4-1-2012

Tailoring the immune response by targeting C-type lectin receptors on alveolar macrophages using “pathogen-like” amphiphilic polyanhydride nanoparticles

Ana V. Chavez-Santicoy
Iowa State University, apchavez@iastate.edu

Rajarshi Roychoudhury
Iowa State University

Nicola L.B. Pohl
Iowa State University, npohl@iastate.edu

Michael J. Wannemeuhler
Iowa State University, mjwannem@iastate.edu

Balaji Narasimhan
Iowa State University, nbalaji@iastate.edu

See next page for additional authors

Follow this and additional works at: http://digitalcommons.unl.edu/gfiraimertait

Part of the Medical Sciences Commons

Chavez-Santicoy, Ana V.; Roychoudhury, Rajarshi; Pohl, Nicola L.B.; Wannemeuhler, Michael J.; Narasimhan, Balaji; and Ramer-Tait, Amanda E., "Tailoring the immune response by targeting C-type lectin receptors on alveolar macrophages using "pathogen-like" amphiphilic polyanhydride nanoparticles" (2012). Dr. Amanda Ramer-Tait Publications. 2.
http://digitalcommons.unl.edu/gfiraimertait/2

This Article is brought to you for free and open access by the Gut Function Initiative at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Dr. Amanda Ramer-Tait Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Tailoring the immune response by targeting C-type lectin receptors on alveolar macrophages using “pathogen-like” amphiphilic polyanhydride nanoparticles

Ana V. Chavez-Santoscoy,1 Rajarshi Roychoudhury,2 Nicola L.B. Pohl,1, 2 Michael J. Wannemuehler,3 Balaji Narasimhan,1 and Amanda E. Ramer-Tait 3

1. Department of Chemical and Biological Engineering, Iowa State University, Ames, IA 50011, USA
2. Department of Chemistry, Iowa State University, Ames, IA 50011, USA
3. Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames, IA 50011, USA

Corresponding author — Balaji Narasimhan, email nbalaji@iastate.edu

Abstract
C-type lectin receptors (CLRs) offer unique advantages for tailoring immune responses. Engagement of CLRs regulates antigen presenting cell (APC) activation and promotes delivery of antigens to specific intracellular compartments inside APCs for efficient processing and presentation. In these studies, we have designed an approach for targeted antigen delivery by decorating the surface of polyanhydride nanoparticles with specific carbohydrates to provide pathogen-like properties. Two conserved carbohydrate structures often found on the surface of respiratory pathogens, galactose and di-mannose, were used to functionalize the surface of polyanhydride nanoparticles and target CLRs on alveolar macrophages (AMφ), a principle respiratory tract APC. Co-culture of functionalized nanoparticles with AMφ significantly increased cell surface expression of MHC I and II, CD86, CD40 and the CLR CIRE over non-functionalized nanoparticles. Di-mannose and galactose functionalization also enhanced the expression of the macrophage mannose receptor (MMR) and the macrophage galactose lectin, respectively. This enhanced AMφ activation phenotype was found to be dependent upon nanoparticle internalization. Functionalization also promoted increased AMφ production of the pro-inflammatory cytokines IL-1β, IL-6 and TNF-α. Additional studies demonstrated the requirement of the MMR for the enhanced cellular uptake and activation provided by the di-mannose functionalized nanoparticles. Together, these data indicate that targeted engagement of MMR and other CLRs is a viable strategy for enhancing the intrinsic adjuvant properties of nanovaccine adjuvants and promoting robust pulmonary immunity.

