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Diffuse energy propagation on heterogeneous plates: Structural
acoustics radiative transfer theory

Joseph A. Turner® and Richard L. Weaver
Department of Theoretical and Applied Mechanics, 216 Talbot Laboratory, 104 South Wright Street,
University of lllinois at Urbana-Champaign, Urbana, lllinois 61801

(Received 2 January 1996; accepted for publication 9 July )1996

The propagation of diffuse energy on an unwetted flat plate with attached heterogeneities is
examined using a statistical, multiple scattering approach. The statistically homogeneous
heterogeneities lightly couple the membrane and flexural waves. The problem is formulated in terms
of the Bethe—Salpeter equation, which governs the field covariance. It is reduced to a radiative
transfer equation in the limit that the attenuations per wave number are small, i.e., when the
heterogeneities are weak. This radiative transfer equation governs the diffuse energy propagation as
a function of space, time, and propagation direction. Solutions of the radiative transfer equation are
presented for the simple case of attached heterogeneities in the form of delta-correlated springs
excited by an extensional point source. The results show the evolution of the extensional, shear, and
flexural energy densities across the plate as a function of time. A similar approach is expected to
apply to the more complicated case of submerged complex structure$99® Acoustical Society

of America.

PACS numbers: 43.40.At, 43.40.)€BB]

INTRODUCTION conduction (diffusion) equation. The validity of SEA is
based on the assumptions that the fields within substructures
Numerous difficulties are often associated with theare fully equipartitioned. The energy is then assumed to dif-
analysis of wave propagation on complex submerged shellsuse between substructures. In order to satisfy the SEA as-
Heterogeneities attached to the shell typically scatter the ersumptions each substructure must usually be highly reverber-
ergy propagating on the main structure. The scattered energyht with many excited modes. SEA has been used most
subsequently propagates into the surrounding fluid, into theuccessfully to obtain average energy distribution informa-
internal structure, and into other propagation modes. The daion in the steady state. The range of applicability of SEA
scription of the energy propagation on such structures is thusas been the subject of considerable research and debate.
not trivial. Langley*® recently developed a wave intensity analysis
Complicated structures have three frequency regimegwIA) technique which relaxes the isotropy of energy as-
which are distinguished for purposes of simplifying analysis.sumption required by SEA. Essentially, he expanded the en-
In the low-frequency regime, local heterogeneities are muclergy density angular distribution in terms of a finite Fourier
smaller than a wavelength and have little effect on responseseries. The first term of his expansion is then the SEA result.
Finite element analyses are successfully used because thggher-order Fourier components are corrections to the SEA
structure can be accurately described by its lowest fevgolution. Langley still used the steady-state diffusion equa-
modes. In the high-frequency regime, energy deposited otion model although he recognized its limitations for highly
the shell surface is quickly shed back into the fluid beforedamped structures and for describing behavior near sources.
much scattering can occur. Here, ray methods are particiiffuse fields have also been discussed by Weaver regarding
larly successful. In the intermediate frequency range, scattetinwetted flat plate$/ elastic half spacésand submerged
ing effects are important and must be included in any dethin shells®
scription of the shell response. In this regime finite element  |n this article, which expands on previous wdfla sta-
methods fail because of the high number of modes necessatigtical approach is used as well. The attached heterogeneities
to model the structure accurately. For this reason, statisticalre assumed to couple the membrane and flexural waves
methods have been developed to describe energy propadaghtly. The diffuse plate energy propagation is examined
tion in this complicated frequency regime. using a multiple scattering approach. The problem is formu-
Statistical approaches to the vibration and acoustics ofated in terms of the Bethe—Salpeter equation which governs
complex systems are not new. Statistical energy analysithe field covariance. The Bethe—Salpeter equation is then
(SEA),! which has its roots in the 19668,was perhaps the reduced to an equation of radiative transfer in the limit that
first rational approach for the examination of the ensemblehe heterogeneities are weak. The derived structural acoustics
average vibrational behavior of such structures. The energsadiative transfer equatioBARTE) is the main result pre-
flow through a structure is modeled by a steady-state heajented. This SARTE governs the propagation of the specific
intensities of the diffuse extensional, shear, and flexural

dCurrent address: Fraunhofer Institute for Nondestructive Teslizi@), W_ave'types as a funCti'On Of' spage, time, and propagation
Dept. GR., Building 37, University, 66123 Saarbken, Germany. direction. The diffuse fields in this case are the result of
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scattering from random heterogeneities. This is in contrast to Z
the usual case in reverberation room acoustics and SEA in
which the incoherence follows from irregular reverberant re-
flections from the boundaries of substructures. For early x
times, locations near sources, or for highly damped systems,l
the SARTE reduces to a single scattering equation. At late
times, or far from sources, the radiative transfer equation 7x)
reduces to a time-dependent diffusion equation. The main
assumption used in the derivation of the SARTE, that the fig. 1. Infinite flat plate with added spatially varying impedarix).
heterogeneities are weak, may limit the range of applicabil-
ity. However, the scatterers are only assumed weak in the STOCHASTIC PLATE EQUATION
sense that mean-free propagation paths are long compared to
a wavelength. This aspect is more extensively addressed g‘h o
the body of the article.

