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ON LINEAR ASSOCIATIVE ALGEBRAS CORRESPONDING TO 

ASSOCIATION SCHEMES OF PARTIALLY BALANCED 


DESIGNS 


University of North Carolina and Michigan Sbte University 

1. Introduction. Given v objects 1,2, .. ,v ,  a relation satisfying the follow- 
ing conditions is said to be an association scheme with m classes: 

(a) Any two objects are either lst, or 2nd, . . ,or mth associates, the rela- 
tion of association being symmetrical, i.e., if the object a is the ith associate of 
the object j3, then j3 is the ith associate of a. 

(b) Each object a has ni ith associates, the number ni being independent 
of a. 

(c) If any two objects a and j3 are ith associates, then the number of ob- 
jects which are jth associates of a, and kth associates of j3, is pik and is inde- 
pendent of the pair of ith associates a and j3. 

The numbers v, ni (i = 1,2, . ,m) and p j k  (i, j, k = 1, 2, . . . ,m) are the 
parameters of the association scheme. 

If we have an association scheme with m classes and given parameters, then 
we get a partially balanced design with r replications and b blocks if we can ar- 
range the v objects into b sets (each set corresponding to a block) such that 

(i) each set contains k objects (all different) ; 
(ii) each object is contained in r sets; 

(iii) if two objects a and j3 are ith associates, then they occur together in X, 
sets, the number X i  being independent of the particular pair of ith associates a 
and 8. 

Partially balanced designs were introduced in experimental studies by Bose 
and Nair [5], and have recently come into fairly general practical use. The con- 
cept of the association scheme, though inherent in Bose and Nair's definition, 
was explicitly introduced by Bose and Shimamoto (61, as an aid to the classifi- 
cation and analysis of partially balanced designs. 

2. Association schemes as concordant graphs. An association scheme with v 
objects and m classes may be visualized as follows: 

Let the objects be points. Suppose we have m colors Cl ,C2 , . ,Cn . If two+ 

objects are ith associates we connect them by a segment of the ith color. The 
points together with the segments of the ith color form a linear graph which will 
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be regular of degree ni as a result of property (b). We may say that the n graphs 
together are concordant2when properties (a) and (c) are also satisfied, l;he mean- 
ings of these being as follows: 

a) Every pair of points is connected by a single segment of one of the m colors. 
The graphs are non-oriented. 

b) If any two points a and 0are connected by a segment of the ith color, then 
the number of points which are connected to a by a segment of color Cj  and to P 
by a segment of color Ck , is p& and is independent of the particular pair of points 
chosen. 

Equivalently pjk is the number of 2-chains directed from a to and consisting 
of segments of colors Cjand Ck in that order. Clearly the p f k  are closely related 
to the number of triangles in the graph formed of segments of colors Ci , C j  , 
Ck . Properties (a), (b) and (c) are just enough to specify the number of segments 
of each color on each point, and the number of triangles of each combination of 
colors on each segment. The total number of segments, the total number of 2-
chains, and the total number of triangles in the graph are then readily deter- 
mined. Methods based on the incidence matrices of the graphs [16] can be used 
with (3.6) to enumerake certain chains of more than two segments. The arrange- 
ment in these graphs of all configurations involving two points or three points 
shows a striking regularity which does not extend to configurations having more 
than three points. It can be shown by examples that the points of the graph of 
color Ci may not all lie on the same number of complete $-points, and that two 
association schemes with the same parameter values may give graphs differing 
in the total number of complete 4-points. This shows that the structure of con- 
cordant grsphs is not determined completely by properties (a) to (c). 

3. Association matrices. We define3 

where 

b t i  = 1, if the objects a and /3 are ith associates (or connected by a 
segment of the ith graph) ; 

= 0, otherwise. 

Bi k a symmetric matrix, in which each row total and each column total is ni . 
Let each object be the zeroth associate of itself and of no other treatment. 

a Not to be confused with chromatic graphs, in which points, not segments, are colored. 
For a general discussion of linear graphs, see [ll]. 

a The convention will be adopted here of using a superscript as the column index of a 
matrix, the first subscript as the row index, and the second subscript as the index of the 
matrix itself. This choice is dictated by the notation already established for the param- 
eters p:n: . 
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Then 

BO = I, , the v X v identity matrix, 

= 0, otherwise, 

= 0, otherwise, 

XO = r ,  for designs. 

