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Diffuse energy propagation on heterogeneous plates: Structural
acoustics radiative transfer theory

Joseph A. Turnera) and Richard L. Weaver
Department of Theoretical and Applied Mechanics, 216 Talbot Laboratory, 104 South Wright Street,
University of Illinois at Urbana-Champaign, Urbana, Illinois 61801

~Received 2 January 1996; accepted for publication 9 July 1996!

The propagation of diffuse energy on an unwetted flat plate with attached heterogeneities is
examined using a statistical, multiple scattering approach. The statistically homogeneous
heterogeneities lightly couple the membrane and flexural waves. The problem is formulated in terms
of the Bethe–Salpeter equation, which governs the field covariance. It is reduced to a radiative
transfer equation in the limit that the attenuations per wave number are small, i.e., when the
heterogeneities are weak. This radiative transfer equation governs the diffuse energy propagation as
a function of space, time, and propagation direction. Solutions of the radiative transfer equation are
presented for the simple case of attached heterogeneities in the form of delta-correlated springs
excited by an extensional point source. The results show the evolution of the extensional, shear, and
flexural energy densities across the plate as a function of time. A similar approach is expected to
apply to the more complicated case of submerged complex structures. ©1996 Acoustical Society
of America.

PACS numbers: 43.40.At, 43.40.Dx@CBB#

INTRODUCTION

Numerous difficulties are often associated with the
analysis of wave propagation on complex submerged shells.
Heterogeneities attached to the shell typically scatter the en-
ergy propagating on the main structure. The scattered energy
subsequently propagates into the surrounding fluid, into the
internal structure, and into other propagation modes. The de-
scription of the energy propagation on such structures is thus
not trivial.

Complicated structures have three frequency regimes
which are distinguished for purposes of simplifying analysis.
In the low-frequency regime, local heterogeneities are much
smaller than a wavelength and have little effect on responses.
Finite element analyses are successfully used because the
structure can be accurately described by its lowest few
modes. In the high-frequency regime, energy deposited on
the shell surface is quickly shed back into the fluid before
much scattering can occur. Here, ray methods are particu-
larly successful. In the intermediate frequency range, scatter-
ing effects are important and must be included in any de-
scription of the shell response. In this regime finite element
methods fail because of the high number of modes necessary
to model the structure accurately. For this reason, statistical
methods have been developed to describe energy propaga-
tion in this complicated frequency regime.

Statistical approaches to the vibration and acoustics of
complex systems are not new. Statistical energy analysis
~SEA!,1 which has its roots in the 1960s,2,3 was perhaps the
first rational approach for the examination of the ensemble
average vibrational behavior of such structures. The energy
flow through a structure is modeled by a steady-state heat

conduction ~diffusion! equation. The validity of SEA is
based on the assumptions that the fields within substructures
are fully equipartitioned. The energy is then assumed to dif-
fuse between substructures. In order to satisfy the SEA as-
sumptions each substructure must usually be highly reverber-
ant with many excited modes. SEA has been used most
successfully to obtain average energy distribution informa-
tion in the steady state. The range of applicability of SEA
has been the subject of considerable research and debate.
Langley4,5 recently developed a wave intensity analysis
~WIA ! technique which relaxes the isotropy of energy as-
sumption required by SEA. Essentially, he expanded the en-
ergy density angular distribution in terms of a finite Fourier
series. The first term of his expansion is then the SEA result.
Higher-order Fourier components are corrections to the SEA
solution. Langley still used the steady-state diffusion equa-
tion model although he recognized its limitations for highly
damped structures and for describing behavior near sources.
Diffuse fields have also been discussed by Weaver regarding
unwetted flat plates,6,7 elastic half spaces,8 and submerged
thin shells.9

In this article, which expands on previous work,10 a sta-
tistical approach is used as well. The attached heterogeneities
are assumed to couple the membrane and flexural waves
lightly. The diffuse plate energy propagation is examined
using a multiple scattering approach. The problem is formu-
lated in terms of the Bethe–Salpeter equation which governs
the field covariance. The Bethe–Salpeter equation is then
reduced to an equation of radiative transfer in the limit that
the heterogeneities are weak. The derived structural acoustics
radiative transfer equation~SARTE! is the main result pre-
sented. This SARTE governs the propagation of the specific
intensities of the diffuse extensional, shear, and flexural
wave types as a function of space, time, and propagation
direction. The diffuse fields in this case are the result of

a!Current address: Fraunhofer Institute for Nondestructive Testing~IzfP!,
Dept. GR., Building 37, University, 66123 Saarbru¨cken, Germany.
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scattering from random heterogeneities. This is in contrast to
the usual case in reverberation room acoustics and SEA in
which the incoherence follows from irregular reverberant re-
flections from the boundaries of substructures. For early
times, locations near sources, or for highly damped systems,
the SARTE reduces to a single scattering equation. At late
times, or far from sources, the radiative transfer equation
reduces to a time-dependent diffusion equation. The main
assumption used in the derivation of the SARTE, that the
heterogeneities are weak, may limit the range of applicabil-
ity. However, the scatterers are only assumed weak in the
sense that mean-free propagation paths are long compared to
a wavelength. This aspect is more extensively addressed in
the body of the article.

