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Adviser: Mark Walker

Mu-Wan Huang, Mark Walker and I established an explicit formula for the equivariant

K-groups of affine toric varieties. We also recovered a result due to Vezzosi and Vistoli,

which expresses the equivariant K-groups of a smooth toric variety in terms of the

K-groups of its maximal open affine toric subvarieties. This dissertation investigates

the situation when the toric variety X is neither affine nor smooth. In many cases, we

compute the Čech cohomology groups of the presheaf KT
q on X endowed with a topology.

Using these calculations and Walker’s Localization Theorem for equivariant K-theory, we

give explicit formulas for the equivariant K-groups of toric varieties associated to all two

dimensional fans and certain three dimensional fans.
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Chapter 1

Introduction

A torus in the theory of toric varieties is an algebraic group of the form T := Spec(k[x±1
1 , · · · ,

x±1
n ]), for some n ∈ N, where k is an arbitrary fixed field. A toric variety X is defined

to be a normal variety, that contains a torus T as a dense open subvariety, together with

an action of T on X that extends the action of T on itself. It turns out that toric varieties

arise from geometric objects called strongly convex rational polyhedral cones and fans

of such things [8]. Most of the properties of toric varieties correspond to properties

of the associated fans. For example, the singularities of a toric variety are determined

by the combinatorial data of the fans. This correspondence between properties of the

varieties and those of the associated fans makes toric varieties good examples for many

phenomena in algebraic geometry.

Given an exact category A, Quillen constructed a “K-theory space”, KA, and defined

the K-group KnA of A to be its homotopy group πnKA [15]. The K-groups of an alge-

braic variety X are abelian groups, Kq(X), for q ≥ 0, defined in this fashion from the

exact category of vector bundles over X. K0(X) can be concretely described in terms of

generators and relations. It is generated by isomorphism classes of vector bundles over
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X modulo relations given by short exact sequences of vector bundles. If an algebraic

group G over a field k acts on a given variety X, then we can study the G−equivariant

vector bundles over X. The K-groups of the exact category of G−equivariant vector

bundles over X are known as the G−equivariant K-groups of X, denoted by KG
q (X), for

q ≥ 0. In general, K-groups are very difficult to understand. However, due to the con-

creteness of the fan structures, the problem of computing the K-groups of toric varieties

becomes more tractable. This dissertation is concerned with computing T−equivariant

K-groups of toric varieties. The next paragraph contains a rough description of some of

our prior results, which are the result of joint work with Mu-wan Huang and Mark Walker.

An affine toric variety Uσ is determined by a single cone σ and a fixed field k. The

K-group KT
0 (Uσ) is a free abelian group whose generators are given by the combinatorial

data of σ (see Theorem 3.1), and the higher equivariant K-groups of Uσ are the higher

K-groups of k tensored with KT
0 (Uσ) over Z. A general toric variety X is constructed by

patching the open affine toric subvarieties along their intersections. In the case that X is

smooth, Vezzosi and Vistoli proved that KT
q (X) is determined by the equivariant K-groups

of the maximal open affine toric subvarieties and their intersections. (See Theorem 4.4.)

Thus, the equivariant K-groups of affine toric varieties and smooth toric varieties are

well understood. The main results of this thesis are about equivariant K-groups of toric

varieties that are not necessarily affine or smooth. The rest of this chapter is an overview

of the thesis.

1.1 Detailed Overview

A strongly convex rational polyhedral cone is the collection of non-negative real linear

combinations of a set of vectors in Qn that does not contain a non-zero subspace of Rn.
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This is the type of cones we will be working with, unless otherwise stated. Given a cone

σ and a field k, we construct a monoid ring k[σ∨ ∩Zn] associated to the lattice points in

the dual cone σ∨. The affine toric variety Uσ associated to σ is defined to be the spectrum

of k[σ∨ ∩Zn]. The intersection of σ with a set of the form {v ∈ Rn|u · v = 0} for some

u ∈ σ∨ is called a face of σ. If we have a finite set of cones ∆ such that every face of a

cone in ∆ is also a cone in ∆ and the intersection of two cones in ∆ is a face of each, then

we call ∆ a fan. For example, the fan below consists of eighteen cones – σ1, σ2, σ3 and all

their faces, where σ1 is generated by ρ1, ρ2, ρ3; σ2 is generated by ρ2, · · · , ρ5, and σ3 is

generated by ρ4, ρ5, ρ6.
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The toric variety X(∆) corresponding to ∆ is obtained by patching affine toric varieties

associated to the maximal cones in ∆ along open subvarieties given by the intersections

of maximal cones in ∆.

Let ∆ be a fan in Rn. The variety X(∆) contains the torus T := Spec(k[x±1
1 , · · · , x±1

n ])

as an open subvariety, hence the name toric variety. Moreover, there is an action of T

on X(∆) that extends the action of T on itself. An equivariant vector bundle over X(∆) is a

vector bundle with a torus action by T that commutes with the action of T on X(∆). The

group KT
0 (X(∆)) is the group completion of the abelian monoid of isomorphism classes

of equivariant vector bundles on X(∆) modulo relations coming from short exact se-

quences. Since an equivariant bundle over the affine variety Uσ is given by a Zn−graded

projective module over k[σ∨ ∩Zn], KT
0 (Uσ) is just the group completion of the abelian
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monoid of isomorphism classes of projective graded modules over k[σ∨ ∩Zn]. The higher

equivariant K-groups KT
q (X(∆)) are the K-groups of the exact category of equivariant

vector bundles over X(∆).

In [1] , Mu-Wan Huang, Mark Walker and I proved the following theorem for the

equivariant K-theory of affine toric varieties. (See Chapter 3.)

Theorem (Au, Huang, Walker). For all strongly convex rational polyhedral cones σ in Rn and

integers q ≥ 0, there is a natural isomorphism

KT
q (Uσ) ∼= Z[Mσ]⊗Z Kq(k),

where Mσ = Zn/(σ⊥ ∩Zn) and σ⊥ = {u ∈ Rn|u · v = 0 for all v ∈ σ}. In particular,

KT
0 (Uσ) ∼= Z[Mσ].

Notice that a fan ∆ determines a poset whose elements are the cones in ∆ and the order

relation ≺ is given by face containment. Therefore, one can put the “poset topology” on

∆, meaning that Λ ⊆ ∆ is open if and only if whenever σ ∈ Λ and τ ≺ σ, we have τ ∈ Λ.

In other words, the open sets of ∆ are subfans of ∆ [2], [3]. In this finite topological space,

the smallest open set containing a cone σ is the subfan 〈σ〉 consisting of σ and all of its

faces. Thus, for all sheaves F on ∆, F (〈σ〉) = Fσ, so a sheaf F on ∆ is determined by its

stalks and the maps between them. Since a containment of subfans Λ ⊆ Λ′ in ∆ induces

a homomorphism KT
q (X(Λ′)) → KT

q (X(Λ)), for all q ≥ 0, the map Λ 7→ KT
q (X(Λ)) is a

presheaf on ∆. In [1], we also recovered a theorem of Vezzosi and Vistoli [17, Theorem

6.2] concerning this presheaf on smooth fans ∆. (See Chapter 4.)

Theorem ([1]) . Let ∆ be a smooth fan. The presheaf Λ 7→ KT
q (X(Λ)) on ∆ is a flasque sheaf.

Moreover, there is a natural isomorphism
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KT
q (X(∆)) ∼= H0

(
∆, K̃T

0

)
⊗ Kq(k). (1.1)

And,

KT
0 (X(∆)) ∼= H0

(
∆, K̃T

0

)
,

where K̃T
0 denotes the sheafification of the presheaf KT

0 on ∆, i.e. the sheaf whose stalk at σ ∈ ∆ is

KT
0 (Uσ) ∼= Z[Mσ].

We will refer to this sheaf cohomology H•
(

∆, K̃T
0

)
of K̃T

0 as “fan cohomology”. The proof

of the theorem above requires a spectral sequence by R. W. Thomason [16]. Namely, if V

is an equivariant open cover of a smooth variety X equipped with an action by T, then

there is a convergent spectral sequence

Ȟp(V , KT
q ) =⇒ KT

q−p(X), (1.2)

where Ȟp(V , KT
q ) are the Čech cohomology groups of KT

q with respect to the cover V .

As a result of (1.1), the equivariant K-groups of smooth toric varieties can be expressed

in terms of Kq(k) and H0
(

∆, K̃T
0

)
. The lower K-groups of a field are well understood. For

example, K0(k) = Z, K1(k) = k× and K2(k) is the quotient of k× ⊗ k× by the subgroup

generated by the elements x⊗ (1− x) for x ∈ k\{0, 1} [9]. When the field is finite, Quillen

gave the following formulas for the K-groups [14, Theorem 8]:

Kq(Fpe) =


Z, q = 0

0, q = 2i, for i ∈N

Z/(pei − 1), q = 2i− 1, for i ∈N
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The group H0
(

∆, K̃T
0

)
is also relatively well understood, because ∆ is a finite topological

space and the sheaf K̃T
0 is determined by the stalks

(
K̃T

0

)
σ

= Z[Mσ], for σ ∈ ∆. (For

instance, see Example 4.3.)

This thesis is motivated by the isomorphism (1.1), and we want to know if it remains

true for a general toric variety. In the cases where the isomorphism (1.1) does not hold, we

want to measure how far off KT
q (X(∆)) is from H0

(
∆, K̃T

0

)
⊗ Kq(k). In our investigation,

we will use the non-smooth version of the spectral sequence (1.2) due to Walker [20]. If ∆

is a fan whose associated toric variety X(∆) is quasi-projective, then there is a convergent

spectral sequence

Ȟp(V , KT
q ) =⇒ KT

q−p(X(∆)), (1.3)

where V is the equivariant open cover {Uσ|σ is a maximal cone in ∆} of X(∆). Since

Ȟp(V , KT
q ) ∼= Hp

(
∆, K̃T

q

)
(see isomorphism (2.15) on P. 22), one way to approach the

problem of computing the equivariant K-groups of a general toric variety is to study its

fan cohomology. If Hp+1
(

∆, K̃T
0

)
is torsion free, the isomorphism (1.1) along with [21,

Theorem 5.6.4] yield the following isomorphism.

Hp
(

∆, K̃T
q

)
∼= Hp

(
∆, K̃T

0

)
⊗Z Kq(k)

This implies we really only need to consider the case when q = 0, if Hp
(

∆, K̃T
0

)
is torsion

free. Note that we know of no example of a fan ∆ such that Hp(∆, K̃T
0 ) has torsion.

In this thesis, we prove the following results about Hp
(

∆, K̃T
0

)
. In Section 5.1, we

show in Corollary 5.7 that if ∆ is a fan, then Hp
(

∆, K̃T
0

)
= 0 for all p ≥ d, where

d = max{dim σ|σ ∈ ∆}. Hence, for each q, only finitely many E2 terms of the spectral

sequence (1.3) are non-zero. We also verify in Lemma 5.14 that a large class of fans has
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the property that all higher fan cohomology groups vanish. In Sections 5.3 and 5.2, we

compute the (n − 1)st fan cohomology for non-complete and complete fans in Rn as

stated in the following two theorems. (A fan ∆ in Rn is complete if
⋃

σ∈∆ σ = Rn.)

Theorem. If ∆ is a non-complete fan in Rn with n > 1, then Hn−1
(

∆, K̃T
0

)
= 0.

Theorem. Let ∆ be an n-dimensional complete fan, where n > 1. Suppose ∆ has s one-

dimensional cones ρ1, · · · , ρs, and let vi be the minimal lattice point of ρi, for i = 1, · · · , s. Then

Hn−1
(

∆, K̃T
0

)
∼= Zg−1, where g is the greatest common divisor of the set of all 2× 2 minors of

the matrix


v1

...

vs

.