Rybak used a similar approach to describe the one
dimensional steady-state propagation of weakly couple
flexural and longitudinal energy:'? However, he reduced

Consider an unwetted flat plate with thicknelssas
wn in Fig. 1. The plate has in-plane displacemapiand
u, and out-of-plane displacemewt in the z direction. Ran-
dom spatially varying complex impedances are attached such
hat extensional, shear, and flexural motions are all coupled.

; e The added impedances are assumed to have spatial distribu-
the Bethe—Salpeter equation to a steady-state diffusion equas . and couplﬁng strengths with known first- al?]d second-

tion directly without the intermediate radiative transfer step. -
It is the radiative transfer equation with retained time de enp rder statistics.
q P The motion of the plate is described by the Green’s dy-

dence and shear modes that we suggest sheds new light %icG”—(x,x’;t) which defines théth Cartesian displacement

the study of complex shells. response ax due to an excitation in thggh Cartesian direc-

A brief clarification is also made at this time. The .. .. : .
X S ion (i,j=1,2 li ', where the v K i WO-
SARTE describes the energy propagation in terms of a quant—o (1,j=1,2,3 applied at’, where the vectox is a two

tit lled ific intensity. It is defined as the enerqy fi Xdimensional vector Xy ,x,) defined within the plane of the
y calied specitic intensity. 1 1S delined as the energy 1iu plate. The temporal Fourier transform pair®fis defined as
per unit time pemplanar angleand is a scalar quantity. Lan-

gley uses the term intensity in his work as willHowever,
his intensity is a vector quantity which is identified here as
the energy flux vector.

In Sec. | the problem of interest is outlined and pertinent
guantities defined. Section Il contains a discussion of the
Bethe—Salpeter equation which governs the energy density. The temporally Fourier transformed coupled membrane-
The Bethe—Salpeter equation is reduced to a radiative tran§1ate equations for this plate are
fer equation in Sec. Ill. In Sec. IV a numerical solution
method is discussed. Finally, results for the simple case of
delta-correlated springs are presented in Sec. V.

+ o )
0

1 [+ )
Gij(X,X’;t):ﬂ J_ Gjj(x,x";w)e ' dw. (1)

[Zki(X%, @)+ Zi]1Gij (X, X ;@) = 8¢ 6% (X" —X). 2
The plate operatory,;, is given by

[ % 1-v * (w+ie)? 1+v &2 0 ]
K2 axd ch 2 9Xq O%,
o 1+v 32 P 1-v ¢ (wtie)? 0
o 2 axq d%, xa 2 X c; &)
h2 (w+ie)?
0 0 — V- >
12 o

wherec§=E/(1— v?)p defines the extensional, or “plate” modes. It is assumed here to be a local oper&tdhe fluc-

wave speed anit is the elastic modulusy is the Poisson’s

tuations of the added impedance are assumed small such that

ratio, andp is the volumetric density of the plate material. the average added impedancg’=(Z), and covariance,

2
The shear and flexural wave speeds efre (1— v)cy/2 and

(Z(x)—Z%(Z(y)—Z9), are the only statistics of importance.

c? = hwc, /12, respectively. The frequency dependence ofThe brackets(), denote an ensemble average. The covari-

c¢; will remain implicit throughout. An infinitesimal imagi-
nary part,e, has been added to the frequeneyo emphasize

that the transform, Eq1a), is defined for Infw}>0.
The random impedance paramefg[(x,w) is a function
of position and frequency and couples all propagatiorHere, W is a spatial two-point correlation function. For the
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ance of the heterogeneities is further assumed to have the
following form:

((Zayf )= ZA)(Z5p(y) = Z35)) =

(4)
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’

form shown in Eq.(4), it has been assumed that the distri- P« 459 82(p+q' —q—p’)
bution of impedance orientation is independent of the spatidi ' '

distribution. The assumption of statistical homogeneity is 1 N ,
evident in the form ofVV which is a function ok-y only. The “2n? J Jf f d* d°x" d%y d’(Gap(x,X")
fourth-rank tensoE and the functiorwW will, in general, also

be functions of inner frequency. X G (y,y")ye  PxriaxFipty=ia’y’, (6)