Rybak used a similar approach to describe the one-
dimensional steady-state propagation of weakly coupled
flexural and longitudinal energy.11,12 However, he reduced
the Bethe–Salpeter equation to a steady-state diffusion equa-
tion directly without the intermediate radiative transfer step.
It is the radiative transfer equation with retained time depen-
dence and shear modes that we suggest sheds new light on
the study of complex shells.

A brief clarification is also made at this time. The
SARTE describes the energy propagation in terms of a quan-
tity called specific intensity. It is defined as the energy flux
per unit time perplanar angleand is a scalar quantity. Lan-
gley uses the term intensity in his work as well.4,5 However,
his intensity is a vector quantity which is identified here as
the energy flux vector.

In Sec. I the problem of interest is outlined and pertinent
quantities defined. Section II contains a discussion of the
Bethe–Salpeter equation which governs the energy density.
The Bethe–Salpeter equation is reduced to a radiative trans-
fer equation in Sec. III. In Sec. IV a numerical solution
method is discussed. Finally, results for the simple case of
delta-correlated springs are presented in Sec. V.

I. STOCHASTIC PLATE EQUATION

Consider an unwetted flat plate with thicknessh as
shown in Fig. 1. The plate has in-plane displacementsu1 and
u2 and out-of-plane displacementw in the z direction. Ran-
dom spatially varying complex impedances are attached such
that extensional, shear, and flexural motions are all coupled.
The added impedances are assumed to have spatial distribu-
tion and coupling strengths with known first- and second-
order statistics.

The motion of the plate is described by the Green’s dy-
adicGi j ~x,x8;t! which defines thei th Cartesian displacement
response atx due to an excitation in thej th Cartesian direc-
tion ~i , j51,2,3! applied atx8, where the vectorx is a two-
dimensional vector (x1 ,x2) defined within the plane of the
plate. The temporal Fourier transform pair ofG is defined as

Gi j ~x,x8;v!5E
0

1`

Gi j ~x,x8;t !e
ivt dt,

Gi j ~x,x8;t !5
1

2p E
2`

1`

Gi j ~x,x8;v!e2 ivt dv. ~1!

The temporally Fourier transformed coupled membrane-
plate equations for this plate are

@Zki~x,v!1Lki#Gi j ~x,x8;v!5dk jd
2~x82x!. ~2!

The plate operator,Lki , is given by

L53
2

]2
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12n
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]x2
22

~v1 i e!2

cp
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11n
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]x1 ]x2
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]2
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]2

]x1
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~v1 i e!2
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2 0

0 0
h2

12
¹42

~v1 i e!2

cp
2

4 , ~3!

wherecp
25E/(12n2)r defines the extensional, or ‘‘plate’’

wave speed andE is the elastic modulus,n is the Poisson’s
ratio, andr is the volumetric density of the plate material.
The shear and flexural wave speeds arecs

25(12n)cp
2/2 and

cf
2 5 hvcp /A12, respectively. The frequency dependence of
cf will remain implicit throughout. An infinitesimal imagi-
nary part,e, has been added to the frequencyv to emphasize
that the transform, Eq.~1a!, is defined for Im$v%.0.

The random impedance parameterZki~x,v! is a function
of position and frequency and couples all propagation

modes. It is assumed here to be a local operator.10 The fluc-
tuations of the added impedance are assumed small such that
the average added impedance,Z05^Z&, and covariance,
^~Z~x!2Z0!~Z~y!2Z0!&, are the only statistics of importance.
The brackets,̂ &, denote an ensemble average. The covari-
ance of the heterogeneities is further assumed to have the
following form:

^~Zag~x!2Zag
0 !~Zdb~y!2Zdb

0 !&5b
aJd

gW~x2y!. ~4!

Here,W is a spatial two-point correlation function. For the

FIG. 1. Infinite flat plate with added spatially varying impedance,Z(x).
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form shown in Eq.~4!, it has been assumed that the distri-
bution of impedance orientation is independent of the spatial
distribution. The assumption of statistical homogeneity is
evident in the form ofW which is a function ofx-y only. The
fourth-rank tensorJ and the functionW will, in general, also
be functions of inner frequency,v.

Equation~2! is a stochastic partial differential equation
because of the random nature ofZ. It has deterministic op-
erator,Lki , characteristic of the decoupled membrane-plate
equations. It also has the random operator,Zki . Equation~2!
is of the form considered by Frisch13 for the propagation of
waves through random media. Previously, the mean plate
response,^G&, was derived by solution of the Dyson
equation.10 Scattering attenuations due to mode conversion
effects were calculated in the limit of weak heterogeneities.
Our emphasis here is on the diffuse energy propagation and
thus the covariance of the Green’s dyadic,^GG* &. This
quantity is related to the acoustic energy density4,5,14 and is
governed by the Bethe–Salpeter equation.13,14

An important distinction must also be made regarding
the two different time and length scales of this problem. The
short time behavior of the plate displacements, when Fourier
transformed, becomes a function of the inner frequency,v,
present in the coupled membrane-plate operator, Eq.~3!. The
much slower time scale associated with the evolving diffuse
energy Fourier transforms to an outer frequency,V. Simi-
larly, the two length scales of this problem transform to an
inner wave vector,p or q ~with magnitude of orderv/c!, and
an outer wave vector denoted byD.