The following identities are known [5] and can be proved easily by combina-
torial methods. Proofs based on the matrices Bi will be given in Section 5. 

i 1 k 
ni pjk = nj pik = nk pij . 

Further the following two identities hold for designs: 

Among the numbers 

b t 0 ,  1 , b$m 

only one is unity, i.e., b:i if a and B are ith associates. Hence 

(3.3) Bo + B1+ -..+ Bm = J., 

where J, is the v X v matrix each of whose elements is unity. 
It also follows that the linear form 

is equal to the zero matrix if and only if 

hence the linear functions of Bo ,B1, . ,Bmform a vector space with basis 
Bo,B1, ... ,Bm. 
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The objects cu and P are zeroth associates if cu = P; otherwise they are either 
lst, 2nd, - ..or mth associates from condition (a) of Section 1. Suppose they 
are ith associates. Both terms of the product bzjbtk are unity if and only if 7 
is the jth associate of cu as well as Icth associate of P. Hence from condition (c) 
Section 1,the left-hand side of (3.5) is pik . Again since a and P are ith associ- 
ates b ! ~is unity if 1 = i and is zero otherwise. Hence the right-hand side of (3.5) 
is also equal to pfk .This proves the Lemma. 

We now note that the left-hand side of (3.5) is the element in the cuth row and 
8th column of the product BjBk,and btt  is the element in the cuth row and Pth 
column of BI ( I  = 0, 1, - .. ,m). ~ h u s ~  

The product of two matrices of the form (3.4), where the c i  are scalars, may be 
expressed aa a linear combination of terms of the form BjBk and will reduce to 
the form (3.4). The set of matrices of this form is therefore closed under multi- 
plication. It is clear that it forms an Abelian group under addition. Thus the 
Smear functions of BO,B1, .. . ,B,  form a ring with unit element, which will be 
a linear associative algebra if the coefficients ci range over a field. Multiplication 
is also commutative. This statement and the equivalent statement p:k = pij 
will be shown in Section 5 to follow from (3.6) and the symmetry of Bi . 

Linear associative algebras have of course been extensively studied and are 
treated, for example, in [13]. The properties of most importance in the present 
study are easily established, and brief proofs will now be given for the sake of 
completeness. 

We first find the consequences of the associative law of matrix multiplication: 

Bi(BjBk) = Bi C pj"kBu 
U 

Also 

= C p: jpLk~t .  
Ult  

The fundamental formula (3.6) was first obtained by W. A.Thompson [17], [I91 and 
was independently discovered by the second author [15].Other results of Section 3 were 
included in a set of lectures [2] at  the University of Frankfurt by the first author. Some of 
these were independently obtained in another form by the second author. When the two 
authors learned of each other's work, they decided to collaborate in a joint paper. 
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From the independence of BO,B1 , .. ,Bm, 

In these equations the summation over u runs from 0 to m and the remaining 
indices are arbitrary but fixed, 

O S i , j , k , t I m  

NOW let us define 6 k  by6 

Now the left side of (3.7) is the element in the ith row and tth column of 6 j 6 k .  

Also the element in the ith row and tth column of 6, is pfU, so that the right 
side of (3.7) is the element in the ith row and tth column of 

Hence we have 

Thus, the 6's multiply in the same manner as the B's. Since = 1 if k = i 
and 0 otherwise, the 0th row of CPk contains a 1 in column k and 0's in other posi-
tions, which is enough to show that if 

then 

i.e., 6 0  , 61, ... ,6, are linearly independent. They thus form the basis for a 
vector space and combine in the same way as the B's under addition, as well as 
under multiplication. They provide a regular representation in 

(m + 1) X (m+  1) 

matrices of the algebra given by the B's, which are v X v matrices. In particular, 
60= I m + l .  