Notice that if ∆ contains a single smooth two dimensional cone, then g is 1, and thus

Hn−1(∆, KT
0 ) = 0. So, in a sense, the number g as defined in the theorem above mea-

sures singularities of the fan. Finally, in Section 5.4, we demonstrate a large class of

non-complete 3-dimensional fans ∆ having the property that H1
(

∆, K̃T
0

)
is torsion free.

As mentioned earlier, we know of no example of a fan ∆ such that Hp(∆, K̃T
0 ) has torsion.

At this point, we have a good understanding of H•
(

∆, K̃T
0

)
for any two dimensional

fan and some three dimensional fans. In Chapter 6, we express the K−groups KT
q (X(∆))

of toric varieties arising from these fans in terms of H0
(

∆, K̃T
0

)
and the K−groups,

Kq(k), of the ground field k. The isomorphism (1.1) holds for all two dimensional non-

complete fans. For two dimensional complete fans and those three dimensional fans with

H1
(

∆, K̃T
0

)
= 0, KT

q (X(∆)) fits into the following short exact sequence:

0 −→ Kq+1(k)g−1 −→ KT
q (X(∆)) −→ H0

(
∆, K̃T

0

)
⊗ Kq(k) −→ 0
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Also, notice that toric varieties can be built over any ground field. If the ground field k

is finite, then many of the E2 terms of the spectral sequence (1.3) vanish due to Quillen’s

result that K2i(k) = 0 for all i ∈ N [14, Theorem 8]. Hence, computing the K-theory of

toric varieties becomes manageable even without knowing some of the fan cohomology

groups, H•(∆, KT
0 ). This is discussed in Section 6.3.
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Chapter 2

Background

2.1 Cones and Fans

2.1.1 Cones

In this section, we introduce properties of convex polyhedral cones and fans, which can

be found in several standard textbooks such as [4], [12] and [8].

Let N be an abelian group isomorphic to Zn. We refer to N as a lattice and write the real

vector space N ⊗Z R as NR. A convex polyhedral cone σ is defined to be a subset of NR of

the form

σ =
〈
v1, · · · , vj

〉
= {r1v1 + · · ·+ rjvj|ri ∈ R≥0}

for some v1, · · · , vj ∈ NR. The vectors v1, · · · , vj are called generators of the cone σ. Here

are some pictures of cones.
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Figure 2.1: Convex Polyhedral Cones

A cone is said to be simplicial if its generators can be chosen to be linearly independent.

In Figure 2.1, (a) and (b) are simplicial and (c) is not. The dimension of a cone σ is the

dimension of the vector space spanned by σ, i.e.,

dim(σ) = dim(Rσ),

where Rσ = σ + (−σ). Let M be the dual lattice, Hom(N, Z), of N. For a cone, σ, its dual

σ∨ ⊆ MR = M⊗Z R is given by

σ∨ = {u ∈ MR|u(v) ≥ 0 for all v ∈ σ}.

Example 2.2. Suppose N = Z2, then NR
∼= R2 and MR

∼= R2. If σ is the cone in R2 generated

by e1, then σ∨ is the right half-space.

//•
(0,0)

σ

OO

��

•(0,0)

qqq
qqq
qqq

σ∨
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Example 2.3. Let N be Z2 and σ be the cone generated by e2 and 2e1 − e2, then σ∨ is generated

by e1 and e1 + 2e2.

OO

''OOOOOOOOOOOO

•(0,1)

•(2,−1)

σ

7
7

9
9

9
9

9
9

9
9

9
9 GG������������ //

•(1,2)

•
(1,0)

σ∨

44 4
4

4
4

4
4

4

The following statement is an important fact from the theory of convex sets:

(*) If σ is a convex polyhedral cone and v ∈ NR\σ, then there is some u ∈ σ∨ such that

u(v) < 0.

From (*), one can deduce many properties of convex polyhedral cones, including the fact

that the dual of a convex polyhedral cone is a convex polyhedral cone (known as Farkas’

Theorem) and the dual of σ∨ is σ again.

Given a dual vector u ∈ MR, u⊥ is the set {v ∈ NR|u(v) = 0}. A face τ of a cone

σ is defined to be the intersection of any supporting hyperplane with the cone, i.e.

τ = σ ∩ u⊥ = {v ∈ σ|u(v) = 0}

for some u ∈ σ∨. It is clear that a cone is a face of itself with u = 0. A face of a cone

σ is generated by the generators of σ which are in the kernel of u, and so σ has finitely

many faces and each of them is a convex polyhedral cone. Faces of codimension one are

called facets of the cone. For example, the following cone has one 3−dimensional face,

four facets, four 1−dimensional faces (rays) and a 0−dimensional face.
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WW/////////////
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By “τ � σ”, we mean τ is a face of the cone σ. One can check the following properties of

faces by using (*):

1. An intersection of faces is also a face.

2. If δ � τ and τ � σ, then δ � σ.

3. A proper face is the intersection of all facets containing it.

4. The topological boundary of a cone that spans NR is the union of its facets.

5. There is a one-to-one correspondence between the faces of σ and the faces of σ∨.

More specifically, if τ � σ, then τ⊥ ∩ σ∨ � σ∨ and

dim(τ) + dim(τ⊥ ∩ σ∨) = dim(NR),

where τ⊥ = {w ∈ MR|w(v) = 0, ∀v ∈ τ}. Another consequence of (*) is the Separation

Lemma, which says that if α and β are convex polyhedral cones that share a common

face τ, then there exists u ∈ α∨ ∩ (−β)∨ such that τ = α ∩ u⊥ = β ∩ u⊥.

A cone in NR is said to be rational if all of its generators v1, · · · , vj may be taken to

belong to N or, equivalently, NQ. The dual of a convex rational polyhedral cone is

rational. For reasons that will be discussed later, we want the zero cone to be a face, and

so we will be working with strongly convex cones, which are cones that do not contain any
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non-zero subspaces of NR. The cones in Figure 2.1.1 are all strongly convex. The “infinite

trough” below is a cone that is not strongly convex.

,,ZZZZZZZZZZZ
llZZZZZZZZZZZ

VV----
HH��������

+
+

+

v3

v2

v1

v4

•
(0,0,0)

,,,,,,,

����� //

+
+

+

�����

ZZZZZZZZZZZZZZ

ZZZZZZZZZZZZZZ

If σ is strongly convex, then each element of a minimal generating set of σ generates a

one dimensional face of σ, and this accounts for all the one dimensional faces of σ. From

now on, when we say “cone”, we usually mean strongly convex rational polyhedral cone,

unless otherwise stated, because we only build toric varieties from this type of cone. A

strongly convex polyhedral cone is smooth if the set of minimal lattice points along its

rays may be extended to a Z−basis of N. For example, the cone σ in example 2.3 is not

smooth but the cone generated by e1 and e2 is.

2.1.2 Fans

Certain cones can be “glued” together along their common faces to form a larger geometric

object called a fan.

Definition 2.4. A fan is a finite set ∆ of cones in NR such that

• every face of a cone in ∆ is also a cone in ∆ and

• the intersection of two cones in ∆ is a face of each.

Example 2.5. The fans ∆1 = {τ1, τ2, 0} and ∆2 = {σ1, σ2, σ3, τ1, τ2, τ3, 0} below have two

and three maximal cones respectively. The fan ∆3 consists of two 3-dimensional cones, six

2-dimensional cones, five 1-dimensional cones and the zero cone.
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τ1

τ2 τ3
τ4 τ5

∆3

A fan ∆ in NR
∼= Rn is complete if its support |∆| :=

⋃
σ∈∆ σ is all of Rn. The fan ∆2 above

is complete, while ∆1 and ∆3 are not. The dimension of a fan ∆, dim ∆, is defined to be the

dimension of the real vector space spanned by the generators of the cones in ∆ — i.e., the

smallest subspace of NR containing every cone in ∆.

A fan is smooth if each of its cones is smooth. We call the fan consisting of a single cone

σ and its faces the fan spanned by σ, and we write it as 〈σ〉.

2.2 Toric Varieties

Suppose σ is a convex rational polyhedral cone in NR. Gordon’s Lemma says that σ∨ ∩M

is a finitely generated abelian monoid under addition.

Example 2.6. Let N = Z2 and σ be the cone in NR generated by e2 and 2e1 − e2, then

σ∨ ∩M ∼= σ∨ ∩Z2 is the abelian monoid generated by e1, e1 + e2 and e1 + 2e2.

OO

''OOOOOOOOOOOOOOOO

•(0,1)

•(2,−1)

σ

7
7

9
9

9
9

9
9

9
9

9
9

GG������������� //

•(1,2)

•
(1,0)

σ∨ ∩Z2

•

•

•

•

•

•
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Now, we fix a ground field k. Then k[σ∨ ∩ M] is a monoid ring and a k−algebra. A

typical element in k[σ∨ ∩M] has the form ∑
j
i=1 aiχ

mi , for some j ∈N, a1, · · · , aj ∈ k and

m1, · · · , mj ∈ σ∨ ∩M. Here, χ is just an arbitrary symbol used to convey the fact that

multiplication in k[σ∨ ∩M] is determined by the addition in σ∨ ∩M, i.e., χmχm′ = χm+m′

for all m, m′ ∈ σ∨ ∩M.

Definition 2.7. Let σ be a convex rational polyhedral cone in NR, then the affine toric variety

associated to σ is defined to be

Uσ := Spec(k[σ∨ ∩M]).

Many references for toric varieties assume k to be algebraically closed, and some such as

[4] and [12] simply take k to be C. However, toric varieties can be built over any ground

field, and more importantly the properties of varieties discussed in this thesis do not

depend on the properties of k.

Example 2.8. Consider the cone σ in example 2.6 above generated by e2 and 2e1 − e2. The

abelian monoid σ∨ ∩Z2 is generated by e1, e1 + e2 and e1 + 2e2. Let s = χe1 and t = χe2 , then

χe1+e2 = st and χe1+2e2 = st2. So, k[σ∨ ∩Z2] ∼= k[s, st, st2]. Therefore, the associated affine

toric variety is

Uσ = Spec(k[s, st, st2]) ∼= Spec(k[x, y, z]/(y2 − xz)).

Suppose ϕ : N → N′ is a homomorphism of lattices that maps a cone α in NR into a

cone β in N′R. Then ϕ induces a map from M′ to M which maps β∨ into α∨. Hence,

ϕ determines a ring map k[β∨ ∩M′] → k[α∨ ∩M], which corresponds to a morphism

Uα → Uβ of affine toric varieties. In particular, if τ is a face of σ, then σ∨ ∩ M is a

sub-monoid of τ∨ ∩M. Since τ∨ is given by σ∨ + R≥0 · (−u), where τ = σ ∩ u⊥, the ring
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k[τ∨ ∩M] is the localization of k[σ∨ ∩M] obtained by inverting χu. That implies that Uτ

is an open subset of Uσ.

Example 2.9. Let σ be the cone in R2 generated by e2 and 2e1 − e2 as in example 2.6, and let τ

be the face generated by e2.

OO

''OOOOOOOOOOOOOOOO

τ

•(0,1)

•(2,−1)

σ

7
7

9
9

9
9

9
9

9
9

9
9

//oo • • •

• • •

• • •

••

••

••

(1,0)(−1,0)

τ∨ ∩Z2

The ring k[τ∨ ∩Z2] is isomorphic to k[σ∨ ∩Z2]χe1 . Because k[σ∨ ∩Z2] ∼= k[s, st, st2],

k[τ∨ ∩Z2] ∼= k[s, st, st2](s)
∼= k[s±1, t]

and

Uτ = Spec(k[s±1, t]) ↪→ Spec(k[s, st, st2]) = Uσ.