Keywords: Polyanhydrides, Nanoparticles, Carbohydrates, Alveolar macrophages

1. Introduction
Acute respiratory infections cause 4.25 million deaths worldwide every year.1 A critical need exists for the development of efficacious intranasal vaccines against respiratory pathogens capable of inducing robust and protective mucosal immunity. In this regard, there is growing interest in the development of vaccines that can be easily administered to the site of infection in order to elicit both local and systemic immune responses.2–5 The study of alveolar macrophages (AMφ), a type of antigen presenting cell (APC) in the respiratory tract, is central to the development of intranasal vaccines. AMφ constitute more than 80% of the total cells obtained by bronchoalveolar lavage of a healthy individual and they constitutively migrate from the lung to the draining lymph nodes (DLN).6–8 Indeed, AMφ containing bacteria appear in the pulmonary DLN prior to the onset of pathogen-induced DC migration, thereby making them integral to the establishment of protective pulmonary immune responses.6 AMφ are equipped to detect pathogens with the aid of pattern recognition receptors (PRRs) that recognize pathogen-associated molecular patterns (PAMPs).9 One family of PRRs found on AMφ, known as C-type lectin receptors (CLRs), recognize conserved carbohydrate structures, including mannose and galactose, found on the surface of many respiratory pathogens, such as Yersinia pestis, Mycobacterium tuberculosis, Streptococcus pneumoniae and influenza viruses.10–14 CLRs also function as phagocytic receptors and include members of the mannose receptor family and DC-SIGN (dendritic cell-specific intercellular adhesion molecule-3-grabbing non-integrin).15 Depending on the specific CLR, ligand binding initiates downstream signaling cascades that promote immune cell migration to the DLN as well as antigen processing and presentation via MHC I and/or MHC II to prime naïve T cells.16–20
Several research groups have explored CLR targeting as a vaccine design strategy to promote efficient delivery of cargo to intracellular compartments responsible for antigen processing and presentation. Many studies have demonstrated the effectiveness of using antibodies or mannoproteins from pathogens to target CLRs and activate APCs. However, only a limited number report the use of carbohydrate-functionalized vaccine carriers as an improved adjuvant for intranasal vaccines. Work published by Jiang et al. indicated that alveolar macrophages could recognize mannosylated chitosan microparticles when delivered intranasally. Unfortunately, mechanistic studies have demonstrated the engagement of the mannose receptor on AMϕ by these particles were not performed. Here, we describe functionalization of polyanhydride nanoparticles with two conserved carbohydrate structures common found on the surface of respiratory pathogens, di-mannose and galactose. We also investigate the mechanisms by which these functionalized polyanhydride nanoparticles are internalized by and influence the activation of AMϕ.

2. Materials and methods

2.1. Materials

The chemicals needed for monomer synthesis, polymerization and nanoparticle fabrication included 1,6-dibromohexane, triethylene glycol, 4-p-hydroxybenzoic acid, and 1-methyl-1,2-pyridylidinone; these were purchased from Sigma–Aldrich (St. Louis, MO); 4-p-fluoroazobenzonitrile was obtained from Apollo Scientific (Cheshire, UK); tolue, sulfuric acid, acetonitrile, dimethyl formamide, acetic anhydride, methylene chloride, pentane, and ethanol were purchased from Fisher Scientific (Fairlawn, NJ); p-carboxybenzoic acid (99+%), and 1-methyl-2-pyridylidinone, anhydrous (99+%) were purchased from Aldrich (Milwaukee, WI). For H NMR characterization, deuterated chemicals, including chloroform and dimethyl sulfoxide, were purchased from Cambridge Isotope Laboratories (Andover, MA).

2.2. Monomer and polymer synthesis

Monodisperse polystyrene standards (Fluka, Milwaukee, WI) were used as negative and positive controls, respectively. The chemical structure of the polymers was characterized via H NMR with a Varian VXR 300 MHz spectrometer (Varian Inc., Palo Alto, CA). Deuterated chloroform was used to dissolve the polymer and spectra were calibrated with respect to the chloroform peak (δ = 7.26 ppm). The polymer molecular mass was determined using gel permeation chromatography (GPC). Samples were dissolved in HPLC-grade chloroform and separated on a Waters GPC chromatograph (Milford, MA) containing PL gel columns (Polymer Laboratories, Amherst, MA) comparing elution times to monodisperse polystyrene standards (Fluka, Milwaukee, WI).

2.3. High throughput synthesis of carbohydrates

A robotic set up was used for the iterative synthesis of linear α-1,2-linked di-mannose with a fluorous alky group using fluorous solid phase extraction (FSPE) serving as a model to obtain the di-mannoside. Carboxymethyl – di-mannose synthesis was performed by ozonolysis of the alkene followed by further oxidation with Jones reagent. Global deprotection under Birch reduction conditions produced the fully unprotected α-1,2-linked di-mannose. In addition, β-1-O-allylated galactose was prepared from β-penta-O-acetylated galactose conjugated to the surface of nanoparticles by a modified robotic deposition apparatus operated by LabVIEW®.

