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Large animalivorous bats include carnivorous, piscivorous and insectivorous microchirop-
terans. Skull proportions and tooth morphology are examined and interpreted functionally. 
Four wide- faced bats from four families are convergent in having wide skulls, large mas-
seter muscle volumes and stout jaws, indicating a powerful bite. Three of the four also have 
long canine teeth relative to their maxillary toothrows. Carnivorous bats have more elongate 
skulls, larger brain volumes and larger pinnae. The wide-faced bats are all oral emitters and 
have heads positively tilted relative to the basicranial axis. The carnivorous species are nasal-
emitting bats and have negatively tilted heads. The orientation of the head relative to the ba-
sicranial axis affects several characters of the skull and jaws and is not correlated with size. 
The speculation that the type of echolocation may be more of a determinant of evolutionary 
change than the feeding mechanism is addressed. Wide-faced bats are thought to be capable 
of eating hard prey items (durophagus) and are probably non- discriminating, aurally less so-
phisticated insect generalists while the carnivorous and non-durophagus insectivorous bats 
may be more discriminating and aurally more sophisticated in what they eat. 

KEY WORDS: Chiroptera, carnivory, insectivory, jaws, skull orientation, functional morphol-
ogy, ear shape. 
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INTRODUCTION

The radiation of feeding specialties—insectivory, carnivory, piscivory, frugivory, necta-
rivory, and sanguivory—found among the microchiropteran bats offer an excellent op-
portunity to study changes in skull shape and tooth morphology in a monophyletic group. 
Here I focus on differences in the animalivorous bats, specifi cally among the insectivo-
rous, piscivorous, and carnivorous, and on the possibility of inferring more specifi c food 
habits based on skull and tooth morphology. 

387 
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From earlier studies (Freeman, 1979, 1981) I wanted to know whether the prominent 
features characteristic in insectivorous bats thought to be eating hard items (durophagus 
bats) were accentuated in carnivorous bats. These features include stout jaws, large mo-
lars, long canines, and abbreviated upper third molars. Is beetle-eating, or durophagy, a 
stepping stone to carnivory or is carnivory something completely different? I had thought 
that chewing vertebrate bone and fl esh would be physically harder, i.e. take more com-
pressive force for a bat than chewing hard-shelled prey like beetles. But Curry (1970: 30) 
reported that vertebrate bone had a lower specifi c E (modulus of elasticity or stress over 
strain ratio divided by specifi c gravity of the material) and took less compressive force 
to break than locust cuticle. Lucas (1979) mentions that uncalcifi ed vertebrate tissue is 
soft under compression. Although Curry’s data are somewhat counterintuitive, Goldman 
& Henson (1977) have seen that eating certain beetles is impossible for some bats even 
though the bats are able to capture the beetle. The change in the nature of the food item 
from a hard-covered package with soft insides to a soft-covered package with hard insides 
must certainly be correlated with morphological changes in bats preying on these food 
items. The exact nature of insect cuticle as a nitrogenated polysaccaride and bone as a 
mineral, hydroxyapatite, is not examined here nor is the elasticity or tensile strength of the 
two materials. Curry (1970: 30) does report that the specifi c tensile strength is similar in 
the two materials but insect cuticle is less elastic. Different parts of the insect, for example 
the soft abdomen, would probably have different degrees of elasticity. 

I cannot answer the question “why are there carnivorous bats?,” but I can examine here 
cusp patterns and simple jaw, skull and ear proportions of these bats to fi nd out what 
makes them different from insectivorous bats and how that difference may play a role in 
detecting and procuring prey. 

Carnivory occurs in several families of microchiropterans, notably the Phyllostomidae 
and the Megadermatidae and, because most of the carnivorous bats are large, I thought it 
reasonable to compare them with the largest insectivorous species from other microchi-
ropteran families. The largest examples of microchiropterans may also represent the ends 
of distinctly different paths of radiation (Stanley, 1973). Small-sized species from each 
family, except Noctilionidae, have been added for comparative purposes. 

MATERIALS AND METHODS 

I measured 23 characters of one adult male specimen for each of 33 species from seven 
families either with dial calipers under a dissecting microscope or with a protractor. The 
occlusal surface of the upper toothrow and the left lateral side of the skull were drawn un-
der a camera lucida for each bat to facilitate measurement (Fig. 1). Tooth areas were de-
termined with a polar planimeter from an enlarged drawing. Volumes and areas are always 
converted to the appropriate root for comparison with linear measurements. The basicra-
nial axis can easily be observed by gluing an insect pin to the basicranium. The glue (Duco 
cement) sets quickly and is easily removed after use. An additional character, ear (pinna) 
area, was taken from as many as four adult wet specimens (usually two males and two fe-
males) found in the collection at the Field Museum of Natural History except for Macro-
derma gigas. Length of ear was taken at the notch and width taken at the widest point per-
pendicular to length. If the width of the ear had much curvature, the measurement was 
taken by folding the ear lengthwise and adding the two widths on either side of the fold. 
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Ear area could not be obtained for four species. Bats designated as carnivorous, and for 
which a substantial amount of food habit data exists, are: Vampyrum spectrum, Phyllosto-
mus hastatus, Chrotopterus auritus, Trachops cirrhosus, Macroderma gigas, Megaderma 
lyra, Cardioderma cor, and Nycteris grandis. Noctilio leporinus is piscivorous. Large in-
sectivorous bats here are species with a greatest skull length generally longer than 25 mm 
and if not longer, they are the largest species of their families. All species and their abbre-
viations are listed in the Appendix along with descriptions of the measurements. 