From the picture of τ∨ ∩Z2, we can see that Uτ is indeed Spec(k[s±1, t]).

Let σ be the zero cone in NR
∼= Rn, then σ∨ is MR. Suppose {e1, · · · , en} is a basis for

M. For i = 1, · · · , n, let xi = χei . Then the monoid ring k[σ∨ ∩M] = k[M] is the Laurent

polynomial ring in n variables, k[x±1
1 , · · · , x±1

n ]. Thus, the affine toric variety associated

to the zero cone is

TN := U{0} ∼= Spec(k[x±1
1 , · · · , x±1

n ])

We call TN the n-dimensional torus. Since every cone has the zero cone as a face, every

affine toric variety contains the torus as an open subvariety, hence the name toric variety.
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Given a fan ∆, the toric variety X(∆) corresponding to ∆ is obtained by patching affine

toric varieties associated to the maximal cones in ∆ along open subvarieties given by the

intersections of those maximal cones, i.e.,

X(∆) = lim−→
σ∈∆

Uσ.

For any two cones α and β in ∆, the intersection of Uα and Uβ is the open subvariety

Uα∩β given by their common face α ∩ β due to the following identities:

Spec(k[α∨ ∩M]) ∩ Spec(k[β∨ ∩M]) = Spec(k[(α∨ ∩M) + (β∨ ∩M)]) = Spec(k[(α ∩ β)∨ ∩M])

Example 2.10. Suppose N = Z and ∆ is the 1-dimensional complete fan with two maximal cones

generated by e1 and −e1 respectively.

oo //•
(−1,0)

•
(1,0)

•

These maximal cones correspond to the rings k[x] and k[x−1]. Patching Spec(k[x]) and Spec(k[x−1])

along Spec(k[x±]) gives the variety X(∆) = P1
k, projective 1-space.

Example 2.11. Consider the following 2-dimensional complete fan ∆ with three maximal cones,

σ1, σ2 and σ3.
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The cones σ1, σ2 and σ3 correspond to the rings k[x, y], k[y−1, xy−1] and k[x−1, x−1y] respectively;

patching gives the variety X(∆) = P2
k, projective 2-space.

Example 2.12. Let ∆ be the following fan in R2 with two maximal cones σ1 and σ2.

oo //

OO
ρ

ρ2 ρ1•
(−1,0)

•
(1,0)

• (0,1)
?? ?? ?

?
σ1

���
�

�

�
�

�
�σ2

k[σ∨1 ∩Z2] ∼= k[x, y], k[σ∨2 ∩Z2] ∼= k[x−1, y] and k[ρ∨ ∩Z2] ∼= k[x±, y]. Patching Uσ1
∼= A2

k

and Uσ2
∼= A2

k along Uρ
∼= Spec(k[x±1])×A1

k yields the variety X(∆) = P1
k ×A1

k.

Notice that if we consider ∆1 := {ρ1, ρ2, 0} and ∆2 := {ρ, 0} to be fans in R, then

X(∆1) = P1
k and X(∆2) = A1

k. The fan ∆ from Example 2.12 is like the “cartesian

product” of ∆1 and ∆2, and so X(∆) = P1
k ×A1

k. In fact, this is true in general. Suppose

N and N′ are lattices. If ∆ and ∆′ are fans in NR and N′R respectively, then the set

of cones, ∆× ∆′ := {σ × σ′|σ ∈ ∆, σ′ ∈ ∆′}, is a fan in (N ⊕ N′)R, and its associated

toric variety X(∆ × ∆′) is isomorphic to X(∆) × X(∆′). Here, σ × σ′ denotes the set

{(u, w) ∈ (N ⊕ N′)R|u ∈ σ, w ∈ σ′}.
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Example 2.13. The following two dimensional complete fan gives rise to the toric variety P1
k ×P1

k ,

because X(∆1) = P1
k = X(∆2), where ∆1 = {ρ1, ρ3, 0} and ∆2 = {ρ2, ρ4, 0}.

oo //

OO

��

ρ2

ρ4

ρ3 ρ1

?? ?
?

?

?
?

?
? σ1

���
�

�

�
�

�
�σ2

�� �
�

�

�
�

�
� σ4

???
?

?

?
?

?
?σ3

One of the reasons toric varieties are good sources of examples in the study of algebraic

geometry is that many properties of toric varieties correspond to properties of the

associated fans. For instance, if X(∆) is an affine toric variety, then ∆ is affine, meaning

that ∆ is spanned by a single cone. A toric variety is smooth if and only if the associated

fan is smooth, and it is complete if and only if its associated fan is complete. Projective

toric varieties are built from complete fans with a special property described below.

Recall that |∆| is the support
⋃

σ∈∆ σ of the fan ∆. A function h : |∆| → R is a ∆−linear

support function if for each σ ∈ ∆, there exists uσ ∈ M with h(v) = uσ(v) for all v ∈ σ. By

the definition of M, it is clear that for all v ∈ N ∩ |∆|, h(v) ∈ Z. Since h is a function,

uσ(w) = uτ(w) for all w ∈ τ � σ. That is to say, a ∆−linear support function is a

real-valued piece-wise linear function on the support |∆| such that the domains of the

pieces are the maximal cones of ∆. Every element m of M can be considered as a ∆−linear

support function by taking uσ = m for all σ ∈ ∆. A ∆−linear support function h is said

to strictly upper convex with respect to ∆, if for all σ ∈ ∆ and v ∈ NR, we have uσ(v) ≥ h(v)

with equality holding whenever v ∈ σ. A complete toric variety X(∆) is projective if and

only if there exists a ∆−linear support function h : |∆| → R that is strictly upper convex

with respect to ∆ [12, Corollary 2.16]. It turns out that this condition is equivalent to the
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existence of a convex polytope Q ⊂ NR containing the origin in its interior such that

∆ = {R≥0Q′|Q′ is a proper face of Q} [12, Proposition 2.19] [6, 7.9.2]. Observe that every

complete fan of dimension one or two determines a projective toric variety, but there are

examples of non-projective complete toric varieties of dimension three [4, Page 71].

2.3 Equivariant K-groups of Toric Varieties

Let ∆ be a fan in NR, then the toric variety X(∆) contains the torus TN as an open

subvariety. There is also an action of TN on X(∆). Locally, for σ ∈ ∆, TN acts on Uσ as

follows:

The map TN ×Uσ → Uσ is given by the map of algebras,

k[σ∨ ∩M]→ k[M]⊗ k[σ∨ ∩M],

sending χu to χu ⊗ χu, for all u ∈ σ∨ ∩M.

Furthermore, this action of TN on Uσ is compatible with inclusions of open subsets

associated to faces of σ. In other words, if τ is a face of σ, the following diagram

commutes:

T ×Uτ

id×i
��

// Uτ

i
��

T ×Uσ
// Uσ

where i is the open embedding of Uτ into Uσ. This compatibility means that there is an

action of TN on X(∆) extending the usual product in TN.
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An equivariant vector bundle over X(∆) is a vector bundle V
φ→ X(∆) with a torus action

by TN that commutes with the action of TN on X(∆), i.e., the following diagram commutes:

TN ×V

id×φ
��

// V
φ

��
TN × X(∆) // X(∆)

The equivariant K-group KT
0 (X(∆)) is the group completion of the abelian monoid of

isomorphism classes of equivariant vector bundles on X(∆) modulo a relation [V2] =

[V1] + [V3] for every short exact sequence

0 −→ V1 −→ V2 −→ V3 −→ 0

of equivariant vector bundles, where the maps in the sequence are TN−equivariant.

Notice that we can put an M grading on the ring k[σ∨ ∩M] by declaring elements in

k to be of degree 0 and setting deg(χm) as m for all m in σ∨ ∩ M. If an M−graded

k[σ∨ ∩ M]−module is projective in the ungraded sense, then it is projective as an

M−graded module over k[σ∨ ∩ M] [11, Corollary 2.3.2]. Now, a vector bundle over

the affine variety Uσ corresponds to a finitely generated projective module over k[σ∨ ∩M]

[5], and the torus action on the vector bundle gives an M−grading of the corresponding

module. Thus, an equivariant bundle over Uσ is given by a finitely generated projective

M−graded module over k[σ∨ ∩M]. Hence, KT
0 (Uσ) is simply the group completion of

the abelian monoid of isomorphism classes of finitely generated projective M−graded

modules over k[σ∨ ∩M]. The higher equivariant K-groups KT
q (X(∆)) are the K-groups of

the exact category of equivariant vector bundles over X(∆). If U ∪V is an equivariant

open cover for the toric variety X(∆), then the K-groups fit into the following long exact
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sequence:

· · · −→ KT
q (X(∆)) −→ KT

q (U)⊕ KT
q (V) −→ KT

q (U ∩V) −→ KT
q−1(X(∆)) −→ · · · ,

where q ranges over all integers [20]. The negative equivariant K-groups are defined in

the same manner as the negative K-groups of rings.

2.4 Fan Cohomology

A fan ∆ is a poset whose order relation is defined as τ � σ whenever τ is a face of

σ. A poset in turn determines a category whose objects are elements of the poset and

where there is a unique morphism from τ to σ if and only if τ � σ. So, we will treat a

fan as a category as needed and write it as Cat(∆). On the other hand, we can define

a topology on a fan ∆ by declaring the subfans of ∆ to be open sets [2], [3]. This is a

finite topological space, and because the smallest open set containing a cone σ ∈ ∆ is the

subfan 〈σ〉 spanned by σ, for all sheaves F , the value of F (〈σ〉) is the stalk Fσ. Let C be

the category of sheaves of abelian groups on ∆, and let D be the category of contravariant

functors from Cat(∆) to the category Ab of abelian groups. There is a natural equivalance

Φ between C and D. More specifically, for all sheaves F ∈ C, Φ(F ) is the contravariant

functor that sends σ ∈ ∆ to Fσ and a morphism τ � σ to the map Fσ → Fτ given by

identifying Fσ with F (〈σ〉) and using that 〈τ〉 is an open subset of 〈σ〉. The inverse of Φ

sends F ∈ D to F ∈ C which is defined as follows:

F (Λ) = lim←−
σ∈Λ

F(σ), for all subfans Λ ⊆ ∆.

As a result, a sheaf F on ∆ is determined by its values on stalks and the maps between

them.
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Proposition 2.14. For all presheaves F on ∆ and p ≥ 0, the Čech cohomology groups Ȟp(U ,F )

of F with respect to the open cover U := {〈σ〉|σ is a maximal cone in ∆} of ∆ is isomorphic to

the sheaf cohomology groups Hp(∆, F̃ ), where F̃ is the sheafification of F .

Proof. Observe that 〈σ1〉 ∩ · · · ∩ 〈σt〉 = 〈σ1 ∩ · · · ∩ σt〉 for any fixed t ∈ N, and both

F̃ (〈σ1 ∩ · · · ∩ σt〉) and F (〈σ1 ∩ · · · ∩ σt〉) are equal to the stalk of F̃ at σ1 ∩ · · · ∩ σt.

So, Ȟp(U ,F ) = Ȟp(U , F̃ ). By a standard argument, it suffices to prove that for

any finite intersection σ1 ∩ · · · ∩ σt of maximal cones in ∆, Hp(〈σ1〉 ∩ · · · ∩ 〈σt〉 , F̃ ) =

0 for all p > 0. Since taking stalks is an exact functor, by the observation above,

Hp(〈σ1〉 ∩ · · · ∩ 〈σt〉 , F̃ ) = 0 for all p > 0.

We can define a topology on the toric variety X(∆) by declaring the equivariant open

subvarieties to be the only open sets. For each q ≥ 0, KT
q (−) is a presheaf on X(∆),

sending an equivariant open subvariety to its equivariant K-group and a morphism

between open subvarieties to the induced map between K-groups. We will use the same

name KT
q (−) for the presheaf on ∆ that sends a subfan Λ to KT

q (X(Λ)). Let V be the open

cover {Uσ|σ is a maximal cone in ∆} of X(∆) and U be defined as in Proposition 2.14.