2.4. High throughput synthesis and characterization of functionalized nanoparticles

The fabrication of functionalized 50:50 CPTEG:CPH nanoparticles was performed via an anti-solvent nanoencapsulation method using an automated robotic deposition apparatus operated by LabVIEW®. Galactose and di-mannose residues were conjugated to the surface of nanoparticles by a modified and optimized two-step amine carboxylic acid coupling reaction. Briefly, the first reaction was performed at 4 °C by incubating the nanoparticle suspension (100 mg/mL) with 12 equivalents (eq.) of 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride (EDC), 12 eq. of N-hydroxysuccinimide (NHS), and 10 eq. of ethylenediamine in nanoparticle water for 9 h with constant agitation using a rotor shaker (Scientific Industries, Bohemia, NY). Nanoparticles were washed twice by centrifugation (10,000 rpm for 5 min) with the addition of nanoparticle water and sonication (40 Hz for 30 s). The second reaction was performed at 4 °C in a nanoparticle suspension (50 mg/mL) in nanoparticle water with 12 eq. of EDC, 12 eq. of NHS and 10 eq. of the corresponding saccharide (i.e., galactose or di-mannose) or glyceric acid (linker between saccharide and nanoparticles); a control treatment for AMϕ experiments) for 9 h with constant agitation. Nanoparticles were washed once and dried under vacuum for 6 h. The automated set up was used to accurately dispense solutions of EDC, ethylenediamine, and NHS for the first reaction, and solutions of EDC, NHS, and saccharides in the second reaction to increase the throughput of the process. Particle morphology was characterized by scanning electron microscopy (SEM, FEI Quanta 250, Kyoto, Japan), and hydrodynamic size and z-potential were determined by dynamic light scattering (DLS, Zetasizer Nano, Malvern Instruments Ltd., Worcesters, UK). The saccharide concentration conjugated to the nanoparticles was measured using a high throughput phenol sulfuric acid assay as previously described.

2.5. Mice

Wild type (WT) C57BL/6 (B6) mice were purchased from Harlan Laboratories (Indianapolis, IN) and macrophage mannose receptor deficient (MMR−) B6 mice were a generous gift from Dr. Mary Ann McDowell of the University of Notre Dame. Mice were housed in specific pathogen-free conditions where all bedding, cage and feed were sterilized prior to use. All animal procedures were conducted with the approval of the Iowa State University Institutional Animal Care and Use Committee.

2.6. Cell harvesting and culture

Murine alveolar macrophages (AMϕ) from WT and MMR− B6 mice were harvested from bronchoalveolar lavage previously described. Briefly, mice were euthanized and a sterile catheter inserted into the trachea of each mouse. Using a 1 mL syringe fitted with the catheter, 0.75 mL of room temperature sterile PBS was gently infused into the lungs and then aspirated back into syringe. This process was repeated six times while externally massaging the chest. Following collection, lung fluid was immediately placed on ice prior to centrifugation (250 g, 10 min, 4 °C). Cell viability was then assessed using trypan blue. Cells were cultured in Complete Tissue Culture Medium (CTCM) containing Dulbecco’s Modified Eagle Medium with 4.5 mg of glucose/mL, 2 mm l-glutamine, 100 U penicillin, 25 μg streptomycin/mL, 25 mm HEPES, and 10% fetal bovine serum in six-well plates at a density of 5 × 10⁵ cells/well for 8 h at 37 °C and 5% CO₂. After 6 h of incubation, non-adherent cells were discarded and adherent cells (~90%) were incubated overnight prior to treatment. Non-functionalized or functionalized nanoparticles were incubated with AMϕ at a concentration of 0.125 mg/mL. Non-stimulated AMϕ and AMϕ stimulated with Escherichia coli O111:B4 lipopolysaccharide (LPS, 200 ng/mL Sigma–Alrich, St. Louis, MO) were used as negative and positive controls, respectively. After 48 h, supernatants were collected for quantification of cytokines and nitrites. Cells were stained for flow cytometric analysis. Bone marrow-derived macrophages (BMMϕ) were derived as previously described. Briefly, cells were obtained from WT and MMR− B6 mouse bone marrow and plated in a 15 × 15 mm Petri dish with 30 mL CTCM supplemented with 30% L-cell conditioned medium. After 2 days, an additional 20 mL of CTCM with 30% L-cell conditioned medium was added to the cultures. At day 6, adherent cell populations were harvested by placing the plates on ice for 20 min and then scraping with a cell scraper. After washing in PBS, live cells were counted and resuspended in CTCM prior to treatment with nanoparticles and stimulants as described for the AMϕ.