Equation(2) is a stochastic partial differential equation
because of the random nature £f It has deterministic op-
erator,.%,;, characteristic of the decoupled membrane-plate 1 o
equations. It also has the random operafg, Equation(2) E= (2n)? f f d’q d?p YA iHI 4 81adip - )
is of the form considered by Fristhfor the propagation of
waves through random media. Previously, the mean plate The stochastic partial differential equation given by Eq.
response,(G), was derived by solution of the Dyson (2) is of the form discussed extensively by Frisch for wave
equation'® Scattering attenuations due to mode conversiorPropagation through random medfaFrom his treatise, it is
effects were calculated in the limit of weak heterogeneitiesclear that there are two fundamental equations necessary for
Our emphasis here is on the diffuse energy propagation arifie present work. The Dyson equation governs the mean re-
thus the covariance of the Green's dyadi§G*). This  sponse{G), and was considered previousRThere it was
quantity is related to the acoustic energy dedsitfand is  shown that attenuations due to scattering arise because of the
governed by the Bethe—Salpeter equatiotf. interaction of the propagating waves with the heterogene-

An important distinction must also be made regardingities. These attenuations are not the result of true dissipative
the two different time and length scales of this problem. TheProcesses which would extract energy from the plate. In-
short time behavior of the plate displacements, when Fouriegtead, these scattering attenuations are the result of a loss of
transformed, becomes a function of the inner frequengy, coherence of the field due to scattering. One particular wave
present in the coupled membrane-plate operator(BgThe  type propagating in a given direction will scatter its energy
much slower time scale associated with the evolving diffusd0 other propagation types and other propagation directions.
energy Fourier transforms to an outer frequen@y,Simi-  This result will be illustrated here as well.
larly, the two length scales of this problem transform to an ~ Here we begin with the Bethe—Salpeter equation, which
inner wave vectomp or g (with magnitude of ordew/c), and ~ governs the covariance of the Green’s dyad®G*).****In
an outer wave vector denoted By spatial transform space the Bethe—Salpeter equation is

Thus, the spatial Fourier transform of the covariance of  pa | 1ga  _appp 52(p—q)
the Green’s dyadic is properly used to represent the diffuse PTA" Ja+ta i % jp+a
acoustic ener densityE, as has been previousl
discussed? Thgyspatiallyyand temporally transfgrmed di)f/- +f d’s f’l“ggﬂ giAkKlﬁsiA :iAIHquM'
fuse energy density is defined as ®

The energy density is given in terms of this quantity by

where
E(Q.4)= f 0% &2 NG, (xX'): Gl (X X)), T 3= (Gusy(P)) (Gi(PHA)), ©

) is the double mean Green’s dyadic. The intensity operator,
K, describes the interaction of the energy with the heteroge-
geities. Like the Dyson equatidfithe Bethe—Salpeter equa-
tion is exact and includes all multiple scattering effects.
dlowever, the Bethe—Salpeter equation is a true integral
equation in the sense that a spatial transform does not sim-
plify the integral nature of the equation as is the case with
the Dyson equatiot?!® Tractable solutions are often real-
ized only by approximation.

The results for the mean plate response were derived
assuming that the heterogeneities were not large, i.e., that the
attenuations per wave number were smalthis same ap-

1. BETHE=SALPETER EQUATlON proximation is used here as well. The Keller
approximation’,’ also called the first-order smoothing

The relationship between the acoustic energy densitPProximation® (FOSA) or Bourret approximatioft,” allows
and the covariance of the Green’s dyadi8G*), allows us the intensity operatoi, to be approximated &'
to proceed with the derivation of an equation that governs  py 55 _yg \7\/( —s) (10)
this diffuse energy as a function of space, time, and propa- P*AK IstA— k=l P=S).
gation direction. In Eq. (10), W is the spatial Fourier transform of the two-

We begin by defining the spatial Fourier transform of point correlation function discussed above. The assumption
the covariance of statistical homogeneity appears\ivt which is a function

where the* denotes a complex conjugate and also denote
the Green’s dyadic evaluated at-(). It has been implicitly
assumed in Eq5) that the energy has been bandpass filtere
over a frequency bandyw such thatw>Aw>Q."* This as-
sumption is equivalent to the assumptions applied in the der
vation of optical radiative transfer equatiofts:®

