84. 

Meyer, S. J., Hubbard, K. G., and Wilhite, D. A.: 1993a, A crop-specific drought index for corn: I. 
Model development and validation, Agronomy Journal 86, 388–395. 

Meyer, S. J., Hubbard, K. G., and Wilhite, D. A.: 1993b, A crop-specific drought index for corn: II. 
Application in drought monitoring and assessment, Agronomy Journal 86, 396–399. 

Meyer, S. J. and Hubbard, K. G.: 1995, Extending the crop-specific drought index to soybean, 9th 
Conference on Applied Climatology, American Meteorological Society, pp. 258–259. 

Mjelde, J. W. and Penson Jr., J. B.: 2000, Dynamic aspects of the impact of the use of perfect climate 
forecasts in the corn belt region, Journal of Applied Meteorology 39, 67–79. 



Dr o u g h t ri s k As s es s me n t mo D el f o r ne br A s kA     2�

NASS, USDA, U. S. Department of Agriculture: 2003, http://www.usda.gov/nass/ 
NDMC, National Drought Mitigation Center: 2003, http://www.drought.unl.edu/monitor/spi.

htm 
NDMC/NOAA/USDA Drought Monitor: 2003, http://www.drought.unl.edu/dm/monitor.html 
Nullet, D. and Giambelluca, T. W.: �988, Risk analysis of seasonal agricultural drought on Low Pa-

cific Islands, Agricultural and Forest Meteorology 42(2–3), 229–239. 
Pitter, R. L.: �977, The effect of weather and technology on wheat yields in Oregon, Agricultural 

Meteorology 18, ��5–�3�. 
Pochop, L. O., Cornia, R. L., and Becker, C. F.: �975, Prediction of winter wheat yield from short-

term weather factors, Agronomy Journal 67, 4–7. 
Redmond, K. T.: 2002, The depiction of drought: A Commentary, The Bulletin of the American Me-

teorological Society 83(8), ��43–��47. 
Reibsame, W. E., Changnon, Jr., S. A., and Karl, T. R.: �99�, Drought and Natural Resources Man-

agement in the United States: Impacts and Implications of the �987–89 Drought, Westview 
Press, Boulder, Colorado, �74 pp. 

The State of Nebraska Drought Mitigation and Response Plan: 2002, http://carc.nrc.state.ne.us/
carcunl/docs/planning.html  

Sundt, N.: 2002, Agriculture and climate change: A hard row to hoe, http://www.globalchange.
org/featall/2000winter2.htm

Starr, T. B. and Kostrow, P. I.: �978, The response of spring wheat yield to anomalous climate se-
quences in the United States, Journal of Applied Meteorology 17(8), ��0�–���5. 

Svoboda, M., LeComte, D., Hayes, M., Heim, R., Gleason, K., Angel, J., Rippry, B., Tinker, R., Pal-
ecki, M., Stooksbury, D., Miskus, D., and Stephens, S.: 2002, The drought monitor, The Bulletin 
of the American Meteorological Society 83(8), ��8�–��90. 

Thompson, D. and Powell, R.: �998, Exceptional circumstances provisional in Australia – is there 
too much emphasis on drought? Agricultural Systems 57(3), 469–488. 

Thompson, D. R. and Wehmanen, O. A.: �979, Using Landsat digital data to detect moisture stress, 
Photogrammetric Engineering and Remote Sensing 45(2), 20�–207. 

Thompson, L. M.: �988, Effects of changes in climate and weather variability on the yields of corn 
and soybeans, Journal of Production Agriculture 1, 20–27. 

Walker, G. K.: �989. Model for operational forecasting of western Canada wheat yield, Agricultural 
and Forest Meteorology 44, 339–35�.

WRCC, Western regional Climate Center: 2003, http://www.wrcc.dri.edu/spi/spi.html 
Wilhelmi, O.: �999, Methodology for assessing vulnerability to agricultural drought: A Nebraska 

case study, Ph.D. Dissertation, University of Nebraska-Lincoln, �36 pp. 
Wilhelmi, O. and Wilhite, D. A.: 2002, Assessing vulnerability to agricultural drought: A Nebraska 

case study, Natural Hazards 25, 37–58. 
Wilhite, D. A.: �982, Measuring Drought Severity and Assessing Impact, International Symposium 

on Hydrometeorology, American Water Resources Association. 
Wilhite, D. A. and Neild, R. E.: �982, Determining drought frequency and intensity on the basis of 

plant response: Wild hay in the sand gills of Nebraska, U.S.A. Agricultural Meteorology 25, 
257–265. 

Wilhite, D. A.: �992, Drought, Encyclopedia of Earth System Science 2, 8�–92. 
Wilhite, D. A.: 2000, Reducing societal vulnerability to drought, In: D. A. Wilhite (ed.), Drought: A 

Global Assessment, Chap. 5�, Routledge, London, pp. 295–298. 
Wu, H.: 2002, Agricultural drought risk assessment: An operational model for Nebraska, Ph.D. dis-

sertation, University of Nebraska-Lincoln, �27 pp. 
Xu, M.: �996, Wheat grain quality as related to climate: Evaluation and model development, Ph.D. 

dissertation, University of Nebraska–Lincoln Dissertation, �2� pp.


	An Operational Agricultural Drought Risk Assessment Model for Nebraska, USA
	

	tmp.1249998491.pdf.kuM8k