Since the B's are commutative, the 6's are commutative. In general they are 
not incidence matrices and are not symmetric. pkdoes not have equal row totals, 
but has the same equal column totals nk as Bk .In analogywith (3.3), allelements 
of row j of z k 6 k  are equal to nj . Let 

6 It should be noted that these matrices differ from matrices Pb = (&) which were 
defined in several earlier papers ([4], [5], [6]) but do not have the same algebraic prop-
erties. 
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be any element of our algebra, and let f ( X )  be a polynomial. Then we can express 

is the representation of B, then 

Let f (A) be the minimum function of B and 4(h) the minimum function of 6. 
Then f ( X )  is the monic polynomial of least degree for which 

f(B) = 0.  

f (B)  = O+b = 11 = ... = 1, = O + f ( 6 )  = 0 ;  

i.e., f ( A )  is divisible by +(A). 
Similarly 4(X) is divisible by f ( X ) .  Since both are monic polynomials, 

That is, B and 6 have the same distinct characteristic roots, and every matrix 
B has at  most m + 1 distinct characteristic roots, which are solutions of the 
minimum equation of 6. 

4. Applications to combinatorial problems. Association matrices will be used 
to derive some results first obtained in [9] by a longer method. 

The incidence matrix N = (?hii) of a design is defined by 

nij = 1, if treatment i occurs in block j, 

= 0 ,  otherwise. 

Then 

B = NN' = ~ B o+ XlBl + .. + X 3 ,  , 

Also 

where C is the coefficient matrix in the normal equations for estimating the 
treatment effects after adjusting for the block effects [6]. Clearly' C is a sym-
metric matrix. If e is a characteristic root of C, then k(r - e) is a characteristic 
root of B. It is known that C has rank v - 1for a connected design [I]. In this 
case,' therefore, 0 is a simple root of C and rk is a simple root of B, a fact which 
could also be shown directly as follows. 

6 Connectedness was assumed implicitly in [9]. 
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The elements of B or NN' are non-negative, and for connected designs B is 
irreducible. Also it is easy to verify that the sum of the elements in any row or 
column of B is niXi = rk. Hence 

is a stochastic matrix, which shows that unity is a simple root of B* and is greater 
than all the other roots [7].Thus rk is a simple root of B. The results of Sectio~i 
3 show that rk is a root of 6 and exceeds the other roots. If this root is removed 
from 1 6 - I9 I = 0, then for the case m = 2, the other two characteristic roots 
of 6 will be roots of a quadratic equation which reduces to 

(r - el2 + [ ( X I  - X2)(p122 - pi2) - ( X I  + X Z ) I ( T  - 9 )  

on using the identities (3.1) and (3.2). The roots are given by 

where 

Therefore, 

I NN' - I d  ( = (rk - 6)(g1 - g)"1(g2- 9 ) a 2 #  

To determine the multiplicities a1 and a2 we note that 

Tr NN' = rk + a191 + az92 = vr. 

Solving and using (4.1), 

Thus the multiplicities al and a2of the roots of NN' are determined in terms of 
the parameters of the design. It is striking that, being independent of r and X i ,  
these multiplicities are the same for all designs having a given association scheme. 
This is an instance of some general properties of cui to be established in Section 6. 

For a design to exist, al and a2must be integral. The condition this imposes on 
the parameters appearing in (4.2) has been used in studies of the existence and 
non-existence of designs [3],[ S ] , [9], 1121, [15]. 
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5. Applications of algebraic properties of association matrices. In this sec-
tion we assume only that Bi (i = 0, . . ,m), are symmetric incidence matrices 
satisfying 

m 

(5.2) C B i =  Joy
i-0 

for some set of constants p jk  . Allof the properties of the algebra except commu-
tativity follow immediately, including its representation in terms of the matrices 
@k = (&). Also, p jk  are elements of products of incidence matrices and must be 
non-negative integers. From 

Bk = BOBk = C pik ~i 
i 

we deduce the special values 

p:k = 1, 

The diagonal element in row t ,  column t of B,B: may be interpreted as the 
number of positions occupied by 1's in row t of B j  as well as in row t of Bk . 
(5.2) shows that if k # j this element is zero. If k = j it is equal to the number 
of 1's in row t of B . The expansions of B ~ B := BjBk and B ~ B I  = B: then show 
that 

0
pjk = 0, j # k7 

and that p:j is equal to each row total of B j  . These row totals must therefore 
be equal. As a matter of notation set 

Row totals in (5.2) show 

Cnj= v. 