3688 J. Acoust. Soc. Am., Vol. 100, No. 6, December 1996 J. A. Turner and R. L. Weaver: Diffuse energy propagation 3688



of p—s rather than the individual wave numbers,ands. Green’s dyadic, will dominate the integral of Ed.4).° In

The fourth-rank tensdg is in general complex if the hetero- the limit that a<w/c and A<wlc, sI' can be equivalently
geneities have internal losses. This approximation is oftemeplaced by the following:
termed the “ladder approximation” in reference to the

AT P (A AVE & AR 0 2
shapes of the associated diagrams which can be used to rep- S & is-a=Re(54)5,5,5;5 (|5 —pe) + Ry(S.A)

resentH. 2 a aa 0
X (6,45~ SaSs) (0 —SiS) (|9 —
The ladder approximation implies a limitation on the (9as=34%5) (21 =55 (Isi=p2)
range of validity of the subsequent analysis. It has been as- +Ri(5A)2,252i2/8(|s| — p?), (15)

sumed that the scattering is weak such that the scattering . _ ) n.
attenuation per wave numberlk, is small. The quantity/k ~ Whered; is the two-dimensional Kronecker delta asit, of
is a critical parameter in localization studies. In fagit~1is ~ COUrse, in thex; ,x,) plane. The inner wave numbers of the

the loffe—Regel criterion for the onset of Anderson Pare plate are defined by

. . 18,19 . .
localization. Thu_s, .the use of. the_ ladder apprOX|mat|pn p2=w/cp, pg=w/cs, p?zw/cf. (16)
precludes any prediction of localization. However, the crite-

rion a<<k is generally not very restrictive for most applica- The extensional, shear, and flexural energy propagators,
tions. R, are defined in terms of the outer frequenfy,and outer

A somewhat simpler form of the Bethe—Salpeter equawave numberA, by
tion is obtained by definition of a new quantit®, which

defines the source of the covariance R.(3A)= 7A7Cp/2“’
€ Ke—iS:A+iQ/cy’
S’n‘w(p,A)EJ d%q (T )it praiHfaha 9 (D 27Cs/ w(1—v)?
R(5A)= —=———F+—, (17
In Eq. (11), the inverse double mean Green’s dyadic?, is s Ks—iS A+iQ/cg
defined as 27(Ch )
~ mCsl W
BT 1, =(G(p)) L HG* (p+A)) i (12 Ri(S8) = anZi2 7 e 1A Ti072c ]

The energy density is given in terms of the quan8tpy The energy attenuations, resulting from scattering, are

1 twice the corresponding displacement attenuation, The
E(Q,A)= 2m)? J d?p (THE s Sk(P.A)S.. (13 energy propagators contain the group speeds for the respec-
tive propagation modes, as expected.

With the definition ofS given by Eq.(11), the Bethe— With the approximation given by E@15), Eq.(14) now
Salpeter equation can be appropriately contracted to the fobecomes
lowing form:

Sh(PA)= 8, t zwdé{p“Kaé‘”/C"é 5:585(sA)
Sh(PA) = Syt | €75 DKy (T S50, T Jo TR ety R
(14 X Rel(84) + BAK (5,5~ 8,8,)

As noted previously? scattering problems such as this °
one have three naturally arising length scales. The inner and X (8;—58)S (s A)R(5,4)
outer wave numbers are/c and A, respectively, and the 350/c A
attenuation isx. The assumption of weak heterogeneities im- + gfﬁKggw/ciﬁ(S,A)Rf(S,A)}- (18

plies thata<<w/c as was used previousty The weak hetero-

geneity assumption also implies that the spatial variation in ~ Equation(18) is a radiative transfer-type equation. The
the diffuse energy varies much slower than the inner wavéource of covariance, is equal to the primary source plus a
numberA<w/c. In the next section these two limits are usedsecondary source. The secondary source, in scattered direc-
to reduce the contracted version of Bethe—Salpeter equatiofon p, is given by an integral over all incident directioas
Eq.(14), to a radiative transfer equation. The more restrictiveThis integral describes the energy that has scattered from
assumption thah<a can be used to further reduce the ra- other directionss into directionp.

diative transfer equation to a diffusion equatién. Using the same approximation, H35), the energy den-
sity becomes, in direct notation,

1 2m YA .
lll. STRUCTURAL ACOUSTICS RADIATIVE TRANSFER E(Q,A)= 2n)? fo dp{lEE S(Ppg, A)Re(P,A)
The Bethe—Salpeter equation, E@.4), governs the (1=PP) oy 2.0 N
propagation of the energy density. It is an integral equation Li1-p)- (PP, A)Rs(P, A)
without genera! analytical solutions. However, the _mteg_ral +§jS(;3p?,A)Rf(|6,A)}, (19)
over the magnitude of the wave number can be simplified
within the context of the assumption of weak heterogeneitiesvhere | is the two-dimensional identity dyadic

The poles ofI', defined in Eq.(9) as the double mean (I =X;X;+XX,).