Then it is clear that Ȟp(V , KT
q ) ∼= Ȟp(U , KT

q ). Thus, by Proposition 2.14

Ȟp(V , KT
q ) ∼= Ȟp(U , KT

q ) ∼= Hp
(

∆, K̃T
q

)
, (2.15)

where K̃T
q is the sheafification of the presheaf KT

q on ∆. We will refer to the sheaf

cohomology of K̃T
q on ∆ as “fan cohomology”. Other than Thomason’s and Walker’s

spectral sequences discussed in the introduction, the theory of fan cohomology will be the

main tool we use in the computation of equivariant K-groups of non-affine toric varieties.
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But first, we will discuss a formula for equivariant K-groups of affine toric varieties in the

next chapter.
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Chapter 3

Equivariant K-groups of Affine Toric

Varieties

In the paper with Mark Walker and Mu-Wan Huang [1], we give a formula for the

equivariant K-groups of an affine toric variety in terms of the associated cone and the

K-groups of the ground field. The full statement is as follows:

Theorem 3.1 (Au, Huang, Walker). For all strongly convex rational polyhedral cones σ in Rn,

there is a natural isomorphism

KT
q (Uσ) ∼= Z[Mσ]⊗Z Kq(k), (3.2)

where Mσ = Zn/(σ⊥ ∩Zn). In particular, KT
0 (Uσ) ∼= Z[Mσ].

The isomorphism (3.2) is natural with respect to the inclusion of a face τ into σ, i.e., for

τ � σ, the diagram
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KT
q (Uσ)

f
��

∼= // Z[Mσ]⊗Z Kq(k)

π⊗id
��

KT
q (Uτ)

∼= // Z[Mτ]⊗Z Kq(k)

commutes. The map π is the canonical surjection, while f is the induced map between

K-groups.

If σ is smooth, Theorem 3.1 follows from basic properties of equivariant K-theory of

smooth toric varieties [10] . In order to establish this same result for an affine toric variety

that is not necessarily smooth, we proved the following statement regarding the K-theory

of graded projective modules:

Theorem 3.3 (Au, Huang, Walker). If R is a commutative ring, M an abelian group, and A a

sub-monoid of M, then for all q ≥ 0, we have

KM
q (R[A]) ∼= Z[M/U]⊗Z Kq(R),

where U is the subgroup of units of A and KM
q (R[A]) is the K-theory of the exact category,

PM(R[A]), of finitely generated M−graded projective R[A]−modules.

A consequence of this theorem is the isomorphism

KT
q (Uσ ×k Spec R) ∼= Z[Mσ]⊗Z Kq(R), (3.4)

where R is an arbitrary k−algebra on which TN acts trivially. The isomorphism (3.2) is

the special case of (3.4) when R is taken to be k itself.
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A main ingredient of the proof for Theorem 3.3 is that there is an equivalence of

categories between
⊕

S
P(R) and PM(R[U]), which gives the isomorphisms

KM
q (R[U]) ∼=

⊕
S

Kq(R) ∼= Z[M/U]⊗Z Kq(R).

Here, S is a fixed set of coset representatives for the subgroup U of M, and P(R) is the

category of finitely generated projective R−modules. Theorem 3.3 is obtained by proving

the exact functor

PM(R[U]) −→ PM(R[A]),

induced by extension of scalars induces a homotopy equivalence on K-theory spaces.

Example 3.5. Let N be an abelian group isomorphic to Zn, then for all cones σ in NR such that

dim(σ) = n, we have

KT
q (Uσ) ∼=


Z[M], q = 0

Z[M]⊗ Kq(k), q > 0

In the subsequent chapters, we will discuss the computation of K-groups of non-affine

toric varieties.
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Chapter 4

Equivariant K-groups of Smooth Toric

Varieties

Given a smooth toric variety X(∆) (possibly non-affine), a theorem of Vezzosi and Vistoli

on arbitrary actions by diagonalizable groups gives a calculation of KT
q (X(∆)), for all

q ≥ 0 [17] [18]. When applied to the toric variety X(∆), the result says that the following

sequence is exact for all q ≥ 0:

0 −→ KT
q (X(∆)) −→

⊕
σ

KT
q (Uσ) −→

⊕
δ<τ

KT
q (Uδ∩τ) −→

⊕
δ<τ

KT
q (Uδ∩τ) −→

⊕
δ<τ<ε

KT
q (Uδ∩τ∩ε) −→ · · · , (4.1)

where the direct sums are indexed by the set of maximal cones in ∆ and < is an arbitrary

fixed ordering of the maximal cones. In other words, if V is the equivariant open cover,

{Uσ|σ is a maximal cone in ∆}, of X(∆), then

KT
q (X(∆)) ∼= Ȟ0(V , KT

q )
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and

Ȟp(V , KT
q ) ∼= 0,

for all p > 0. Observe that exactness of (4.1) implies that KT
q is a sheaf on X(∆) endowed

with the topology whose only open sets are equivariant open subvarieties. Also, the

higher Čech cohomology of KT
q with respect to V vanishes. By (3.2), we obtain the long

exact sequence

0 −→ KT
q (X(∆)) −→

⊕
σ

Z[Mσ ]⊗Z Kq(k) −→
⊕
δ<τ

Z[Mδ∩τ ]⊗Z Kq(k) −→
⊕

δ<τ<ε

Z[Mδ∩τ∩ε]⊗Z Kq(k) −→ · · · , (4.2)

which is useful for computing equivariant K-groups of smooth toric varieties.

Example 4.3. Let ∆ be the following two dimensional complete fan, then X(∆) = P1
k ×P1

k.

oo //

OO

��

ρ2

ρ4

ρ3 ρ1

?? ?
?

?

?
?

?
? σ1

���
�

�

�
�

�
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�� �
�

�

�
�

�
� σ4
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?

?

?
?

?
?σ3

Since Mσi = M, for i = 1, · · · , 4, by applying (4.2), we see that

KT
0 (X(∆)) ∼= ker

(
4⊕
i

Z[M] −→ Z[Mρ1 ]⊕Z[Mρ2 ]⊕Z[Mρ3 ]⊕Z[Mρ4 ]

)
∼=

{
( fi)4

i=1| fi has the form
r

∑
t=1

stχ
(at,bt) with fi|σi∩σj = f j|σi∩σj , ∀i 6= j

}
,

where st, at, bt ∈ Z and χ is an arbitrary symbol.
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In our paper [1], we demonstrated a new proof of Vezzosi and Vistoli’s Theorem [17] for

the special case of toric varieties . More specifically, we proved:

Theorem 4.4. ([1]) Assume X = X(∆) is a smooth toric variety over the field k. Then the

presheaf KT
q on ∆ is a flasque sheaf. Moreover, there is an isomorphism

KT
q (X) ∼= KT

0 (X)⊗ Kq(k).

Sketch of Proof. For q ≥ 0, let Aq be the sheaf on ∆ whose stalk at σ is Z[Mσ]⊗Z Kq(k)

for all σ ∈ ∆. Because ∆ is smooth, one can prove that A0 is flasque. A0 is a sheaf of

free abelian groups with trivial higher Čech cohomology, and so A0 ⊗Z Kq(k) is a flasque

sheaf. Therefore, Aq must be the sheaf A0 ⊗Z Kq(k). Since for all σ ∈ ∆, we have natural

isomorphisms ⊕
σ

Aq(〈σ〉) ∼=
⊕

σ

A0(〈σ〉)⊗Z Kq(k)

∼=
⊕

σ

KT
0 (Uσ)⊗Z Kq(k)

∼=
⊕

σ

KT
q (Uσ)

,

we have for all p > 0,

Ȟp(V , KT
q ) ∼= Ȟp(U ,Aq) = 0. (4.5)

where V := {Uσ|σ is a maximal cone in ∆} and U := {〈σ〉|σ is a maximal cone in ∆}.

Now, there is a convergent spectral sequence due to Thomason [16]:

Ȟp(V , KT
q ) =⇒ KT

q−p(X(∆))
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Because of (4.5), the spectral sequence collapses and yields the isomorphism

KT
q (X(∆)) ∼= Ȟ0(V , KT

q ).

As a result of Theorem 4.4, the equivariant K-theory of smooth toric varieties is well

understood. The rest of this thesis will concern computing KT
q (X(∆)) when X(∆) is

neither affine nor smooth.
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Chapter 5

Calculations of Fan Cohomology Groups

Given a quasi-projective toric variety X(∆), i.e., an equivariant open subvariety of a

projective toric variety, there is a convergent spectral sequence

Ȟp(V , KT
q ) =⇒ KT

q−p(X(∆))

[20], where V is the equivariant open cover {Uσ|σ is a maximal cone in ∆} of X(∆).

Hence, one could try to understand the equivariant K-groups of X(∆) by studying the

fan cohomology groups, Ȟp(V , KT
q ). Consider the Čech complex P• of the presheaf KT

0

with respect to V :

P• :
⊕

σ

KT
0 (Uσ) −→

⊕
δ<τ

KT
0 (Uδ∩τ) −→

⊕
δ<τ

KT
0 (Uδ∩τ) −→

⊕
δ<τ<ε

KT
0 (Uδ∩τ∩ε) −→ · · ·

It is a chain complex of free abelian groups by Theorem 3.1. By applying the isomorphism

from the theorem,

KT
q (Uσ) ∼= KT

0 (Uσ)⊗Z Kq(k),
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we see that tensoring P• with Kq(k) gives the Čech complex for the presheaf KT
q for all

q > 0. Thus, for all p, q ≥ 0, using [21, 3.6.2]

Ȟp(V , KT
q ) ∼= Ȟp(V , KT

0 ⊗Z Kq(k))

∼= Ȟp(V , KT
0 )⊗Z Kq(k)⊕ TorZ

1 (Ȟp+1(V , KT
0 ), Kq(k)).

If Ȟp+1(V , KT
0 ) is torsion free, then we have the isomorphism

Ȟp(V , KT
q ) ∼= Ȟp(V , KT

0 )⊗Z Kq(k)

whenever p, q ≥ 0 [21, 3.2.1]. This implies we really only need to consider the case when

q = 0, if Ȟ•(V , KT
0 ) is torsion free. In the rest of this chapter, we will compute some of

the fan cohomology groups, Ȟp(V , KT
0 ), for non-smooth toric varieties.

5.1 Higher Fan Cohomology Groups

Definition 5.1. Given a sheaf F on a topological space X, let G0 = ∏
x∈X

ix∗(Fx) and ϕ0 be the

inclusion F ↪→ G0. For i ≥ 1, define G i = ∏
x∈X

ix∗((cok ϕi−1)x) and ϕi as the composition of

G i−1 → cok ϕi−1 and cok ϕi−1 ↪→ G i. The resulting exact sequence of sheaves

0 −→ F −→ G0 −→ G1 −→ · · ·

is called the Godement resolution of F .

Remark 5.2. For all sheaves F , ∏
x∈X

ix∗(Fx) is flasque, so the Godement resolution of F is a

flasque resolution. Γ(X,G•) is a complex of groups which in degree i is ∏
x∈X

(cok ϕi−1)x, and

HiΓ(X,G•) is isomorphic to Hi(X,F ), the sheaf cohomology of F [19, Sec. 4.3.1].
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Recall from Proposition 2.14 that if U is the open cover of a fan ∆ consisting of subfans

spanned by maximal cones in ∆, then for all sheaves F and for all p ≥ 0, Ȟp(U ,F ) ∼=

Hp(∆,F ). The next lemma gives us one more way to compute fan cohomology.