2.7. Cell surface marker evaluation

Flow cytometric evaluation of cell surface markers was performed by modifying a previously described protocol. Briefly, cells were washed in 2 mL of fluorescence-activated cell sorting buffer (FACS buffer, 0.1% sodium azide and 0.1% bovine serum albumin in phosphate buffer saline). Fc receptors were blocked by incubating with PBS containing 100 μg/mL rat anti-mouse CD16/CD52 antibody (BD Bioscience, San Diego, CA) and 1 mg/mL rat IgG for 30 min at 4 °C to prevent non-specific binding. AMϕ were incubated with appropriate antibodies or isotype controls for 15 minutes on ice. Antibodies used for assessment of activation included phycocerythrin (PE)-Cy7 conjugated anti-mouse F4/80 (clone BM8), fluorescein isothiocyanate (FITC)-conjugated anti-mouse rat MHC II-EA/1-E, clone M5/114.15.2, allopurinol (APC) anti-mouse CD40 (clone 1C10) and PE conjugated anti-mouse MHC 1 (H-2Kk, clone AF6-88.5.5.3). These antibodies and their respective isotype controls were purchased from eBioscience (San Diego, CA). APC-Cy7 anti-mouse CD86 (clone GL-1) was purchased from Biolegend (San Diego, CA). Antibodies used to evaluate CLR expression included F4/80, biotin conjugated anti-mouse
In the current study, the di-mannose and galactose concentrations attached to the nanoparticles were normalized to the total mass of nanoparticles. The di-mannose concentration was 13.2 ± 3.5 μg/mg, consistent with previous work. The galactose concentration conjugated to the nanoparticles was 15.2 ± 4.7 μg/mg.

3.2. Influence of functionalized polyanhydride nanoparticles on AMφ activation

Previous work from our laboratories has highlighted the intrinsic adjuvant activity of polyanhydride micro and nanoparticles, as evidenced by their ability to activate DCs. In the current study, we observe, for the first time, increased expression of surface markers associated with antigen processing and presentation (MHC I and II) and T cell co-stimulation (CD86 and CD40) in primary AMφ cultured with non-functionalized (NF) polyanhydride nanoparticles as compared to non-stimulated AMφ. Culturing AMφ with non-functionalized polyanhydride nanoparticles also enhanced surface expression of CLRs (MMR, MGL and CIRE) in comparison to non-stimulated AMφ and AMφ stimulated with LPS.

Functionalization of polyanhydride nanoparticles with either di-mannose or galactose provided a significant enhancement in the expression of MHC I and CD40 on the surface of AMφ in comparison to treatment with either non-functionalized particles or particles functionalized with only glycolic acid, the linker used to attach the carbohydrates to the nanoparticles. As compared to non-functionalized nanoparticles, expression of the MMR on AMφ was only significantly enhanced upon incubation with di-mannose functionalized nanoparticles. Similarly, co-culture with galactose functionalized nanoparticles significantly increased AMφ MGL expression. No significant enhancement in CIRE expression was observed when AMφ were incubated with functionalized versus non-functionalized nanoparticles.

Together, these observations indicate that carbohydrate functionalization of polyanhydride nanoparticles enhanced AMφ activation as compared to non-functionalized particles. In some instances (e.g., MHC II and CD86 expression), functionalization with only the glycolic acid linker was sufficient to activate AMφ, indicating that nanoparticle surface charge contributes to AMφ activation. Finally, AMφ co-cultured with di-mannose or galactose functionalized particles exhibited enhanced cellular activation profiles that were comparable or superior to those observed in AMφ stimulated with LPS.

3.3. Relationship between functionalized polyanhydride nanoparticle internalization and CD40 expression on AMφ

Phagocytosis of pathogenic bacteria is an important step associated with innate immune mechanisms and results in activated macrophages. We, therefore, evaluated the relationship between nanoparticle internalization and AMφ activation. Internalization of, and not just association with, nanoparticles by AMφ was confirmed by confocal microscopy (data not shown). Two populations of cells were identified—cells that internalized nanoparticles (QD-loaded nanoparticle-positive) and cells that did not internalize particles (nanoparticle-negative). Internalization of nanoparticles, regardless of functionalization status, was found to be required for the enhanced expression of CD40 on AMφ, but not for the expression of CD86. Additionally, MHC I, or MHC II (data not shown).