3689 J. Acoust. Soc. Am., Vol. 100, No. 6, December 1996 J. A. Turner and R. L. Weaver: Diffuse energy propagation 3689



V-pl(r.t,¢)+c !

S(p) = PPSe(P) + (1= PP)Sy(P) + 2ZS¢(P). (20

The other components & do not contribute to the energy
density, Eq.(19). These components describe the coherent
interference between the three wave types. Since each wave
type has a very different wave speed, such coherencies be-
come unimportant after a propagation length on the order of
the wavelength. These componentsSaherefore do not ap-
pear.

Specific intensities are defined in terms of the source

function as

IezseReCpa I's=SsRsCs, 11=StR¢2¢s. (21)

The specific intensities correspond to the energy flux per unit
time per planar angle They describe the energy density
propagating in a particular direction.

The definition of the source function, these specific in-

tensities, and the inverse temporal and spatial transforms of
the propagators, Eq$l7), allow Eq.(18) to be rewritten in
its most familiar form3°

al(r,t,¢)
T+l(r,t,¢)

2w
fo P(¢,¢")I(r t,¢")de’, (22)

where ¢ and ¢’ are now used to represent the propagation
directionsp and s of Eq. (18). The Stokes vector, is a
column vector containing the three Stokes parameters de-
fined in EQ.(22), | ={l,ls,I{}". The group speed and scat-
tering attenuation matrices are

. 0 0 ke 0 O
c=|0 ¢ 0 =0 K O (23
0 0 2Cf 0 0 K

Note that there are no interference terms as in the elec-

tromagnetic or elastic cas&s'®?This is due to the dispar-

ate wave speeds of all wave types. The structural acoustics

(d)

FIG. 2. Diffuse extensional energy densify,, att=1,2,4,7 extensional
mean-free times, respectivelig)—(d), to an incident extensional wave
launched in thex, direction.

Equation(18) can also be manipulated into a more fa-
miliar form of radiative transfer equatidi:!®?° First, the
source function is expanded in terms of its three nonzero
components

3690 J. Acoust. Soc. Am., Vol. 100, No. 6, December 1996

radiative transfer equatioSARTE) given by Eq.(22) de-
fines the propagation and scattering of flexural and mem-
brane energy as a function of space, time, and propagation
direction. It includes all multiple scattering effects and is
valid within the limits of its primary assumption that the
scattering is weak, before the onset of localization. Radiative
transfer equations have been studied extensively for astro-
physical and electromagnefit’® heat transfef! and ultra-
sonic application&?

The scattering matrixR(¢,¢'), has components
P1i(,¢') = (mC20) Eod b, ) Wed b,"),
Pio ¢.¢p") = (mC22050) Eod b, )Wed .0"),
Pio(b.¢") = (mC2ACiw) Eor( . ) Wer( b,6"),
Pa(b,¢') = (mC2620) écd b, )Wed ,00'),

P b.¢') = (mCpl2ciw) g b, ¢ Wed b, 0"), (24
Pasl b ¢') = (mCylAcicro) i b )Wsi( b, ¢,
J. A. Turner and R. L. Weaver: Diffuse energy propagation 3690



Pay(b,¢") = (mc3lac?w) Erel b, Wil 6,"),
PaA b, ¢') = (A Clw) Ere( b, )Wis( b, '),
Pas( b, ¢') = (mCH8Ciw) i, )Wis( b, "),

These scattering matrix components are defined in terms of
scattering function&(¢,¢’), which is an inner product og,
and the spatial Fourier transform of a two-point correlation
function, W(¢,¢').1° The required scattering functions are
given by

Eed @, 0")
fed b, p")=
Eei( P, 9")

III

U)'c) T
III

l
III

'U)'U)

=35 3(8ap—PaPp) (8,5~ 5,85), (25

Esi( 6. =(1-D):

O pomet

ﬁ~3(5aﬁ papﬁ)v

z_
z

&, ¢ )=EE (1-)=3E 18,5~ 5,55),
Ere( B, ¢ )=5E =B85,
&b, )=5E =353,

with a sum over all indices,3,7,6=1,2. The unit vectors
andp are the incident and scattered propagation direction
defined by¢' and ¢, respectively. The heterogeneities con-
sidered here are oriented with transverse isotropy suctPthat
is a function only of®=¢—¢'.