Thus, the spatial Fourier transform of the covariance of
the Green’s dyadic is properly used to represent the diffuse
acoustic energy density,E, as has been previously
discussed.14 The spatially and temporally transformed dif-
fuse energy density is defined as

E~V,D![E d2x eiD•~x2x8!^Gv~x,x8!:Gv1V* ~x,x8!&,

~5!

where the* denotes a complex conjugate and also denotes
the Green’s dyadic evaluated atv1V. It has been implicitly
assumed in Eq.~5! that the energy has been bandpass filtered
over a frequency band,Dv such thatv@Dv@V.14 This as-
sumption is equivalent to the assumptions applied in the deri-
vation of optical radiative transfer equations.15,16

II. BETHE–SALPETER EQUATION

The relationship between the acoustic energy density
and the covariance of the Green’s dyadic,^GG* &, allows us
to proceed with the derivation of an equation that governs
this diffuse energy as a function of space, time, and propa-
gation direction.

We begin by defining the spatial Fourier transform of
the covariance

p8 i
paHjq8

bq d2~p1q82q2p8!

5
1

~2p!4
E E E E d2x d2x8 d2y d2y8^Gab~x,x8!

3Gi j* ~y,y8!&e2 ip•x1 iq•x81 ip8•y2 iq8•y8. ~6!

The energy density is given in terms of this quantity by

E5
1

~2p!2
E E d2q d2p p1D i

pa Hjq1D
bq d iad jb . ~7!

The stochastic partial differential equation given by Eq.
~2! is of the form discussed extensively by Frisch for wave
propagation through random media.13 From his treatise, it is
clear that there are two fundamental equations necessary for
the present work. The Dyson equation governs the mean re-
sponse,̂G&, and was considered previously.10 There it was
shown that attenuations due to scattering arise because of the
interaction of the propagating waves with the heterogene-
ities. These attenuations are not the result of true dissipative
processes which would extract energy from the plate. In-
stead, these scattering attenuations are the result of a loss of
coherence of the field due to scattering. One particular wave
type propagating in a given direction will scatter its energy
to other propagation types and other propagation directions.
This result will be illustrated here as well.

Here we begin with the Bethe–Salpeter equation, which
governs the covariance of the Green’s dyadic,^GG* &.13,14 In
spatial transform space the Bethe–Salpeter equation is

p1D i
pa Hjq1D

bq 5 i
aG jp1D

bp d2~p2q!

1E d2s i
aGkp1D

gp
p1Dk
pg Kls1D

ds
s1D l
sd Hjq1D

bq ,

~8!

where

i
aGkp1D

gp [^Gag~p!& ^Gik* ~p1D!&, ~9!

is the double mean Green’s dyadic. The intensity operator,
K , describes the interaction of the energy with the heteroge-
neities. Like the Dyson equation,10 the Bethe–Salpeter equa-
tion is exact and includes all multiple scattering effects.
However, the Bethe–Salpeter equation is a true integral
equation in the sense that a spatial transform does not sim-
plify the integral nature of the equation as is the case with
the Dyson equation.10,13 Tractable solutions are often real-
ized only by approximation.

The results for the mean plate response were derived
assuming that the heterogeneities were not large, i.e., that the
attenuations per wave number were small.10 This same ap-
proximation is used here as well. The Keller
approximation,17 also called the first-order smoothing
approximation13 ~FOSA! or Bourret approximation,6,7 allows
the intensity operator,K , to be approximated as13,14

p1Dk
pg Kls1D

ds >k
gJ l

dW̃~p2s!. ~10!

In Eq. ~10!, W̃ is the spatial Fourier transform of the two-
point correlation function discussed above. The assumption
of statistical homogeneity appears inW̃ which is a function
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of p2s rather than the individual wave numbers,p and s.
The fourth-rank tensorJ is in general complex if the hetero-
geneities have internal losses. This approximation is often
termed the ‘‘ladder approximation’’ in reference to the
shapes of the associated diagrams which can be used to rep-
resentH.

The ladder approximation implies a limitation on the
range of validity of the subsequent analysis. It has been as-
sumed that the scattering is weak such that the scattering
attenuation per wave number,a/k, is small. The quantitya/k
is a critical parameter in localization studies. In facta/k;1 is
the Ioffe–Regel criterion for the onset of Anderson
localization.18,19 Thus, the use of the ladder approximation
precludes any prediction of localization. However, the crite-
rion a!k is generally not very restrictive for most applica-
tions.