Interestingly, the nanoparticle-positive cells that internalized di-mannose but not galactose-functionalized nanoparticles expressed significantly greater levels of the MMR as compared to nanoparticle-negative cells (Figure 2C). A similar relationship was observed for galactose but not di-mannose functionalized particles and MGL.
Figure 1. Functionalization of polyanhydride nanoparticles enhanced AMφ expression of MHC, T cell co-stimulatory molecules, and CLRs. After stimulation with non-functionalized (NF) or functionalized nanoparticles for 48 h, AMφ were harvested and analyzed by flow cytometry for surface expression of (A) MHC I, (B) MHC II, (C) CD86, (D) CD40, (E) MMR, (F) MGL, or (G) CIRE. LPS stimulated and non-stimulated cells (NS) were used as positive and negative controls, respectively. Data are expressed as the mean ± the SEM of three independent experiments performed in triplicate. Treatments with different letters are significantly different from one another at $p < 0.05$. MFI = mean fluorescence intensity.
expression (Figure 2D). A significant increase in CIRE was observed on AMφ that internalized either non-functionalized or dimannose functionalized nanoparticles but not nanoparticles that were functionalized with galactose or only the glycolic acid linker (Figure 2E). Together, these data support an association between internalization of nanoparticles functionalized with specific carbohydrates and the enhanced expression of the cognate receptor specific for that carbohydrate.

3.4. Influence of functionalized polyanhydride nanoparticles on AMφ pro-inflammatory cytokine secretion

Previous reports from our laboratory have described the ability of non-functionalized polyanhydride nanoparticles to enhance secretion of pro-inflammatory cytokines from APCs. In this present work, we sought to extend our findings by asking if functionalization...
Tailoring the immune response by targeting CLRs on alveolar macrophages

with specific carbohydrates provides additional stimulatory capacity to the polyanhydride nanoparticles. Indeed, di-mannose functionalized nanoparticles significantly elevated AMφ production of IL-1β as compared to all nanoparticle treatments (Figure 3A). Functionalization with either di-mannose or the glycolic acid linker but not galactose enhanced AMφ secretion of TNF-α (Figure 3B). Di-mannose modification of the nanoparticles provided no additional benefit in terms of increasing IL-6 or IL-12p40 production (Figure 3C and D). Of note, functionalization with either the glycolic acid linker alone or galactose diminished the secretion of IL-12p40 observed when AMφ were co-cultured with non-functionalized nanoparticles (Figure 3D). No IL-10 was detected in the culture supernatants of any AMφ co-

Figure 3. Carbohydrate functionalization of nanoparticles differentially influenced pro-inflammatory cytokine secretion. After stimulation with non-functionalized (NF) or functionalized nanoparticles for 48 h, culture supernatants were harvested and assayed for (A) IL-1β, (B) TNF-α, (C) IL-6, or (D) IL-12p40. LPS stimulated and non-stimulated cells (NS) were used as positive and negative controls, respectively. Mean cytokine production for AMφ stimulated with LPS: IL-1β = 1021.7 ± 66.5 pg/mL, IL-6 = 7804.3 ± 101.2 pg/mL, TNF-α = 5711.5 ± 181.7 pg/mL, and IL-12p40 = 3637.8 ± 111.6 pg/mL. (E) Nitrate concentration was measured in culture supernatants via a Griess assay as an indirect method to quantify production of reactive nitrogen species. Data are expressed as the mean ± the SEM of three independent experiments performed in triplicate. Treatments with different letters are significantly different from one another at p < 0.05.
cultured with nanoparticles (data not shown). As shown in Figure 3E, the di-mannose functionalize particles induced significantly more reactive nitrogen species when compared to the non-stimulated group (negative control). All the other nanoparticle groups induced levels of reactive nitrogen species that were similar when compared to the non-stimulated group (negative control).

3.5. Di-mannose functionalized nanoparticles and engagement of the MMR

The data depicted in Figure 2 demonstrated that nanoparticle internalization was required for increased CD40 and CLR expression. Furthermore, we demonstrated that AMφ activation by functionalized nanoparticles was also a consequence of nanoparticle internalization (Figs. 1 and 3). Using flow cytometry, we found that any functionalization of the nanoparticles enhanced uptake by AMφ as compared to non-functionalized particles (Figure 4, open bars).

To evaluate the role of the MMR on the uptake of di-mannose functionalized nanoparticles, we isolated AMφ from MMR-deficient (MMR−/−) mice and co-cultured them with functionalized nanoparticles. As compared to wild type (WT) AMφ, a significant decrease in the number of internalized nanoparticles was only observed when di-mannose functionalized nanoparticles were co-cultured with MMR−/− AMφ (Figure 4, open versus closed bars). These data indicate that di-mannose functionalization of nanoparticles confers a specific interaction of the nanoparticles with the MMR that contributes to their enhanced internalization. In contrast, nanoparticles functionalized with galactose or only the glycolic acid linker are internalized via other, non-MMR-dependent pathways. Similar results were obtained using bone marrow-derived macrophages (BMMφ; Supplemental Figure 1).