Lemma 5.3. Let F be a sheaf on a fan ∆ and U be the open cover {〈σ〉|σ is a maximal cone in ∆},

then for all p ≥ 0, Ȟp(U ,F ) = Hp(A•), where A• is the complex,

0 −→
⊕

σ0∈∆

F (〈σ0〉)
∂0−→

⊕
σ0≺σ1

F (〈σ0〉)
∂1−→

⊕
σ0≺σ1≺σ2

F (〈σ0〉) −→ · · · ,

with the direct sums being taken over strict chains of cones in ∆ and the map ∂k defined as

(ασ0≺···≺σk)σ0≺···≺σk 7→
(

k+1

∑
i=0

(−1)iατ0≺···≺τi−1≺τi+1≺···≺τk+1

)
τ0≺···≺τk+1

.

Proof. Let G• be the Godement resolution for F . Consider the following bi-complex B•:

⊕
σ0∈∆

G0(〈σ0〉)

��

//
⊕

σ0∈∆

G1(〈σ0〉)

��

//
⊕

σ0∈∆

G2(〈σ0〉)

��

// · · ·

⊕
σ0≺σ1

G0(〈σ0〉)

��

//
⊕

σ0≺σ1

G1(〈σ0〉)

��

//
⊕

σ0≺σ1

G2(〈σ0〉)

��

// · · ·

⊕
σ0≺σ1≺σ2

G0(〈σ0〉)

��

//
⊕

σ0≺σ1≺σ2

G1(〈σ0〉)

��

//
⊕

σ0≺σ1≺σ2

G2(〈σ0〉)

��

// · · ·

...
...

...
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The following sequence is exact for all j ≥ 0, because taking stalks is an exact functor.

0 −→
⊕

σ0≺···≺σj

F (〈σ0〉) −→
⊕

σ0≺···≺σj

G0(〈σ0〉) −→
⊕

σ0≺···≺σj

G1(〈σ0〉) −→ · · ·

So, A• maps to the total complex Tot⊕(B•) via a quasi-isomorphism, since the columns of

B• have finitely many non-zero terms. (The nth term of the cochain complex Tot⊕(B•) is⊕
i+j=n Bi,j, and the differentials ∂ are defined by the formula ∂ = ∂v + ∂d, where ∂v and

∂d are the vertical and horizontal differentials respectively.) We claim that for all i ≥ 0

G i(∆) −→
⊕

σ0∈∆

G i(〈σ0〉) −→
⊕

σ0≺σ1

G i(〈σ0〉) −→ · · · (5.4)

is exact. Granting this, G•(∆) is quasi-isomorphic to Tot⊕(B•). Thus, the cohomology

groups of G•(∆) are isomorphic to those of A•, and the result follows from Remark 5.2

and the isomorphism Hp(∆,F ) ∼= Ȟp(U ,F ) in Proposition 2.14.

We will prove that (5.4) is exact for a fixed i. G i is a direct product of skyscraper

sheaves indexed by ∆. Let Hτ denote the component of G i with the index τ ∈ ∆. Then,

(5.4) is rewritten as:

0 −→ ∏
τ∈∆
Hτ(∆) −→

⊕
σ0∈∆

∏
τ∈∆
Hτ(〈σ0〉) −→

⊕
σ0≺σ1

∏
τ∈∆
Hτ(〈σ0〉) −→

⊕
σ0≺σ1≺σ2

∏
τ∈∆
Hτ(〈σ0〉) −→ · · ·

In fact, each component (of the finite product) of the complex is exact, i.e. for a fixed

τ ∈ ∆, the sequence

0 −→ Hτ(∆) −→
⊕
σ0∈∆

Hτ(〈σ0〉) −→
⊕

σ0≺σ1

Hτ(〈σ0〉) −→
⊕

σ0≺σ1≺σ2

Hτ(〈σ0〉) −→ · · ·
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is exact, because, for all σ ∈ ∆,

Hτ(〈σ〉) =


Hτ, τ � σ

0, else
,

and the sequence

0 −→ Hτ −→
⊕

τ�σ0

Hτ −→
⊕

τ�σ0≺σ1

Hτ −→
⊕

τ�σ0≺σ1≺σ2

Hτ −→ · · ·

is split exact, where the splittings are given by

(ατ�τ�σ0≺···≺σk−1)τ�σ0≺···≺σk−1
oo � (ατ�σ0≺···≺σk)τ�σ0≺···≺σk .

Recall that the stalk of K̃T
0 at σ ∈ ∆ is KT

0 (Uσ) ∼= Z[Mσ]. Let Z̃[Mσ] denote the kernel of

the map Z[Mσ]→ Z sending χm to 1, for all m in Mσ, and let F ′ be the sheaf on ∆ such

that F ′σ = Z̃[Mσ], ∀σ ∈ ∆. We have a split exact sequence of sheaves:

(∗) 0 // F ′ // K̃T
0

// Z

ψxx
// 0,

where the splitting ψ is given by the evident inclusion Z ⊆ Z[Mσ]. Since Z̃[M0] = 0,

in many cases it is easier to compute Hp(∆,F ′) than Hp
(

∆, K̃T
0

)
. The following lemma

allows us to relate the two groups.

Lemma 5.5. Hp
(

∆, K̃T
0

)
∼=


Hp(∆,F ′)⊕Z, p = 0

Hp(∆,F ′), p > 0
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Proof. Since (∗) is split exact, we see that K̃T
0
∼= F ′ ⊕Z, which implies

Hp
(

∆, K̃T
0

)
∼= Hp(∆,F ′)⊕ Hp(∆, Z)

for all p ≥ 0. Because constant sheaves are flasque, Hp(∆, Z) = 0, for all p > 0 [5, Thm

III.2.5].

Definition 5.6. The Krull dimension of a fan ∆ is defined to be max{dim σ|σ ∈ ∆}.

An immediate consequence of Lemma 5.3 is that the pth cohomology group of any sheaf

on ∆ vanishes for all p greater than the Krull dimension of ∆. In the case when the sheaf

is K̃T
0 , more is true.

Corollary 5.7. For any fan ∆ with Krull dimension d > 0, Hp
(

∆, K̃T
0

)
= 0 for all p ≥ d.

Proof. Consider the following chain complex C•:

0 −→
⊕

σ0∈∆

Z̃[Mσ0 ] −→
⊕

σ0≺σ1

Z̃[Mσ0 ] −→
⊕

σ0≺σ1≺σ2

Z̃[Mσ0 ] −→ · · ·

Z̃[M0] = 0 implies Hp(C•) = 0 for all p greater than or equal to the Krull dimension of

∆. The result follows from Lemma 5.5.

Definition 5.8. For a collection C of fans in Rn, define C to be the smallest collection of fans in

Rn containing C that satisfies the following condition:
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(*) Suppose ∆ is the union of two subfans ∆′ and ∆′′ with ∆′ ∩ ∆′′ consisting of a single cone

and its faces. If ∆′ and ∆′′ are in C, then so is ∆.

Remark 5.9. Given a collection of fans C, the intersection of all collections of fans containing C

and satisfying the condition (*) is the unique smallest collection we call C.

Example 5.10. If C consists of two fans ∆′ and ∆′′ in Rn such that

• ∆′ ∩ ∆′′ = 〈σ〉 for some cone σ in ∆′ and ∆′′ and

• for all α ∈ ∆′ and β ∈ ∆′′, α ∩ β is either {0} or a face of α and β,

then C is the collection of three fans {∆′, ∆′′, ∆′ ∪ ∆′′}.

Example 5.11. If C is a set of fans such that for all ∆′ and ∆′′ in C, ∆′ ∩ ∆′′ 6= 〈σ〉 for any

non-zero cone σ in ∆′ and ∆′′, then C = C.

Remark 5.12. For each fan ∆ in C, there exist ∆′ ∈ C such that ∆ = ∆′ ∪∆′′ and ∆′ ∩∆′′ = 〈τ〉

for some cone τ in ∆′ and ∆′′, where ∆′′ is a fan in C\{∆′}.

Definition 5.13. Let G be a sheaf on a fan ∆. We say ∆ is acyclic with respect to a sheaf G, if

Hp(∆,G) = 0, for all p > 0.

For every cone σ, the affine fan 〈σ〉 is acyclic with respect to every sheaf as in the proof of

Proposition 2.14. A smooth fan ∆ is acyclic with respect to the sheaf K̃T
0 by Theorem 4.4.

Lemma 5.14. Let C be a collection of fans acyclic with respect to K̃T
0 , then for all ∆ in C, ∆ is

acyclic with respect to K̃T
0 .

Proof. Let D be the collection of all fans acyclic with respect to K̃T
0 . We will show

that C ⊆ D by verifying that D contains C and satisfies the condition (*) in Definition

5.8. Indeed, suppose ∆ is the union of two subfans ∆′ and ∆′′, which are in D, with
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∆′ ∩ ∆′′ = 〈τ〉 for some cone τ in ∆′ and ∆′′. Since ∆′, ∆′′ ∈ D and the sheaf cohomology

groups vanish for affine spaces, Hp
(

∆′, K̃T
0

)
⊕ Hp

(
∆′′, K̃T

0

)
= 0 and Hp

(
〈τ〉, K̃T

0

)
= 0,

for all p > 0. Therefore, we have the long exact sequence:

H0
(

∆′, K̃T
0

)
⊕ H0

(
∆′′, K̃T

0

)
h−→ H0

(
〈τ〉, K̃T

0

)
−→ H1

(
∆, K̃T

0

)
−→ 0 −→ 0 −→ H2

(
∆, K̃T

0

)
−→ · · ·

Now, H0
(
〈τ〉, K̃T

0

)
∼= Z[Mτ]. Consider the following diagram:

Z[M]

g
��

π

&&LLLLLLLLLLLL

H0
(

∆′, K̃T
0

) f
// Z[Mτ]

H0
(

∆′, K̃T
0

)
is contained in

⊕
σ∈Max(∆′) Z[Mσ], and g is the diagonal map. The composite

map g ◦ f sends an element a in Z[M] to the image of a under the canonical surjection π.

So, the diagram above commutes. Since π is surjective, f is surjective, and therefore so is

h. That implies ∆ is acyclic with respect to K̃T
0 and belongs in D. Hence, C ⊆ D.

Remark 5.15. If C is a collection of affine fans, i.e. fans spanned by a single cone, then every fan

in C is acyclic with respect to K̃T
0 .

Example 5.16. The figure 5.17 below shows the intersection of each non-zero cone in a certain

3−dimensional fan ∆ with S2, the unit 2−sphere centered at the origin. ∆ consists of five maximal

3−dimensional cones σ1, · · · , σ5. Let C be the collection {〈σ1〉, · · · , 〈σ5〉} of affine fans. Then ∆

is a fan in C and it is acyclic with respect to K̃T
0 .
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Figure 5.17: Intersection of S2 and ∆

5.2 Complete Fans

In this section, we will prove that when ∆ is an n−dimensional complete fan, the (n− 1)st

cohomology group of K̃T
0 is a free abelian group of finite rank. Furthermore, the rank

depends only on the coordinates of the rays of ∆. First, we need a lemma.

Lemma 5.18. Suppose v1, · · · , vs are vectors in Zn. For i = 1, · · · , s, let Ki be the kernel of

ϕi : Zn → Z, which is defined as ϕi(u) = vi · u, for all u ∈ Zn. If each ϕi is a surjection, then

Zn/ ∑s
i=1 Ki

∼= Z/gZ, where g is the greatest common divisor of the set of all 2× 2 minors of

the matrix


v1

...

vs

.