Also 

and 

Hence comparing coefficients, 
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We now show that commutativity follows from symmetry of Bi . 

As a consequence, 
i i 

p j k  = p k j  

We also deduce 

Equating the elementa in the 8th row and tth column of QjQk and 

This relation is equivalent to (3.7). Taking t = 0we get 

pfjpyk = x pfkppi ,  
i i 

We have now shown that all the known identities (3.1) follow from the prop-
erties of the algebra which were stated at  the beginning of this section. However 
the relation 

leads to new identities when m > 2. 
To prove a new identity in the case m = 3, set j = s = 1, k = t = 2 in 

(5.4), giving 

nl + p:& + p21pi2 + PLPL = P L P ? ~+ pLpi1 + p2p: l .  

We remark that when m = 3, other choices of j, k, s, t lead to relations equiva-
lent to this one. The use of a smaller number of parameters will make it easier 
to recognize equivalent expressions and will be helpful in simplifying the iden-
tity. A fairly symmetric set of parameters is the following: 

Known identities can be used to express all p jk  in terms of these parameters, 
whereupon the above identity reduces to 
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Thus when nl , nz ,n3 , a12,a3, asl are given, x must satisfy a quadratic equation. 
This is a new relation, since known identities (3.1) do not determine x in terms 
of the other chosen parameters. An example will illustrate this. Let 

n, = 8, aij  = 24. 

Then sets of pjk which satisfy (3.1) are obtained for 

However, (5.5) becomes 

and has no integral solutions, showing that the parameter values ni = 8, ai j  = 
24 are impossible. 

An equivalent and perhaps easier way to impose the new necessary conditions 
on a given set of parameters is to form the matrix products Pi& and 6 k P j  
and require that they be identical. 

The property of symmetry in the matrices Bi was used in the proof of com- 
mutativity in the algebra, which has been of key importance in the proofs of 
several of the foregoing identities. The fact that the elements of Bi  are 0's and 
1's has been used in determining the special form of the pjk values but has not 
been vital in the algebra or the identities relating p;k . The simple example 

shows that matrices with elements other than 0's and 1's may have the same al- 
gebraic behavior as association matrices and may lead to the same identities. 
This shows the necessity of the word "incidence" in the following lemma, which 
summarizes several results of this section. 

LEMMA5.1. I f  Bi ,i = 0, 1, ,m are symmetric incidence matrices satisfying + 

Bo = Iv , 

for some set of constants p;k , then B i  are the association matrices of a n  association 
scheme satisfying (a) to (c) of Section 1. 
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This lemma provides a useful algebraic method of verifying whether a given 
association relation satisfies the conditions of partial balance. 

Algebraic sufficiencyconditions may be used for designs as well as association 
schemes. It is easy to verify that an incidence matrix N is the matrix of a PBIB 
design if and only if N has equal column totals and 

NN' = ~ B o+ XlBl + - + A,&, 

for some m and some numbers r ,  X1 , .- . , A, , where Bo,B1, - - ,B, satisfy 
the conditions of Lemina 5.1. An application of this Lemma will be made in the 
proof of the next theorem. 

Given an association scheme a with more than m classes, let the indices of the 
associate classes be arrangedinto disjoint sets So = (01, Sl , . S ,  . Define a 
new association relation in which associate classes correspond to sets Si, 
two treatments being defined as ith associates in 63 if and only if the associate 
class of the two treatments in corresponds to one of the indices in set Si . 

Association relations obtained in this way do not in general satisfy the condi-
tions of partial balance. Lemma 4.1 of [18] states necessary and sufficient condi-
tions for partial balance in the case S1 = 11, 2 ), Si = {i+ I ) ,i 2 2, i.e., the 
case in which just two classes are combined. Iteration may give schemes in which 
several classes have been combined. However, examples are known [15] in 
which a combination of 3 or more classes will give a new scheme with partial 
balance while every combination of 2 classes fails, so that the iterative procedure 
is impossible. The following generalization is therefore nontrivial. 
THEOREM5.1. Given an  q.ssociation scheme a with v treatments and parameter 