Figure 4. Di-mannose functionalized nanoparticles enhanced internalization by engaging the macrophage mannose receptor on AMφ. Percent of wild type (○) and MMR-deficient (MMR−/−) AMφ that internalized nanoparticles after 48 h. Data are expressed as the mean ± the SEM of three independent experiments performed in triplicate. * represents a statistically significant difference between wild type and MMR−/− AMφ within a treatment at p < 0.05. # represents a statistically significant difference from the non-functionalized nanoparticle treatment group for wild type AMφ. ^ represents a statistically significant difference from the non-functionalized nanoparticle treatment group for MMR−/− AMφ.

Consistent with the internalization data, co-culture of WT AMφ with di-mannose functionalized nanoparticles significantly increased the expression of MHC I, MHC II, CD86 and CD40 in comparison to that observed for MMR−/− AMφ (Figure 5A–D). Similarly, MMR−/− AMφ secreted significantly less IL-1β and IL-6 as compared to WT AMφ when co-cultured with di-mannose functionalized nanoparticles (Figure 6A and C). As compared to WT AMφ, reduced levels of CIRE expression (Figure 5E) and TNF-α and IL-12p40 secretion (Figure 6B and D) were also observed in MMR−/− AMφ co-cultured with di-mannose functionalized as well as with non-functionalized nanoparticles. In contrast, WT and MMR−/− AMφ produced similar amounts of all cytokines measured following stimulation with LPS, indicating that MMR−/− AMφ were functionally capable of cytokine production (data not shown). Likewise, the absence of the MMR had no negative effect on the increased surface marker expression or cytokine production observed when AMφ were co-cultured with galactose functionalized nanoparticles (Figures 5 & 6), indicating that galactose functionalized nanoparticles do not require the MMR to promote AMφ activation. To rule out that our observations were unique to AMφ, these analyses were performed using BMMφ and similar results were obtained (Supplemental Figures 2 & 3). Together, these data support the concept that di-mannose functionalized nanoparticles enhance AMφ activation by engaging the MMR.

4. Discussion

In the present work, we have designed an approach to targeted antigen delivery by functionalizing the surface of polyanhydride nanoparticles with specific carbohydrates to enable the nanoparticles to engage C-type lectin receptors on AMφ. Our rationale is that receptor-mediated engagement of nanoparticles will enhance their uptake and the activation of AMφ, leading to the induction of robust immune responses in the respiratory tract.

Co-culture of functionalized nanoparticles with AMφ significantly increased cell surface expression of MHC I and II, CD86, CD40 and the C-type lectin receptor CIRE over non-functionalized nanoparticles (Figure 1A–D and G). Di-mannose and galactose functionalization also enhanced the expression of the MMR and MGL, respectively (Figure 1E and F). Carbohydrate modification also significantly increased uptake of the nanoparticles by AMφ. Moreover, the enhanced expression of CD40 on AMφ incubated with functionalized nanoparticles was found to be dependent upon nanoparticle internalization (Figure 2). The presence of nanoparticles in the coculture was sufficient for enhancement of certain activation markers (i.e., CD86, MHC I, and MHC II), while internalization was required for the expression of CD40. Our results show that the targeting of the C-type lectin receptors MMR, MGL, and CIRE resulted in a higher percentage of AMφ that internalize nanoparticles (Figure 4, open bars). This enhanced internalization may improve antigen delivery to antigen processing compartments52–54 and the enhancement of the expression of co-stimulatory receptors (i.e., CD86 and CD40) as shown in Figure 1.

Nanoparticle internalization also played a critical role in the enhanced expression of CLR s (Figure 2C–E). MMR expression was increased on AMφ following co-culture with mannose-functionalized nanoparticles (Figure 1E), and this enhanced expression required internalization of the nanoparticles (Figure 2C). Similar results were observed for MGL (Figs. 1F and 2D). The expression of the CIRE receptor was enhanced by most of the nanoparticle formulations, but only cells that internalized non-functionalized and di-mannose functionalized nanoparticles showed increased expression of this marker (Figs. 1G and 2E). Several reports have shown that CLR s undergo internalization and recycling between the plasma membrane and the endosomal compartments.55–57 Our results indicate that positive self-regulation of specific CLR s occurs upon ligand recognition, subsequently increasing the expression of these markers.