A somewhat simpler form of the Bethe–Salpeter equa-
tion is obtained by definition of a new quantity,S, which
defines the source of the covariance

Sm
m~p,D![E d2q m

m~G21! ip1D
ap

p1D i
pa Hjq1D

bq db j . ~11!

In Eq. ~11!, the inverse double mean Green’s dyadic,G21, is
defined as

m
m~G21! ip1D

ap [^G~p!&ma
21^G* ~p1D!&mi

21. ~12!

The energy density is given in terms of the quantityS by

E~V,D!5
1

~2p!2
E d2p i

aGmp1D
mp Sm

m~p,D!d ia . ~13!

With the definition ofS given by Eq.~11!, the Bethe–
Salpeter equation can be appropriately contracted to the fol-
lowing form:

Sm
m~p,D!5dmm1E d2s p1Dm

pm Kjs1D
as

j
aG ls1D

ds Sl
d~s,D!.

~14!

As noted previously,14 scattering problems such as this
one have three naturally arising length scales. The inner and
outer wave numbers arev/c and D, respectively, and the
attenuation isa. The assumption of weak heterogeneities im-
plies thata!v/c as was used previously.10 The weak hetero-
geneity assumption also implies that the spatial variation in
the diffuse energy varies much slower than the inner wave
number,D!v/c. In the next section these two limits are used
to reduce the contracted version of Bethe–Salpeter equation,
Eq. ~14!, to a radiative transfer equation. The more restrictive
assumption thatD!a can be used to further reduce the ra-
diative transfer equation to a diffusion equation.14

III. STRUCTURAL ACOUSTICS RADIATIVE TRANSFER

The Bethe–Salpeter equation, Eq.~14!, governs the
propagation of the energy density. It is an integral equation
without general analytical solutions. However, the integral
over the magnitude of the wave number can be simplified
within the context of the assumption of weak heterogeneities.
The poles ofG, defined in Eq.~9! as the double mean

Green’s dyadic, will dominate the integral of Eq.~14!.10 In
the limit that a!v/c and D!v/c, sG can be equivalently
replaced by the following:

sj
aG ls1D

ds >Re~ ŝ,D!ŝaŝdŝj ŝld~ usu2pe
0!1Rs~ ŝ,D!

3~dad2 ŝaŝd!~d j l2 ŝj ŝl !d~ usu2ps
0!

1Rf~ ŝ,D!ẑaẑdẑj ẑld~ usu2pf
0!, ~15!

wheredi j is the two-dimensional Kronecker delta andŝ is, of
course, in the (x1 ,x2) plane. The inner wave numbers of the
bare plate are defined by

pe
05v/cp , ps

05v/cs , pf
05v/cf . ~16!

The extensional, shear, and flexural energy propagators,
R, are defined in terms of the outer frequency,V, and outer
wave number,D, by

Re~ ŝ,D!5
pcp/2v

ke2 i ŝ–D1 iV/cp
,

Rs~ ŝ,D!5
2pcs /v~12n!2

ks2 i ŝ–D1 iV/cs
, ~17!

Rf~ ŝ,D!5
2p~cf /v!5

~4h2/12!2@k f2 i ŝ–D1 iV/2cf #
.

The energy attenuations,k, resulting from scattering, are
twice the corresponding displacement attenuations,a.10 The
energy propagators contain the group speeds for the respec-
tive propagation modes, as expected.

With the approximation given by Eq.~15!, Eq. ~14! now
becomes

Sm
m~p,D!5dmm1E

0

2p

dŝ$pm
pmK

j ŝv/cp

a ŝv/cpŝaŝdŝj ŝlSl
d~s,D!

3Re~ ŝ,D!1pm
pmK

j ŝv/cs

a ŝv/cs~dad2 ŝaŝd!

3~d j l2 ŝj ŝl !Sl
d~s,D!Rs~ ŝ,D!

1pm
pmK

3ŝv/cf

3ŝv/cfS3
3~s,D!Rf~ ŝ,D!%. ~18!

Equation~18! is a radiative transfer-type equation. The
source of covariance,S, is equal to the primary source plus a
secondary source. The secondary source, in scattered direc-
tion p̂, is given by an integral over all incident directionsŝ.
This integral describes the energy that has scattered from
other directionsŝ into directionp̂.

Using the same approximation, Eq.~15!, the energy den-
sity becomes, in direct notation,

E~V,D!5
1

~2p!2
E
0

2p

dp̂$I
–p̂p̂–
–p̂p̂–S~ p̂pe

0,D!Re~ p̂,D!

1I
–~ I2p̂p̂!–
–~ I2p̂p̂!–S~ p̂ps

0,D!Rs~ p̂,D!

1 ẑ–
ẑ–S~ p̂pf

0,D!Rf~ p̂,D!%, ~19!

where I is the two-dimensional identity dyadic
~I5x̂1x̂11x̂2x̂2!.
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Equation~18! can also be manipulated into a more fa-
miliar form of radiative transfer equation.15,16,20 First, the
source function is expanded in terms of its three nonzero
components

S~p!5p̂p̂Se~ p̂!1~ I2p̂p̂!Ss~ p̂!1 ẑẑSf~ p̂!. ~20!