values q& , let an  association relation 63 with v treatments have c b s e s  0, 1, - ,m 
determined by disjoint sets SO= f 0), S1, . , S ,  of indices of a. I n  order for 
63 to satisfy the conditions of partial balance it i s  n.a.s. that there exist constants 
p jk  8 ~ ~ hthat 

uniformly for a e Si , and for i,j, k = 0, 1, - - ,m ;  in this case has parameter 
values pf k . 
PROOF.We denote incidence matrices of a by A ,  and of by Bi . From the 

definition of a ,  

Bi = C A,. 
(Z E B j  

Lemma 5.1 will now be applied. 
Clearly B, are symmetric incidence matrices, BO= I, and xiBi = J ,  ; 

in order for to have partial balance it is thus n.a.s. that there exist constants 
p j k  such that 
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Substituting, 

Also 

the coefficient of A ,  in this expression has the same value for every a E Si . 
Equating to the coefficient of A ,  in the previous equation we obtain (5.6) as 
the n.a.s. conditions on the parameter values qiyof a,completing the proof of 
the theorem. 

6. Characteristic roots of matrices in the algebras. The procedure used in 
Section4 to determine the multiplicities a1 and a2 is readily generalized to associa- 
tion schemes with m classes. If 0 is a characteristic root of B = CLociBi , 
where c; belong to the field of real (or complex) numbers, then 0" is a characteris- 
tic root of Bn. Also, the trace of any matrix is equal to the sum of its charac- 
teristic roots. This leads to a system of equations in the roots 0, of 6 = r o ~ i 6 i  

and the multiplicities a, of the same roots of B. 00 will designate CY==,cc,ni, 
the common value of the row totals of B. 

Equations of this form were used in [9] but were limited to the cases m 5 4 
because of. the difficulty of computing T r  Bn with methods then available. 
(3.6) may be used to express Bn in the form 

Then, since Bo is the only Bi with non-zero diagonal elements, 

The right members of the equations are therefore easily computed. The coeffi- 
cients of a, form the Vandermonde mat,rix with determinant 
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The system will therefore have a unique solution if and only if the m + 1 roots 
8, are distinct. It will be shown in Corollary 6.2 that this will be the case for a t  
least some choice of ci . 

The solutions a ;  must be non-negative integers. If they can be expressed in 
terms of the parameters c; and p j k  this requirement will provide necessary con- 
ditions which the parameters must satisfy in order for matrix B to exist. An 
explicit solution of (6.1) requires a general solution of the equation I @I- 6 1 = 

0, which may be difficult to obtain for m > 2, but one observation may be made 
a t  once. If the basis matrices B; exist, then matrix B will exist for arbitrary 
values of c; ,with characteristic roots which obviously occur with integral multi- 
plicities. This indicates that the integral nature of a, must be independent of 
ci and dependent only on p j k .  Theorem 6.3 will show that this holds not only 
for the integral property but for the exact values a, .This is somewhat surprising 
in view of the form of (6.1), since the values 8, and Tr  B n  depend strongly on 
c; . The other theorems of this section will give further insight into the nature 
of the roots 8, and multiplicities a, , as well as simplifying their computation. 
Result8 related to some of these have been obtained independently and by a 
different approach in [lo]. 

It was pointed out in Section 4 that a 0  = 1for the matrix NN' if it isirredu- 
cible (which is the case when the design is connected). The same theorems for 
stochastic matrices [7] apply to any B with non-negative coefficients c, . In  
particular any matrix Bi which is irreducible has n, as a simple root. I t  follows 
from theorems (6.1) through (6.3)) which we now proceed to prove, that 90 
is a simple root (i.e., a0 = 1) for any set of coefficients c, for which 

is irreducible. 
THEOREM6.1. Let the characteristic roots of 6; be z,i ,u = 0, 1, . . . , m. Then 

for a suitable ordering of z,i for each i, the characteristic roots of the matrix 

are given by 

PROOF. The matrices , . . . , 6, are pairwise commutative. Frobenius' 
Theorem ([14], Theorem 16.1) then states that for a suitable ordering of the char- 
acteristic roots of zUi of each P i ,  and for any rational function 
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the roots of 

are given by 

Also, the ordering of the roots is the same for every rational function f. The re- 
quired theorem follows by taking 

COROLLARY6.1. The distinct characteristic roots 8, of 

are given by 

The problem of finding 8, is therefore solved if the values 2,; can be found and 
ordered. When they are ordered as specified by Theorem 6.1,we define the matrix 

Since 2,; are the characteristic roots of real symmetric matrices Bi , Z is a real 
matrix. 