Proof. Each vi is unimodular, since ϕi is onto. Without lost of generality, let v1 = e1. Then,

g is the greatest common divisor of the entries in the matrix


w2

...

ws

 , where wi ∈ Zn−1 is

defined by omitting the first component of vi, for i = 2 · · · , s.
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For 2 ≤ j ≤ s, let θj : Kj → Zn/K1 be the composition of the canonical surjection

Kj →
Kj + K1

K1
and the inclusion

Kj + K1

K1
↪→ Zn

K1
. Then θj = ϕ1 ◦ ιj, where ιj is the inclu-

sion of Kj into Zn. Say vj = [a1, · · · , an]. Since ϕj is surjective, there exists b1, · · · , bn ∈ Z

such that a1b1 + · · ·+ anbn = 1. Consider the split exact sequence in the following com-

mutative diagram:

0 // Kj

θj %%KKKKKKKKKKK ιj
// Zn

ϕ1
��

πjww
ϕj

// Z

φjww
// 0

Z ∼= Zn/K1

Here, the splitting φj is given by 1 7→ v̂j :=


b1

...

bn

 and ιj ◦ πj + φj ◦ ϕj is the identity. The

map θj ◦ πj = ϕ1 ◦ ιj ◦ πj is given by multiplication by the matrix

e1(In − v̂jvj) = [1− b1a1,−b1a2, · · · ,−b1an].

It is straight forward to check that the ideals (1− b1a1,−b1a2, · · · ,−b1an) and (a2, · · · , an)

in Z are the same. Hence, for i = 2, · · · , s, we have

im(ψi) = im(θi ◦ πi) = im(θi),

where ψi : Zn−1 → Z is the map defined by ψi(u) = wi · u for all u ∈ Zn−1.

Now, let γ : ∑s
i=1 Ki

K1
↪→ Zn

K1
be the inclusion, and let ξ :

s

∑
i=1

Ki →
Zn

K1
be the com-

position of γ and the surjection
s

∑
i=1

Ki →
∑s

i=1 Ki

K1
. Then, the following isomorphisms

hold:
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Zn

∑s
i=1 Ki

∼= coker(γ)

∼= coker(ξ)

∼=
Z

∑s
i=2 im(θi)

, since Z ∼=
Zn

K1
and θi = ϕ1 ◦ ιi

∼=
Z

∑s
i=2 im(ψi)

∼=
Z

gZ
, by definition of ψi

Theorem 5.19. Let ∆ be an n-dimensional complete fan, where n > 1. Suppose ∆ has s one

dimensional cones ρ1, · · · , ρs, and let vi be the minimal lattice point of ρi, for i = 1, · · · , s. Then

Hn−1
(

∆, K̃T
0

)
∼= Zg−1, where g is the greatest common divisor of the set of all 2× 2 minors of

the matrix


v1

...

vs

.

Proof. Let Iσ denote the kernel of the canonical surjection from Z[M] to Z[Mσ]. Let F ′

and F ′′ be sheaves on ∆ such that for all σ ∈ ∆,F ′σ = Z[M] and F ′′σ = Iσ. Then we have

the following short exact sequence of sheaves:

0 −→ F ′′ −→ F ′ −→ K̃T
0 −→ 0,

which induces the long exact sequence of sheaf cohomology groups:

· · · −→ Hn−1(∆,F ′) −→ Hn−1
(

∆, K̃T
0

)
h−→ Hn(∆,F ′′) −→ Hn(∆,F ′) −→ · · ·
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F ′ is a constant sheaf and therefore flasque. That implies the higher cohomology groups

Hp(∆,F ′) vanish, and so for n ≥ 2, the map h is an isomorphism. Since ∆ is complete, the

following cellular complex C• for ∆ with respect to F ′′ computes the Čech cohomology

of F ′′. See [3, Proposition 3.5] and [7].

⊕
dimσ=n

F ′′(〈σ〉) −→
⊕

dimσ=n−1

F ′′(〈σ〉) −→ · · · −→
⊕

dimσ=2

F ′′(〈σ〉) ĩ−t̃−→
⊕

dimρ=1

F ′′(〈ρ〉) −→ F ′′({0}),

where ĩ((ασ)σ) =

 ∑
dimσ=2
i(σ)=ρ

ασ|ρ


ρ

and t̃((ασ)σ) =

 ∑
dimσ=2
t(σ)=ρ

ασ|ρ


ρ

, for all (ασ)σ ∈
⊕

dimσ=2

F ′′(〈σ〉).

So, Hn(∆,F ′′) is the cokernel of the map,
⊕

dim ρ=1

Iρ −→ I0, sending each tuple to the sum

of its coordinates. Thus,

Ȟn−1
(

∆, K̃T
0

)
∼= Hn−1

(
∆, K̃T

0

)
∼= Hn(∆,F ′′)
∼=

I0

∑s
i=1 Iρi

⊆ Z[M]
∑s

i=1 Iρi

∼= Z

[
M

∑s
i=1 ρ⊥i ∩M

]

The last isomorphism is clear, since the kernel of the canonical surjection from Z[M] to

Z

[
M

∑s
i=1 ρ⊥i ∩M

]
is

s

∑
i=1

Iρi . Now, for i = 1, · · · , s, ρ⊥i ∩ M is the kernel of the map

ϕi : M→ Z sending u ∈ M to vi · u. Therefore, by Lemma 5.18,

M
∑s

i=1 ρ⊥i ∩M
∼=

Z

gZ
.

That implies
Z[M]

∑s
i=1 Iρi

∼= Zg. Finally, because
Z[M]

I0

∼= Z, we have
I0

∑s
i=1 Iρi

∼= Zg−1.
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Example 5.20. Suppose ∆ is the following 2 dimensional complete fan with four maximal cones.

GG������������
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•(2,−1)

• (−1,−2)
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oo
o

o

o o
o

o

The gcd of the set of all 2× 2 minors of the matrix



1 2

2 −1

−1 −2

−2 1


is 5, and therefore H1(∆, KT

0 )

is isomorphic to Z4.

Remark 5.21. Given a complete fan ∆ in NR, Theorem 5.19 implies that we have Hn−1(∆, K̃T
0 ) =

0 whenever the minimal lattice points on two of its rays may be extended to a Z−basis of N. In

particular, if at least one of the two dimensional cones of ∆ is smooth, then Hn−1(∆, K̃T
0 ) = 0.

5.3 Non-Complete Fans

Definition 5.22. Let ∆ be a fan with Krull dimension d. For d ≥ 2, we define the (d −

1)−boundary of ∆ to be the union of the (d− 1)−dimensional faces that are facets of exactly

one cone. We say ∆ has a (d− 1)−boundary if this union is not empty.

Example 5.23. An n−dimensional complete fan does not have an (n− 1)−boundary.

Example 5.24. For d ≥ 2, the d−skeleton of a complete fan does not have a (d− 1)−boundary.
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Example 5.25. For, n ≥ 3, the boundary of an n-dimensional cone does not have an (n −

2)−boundary.

Remark 5.26. A fan of Krull dimension d has a (d− 1)−boundary if and only if there exists a

d-dimensional cone σ such that 〈σ〉 ∩ 〈∆\〈σ〉〉 ( ∂σ, where 〈∆\〈σ〉〉 is the fan generated by the

maximal cones of ∆ that are not equal to σ.

Lemma 5.27. If ∆ is a fan with Krull dimension d ≥ 2 such that every subfan of Krull dimension

d has a (d− 1)−boundary, then Hd−1
(

∆, K̃T
0

)
= 0.

Proof. There exists a d-dimensional cone σ such that 〈σ〉 ∩ 〈∆\〈σ〉〉 ( ∂σ. Let ∆′ =

〈∆\〈σ〉〉. Induct on d and the number l of cones of dimension d. Consider the following

long exact sequence of cohomology groups:

· · · −→ Hd−2
(
〈σ〉, K̃T

0

)
⊕ Hd−2

(
∆′, K̃T

0

)
h−→ Hd−2

(
〈σ〉 ∩ ∆′, K̃T

0

)
−→ Hd−1

(
∆, K̃T

0

)
−→ Hd−1

(
〈σ〉, K̃T

0

)
⊕ Hd−1

(
∆′, K̃T

0

)
−→ · · ·

Because d ≥ 2 and 〈σ〉 is affine, Hd−1
(
〈σ〉, K̃T

0

)
= 0. We will first check that the lemma

holds for d = 2. In the case of l = 1, we see that h is surjective, because 〈σ〉 ∩ ∆′ is {0}.

∆′ has no 2-dimensional cones, and so H1
(

∆′, K̃T
0

)
= 0. When l > 1, h is still surjective,

because 〈σ〉 ∩ ∆′ is a ray in the boundary of σ. ∆′ has Krull dimension 2 and every one of

its subfans of Krull dimension 2 has an 1-boundary. By induction on l, H1
(

∆′, K̃T
0

)
= 0.

Therefore, H1
(

∆, K̃T
0

)
= 0.

Now, consider the case of d > 2 and l ≥ 1. When l = 1, ∆′ has Krull dimension d,

and by Corollary 5.7, we have Hd−1
(

∆′, K̃T
0

)
= 0. For l > 1, every subfan of ∆ of Krull

dimension d has an (d− 1)−boundary, so Hd−1
(

∆′, K̃T
0

)
= 0 by induction on l. What is
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left to show is that Hd−2
(
〈σ〉 ∩ ∆′, K̃T

0

)
= 0. Let Λ = 〈σ〉 ∩ ∆′. If the Krull dimension of

Λ is strictly less than d− 1, then Hd−2
(

Λ, K̃T
0

)
= 0. Assume Λ has Krull dimension d− 1,

we will prove that every subfan of Λ of Krull dimension d− 1 has an (d− 2)−boundary.

Then by induction on d, the proof will be complete.

Let Λ′ be a subfan of Λ with Krull dimension d − 1. Consider the dual σ∨ of σ in

Rσ = Rd. By the one-to-one correspondence between the faces of σ and those of σ∨,

Λ′ ⊆ Λ ( ∂σ implies D := {τ⊥ ∩ σ∨|τ is a facet of Λ′} is a proper subset of the set of

rays of σ∨. Since the intersection X of σ∨ and the (d − 1)-sphere is a connected CW-

complex, its 1−skeleton is connected [13, Thm 3.32]. Let G be the graph whose vertices

represent the 0−cells of X (or rays of σ∨) and edges represent the 1-cells (or 2-dim faces).

Then G is connected. That means there are rays ρ1 ∈ D, ρ2 /∈ D such that ρ1 and ρ2 form

the boundary of a 2-dimensional face of σ∨. Thus, there exists (d− 1)-dimensional cones

τ1 ∈ Λ′ and τ2 /∈ Λ′ such that τ1 ∩ τ2 is a facet of both of them. Since every codimension

2 face of a cone is the intersection of exactly two facets [4, P. 10], τ1 ∩ τ2 is not a face of

any other maximal cone of Λ′. Therefore, Λ′ has a (d− 2)−boundary.

Theorem 5.28. Let ∆ be a non-complete fan in Rn with n ≥ 2. Then Hn−1
(

∆, K̃T
0

)
= 0.

Proof. If the Krull dimension of ∆ is at most n− 1, then by Lemma 5.3, Hn−1
(

∆, K̃T
0

)
is 0. Assume ∆ had Krull dimension n. By Lemma 5.27, it suffices to prove that every

n−dimensional subfan of ∆ has an (n − 1)−boundary. Let σ be a cone in ∆ with

dimension n and p be a point in the interior of σ. Define B to the set

{q ∈ Rn\|∆| :
←→
pq ∩Rτ 6= ∅, for some τ ∈ ∆ with dim τ ≤ n− 2},



47

where
←→
pq is the line through p and q. We claim that

B ( Rn\|∆|. (5.29)

To prove (5.29), let τ be a cone in ∆ of dimension at most n− 2, define

Bτ = {q ∈ Rn :
←→
pq ∩Rτ 6= ∅}.