The other components ofS do not contribute to the energy
density, Eq.~19!. These components describe the coherent
interference between the three wave types. Since each wave
type has a very different wave speed, such coherencies be-
come unimportant after a propagation length on the order of
the wavelength. These components ofS therefore do not ap-
pear.

Specific intensities are defined in terms of the source
function as

I e5SeRecp , I s5SsRscs , I f5SfRf2cf . ~21!

The specific intensities correspond to the energy flux per unit
time per planar angle. They describe the energy density
propagating in a particular direction.

The definition of the source function, these specific in-
tensities, and the inverse temporal and spatial transforms of
the propagators, Eqs.~17!, allow Eq. ~18! to be rewritten in
its most familiar form20

“–p̂II~r ,t,f!1c=21
]I ~r ,t,f!

]t
1I ~r ,t,f!

5E
0

2p

P= ~f,f8!I ~r ,t,f8!df8, ~22!

wheref andf8 are now used to represent the propagation
directions p̂ and ŝ of Eq. ~18!. The Stokes vector,II, is a
column vector containing the three Stokes parameters de-
fined in Eq.~21!, II5$I e ,I s ,I f%

T. The group speed and scat-
tering attenuation matrices are

c=5F ce 0 0

0 cs 0

0 0 2cf
G , k=5F ke 0 0

0 ks 0

0 0 k f

G . ~23!

Note that there are no interference terms as in the elec-
tromagnetic or elastic cases.15,16,20This is due to the dispar-
ate wave speeds of all wave types. The structural acoustics
radiative transfer equation~SARTE! given by Eq.~22! de-
fines the propagation and scattering of flexural and mem-
brane energy as a function of space, time, and propagation
direction. It includes all multiple scattering effects and is
valid within the limits of its primary assumption that the
scattering is weak, before the onset of localization. Radiative
transfer equations have been studied extensively for astro-
physical and electromagnetic,15,16 heat transfer,21 and ultra-
sonic applications.20

The scattering matrix,P= ~f,f8!, has components

P11~f,f8!5~pcp/2v!jee~f,f8!W̃ee~f,f8!,

P12~f,f8!5~pcp
2/2csv!jes~f,f8!W̃es~f,f8!,

P13~f,f8!5~pcp
2/4cfv!je f~f,f8!W̃e f~f,f8!,

P21~f,f8!5~pcp
3/2cs

2v!jse~f,f8!W̃se~f,f8!,

P22~f,f8!5~pcp
4/2cs

3v!jss~f,f8!W̃ss~f,f8!, ~24!

P23~f,f8!5~pcp
4/4cs

2cfv!js f~f,f8!W̃s f~f,f8!,

FIG. 2. Diffuse extensional energy density,Ee , at t̃51,2,4,7 extensional
mean-free times, respectively~a!–~d!, to an incident extensional wave
launched in thex̂1 direction.
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P31~f,f8!5~pcp
3/4cf

2v!j f e~f,f8!W̃fe~f,f8!,

P32~f,f8!5~pcp
4/4cscf

2v!j f s~f,f8!W̃fs~f,f8!,

P33~f,f8!5~pcp
4/8cf

3v!j f f~f,f8!W̃f f~f,f8!.

These scattering matrix components are defined in terms of a
scattering function,j~f,f8!, which is an inner product onJ,
and the spatial Fourier transform of a two-point correlation
function, W̃~f,f8!.10 The required scattering functions are
given by

jee~f,f8![ p̂–
p̂–J

–ŝ
–ŝ

5b
aJd

gp̂ap̂bŝgŝd ,

jes~f,f8![ p̂–
p̂–J

–

–~ I2 ŝ
ŝ!5b

aJd
gp̂ap̂b~dgd2 ŝgŝd!,

je f~f,f8![ p̂–
p̂–J

–ẑ
–ẑ

5b
aJ3

3p̂ap̂b ,

jse~f,f8![~ I2 p̂
p̂!
–

–J
–ŝ
–ŝ

5b
aJd

g~dab2 p̂ap̂b!ŝgŝd ,

jss~f,f8![~ I2 p̂
p̂!
–

–J
–

–~ I2 ŝ
ŝ!

5b
aJd

g~dab2 p̂ap̂b!~dgd2 ŝgŝd!, ~25!

js f~f,f8![~ I2 p̂
p̂!
–

–J
–ẑ
–ẑ

5b
}J3

3~dab2 p̂ap̂b!,

j f s~f,f8![ ẑ–
ẑ–J

–

–~ I2 ŝ
ŝ!53

3Jd
g~dgd2 ŝgŝd!,

j f e~f,f8![ ẑ–
ẑ–J

–ŝ
–ŝ

53
3Jd

gŝgŝd ,

j f f~f,f8![ ẑ–
ẑ–J

–ẑ
–ẑ

53
3J3

3,

with a sum over all indicesa,b,g,d51,2. The unit vectorsŝ
and p̂ are the incident and scattered propagation directions
defined byf8 andf, respectively. The heterogeneities con-
sidered here are oriented with transverse isotropy such thatP=
is a function only ofF5f2f8.