Chavez-Santoscoy et al. in Biomaterials 33 (2012).
The production of pro-inflammatory cytokines is essential for the activation of macrophages to stimulate their anti-microbial properties and for them to initiate adaptive immune responses. Di-mannose functionalization enhanced the production of IL-12p40, IL-1β, and TNF-α (Figure 3A–D). These results are in agreement with studies demonstrating that the targeting of MMR resulted in the production of pro-inflammatory cytokines through the activation of NF-κB. Although the production of pro-inflammatory cytokines was enhanced by the di-mannose functionalization, the levels secreted were modest enough to allay concerns about chronic inflammation in the
respiratory tract following intranasal administration. The galactose functionalized nanoparticles resulted in an enhanced production of cytokines in comparison with the non-stimulated AMφ, but at lower levels than the non-functionalized nanoparticles, particularly for IL-12p40. The release of pro-inflammatory cytokines when the cells were treated with galactose-functionalized particles was similar to that of the non-functionalized nanoparticles. These results are consistent with previous studies suggesting that galactose motifs enhanced the production of cytokines such as IL-12p40 and TNF-α, but not to the levels obtained when mannose motifs are used.

The elevated production of reactive nitrogen species has been related to chronic inflammation and cancers of several organs, including lungs. Such a response may be needed to combat an infection; however it would not be desirable consequence following administration of an intranasal vaccine. The release of pro-inflammatory cytokines when the cells were treated with galactose-functionalized particles was similar to that of the non-functionalized nanoparticles. These results are consistent with previous studies suggesting that galactose motifs enhanced the production of cytokines such as IL-12p40 and TNF-α, but not to the levels obtained when mannose motifs are used.

The elevated production of reactive nitrogen species has been related to chronic inflammation and cancers of several organs, including lungs. Such a response may be needed to combat an infection; however it would not be desirable consequence following administration of an intranasal vaccine. The release of pro-inflammatory cytokines when the cells were treated with galactose-functionalized particles was similar to that of the non-functionalized nanoparticles. These results are consistent with previous studies suggesting that galactose motifs enhanced the production of cytokines such as IL-12p40 and TNF-α, but not to the levels obtained when mannose motifs are used.

The elevated production of reactive nitrogen species has been related to chronic inflammation and cancers of several organs, including lungs. Such a response may be needed to combat an infection; however it would not be desirable consequence following administration of an intranasal vaccine. The release of pro-inflammatory cytokines when the cells were treated with galactose-functionalized particles was similar to that of the non-functionalized nanoparticles. These results are consistent with previous studies suggesting that galactose motifs enhanced the production of cytokines such as IL-12p40 and TNF-α, but not to the levels obtained when mannose motifs are used.

To further assess the role of MMR-specific recognition of di-mannose functionalized nanoparticles, studies were performed using AMφ harvested from MMR−/− mice. Statistically significant differences were observed in the internalization of di-mannose functionalized nanoparticles between AMφ harvested from wild type and MMR−/− mice (Figure 4), indicating that the MMR significantly contributes to the enhanced uptake observed when polyanhydride nanoparticles are functionalized with di-mannose. Enhanced uptake was also observed for glycolic acid functionalized nanoparticles as compared to non-functionalized nanoparticles. This may be attributed to the hydrophilic properties conferred by the mannose and glycolic acid groups to the surface of the particles that may increase their internalization in comparison to more hydrophobic surfaces (i.e., non-functionalized nanoparticles). This observation is consistent with previously published data that shows that hydrophilic chemistries are more readily internalized by AMφ and DCs. As expected, the absence of the MMR did not negatively affect the enhanced uptake of galactose-functionalized nanoparticles. The enhanced AMφ activation phenotype (i.e., above that induced by non-functionalized nanoparticles) observed following co-culture with di-mannose functionalized nanoparticles was also found to be dependent upon the presence of the MMR (Figures 5 & 6). This finding
suggests that specific engagement of the MMR further enhances the expression of cell surface markers and cytokine production. As indicated before, mannose is a component of the surface of many respiratory pathogens, including *Y. pestis, M. tuberculosis, S. pneumoniae* and influenza viruses, indicating that the MMR may be involved in how these pathogens are recognized by macrophages and DCs. Typically, upon encountering pathogens, these APCs upregulate expression of antigen presentation and co-stimulatory molecules as well as secrete cytokines to efficiently prime the naïve T cells that help activate B cells. Our results indicate that di-mannose functionalized nanoparticles may have pathogen-like characteristics with respect to their APC activation abilities.