For all points r ∈ Bτ, there exists w ∈←→pr ∩Rτ. Since w 6= p, r ∈ span(Rτ, p). So, Bτ is a

subset of span(Rτ, p), which is a real vector space of dimension at most n− 1. Now, B

is the intersection of Rn\|∆| and the finite union U :=
⋃

dim τ≤n−2

Bτ. Suppose B is all of

Rn\|∆|, then U ∪ |∆| = Rn. But, the hypervolume of the intersection of Sn−1 and U ∪ |∆|

is strictly less than that of Sn−1, because U ∪ |∆| is contained in a finite union of proper

closed subsets of Rn. So, we have a contraction; therefore, B is a proper subset of Rn\|∆|.

By (5.29), there exists x ∈ Rn\|∆| such that
←→
xp ∩Rτ = ∅ for all τ ∈ ∆ with dimen-

sion at most n− 2. The intersection of the line segment xp and |∆| is non-empty, because

p is in the interior of σ. Let y be the point in xp ∩ |∆| closest to x. Then y is an interior

point of a facet τ of an n-dimensional cone α of ∆. We will prove that τ is not a facet of

another maximal cone of ∆, and this will show that ∆ has a boundary. Suppose τ is a

facet of another maximal cone β, then τ = α ∩ β. Let w ∈ α∨ such that τ = w⊥ ∩ α, then

w is in the ray τ⊥ ∩ α∨. Also, by the Separation Lemma (see Section 2.1.1), there exists

u ∈ α∨ ∩ (−β)∨ such that τ = u⊥ ∩ α = u⊥ ∩ β. So, u is in the ray τ⊥ ∩ α∨ as well. That

implies u is a positive multiple of w. Thus, −w is in β∨ and τ = w⊥ ∩ β = (−w)⊥ ∩ β. By

linearity of xp, the function w is negative on the interval [x, y), zero at y and positive on

(y, p]. τ = (−w)⊥ ∩ β implies w is negative on the closed interval xp ∩ β ⊆ [x, y), which
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contradicts the fact that y is the point in xp ∩ |∆| closest to x.

5.4 H1
(

∆, K̃T
0

)
of Some Three Dimensional Fans ∆

In this section, we give some examples of three dimensional fans ∆ with the property

that H1
(

∆, K̃T
0

)
is torsion free. First, we need to prove three statements about limits and

colimits.

Lemma 5.30. Let I be an indexing category and i 7→ Mi be a functor from I to the category Ab

of abelian groups. Then lim−→
I

RingsZ[Mi] ∼= Z

[
lim−→
I

Ab(Mi)

]
as rings.

Proof. Let S = lim−→
Rings Z[Mi] and T = Z

[
lim−→

Ab(Mi)
]
. Notice that Z[−] : Ab −→ Rings

and (−)× : Rings −→ Ab are adjoint functors, and so for any ring R, we have

HomRings(S, R) ∼= lim←−
Ab HomRings(Z[Mi], R)

∼= lim←−
Ab HomAb(Mi, R×)

∼= HomAb

(
lim−→

Ab Mi, R×
)

∼= HomRings(T, R)

By Yoneda’s Lemma, S ∼= T.

Remark 5.31. Z[−] : Sets −→ Ab and the forgetful functor from Ab to Sets form an adjoint

pair. Thus, the same argument proves that lim−→
Ab Z[Mi] is isomorphic to Z

[
lim−→

Sets(Mi)
]

in the

category of abelian groups.
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Lemma 5.32. Let σ1, · · · , σr be cones in a fan ∆. Suppose L is the limit of the diagram

Mσ1

## ##HHHHHHHHH
Mσ2

{{{{wwwwwwwww

## ##HHHHHHHHH
· · · Mσr

zzzzuuuuuuuuu

Mσ1∩σ2 Mσ2∩σ3 · · · Mσr−1∩σr

in the category of abelian groups, where the maps are canonical surjections. Let Q be the limit of

the induced diagram

Z[Mσ1 ]

&& &&LLLLLLLLLL
Z[Mσ2 ]

xxxxrrrrrrrrrr

&& &&LLLLLLLLLL
· · · Z[Mσr ]

xxxxqqqqqqqqqq

Z[Mσ1∩σ2 ] Z[Mσ2∩σ3 ] · · · Z[Mσr−1∩σr ]

in the category of rings. Then the ring map from Z[L] to Q given by the universality of Q is

surjective.

Proof. Let f : A→ C and g : B→ C be two arbitrary group homomorphisms and P be the

fiber product of the induced ring maps f̂ : Z[A]→ Z[C] and ĝ : Z[B]→ Z[C]. We claim

that the ring map ϕ : Z[A×C B]→ P given by the universality of P is surjective. Indeed,

given an element (α, β) in P, α and β have the forms ∑s
i=1 niχ

ai and ∑t
j=1 mjχ

bj respec-

tively, for some ai ∈ A, bj ∈ B and ni, mj ∈ Z. Fix c ∈ C and define αc to be ∑ f (ai)=c niχ
ai .

Let βc be defined similarly. Without lost of generality, we may assume α = αc and β = βc.

Then, ∑s
i=1 ni = ∑t

j=1 mj and f (ai) = c = g(bj) for all 1 ≤ i ≤ s, 1 ≤ j ≤ t. Notice that

(ai, bj) is an element of A×C B, for all 1 ≤ i ≤ s, 1 ≤ j ≤ t. Also, for i = 1, · · · , s and

j = 1, · · · , t, there exists di,j ∈ Z such that ∑t
j=1 di,j = ni and ∑s

i=1 di,j = mj. (For example,

we may choose di,j to be 0, for all 1 ≤ i ≤ s − 1 and 1 ≤ j ≤ t − 1, di,t to be ni for

i = 1, · · · , s− 1, ds,j to be mj for i = 1, · · · , t− 1, and ds,t to be mt − ∑s−1
i=1 ni.) One can

check that ϕ
(

∑i,j di,jχ
(ai,bj)

)
= (αc, βc).
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For i = 1, · · · , r, define Li to be the limit of the diagram

Mσ1

## ##GGGGGGGGG
Mσ2

{{{{wwwwwwwww

## ##GGGGGGGGG
· · · Mσi

zzzzvvvvvvvvv

Mσ1∩σ2 Mσ2∩σ3 · · · Mσi−1∩σi

in the category of abelian groups and define Qi to be the limit of the diagram

Z[Mσ1 ]

&& &&LLLLLLLLLL
Z[Mσ2 ]

xxxxrrrrrrrrrr

&& &&LLLLLLLLLL
· · · Z[Mσi ]

xxxxqqqqqqqqqq

Z[Mσ1∩σ2 ] Z[Mσ2∩σ3 ] · · · Z[Mσi−1∩σi ]

in the category of rings. Notice that Lr is the limit of the diagram:

Lr−1

$$ $$IIIIIIIII
Mσr

zzzzuuuuuuuuu

Mσr−1∩σr

So, by the assertion above, the universal map ξ from Z[Lr] to the limit T of the following

diagram is surjective.

Z[Lr−1]

&& &&MMMMMMMMMMM
Z[Mσr ]

xxxxqqqqqqqqqq

Z[Mσr−1∩σr ]

Observe that Qr is the limit of the diagram:

Qr−1

%% %%LLLLLLLLLL
Z[Mσr ]

xxxxqqqqqqqqqq

Z[Mσr−1∩σr ]

Therefore, T is the limit of the diagram:
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Z[Lr−1]

θ $$ $$IIIIIIIII
Qr

}}}}zzzzzzzz

Qr−1

By induction on r, θ is surjective, and so its pullback θ′ : T → Qr is surjective. Hence, the

composition θ′ ◦ ξ : Z[Lr]→ Qr is surjective, and it is universal.

Now, we are ready to show that some three dimensional fans ∆ satisfy the property that

H1
(

∆, K̃T
0

)
is torsion free.

Lemma 5.33. Let ∆ be the boundary of a three dimensional cone, then H1
(

∆, K̃T
0

)
is torsion free.

Proof. Fix a two dimensional cone σ in the ∆. Let ∆′ denote 〈∆\〈σ〉〉, and let ρ1 and ρ2 be

the rays in the boundary of σ. Consider the following diagram:

H0
(

∆′, K̃T
0

)
⊕ H0

(
〈σ〉, K̃T

0

)
f

��

h

))TTTTTTTTTTTTTTTTT

0 // H0
(

∂σ, K̃T
0

) g //

��

Z[Mρ1 ]⊕Z[Mρ2 ] // Z // 0

H1
(

∆, K̃T
0

)
��

H1
(

∆′, K̃T
0

)
⊕ H1

(
〈σ〉, K̃T

0

)
The row in the diagram is the Čech complex for K̃T

0 on ∂σ with respect to the cover

{〈ρ1〉, 〈ρ2〉}, and it is exact. The map h is the composition of f and g. By Lemma 5.14,

H1
(

∆′, K̃T
0

)
⊕ H1

(
〈σ〉, K̃T

0

)
= 0, so H1

(
∆, K̃T

0

)
is the cokernel of f . Thus, we obtain the
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induced short exact sequence:

0 −→ H1
(

∆, K̃T
0

)
−→ coker(h)

ζ−→ Z −→ 0 (5.34)

We will prove that coker(h) is free. Let σ1, · · · , σr be the two dimensional cones in ∆′, then

H0
(

∆′, K̃T
0

)
is the equalizer of

r⊕
i=1

Z[Mσi ]
θ1 //

θ2

//

⊕
1≤i<j≤r

Z[Mσi∩σj ]

in the category of rings, where θ1 and θ2 are defined as (αi)i 7→ (αj|σi∩σj)i<j and

(αi)i 7→ (αi|σi∩σj)i<j respectively. Since for i = 1, · · · , r − 1, we have σi ∩ σj 6= 0 if

and only if j = i + 1, H0
(

∆′, K̃T
0

)
is the equalizer of

r⊕
i=1

Z[Mσi ]
θ′1 //

θ′2

//

r−1⊕
i=1

Z[Mσi∩σi+1 ] ,

where θ′1 and θ′2 are defined as (αi)i 7→ (αi+1|σi∩σi+1)i and (αi)i 7→ (αi|σi∩σi+1)i respectively.

Thus, H0
(

∆′, K̃T
0

)
is the limit of the following diagram in the category of rings:

Z[Mσ1 ]

&& &&LLLLLLLLLL
Z[Mσ2 ]

xxxxrrrrrrrrrr

&& &&LLLLLLLLLL
· · · Z[Mσr ]

xxxxqqqqqqqqqq

Z[Mσ1∩σ2 ] Z[Mσ2∩σ3 ] · · · Z[Mσr−1∩σr ]

By Lemma 5.32, there is a surjection π from Z[L] to H0
(

∆′, K̃T
0

)
, where L is the limit of

the following diagram in the category of abelian groups:
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Mσ1

## ##HHHHHHHHH
Mσ2

{{{{wwwwwwwww

## ##HHHHHHHHH
· · · Mσr

zzzzuuuuuuuuu

Mσ1∩σ2 Mσ2∩σ3 · · · Mσr−1∩σr

Let B be the pushout of the canonical surjections Mσ → Mρ1 and Mσ → Mρ2 . Because

H0
(
〈σ〉, K̃T

0

)
= Z[Mσ], the sequence

H0
(
〈σ〉, K̃T

0

)
−→ Z[Mρ1 ]⊕Z[Mρ2 ] −→ Z[B] −→ 0

is exact, by Lemma 5.30. Consider the following diagram:

Z[L]

π
��

ϕ

��;;;;;;;;;;;;;;;;;;;;;

H0
(

∆′, K̃T
0

)
h′′

��

ψ

%%LLLLLLLLLLL

H0
(
〈σ〉, K̃T

0

)
h′ // Z[Mρ1 ]⊕Z[Mρ2 ]

κ // Z[B] // 0

where h = h′ − h′′, ψ = κ ◦ h′′ and ϕ = κ ◦ h′′ ◦ π. Now,

coker(h) ∼= coker(h′)/im(ψ) = coker(h′)/im(ϕ) = coker(ϕ),

and coker(ϕ) is the coequalizer of

Z[L]
η1 //

η2
// Z[B]

in the category of abelian groups, where η1 and η2 are the maps
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∑
i

aiχ
(m1,··· ,mr)i 7→∑

i
aiχ

((m1)ρ1 ,0)

and

∑
i

aiχ
(m1,··· ,mr)i 7→∑

i
aiχ

(0,(mr)ρ2 ).