THEOREM6.2. Z = (2,;) is non-singular. 
PROOF. Let 

be a real solution of the system of homogeneous equations 

This system has coefficient matrix Z and will have a non-zero solution if and only 
if Z is singular. Since Z is real there is no loss of generality in taking y; real. 
By Corollary 6.1 the characteristic roots of the matrix 

are given by the left side of (6.3)and are therefore all equal to zero. The sum of 
all products of roots taken s a t  a time is thus equal to zero, s = 1, 2, . . . , v ;  
this sum is equal to the generalized trace Tr, B, the sum of all s X s principal 
minor determinants of B. B is symmetric with diagonal elements yo and other 
elements y, , . . . , ym . This follows by noting that among the incidence matrices 
Bo ,B1, . . . ,B ,  there is one and only one, say B; , for which the element in the 
tth row and uth columrl is unity, whereas for B j  , j # i ,  the corresponding ele- 
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ment is zero. Hence B will have yi in positions which correspond to unities of B ;  . 
In particular the diagonal elements of B will all be yo. Therefore 

Trl B = vyo = 0 ,  

giving 

Any element yi (i= 1 ,  2 ,  . . . , m )  contributes yi - yi or -y: to  Tr2 B .  Since 
each row of B ,  sums up to ni , the number of unities above the diagonal in B i  
s vni l2 .  This is also the number of yi's above the diagonal in B .  Hence 

Since v, nl, . . . , n, are positive integers and y1 , yz , . . . , y, are real i t  follows 
that 

Therefore (6.3) has no non-zero solution and Z is non-singular. 
COROLLARY6.2. Given a set of association matrices Bo , B1 , . . . Bm ) any 

ordered set of real (or complex) numbers 9 0 ,  . . . , 9, i s  the ordered set of distinct 
characteristic roots of 

for a unique set of real (or complex) coefiients c; . I n  particular, matrices B exist 
with m + 1distinct roots. 

PROOF. For arbitrary 9 0 ,  . . . , 0 ,  the system (6.2) can be solved uniquely for 
C o ,  " '  , cm . 

THEOREM6.3. I f  

i s  a n  element of an algebra with the association matrices B i  as basis, then 

where a, are independent of co , . . . , cm . 
PROOF.Let S be an element of the algebra which has m + 1distinct charac- 

teristic roots. Then S does not satisfy any polynomial equation with degree less 
than m + 1. 
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Since S does not satisfy any equation of degree m or less, these equations must 
be independent and can be solved to give each Bi as a linear expression in Sj 
with constant coefficients. Hence any arbitrary element B can be written 

If 4 is a characteristic root of S, then the corresponding characteristic root of 
B will be 

All of the roots 0, of B may be obtained in this way by using all of the roots of 
X.If a root +, has multiplicity a,,, then the corresponding a, roots of B will be 
equal. That is, the roots 8, of an arbitrary matrix B have the same multiplicities 
a, as the corresponding roots 4, of the fixed matrix S and are therefore inde- 
pendent of the coefficients ci occurring in B. 

This completes the proof but an additional remark should be made. The ele- 
ment B may be such that distinct roots + lead to the same value 8, whose mul- 
tiplicity d will be equal to the sum of two or more cu, . In general, if M is a subset 
of the set 0, 1, . . . , m, 8, = 8 for p CL M, and 8, # 8 for p z M, then 

The statement of the theorem is correct whether 8, are distinct or not. 
If the roots z,, are obtained separately for each 6, , i t  may not be immediately 

clear what ordering of them is required by Theorem 6.1. However, each z,, is a 
root of Bi with multiplicity a, . If the multiplicities are known, a suitable order- 
ing will then be determined by any ordering of the a, if the a, are distinct, and 
partially determined if they are not all distinct. Theorem 6.5 will give another 
technique for ordering the roots. Theorem 6.4 reveals another significance of the 
distinctness or equality of the a, . 