Together, these studies indicate that CLR targeting may be an effective strategy to activate AMφ that, in turn, may be critical to the implementation of efficacious intranasal vaccines. Functionalized nanoparticles provide a versatile and robust platform that facilitates enhanced expression of antigen presentation and co-stimulatory molecules and secretion of the cytokines responsible for initiating and maintaining adaptive immunity. By innovatively engaging mechanisms or pathways that activate APCs, these studies indicate that it is feasible to develop an immunization regimen that safely and efficaciously induces protective immunity without the need to induce adverse or deleterious host responses.

5. Conclusions

The approach outlined in this present work demonstrates that rational design of efficacious vaccine adjuvants can be achieved by targeting CLRs on APCs. Specifically, we describe the functionalization of polyanhydride nanoparticles with two conserved carbohydrate structures commonly found on the surface of respiratory pathogens, di-mannose and galactose. The addition of these carbohydrates significantly enhanced the intrinsic adjuvant activity of our polyanhydride nanovaccine platform by further upregulating AMφ surface expression of MHC I and II, CLRs, the T cell co-stimulatory molecules CD86 and CD40 and the secretion of pro-inflammatory cytokines. Moreover, we demonstrate that the macrophage mannose receptor (MMR) played a central role in the activation of AMφ as well as the uptake of di-mannose functionalized polyanhydride nanoparticles. These studies provide important insights into the design, modification, and rational selection of intranasal vaccine carriers and/or adjuvants.

Acknowledgments—The authors would like to thank the United States Army Medical Research and Materiel Command for financial support (Grant No. W81XWH-10-1-0806). The authors are grateful to Shawn Rigby for his expertise in flow cytometry and to Dr. Mary Ann McDowell of the University of Notre Dame for generously providing the MMR-/- mice. BN acknowledges the Balloun Professorship in Chemical and Biological Engineering and NLBP acknowledges the Wilkinson Professorship of Interdisciplinary Engineering.

References

Appendix A, containing Supplemental Figures 1–3, follows.
Supplemental Figure 1. Di-mannose functionalized nanoparticles enhanced internalization by engaging the macrophage mannose receptor on bone marrow-derived macrophages (BMMϕ). Percent of wild type (□) and MMR-deficient (MMR⁻/⁻; ■) BMMϕ that internalized nanoparticles after 48 h. Data are expressed as the mean ± the SEM of three independent experiments performed in triplicate. * represents a statistically significant difference between wild type and MMR⁻/⁻ BMMϕ within a treatment at p < 0.05. # represents a statistically significant
difference from the non-functionalized nanoparticle treatment group for wild type BMMϕ. ^represents a statistically significant difference from the non-functionalized nanoparticle treatment group for MMR-/- AMϕ.
Supplemental Figure 2. Di-mannose functionalized nanoparticles enhanced bone marrow-derived macrophage (BMMϕ) expression of MHC, T cell co-stimulatory molecules and CLRs by engaging the macrophage mannose receptor. After stimulation with non-functionalized (NF) or functionalized nanoparticles for 48 h, wild type (□) and MMR-deficient (MMR−/−; ■) BMMϕ were harvested and analyzed by flow cytometry for surface expression of (A) MHC I, (B) MHC II, (C) CD86, (D) CD40, (E) MGL, or (F) CIRE. Non-stimulated (NS) cells were used as negative controls. Data are expressed as the mean ± the SEM of three independent experiments performed in triplicate. * represents a statistically significant difference between wild type and MMR−/− BMMϕ within a treatment at p < 0.05. MFI = mean fluorescence intensity. # represents a statistically significant difference from the NS cells for wild type AMϕ. ^ represents a statistically significant difference from the NS cells for MMR−/− AMϕ.
Supplemental Figure 3. Di-mannose functionalized nanoparticles enhanced bone marrow-derived macrophage (BMMφ) pro-inflammatory cytokine production by engaging the macrophage mannose receptor. After stimulation with non-functionalized (NF) or functionalized nanoparticles for 48 h, culture supernatants from wild type (□) and MMR-deficient (MMR⁻/⁻; ■) BMMφ were harvested and assayed for (A) IL-1β, (B) TNF-α, (C) IL-6, or (D) IL-12p40. Non-stimulated (NS) cells were used as a negative control. Data are expressed as the mean ± the SEM of three independent experiments performed in triplicate. * represents a statistically significant difference between wild type and MMR⁻/⁻ BMMφ within a treatment at p <
0.05. # represents a statistically significant difference from the NS cells for wild type AMφ. ^ represents a statistically significant difference from the NS cells for MMR⁺⁻ AMφ.