The spatial Fourier transforms of the specific two-point
correlation functionsyV, are defined in terms of the incident
and scattered wave types and direction€ as

Wed @) =W(PpS—5pd), Wed®)=W(Pp3—5p),
We((®)=W(Pp3—35p}),

\Z/se(®)=\zv(|ﬁp2—§p2), \7v55(¢>=\7wﬁp2—sp2>,(26)
Wei(@)=W(ppJ—35p?),

Wie(®) =W(PP{—3p2),  Wis(P)=W(pp?—3p2),
Wir(®) =W(pp)—5p?).

As one might expect, the scattering matRxis related
to the intensity attenuation matrix. It is easily shown that

2w
Ke=2ae= | [Pu(®)+ Poy( @)+ Pyy(@)] db,

2
Ks=2ag= . [P P)+Pox(P)+Ps(P)] db, (27)
ki=2a1= | [P1®)+ Pos®) + Pg(B)] dD,

0

3691 J. Acoust. Soc. Am., Vol. 100, No. 6, December 1996

(d)

FIG. 3. Diffuse shear energy density,, att=1,2,4,7 extensional mean-
free times, respectivelgg)—(d), to an incident extensional wave launched in
theX, direction. The shear energy density has been scaled by a factor of 2.86
when compared with the extensional energy density of Fig. 2.

as expected® Should the heterogeneities have internal de-
grees of freedom, such as those considered by the recent
fuzzy structures literatur&?*an additional dissipative ma-
trix will arise which will account for those losséS.

J. A. Turner and R. L. Weaver: Diffuse energy propagation 3691



The energy density is given in terms of the Stokes pa-
rameters by

E(r= [ Tl d)le, +14(rtd)ic,
0

+14(r,t,¢)/2c¢] dep. (28

The energy flux vector(called the intensity by
Langley*®) is similarly given by

2
F(rvt): 0 {le(r,t,¢)+|S(r,t,¢)+|f(r,t,¢)}
X{X cos ¢+Yy sin ¢} de. (29

In the diffusion limit, the energy density and energy flux
vector are further found to be related By —DVE, where
D is the appropriate diffusivity.

Equation(22) defines the total intensity, both coherent
and diffuse. The interest here is primarily in the diffuse in-
tensity. An equation for the diffuse intensity alone can alsc
be derived. The total Stokes vector is first separated into it
coherent and diffuse parts as

I=lc+1q. @g ©®

The coherent intensityl,., is the solution of Eq(22)
with the integral term removed. For a point excitation of all
three wave types the coherent solution is given by

loe™ %"e! 8%(1 — CotP) 8(p— 2)
— {190 82(r — ctP) B( p— ¢2)
19620t 82(r — 2¢,tP) S(p— &)

, (31

le

wherel?, 12, and1? are the incident extensional, shear, and (c)
flexural intensities, launched in the respective directigfs
¢4, and ¢;-

Substitution of Eq.(30) into the SARTE results in an
equation governing the diffuse intensity only

gﬁ-VI_(r.t,¢)+<=:=1(r,t.¢>+%L(r,t.¢)

2
=fo SP(¢h, ¢ )I(r,1,¢") dep’

+We($, po)e o e 5%(r —cythe) @

O\ —Cukit o2 ~0 FIG. 4. Diffuse flexural energy densitg, , att=1,2,4,7 extensional mean-
+W¥s(o, d’s)e S8 (r— Cstps) free times, respectivelfg)—(d), to an incident extensional wave launched in

O\ - DCoket <2 ~0 the X, direction. The flexural energy density has been scaled by a factor of
+ lI’f( ®, ¢f Je s (r - 2Cftpf)- (32) 171 when compared with the extensional energy density of Fig. 2.

The three source terms at the end of B) are the coherent _ _ _ _ _
energies from each of the incident propagation types thafyPes. Their amplitudes contain the scattering functions of
have singly scattered into diffuse energy of all propagationthe scattering matri® and are given by
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CpP11(¢,¢g) resulting equation is then successively multipliedéy' %,

P 019 c.P 0 for I=_—N-~-+N, and integrated over the_ unit ci_rcle. The
Ve($de)=le) Pl ¢e)0 ' result is a set of Bl+3 coupled ordinary differential equa-
2¢iP3i( ¢, de) tions

CoP1A &, b2
V(=19 CsPok( .0 |, (33
2¢PaA b, b2)

P13, 9?)