The spatial Fourier transforms of the specific two-point
correlation functions,W̃, are defined in terms of the incident
and scattered wave types and directions as10

W̃ee~F!5W̃~ p̂pe
02 ŝpe

0!, W̃es~F!5W̃~ p̂pe
02 ŝps

0!,

W̃e f~F!5W̃~ p̂pe
02 ŝpf

0!,

W̃se~F!5W̃~ p̂ps
02 ŝpe

0!, W̃ss~F!5W̃~ p̂ps
02 ŝps

0!,

W̃s f~F!5W̃~ p̂ps
02 ŝpf

0!,
~26!

W̃fe~F!5W̃~ p̂pf
02 ŝpe

0!, W̃fs~F!5W̃~ p̂pf
02 ŝps

0!,

W̃f f~F!5W̃~ p̂pf
02 ŝpf

0!.

As one might expect, the scattering matrixP= is related
to the intensity attenuation matrix,k= . It is easily shown that

ke52ae5E
0

2p

@P11~F!1P21~F!1P31~F!# dF,

ks52as5E
0

2p

@P12~F!1P22~F!1P32~F!# dF, ~27!

k f52a f5E
0

2p

@P13~F!1P23~F!1P33~F!# dF,

as expected.20 Should the heterogeneities have internal de-
grees of freedom, such as those considered by the recent
fuzzy structures literature,22–24an additional dissipative ma-
trix will arise which will account for those losses.10

FIG. 3. Diffuse shear energy density,Es , at t̃51,2,4,7 extensional mean-
free times, respectively~a!–~d!, to an incident extensional wave launched in
the x̂1 direction. The shear energy density has been scaled by a factor of 2.86
when compared with the extensional energy density of Fig. 2.
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The energy density is given in terms of the Stokes pa-
rameters by

E~r ,t !5E
0

2p

@ I e~r ,t,f!/cp1I s~r ,t,f!/cs

1I f~r ,t,f!/2cf # df. ~28!

The energy flux vector ~called the intensity by
Langley4,5! is similarly given by

F~r ,t !5E
0

2p

$I e~r ,t,f!1I s~r ,t,f!1I f~r ,t,f!%

3$x̂ cosf1 ŷ sin f% df. ~29!

In the diffusion limit, the energy density and energy flux
vector are further found to be related byF52D“E, where
D is the appropriate diffusivity.

Equation~22! defines the total intensity, both coherent
and diffuse. The interest here is primarily in the diffuse in-
tensity. An equation for the diffuse intensity alone can also
be derived. The total Stokes vector is first separated into its
coherent and diffuse parts as

II5IIc1IId . ~30!

The coherent intensity,IIc , is the solution of Eq.~22!
with the integral term removed. For a point excitation of all
three wave types the coherent solution is given by

IIc5H I e0e2cpketd2~r2cptp̂!d~f2fe
0!

I s
0e2cskstd2~r2cstp̂!d~f2fs

0!

I f
0e22cfk f td2~r22cf tp̂!d~f2f f

0!
J , ~31!

whereI e
0, I s

0, and I f
0 are the incident extensional, shear, and

flexural intensities, launched in the respective directionsfe
0,

fs
0, andff

0.
Substitution of Eq.~30! into the SARTE results in an

equation governing the diffuse intensity only

c= p̂–“II~r ,t,f!1c=k= II~r ,t,f!1
]

]t
II~r ,t,f!

5E
0

2p

c=P= ~f,f8!II~r ,t,f8! df8

1CI e~f,fe
0!e2cpketd2~r2cptp̂e

0!

1CI s~f,fs
0!e2cskstd2~r2cstp̂s

0!

1CI f~f,f f
0!e22cfk f td2~r22cf tp̂f

0!. ~32!

The three source terms at the end of Eq.~32! are the coherent
energies from each of the incident propagation types that
have singly scattered into diffuse energy of all propagation-

types. Their amplitudes contain the scattering functions of
the scattering matrixP= and are given by

FIG. 4. Diffuse flexural energy density,Ef , at t̃51,2,4,7 extensional mean-
free times, respectively~a!–~d!, to an incident extensional wave launched in
the x̂1 direction. The flexural energy density has been scaled by a factor of
171 when compared with the extensional energy density of Fig. 2.
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CI e~f,fe
0!5I e

0H cpP11~f,fe
0!

csP21~f,fe
0!

2cfP31~f,fe
0!
J ,

CI s~f,fs
0!5I s

0H cpP12~f,fs
0!

csP22~f,fs
0!

2cfP32~f,fs
0!
J , ~33!

CI f~f,f f
0!5I f

0H cpP13~f,f f
0!

csP23~f,f f
0!

2cfP33~f,f f
0!
J .