Finally, by Remark 5.31, coker(h) is isomorphic to Z[C], where C is the coequalizer of

L
ξ1 //

ξ2

// B

in the category of sets. The maps, ξ1 and ξ2, are given by

(m1, · · · , mr) 7→ ((m1)ρ1 , 0)

and

(m1, · · · , mr) 7→ (0, (mr)ρ2).

Therefore, coker(h) is free. That means H1
(

∆, K̃T
0

)
is free as well because of (5.34) and

the fact that ζ is the canonical surjection.

Remark 5.35. The proof of Lemma 5.33 goes through for every 3−dimensional fan ∆ with

the property H1
(
〈∆\σ〉, K̃T

0

)
= 0, for some cone σ ∈ ∆ such that 〈∆\σ〉 ∩ 〈σ〉 has two

maximal cones. The picture below illustrates some examples of such 3−dimensional fans, and

their cohomology groups H1
(

∆, K̃T
0

)
are torsion free. Each figure shows the intersections of the

non-zero cones in each 3−dimensional fan with S2, the unit 2−sphere centered at the origin.
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Figure 5.36: Intersections of S2 and ∆

If C is a collection of fans ∆ that satisfy the property that H1
(

∆, K̃T
0

)
is torsion free, then

every fan in C as defined in Section 5.1 has this property also. From this, we can see that

there is a large family of three dimensional fans whose cohomology group H1
(

∆, K̃T
0

)
has

no torsion. This property is helpful for the purpose of computing equivariant K-groups.

Again, we do not know of an example of a fan ∆ such that H1
(

∆, K̃T
0

)
has torsion.
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Chapter 6

Applications to Equivariant K-Theory

From Chapter 4, we see that for a smooth fan ∆, the Čech complex of the presheaf KT
q

with respect to the equivariant open cover V = {Uσ|σ is a maximal cone in ∆},

0 −→ KT
q (X(∆)) −→

⊕
σ

KT
q (Uσ) −→

⊕
δ<τ

KT
q (Uδ∩τ) −→

⊕
δ<τ

KT
q (Uδ∩τ) −→

⊕
δ<τ<ε

KT
q (Uδ∩τ∩ε) −→ · · · ,

is exact, and

KT
q (X(∆)) ∼= Ȟ0(V , KT

0 )⊗Z Kq(k).

In this chapter, we investigate the question: If ∆ is not smooth, how close is KT
q (X(∆)) to

the group Ȟ0(V , KT
0 )⊗Z Kq(k) ∼= H0

(
∆, K̃T

0

)
⊗Z Kq(k)? Due to the results in Chapter 5,

we now have some understanding of fan cohomology for two and three dimensional fans,

and so we can detect the difference between KT
q (X(∆)) and the group H0

(
∆, K̃T

0

)
⊗Z

Kq(k) in these cases. When the ground field k is finite, we obtain even more explicit

formulas for the K-groups.
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6.1 Equivariant K-groups of Two Dimensional Fans

Recall that for a quasi-projective toric variety X(∆) and the equivariant open cover

V = {Uσ|σ is a maximal cone in ∆}, there is a convergent spectral sequence [20]

Ȟp(V , KT
q ) =⇒ KT

q−p(X(∆)), (6.1)

and if Ȟp+1(V , KT
0 ) is torsion free, we have the isomorphisms

Ȟp(V , KT
q ) ∼= Ȟp(V , KT

0 )⊗Z Kq(k),

[21, 3.2.1], and so by Proposition 2.14,

Hp
(

∆, K̃T
q

)
∼= Hp

(
∆, K̃T

0

)
⊗Z Kq(k),

whenever p, q ≥ 0.

Theorem 6.2. Let ∆ be a two dimensional fan with s one dimensional cones ρ1, · · · , ρs. If ∆ is

not complete, then for all q ≥ 0,

KT
q (X(∆)) ∼= H0

(
∆, K̃T

0

)
⊗Z Kq(k).

If ∆ is complete, then KT
q (X(∆)) is an extension of H0

(
∆, K̃T

0

)
⊗Z Kq(k) by Kq+1(k)g−1, where

g is the greatest common divisor of the set of all 2× 2 non-zero minors of the matrix


v1

...

vs

, and

vi is the minimal lattice point of ρi for i = 1, · · · , s.

Proof. By Corollary 5.7, Hp
(

∆, K̃T
0

)
= 0 for all p ≥ 2; therefore, the spectral sequence
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(6.1) gives the short exact sequence,

0 −→ H1
(

∆, K̃T
q+1

)
−→ KT

q (X(∆)) −→ H0
(

∆, K̃T
q

)
−→ 0. (6.3)

Since H2
(

∆, K̃T
0

)
= 0,

H1
(

∆, K̃T
q+1

)
∼= H1

(
∆, K̃T

0

)
⊗Z Kq+1(k) (6.4)

In the case of ∆ being non-complete, H1
(

∆, K̃T
0

)
= 0 by Theorem 5.28. That means

H1
(

∆, K̃T
q+1

)
∼= 0 and

H0
(

∆, K̃T
q

)
∼= H0

(
∆, K̃T

0

)
⊗Z Kq(k). (6.5)

As a result, for all q ≥ 0,

KT
q (X(∆)) ∼= H0

(
∆, K̃T

0

)
⊗Z Kq(k). (6.6)

If ∆ is complete, Theorem 5.19 says that H1
(

∆, K̃T
0

)
∼= Zg−1 where g is defined as above.

That implies

H1
(

∆, K̃T
q+1

)
∼= Kq+1(k)g−1

and

H0
(

∆, K̃T
q

)
∼= H0

(
∆, K̃T

0

)
⊗Z Kq(k).
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6.2 Equivariant K-groups of Three Dimensional Fans

If ∆ is a fan that is acyclic with respect to K̃T
0 (such as the one in Example 5.16), then

the isomorphism (6.6) holds for all q ≥ 0, as in the cases when ∆ is smooth or ∆ is a

2−dimensional non-complete fan.

For three dimensional non-complete fans, we still have the short exact sequence (6.3)

and the isomorphism (6.4), since Hp
(

∆, K̃T
0

)
= 0 for all p ≥ 2. However, the isomorphism

(6.5) no longer necessarily holds. Instead, we have

H0
(

∆, K̃T
q

)
∼= H0

(
∆, K̃T

0

)
⊗Z Kq(k)⊕ TorZ

1

(
H1
(

∆, K̃T
0

)
, Kq(k)

)

[21, 3.6.2]. In other words, up to an extension the difference between KT
q (X(∆)) and

H0
(

∆, K̃T
0

)
⊗Z Kq(k) can be measured by the group H1

(
∆, K̃T

0

)
. In the cases where

H1
(

∆, K̃T
0

)
is torsion free (such as those fans discussed in Section 5.4), KT

q (X(∆)) is an

extension of H0
(

∆, K̃T
0

)
⊗Z Kq(k) by a direct sum of Kq+1(k), just like the situation with

two dimensional complete fans.

6.3 Finite Fields

In the special case where the ground field k is finite, we can apply our results together

with the following calculation of Quillen’s [14, Theorem 8] to get explicit determinations

of the equivariant K-groups of toric varieties:

For a finite field k = Fr,
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Kq(k) ∼=


Z, q = 0

Z/(ri − 1), q = 2i− 1 for i ∈N

0, q = 2i for i ∈N.

Example 6.7. Let ∆ be a two dimensional non-complete fan in R2 and k be the finite field Fr.

Then by the isomorphism (6.6),

KT
q (X(∆)) ∼=


H0
(

∆, K̃T
0

)
, q = 0

H0
(

∆, K̃T
0

)
⊗Z Z/(ri − 1), q = 2i− 1 for i ∈N

0, q = 2i for i ∈N.

Example 6.8. Let ∆ be a two dimensional complete fan and k be the finite field Fr. Then

KT
0 (X(∆)) is an extension of H0

(
∆, K̃T

0

)
by (Z/(r− 1))g−1, where g is as defined in Theorem

5.19. The higher equivariant K-groups are as follows:

KT
q (X(∆)) ∼=


H0
(

∆, K̃T
0

)
⊗Z Z/(ri − 1), q = 2i− 1 for i ∈N(

Z/(ri − 1)
)g−1 , q = 2i for i ∈N

Theorem 6.9. If ∆ is a three dimensional fan and k is a finite field, then we have

KT
−2(X(∆)) ∼=


Zg−1, ∆ is complete

0, otherwise,

where g is as defined in Theorem 5.19.
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Proof. Since ∆ is three dimensional, Hp
(

∆, K̃T
q

)
= 0 for all q ≥ 0 and p ≥ 3. Also, for all

p ≥ 0 and j ∈N,

Hp
(

∆, K̃T
2j

)
∼= Hp

(
∆, K̃T

0

)
⊗Z K2j(k) = 0

So, the convergent spectral sequence (6.1) yields the isomorphism

KT
−2(X(∆)) ∼= H2

(
∆, K̃T

0

)
,

and the result follows from Theorem 5.19.

Theorem 6.10. Suppose ∆ is a three dimensional complete fan and k is the finite field Fr. Then

for all j ∈N, KT
2j−1(X(∆)) is an extension of H0

(
∆, K̃T

2j−1

)
and

(
Z/(rj+2 − 1)

)g−1, where g

is as defined in Theorem 5.19.

Proof. The spectral sequence (6.1) yields the following exact sequences for 3 dimensional

fans:

0 −→ H2
(

∆, K̃T
2j+1

)
−→ KT

2j−1(X(∆)) −→ H0
(

∆, K̃T
2j−1

)
−→ 0 (6.11)

For all j ∈N, we have the isomorphisms:

H2
(

∆, K̃T
2j+1

)
∼= H2

(
∆, K̃T

0

)
⊗Z K2j+1(k), since H3

(
∆, K̃T

0

)
= 0

∼= Zg−1 ⊗Z Z/(rj+2 − 1)

∼=
(
Z/(rj+2 − 1)

)g−1

Example 6.12. Suppose ∆ is the boundary of a three dimensional cone and k is the finite field Fr,

then H2
(

∆, K̃T
0

)
= 0 by Theorem 5.28, so for all j ∈N,
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KT
2j−1(X(∆)) ∼= H0

(
∆, K̃T

2j−1

)
, by the short exact sequence (6.11)

∼= H0
(

∆, K̃T
0

)
⊗Z K2j−1(k), since H1

(
∆, K̃T

0

)
is free by Lemma 5.33

∼= H0
(

∆, K̃T
0

)
⊗Z Z/(rj − 1).

and
KT

2j(X(∆)) ∼= H1
(

∆, K̃T
2j+1

)
∼= H1

(
∆, K̃T

0

)
⊗Z K2j+1(k), since H2

(
∆, K̃T

0

)
= 0

∼= H1
(

∆, K̃T
0

)
⊗Z Z/(rj+2 − 1), where k = Fr.

H1
(

∆, K̃T
0

)
is free of finite rank, and so KT

2j(X(∆)) is a direct sum of finitely many copies of

Z/(rj+2 − 1).
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