Li(A) —[c(A1—iAL)i/2]1;1(ALt)

d
Cx—2mCPi+

—[c(A1+iA2)i/2]1;11(AL)

= .efcpt(:cefiAl), Vi=—N---+N. 3
V(.89 =1%] CsPod 4.6D) Yol J 37
2¢iP3o( &, ¢?) The above coupled, time-dependent ODEs can be easily
solved at discrete values of the outer wave number compo-
IV. SOLUTIONS OF THE SARTE nents. A number of solution methods are possible with the

constraint that the diffuse intensities are zerd=a0. Once
Simple closed-form solutions of radiative transfer equa-the solution to Eq(37) has been obtained in the spatial Fou-
tions are not known for general scattering matrite€.  rier transform domain, an inverse fast Fourier transform can
Therefore, numerical solutions are often used for their solube used to return the solution to the, (x,) domain.
tion. The case of an incident extensional point source
launched in thex, direction is now examined. The SARTE
for this problem is given by Eq32) above with the shear V. RESULTS FOR DELTA-CORRELATED SPRINGS

and flexural incident diffuse sources set to zero. ThUS, we A Simp|e examp|e is now presented in order to illustrate

seek the solution of a result typical of Eq(34). The case considered previously
9 of heterogeneities in the form of delta-correlated linear
cp-VI(r,t, ) +ckl(r,t,¢)+ 3 I(r,t,¢) springs attached to a rigid groutds examined in the con-
text of diffuse energy propagation. This type of heterogene-
2m ity does not have internal degrees of freedom. Thus, the at-
= fo cP(¢.¢")I(rt,¢") do’ tached impedances act as lossless scatterers which
redistribute the diffuse energy between the propagation
+\ye(gb,O)e*Cp"et&z(r—cpt>”<1). (34 modes and directions. These scatterers do not remove energy

from the plate. For this case the scattering functidji®),
used in the definition of the scattering matfkq. (24)], are
very simple and given BY

—ic(p-A)I(At,¢)+ckl (AL, ¢)+ % (A t,¢) §ee(¢)=0'¥(1+2 cog ®)/15A,

Equation(34) is first spatially Fourier transformed giv-
ing

Eod D)= £ D) = ok3(1+2 sirf §)/15A,

2m
-, epes s e a0 ol ®) = £1o(®) = oKP/15, 39

—I—\Ife(gb,O)e_Cp"eteiCpt(A"zl), (35 §SS(CI))=UF(1+2 cog ®)/15A,

whereA is the outer wave vector and sp:atial trgnsform pa- gsf@):,gfs(q)):gﬁ/l@h gff(q>)=3gﬁ/15A,
rameter(with components\; and A, in the x; andx, direc-
tions). The integral term of Eq.35) is simplified by expand-
ing the ¢ dependencies df, P, and¥ in terms of Fourier
series as

wherek is the dimensionless average spring stiffnesss

the number density of the springs, aAdis the plate area.
The assumption that the spring positions are delta correlated
implies thatW(®)=A/(2)? for each scattering type.

o 8" As before, parameters are chosen for this example which
P(#.¢ )—le_N Pe ; are relevant to submerged thin shells. A dimensionless exci-
tation frequencym=wh/c,, is defined which is unity for

+N

N N frequencies of the order of the coincidence frequency. Our
|_(A,L¢)=__EN 1i(A,Hel?, (36) interest is in frequencies near the “ring” frequency, where
= the cylinder’s circumference fits one extensional wavelength.
N B In this case,wng=C,/R with R the cylinder radius. Thus
Vel ¢):j > Yeel?. assuming R/h=100 we use an excitation frequency,

=N w=0.01. The total added stiffness is assumed to equal the

From the definition of the energy density given by Eq. breathing mode stiffness for whiahk=10"%/h2.1° Finally,
(28), we see that thg=0 component of thé expansion is the plate is assumed to be a 5-cm-thick steel plate with
used to calculate the energy density. spring densityo=1.15 springs per square meter which im-