IV. SOLUTIONS OF THE SARTE

Simple closed-form solutions of radiative transfer equa-
tions are not known for general scattering matrices.15,16

Therefore, numerical solutions are often used for their solu-
tion. The case of an incident extensional point source
launched in thex̂1 direction is now examined. The SARTE
for this problem is given by Eq.~32! above with the shear
and flexural incident diffuse sources set to zero. Thus, we
seek the solution of

c= p̂–“II~r ,t,f!1c=k= II~r ,t,f!1
]

]t
II~r ,t,f!

5E
0

2p

c=P= ~f,f8!II~r ,t,f8! df8

1CI e~f,0!e2cpketd2~r2cpt x̂1!. ~34!

Equation~34! is first spatially Fourier transformed giv-
ing

2 ic= ~ p̂–D!II~D,t,f!1c=k= II~D,t,f!1
]

]t
II~D,t,f!

5E
0

2p

c=P= ~f,f8!II~D,t,f8! df8

1CI e~f,0!e2cpketeicpt~D• x̂1!, ~35!

whereD is the outer wave vector and spatial transform pa-
rameter~with componentsD1 andD2 in the x̂1 and x̂2 direc-
tions!. The integral term of Eq.~35! is simplified by expand-
ing thef dependencies ofII, P= , andCI e in terms of Fourier
series as

P= ~f,f8!5 (
l52N

1N

P= le
2 i l ~f2f8!,

II~D,t,f!5 (
j52N

1N

II j~D,t !ei j f, ~36!

CI e~f!5 (
j52N

1N

CI e je
i j f.

From the definition of the energy density given by Eq.
~28!, we see that thej50 component of theII expansion is
used to calculate the energy density.

These expansions are substituted into Eq.~35!. The or-
thogonality of the Fourier terms removes the integral. The

resulting equation is then successively multiplied bye2 i lf,
for l52N•••1N, and integrated over the unit circle. The
result is a set of 6N13 coupled ordinary differential equa-
tions

Fc=k=22pc=P= j1
d

dtG II j~D,t !2@c= ~D12 iD2!i /2#II j21~D,t !

2@c= ~D11 iD2!i /2#II j11~D,t !

5CI e je
2cpt~ke2 iD1!, ; j52N•••1N. ~37!

The above coupled, time-dependent ODEs can be easily
solved at discrete values of the outer wave number compo-
nents. A number of solution methods are possible with the
constraint that the diffuse intensities are zero att50. Once
the solution to Eq.~37! has been obtained in the spatial Fou-
rier transform domain, an inverse fast Fourier transform can
be used to return the solution to the (x1 ,x2) domain.

V. RESULTS FOR DELTA-CORRELATED SPRINGS

A simple example is now presented in order to illustrate
a result typical of Eq.~34!. The case considered previously
of heterogeneities in the form of delta-correlated linear
springs attached to a rigid ground10 is examined in the con-
text of diffuse energy propagation. This type of heterogene-
ity does not have internal degrees of freedom. Thus, the at-
tached impedances act as lossless scatterers which
redistribute the diffuse energy between the propagation
modes and directions. These scatterers do not remove energy
from the plate. For this case the scattering functions,j~F!,
used in the definition of the scattering matrix@Eq. ~24!#, are
very simple and given by10

jee~F!5s k̄2~112 cos2 F!/15A,

jes~F!5jse~F!5s k̄2~112 sin2 F!/15A,

je f~F!5j f e~F!5s k̄2/15A, ~38!

jss~F!5s k̄2~112 cos2 F!/15A,

js f~F!5j f s~F!5s k̄2/15A, j f f~F!53s k̄2/15A,

where k̄ is the dimensionless average spring stiffness,s is
the number density of the springs, andA is the plate area.
The assumption that the spring positions are delta correlated
implies thatW̃(F)5A/(2p)2 for each scattering type.

As before, parameters are chosen for this example which
are relevant to submerged thin shells. A dimensionless exci-
tation frequency,Ã5vh/cp , is defined which is unity for
frequencies of the order of the coincidence frequency. Our
interest is in frequencies near the ‘‘ring’’ frequency, where
the cylinder’s circumference fits one extensional wavelength.
In this case,vring5cp/R with R the cylinder radius. Thus
assuming R/h5100 we use an excitation frequency,
Ã50.01. The total added stiffness is assumed to equal the
breathing mode stiffness for whichs k̄51024/h2.10 Finally,
the plate is assumed to be a 5-cm-thick steel plate with
spring density,s51.15 springs per square meter which im-
plies that k̄50.035. These density and stiffness parameters
result in significant scattering attenuations.10

3693 3693J. Acoust. Soc. Am., Vol. 100, No. 6, December 1996 J. A. Turner and R. L. Weaver: Diffuse energy propagation



The numerical scheme given in Sec. IV was used to
reduce the SARTE, Eq.~34!, to the system of coupled ODEs
given by Eq.~37!. Equation~37! was then converted to an
eigenvalue problem governing the vectorI5$I2N ,...,
I20,...,I1N%T, composed of the Fourier components of the spe-
cific intensities. The eigenvalues and eigenvectors describe
the time domain evolution ofI . The eigenvalue problem was
solved withN59 and with 64 Fourier components for both
outer wave vector directions. The solutions, obtained at dis-
crete values ofD1 and D2, provided time-wave vector do-
main solutions which were then numerically inverse fast
Fourier transformed back to the time-space domain. Results
of the extensional, shear, and flexural diffuse energy densi-
ties, Ee , Es , and Ef as a function of space and time are
presented. The energy densities shown are obtained from the
corresponding specific intensities according to Eq.~28!. The
results are shown at times given in terms of a dimensionless
time, t̃5tcpke , such that time is measured in units of the
mean-free time of an extensional wave before scattering.