THEOREM6.4. If t and only t of the multiplicities a, are equal, then for each i 
the corresponding roots z,, satisfy a monic polynomial equation with integral coefi- 
cients and degree t. I n  particular, if any a, is distinct from the other multiplicities, 
the corresponding roots z,, are rational integers. 

PROOF. The term m-polynomial will denote "monic polynomial with integral 
coefficients." The characteristic polynomial of a matrix with integral coefficients 
is an m-polynomial. Denote the characteristic polynomials of a basis matrix B, 
and its representation 6, by 

For a particular root zUi, let g(e) be the m-polynomial of lowest degree s with 
zui as a zero. g(0) is irreducible over the rational field. It is determined uniquely 
by any of its zeros and any m-polynomial which has any of its zeros is divisible 
by g(e) and has all of its zeros (p3], Sec. 38). Therefore fi(e) and +i(8) are divisible 
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by g(8), which must be the product of s of the linear factors of &(I??). Moreover, 
the corresponding multiplicities must all have the same value a,!; otherwise, 
after a certain number of successive divisions of f,(8) by g(8) the quotient would 
be an m-polynomial which has some of the zeros of g(8) but not all. In short, 
f,(8) contains [g(8)]""' as a factor and a t  least s of the multiplicities are equal. 
It may happen that the set of distinct irreducible factors with multiplicity a,. 
includes others along with g(8). The product of the factors in the set will be the 
polynomial of degree t described in this theorem, where t is the sum of the de- 
gree s of g(8) and the degrees of any other factors in the set. Clearly s 5 t. 
If t = 1, then s = 1 and g(8) = 8 - z,,, . Since g(8) has integral coefficients, 
it follows in this case that zu1i is an integer, i = 0, . . . ,m. 

Theorems 6.1 and 6.4 are illustrated in the case of m = 2 associate classes by 
expressions (4.1) for the roots B1 and 02, the roles of co , cl , c2 being played by 
r, XI , X2. Although in general the roots of a quadratic equation are irrational 
functions of the coefficients and although X1 and X2 occur several times in the 
coefficients, the roots in this case are linear polynomials in r, XI , X2 ,with coeffi- 
cients that are rational if and only if the integer A is a perfect square. I t  is shown 
in [9] that if a1 Z a 2  i t  is in fact necessary that A be a perfect square, implying 
that the roots are rational. The additional fact that they are integers is not ob- 
vious from (4.1): I&is further shown in [9] that if a1 = a2 , i t  is possible that A 
will not be a square and that the roots will be irrational. This is precisely the 
case in known designs of cyclic type. 

THEOREM 6.5. For fixed u = 0, . . . ,m, the roots z,; satisfy the relations 
m 

(6.4) zut zuk = plk ZU, . 
i-0 

PROOF. The relation is proved by applying Frobenius' theorem to both sides 
of (3.8). 

It is interesting to note the amount of simplification that has now been made 
in the study of a matrix of the algebra, for example the matrix 

NN' = rBo + XIBl +: . . + XmB, 

of a design. The characteristic equation of this matrix is of degree v .  The regular 
representation introduced in Section 3 reduces its solution to the solution of an 
equation of degree m + 1. The theorems of this section show that the charac- 
teristic roots are linear combinations of r, X1 , . . . ,A m  and that the multiplicities 
are entirely independent of these parameters, depending only on the association 
scheme. The coefficients of r, X1 , .. . , Am are z,, , the characteristic roots of the 
matrices Pi, which also depend only on the association schemes. In some cases 
the z,, can be shown to be integers and in any case they satisfy the system of 
quadratic equations (6.4). Once zui values are found for some of the matrices 
61, . . a  ,6, , the equations (6.4) may be particularly useful, not only permit- 
ting an easy determination of the remaining z,, , but giving them in the order 
required by Frobenius' theorem and used in Theorem 6.1. 

The matrix Z = (z,,) seems deserving of further study. As an indication of 
its usefulness we make the following remark: 
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This is equivalent to the system of equations 

providing an alternative to (6.1) for determining a;, . 
The authors are thankful to W. S. Connor and Karl Goldberg for several stimu- 

lating discussions during the preparation of this paper. 
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