These expansions are substituted into 8%). The or-  plies thatk=0.035. These density and stiffness parameters
thogonality of the Fourier terms removes the integral. Theresult in significant scattering attenuatidfis.
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The numerical scheme given in Sec. IV was used toThe singly scattered energgxtensional to sheadominates
reduce the SARTE, Eq34), to the system of coupled ODEs at early times and becomes less important at later times.
given by Eq.(37). Equation(37) was then converted to an Finally, the diffuse flexural energy evolution is shown in
eigenvalue problem governing the vectdr={l_,..., Fig. 4. The flexural energyg, has also been scaled by the
| _on-...l N}, composed of the Fourier components of the spemodal density ration¢(w)/ne(w) = Cf,/ZCfZ. However, in this
cific intensities. The eigenvalues and eigenvectors describease, for the inner frequency chosen, the scaling is by a fac-
the time domain evolution df. The eigenvalue problem was tor of 171. The majority of the energy in the incident exten-
solved withN=9 and with 64 Fourier components for both sional wave is scattered into the flexural wave type. This
outer wave vector directions. The solutions, obtained at distesult is also evident in the “tail” immediately behind the
crete values of\; and A,, provided time-wave vector do- Propagating source. The extensional source sheds a large
main solutions which were then numerically inverse fastdmount of its energy immediately into the more densely
Fourier transformed back to the time-space domain. Resulfdacked flexural degrees of freedom. _
of the extensional, shear, and flexural diffuse energy densi- 1his diffuse energy propagation can be examined for
ties, E., Eg, and E; as a function of space and time are V&Y late times as well. The energy in each propagation type
presented. The energy densities shown are obtained from tfi S€€n to slowly spread outward from the center of the plate
corresponding specific intensities according to @§). The ~P€coming more isotropic. At late times or far from the
results are shown at times given in terms of a dimensionlesiUrce: the appropriate equipartitioning of energy is also ob-
time,T=tcpxe, such that time is measured in units of the Served as expectéd.
mean-free time of an extensional wave before scattering.

Figure 2 shows the evolution of the diffuse extensionalV!- DISCUSSION
energy densityk,, at timest=1,2,4,7. A section of the plate The propagation and scattering of flexural and mem-
near the origin is shown. The incident extensional wave hagrane waves on a heterogeneous plate has been formulated
been launched at the origin in the direction. Figure 2a) is  using radiative transfer theory. The structural acoustics radia-
the result after one extensional mean-free tivel. The tive transfer equatiofSARTE) was derived from consider-
large peak seen in Fig.(® is the singly scattered energy. ation of an appropriately averaged wave equation. The pa-
The diffuse energy can be imagined as a sum of multipleameters of the SARTE are given in terms of the statistics of
scattering events. At early times, single scattering will domi-the attached heterogeneities. The SARTE was derived using
nate the diffuse energy. This concept is evident in Fi@.2 the assumption of weak scattering which is not expected to
Most of the diffuse energy at this early time has been scatbe very restrictive, but does not predict the development of
tered only once. The trailing envelope is the remaining scatAnderson localization.
tered energy. In Fig. (), the diffuse extensional energy at However, the results for the simple example considered
t=2, the singly scattered energy is much smaller and is @re very illustrative. The launched extensional wave was
smaller fraction of the total diffuse energy. The singly scat-Seen to lose its energy, because of scattering, into other di-
tered energy moves at the speed of the incident intensity ani@ctions and propagation modes. The high modal density of
decays exponentially. In Fig.(®, the result at four exten- the flexural degrees of freedom acted as an energy sink to the
sional mean-free times, the diffuse extensional energy is spadajority of the incident energy deposited in extensional
tially much smoother. The singly scattered energy is nowform. The diffuse energy was seen to evolve from early

barely visible—only a small fraction of the total energy is in {imes, when it was dominated by the singly scattered energy,

the singly scattered form. The diffuse energy is now domi-C lateé times, when the energy became more uniformly dis-

nated by energy that has scattered two or more times. ThtéibUted and isotropic. The approach to the limit of energy
result aft=7, shown in Fig. 2d), shows little evidence of the equipartitioning between the extensional, shear, and flexural
singly scattered energy. Most of the extensional energy noW'0d€ tyPes at late times was also observed as expected.

is contained in the slowly spreading diffuse envelope which Tt?e abc()jwfa analysis pr0\|/|dest a [nethciﬂo[[ogyltlzjat can
will become more isotropic as time progresses. now be used for more compiex structures that Include spa-

The evolution of the diffuse shear energy density, is tially varying curvature and more complex attachments. En-

shown in Fig. 3 for the same time steps of Figi21,2,4,7. ergy losses into a surrounding flum! and Ioss_es due to internal
. - ! degrees of freedom must also be included in order to model
However, the amplitude scale is different from Fig. 2. As

. : more realistic structures.
previously noted, the energy scattered in such a system is

redistributed into all available propagation modes in such a

way that the more densely packed modes receive mor’é‘CKNOWLEDGMENT
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