Figure 2 shows the evolution of the diffuse extensional
energy density,Ee , at timest̃51,2,4,7. A section of the plate
near the origin is shown. The incident extensional wave has
been launched at the origin in thex1 direction. Figure 2~a! is
the result after one extensional mean-free time,t̃51. The
large peak seen in Fig. 2~a! is the singly scattered energy.
The diffuse energy can be imagined as a sum of multiple
scattering events. At early times, single scattering will domi-
nate the diffuse energy. This concept is evident in Fig. 2~a!.
Most of the diffuse energy at this early time has been scat-
tered only once. The trailing envelope is the remaining scat-
tered energy. In Fig. 2~b!, the diffuse extensional energy at
t̃52, the singly scattered energy is much smaller and is a
smaller fraction of the total diffuse energy. The singly scat-
tered energy moves at the speed of the incident intensity and
decays exponentially. In Fig. 2~c!, the result at four exten-
sional mean-free times, the diffuse extensional energy is spa-
tially much smoother. The singly scattered energy is now
barely visible—only a small fraction of the total energy is in
the singly scattered form. The diffuse energy is now domi-
nated by energy that has scattered two or more times. The
result att̃57, shown in Fig. 2~d!, shows little evidence of the
singly scattered energy. Most of the extensional energy now
is contained in the slowly spreading diffuse envelope which
will become more isotropic as time progresses.

The evolution of the diffuse shear energy density,Es , is
shown in Fig. 3 for the same time steps of Fig. 2,t̃51,2,4,7.
However, the amplitude scale is different from Fig. 2. As
previously noted, the energy scattered in such a system is
redistributed into all available propagation modes in such a
way that the more densely packed modes receive more
energy.10 The modal density of the shear waves is higher
than the modal density of the extensional waves. Thus, the
incident extensional wave will lose more energy into the
shear wave type than into the extensional wave type. There-
fore, the diffuse shear energy shown in Fig. 3 has been
scaled by the modal density ratio,ns(v)/ne(v)5cp

2/cs
2,

which, for the parameters chosen, is 2.86. The evolution of
the diffuse shear energy is similar to that of the extensional.

The singly scattered energy~extensional to shear! dominates
at early times and becomes less important at later times.

Finally, the diffuse flexural energy evolution is shown in
Fig. 4. The flexural energy,Ef , has also been scaled by the
modal density ratio,nf(v)/ne(v)5cp

2/2cf
2. However, in this

case, for the inner frequency chosen, the scaling is by a fac-
tor of 171. The majority of the energy in the incident exten-
sional wave is scattered into the flexural wave type. This
result is also evident in the ‘‘tail’’ immediately behind the
propagating source. The extensional source sheds a large
amount of its energy immediately into the more densely
packed flexural degrees of freedom.

This diffuse energy propagation can be examined for
very late times as well. The energy in each propagation type
is seen to slowly spread outward from the center of the plate
becoming more isotropic. At late times or far from the
source, the appropriate equipartitioning of energy is also ob-
served as expected.9

VI. DISCUSSION

The propagation and scattering of flexural and mem-
brane waves on a heterogeneous plate has been formulated
using radiative transfer theory. The structural acoustics radia-
tive transfer equation~SARTE! was derived from consider-
ation of an appropriately averaged wave equation. The pa-
rameters of the SARTE are given in terms of the statistics of
the attached heterogeneities. The SARTE was derived using
the assumption of weak scattering which is not expected to
be very restrictive, but does not predict the development of
Anderson localization.

However, the results for the simple example considered
are very illustrative. The launched extensional wave was
seen to lose its energy, because of scattering, into other di-
rections and propagation modes. The high modal density of
the flexural degrees of freedom acted as an energy sink to the
majority of the incident energy deposited in extensional
form. The diffuse energy was seen to evolve from early
times, when it was dominated by the singly scattered energy,
to late times, when the energy became more uniformly dis-
tributed and isotropic. The approach to the limit of energy
equipartitioning between the extensional, shear, and flexural
mode types at late times was also observed as expected.

The above analysis provides a methodology that can
now be used for more complex structures that include spa-
tially varying curvature and more complex attachments. En-
ergy losses into a surrounding fluid and losses due to internal
degrees of freedom must also be included in order to model
more realistic structures.
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