Simple bivariate plots were made for each character logged to base 10 (angles were 
not logged) against a composite size character, always the x axis (SIZE = sum of the nat-
ural logs of condylocanine length, zygomatic breadth, and temporal height). Reduced ma-
jor axes were derived rather than regressions because, like Radinsky (1981a,b), I wanted 
to know the structural relationship of each variable with respect to SIZE rather than the

Figure 1. Dorsal and lateral views of a skull and mandible and an occlusal view of the upper molars illustrat-
ing most of the characters, including angles, used in the study. Numbers correspond to the descriptions listed 
in Appendix 2. 
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effect SIZE might have on the variable. Further explanation for this method can be found in 
Clarke (1980). In the multivariate case, this would be the principal component analysis. Ad-
ditionally, ratios of several measurements, indicating important shape relationships, are ex-
amined. Reduced major axes were also found for all characters v. basicranial angle. Means, 
standard deviations, correlations, slopes, and y intercepts are listed in Appendix 4.

RESULTS

The most obvious adaptations for carnivory can be seen in the teeth. Carnivorous bats have 
a lengthened, more antero-posteriorly oriented, metastylar ridge on the upper molars (Figs 
2, 3A; see also Slaughter, 1970). The lengthening of the metastylar ridge (meta crista) is 
accompanied by the enlarging of the reciprocal protoconid. The protoconid shears against 
the metacrista of the more anterior molar (or the parastyle of P4) and the paracrista of the 
following molar. This is a functional unit that I will call the interloph (ridge shared be-
tween teeth) and is followed by the ridge that the smaller hypoconid contacts, the intra-
loph (the internal ridge), a functional unit made up of the postparacrista and premetacrista 
(Fig. 1). In carnivorous bats, the intraloph is much smaller than the interloph so the ratio

Figure 2. (above) Upper toothrows of the four wide-faced, insectivorous bats on the left and four carnivorous 
bats on the right. The intraloph (stipple) and interloph are shown for each group. All are drawn to the same 
scale.

Figure 3. (right) Important tooth characters of insectivorous and carnivorous bats. A. The four intraloph/in-
terloph ratios for each bat, three molars and one total, correlated with SIZE; B. M2 Hypoconid/Protoconid ra-
tios and M3 Talonid/Trigonid ratios (graphed together for convenience; diagrammatic cusps are drawn along 
the axes to show the change in relative sizes; x axis shows occlusal views of M3 and M3, the y axis the lat-
eral view of M2); C. relative molar area correlated with SIZE; and D. relative stylar shelf area correlated with 
SIZE. Description of SIZE can be found in Materials and methods. Abbreviations are in Appendix 1. Carnivo-
rous bats are denoted by a + . Intraloph/interloph ratios: – = P4 – M3; ○ = P4 – M1; ● = M1 – M2;  = M2– M3.
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between the two is always less than 1.0. Insectivorous bats, on the other hand, have an 
intraloph and interloph that are subequal; the ratio between them approaches 1.0 (Figs 
2, 3A) and the corresponding lower cusp, the hypoconid, is nearly the same size as the 
protoconid. 

Change in the proportion of the heights of the reciprocal protoconid and hypoconid of 
M2 varies and can also be expressed as a ratio (Fig. 3B). The more equal the two lower 
cusps on M2, the closer the ratio is to 1.0. The ratio is less than 1.0 because of the larger 
protoconids and smaller hypoconids of the carnivorous bats. 

The loss of the premetacrista of M3 (posteriormost cusp) and the corresponding re-
duction of the talonid in M3 has been mentioned in previous papers as a feature char-
acteristic of bats that primarily eat hard-shelled insects (Freeman, 1979, 1981a). This 
feature can be represented by the talonid/trigonid ratio of M3 (Fig. 3B). All of the car-
nivores have a small ratio, meaning a small talonid relative to trigonid, and two, Vam-
pyrum spectrum and Trachops cirrhosus, have the smallest ratio of all the bats in this 
study. Interestingly, Noctilio leporinus, a piscivorous bat, has retained the premetacrista 
of M3 (Fig. 2). 

In a comparison of relative occlusal tooth areas, the carnivorous bats do not have as 
great an area of the upper molar row (P4–M3) as many of the insectivorous bats. The in-
sectivorous bats also have a relatively larger stylar shelf, the raised shelf labial to the ecto-
loph (Figs 3C, D) . The stylar shelf in the carnivores is more elevated relative to the hypo-
conal basin than in insectivores, but I had no way of measuring the difference. 

Besides the changes in the teeth and cusps of carnivorous bats, the most striking dif-
ference among animalivorous bats is the shape of the skull. Four bats from four fam-
ilies, Noctilio leporinus, Cheiromeles torquatus, Scotophilus gigas and Saccolaimus 
peli, have converged toward having short, wide faces where the zygomatic breadth is 
70-80% of the condylocanine length (Figs 4, 5). Both measurements, zygomatic width 
and condylocanine length, were compared to SIZE to see exactly which measurement 
affected this ratio. Of the four, Noctilio has an average zygomatic width but a dispro-
portionately small condylocanine length. The other three had both wider zygomata for 
their size and short condylocanine lengths although not as short as Noctilio (Appendix 
3). These four also have relatively wider distances across the maxilla at the M3s. The 
relatively wide faces of these four bats are in the same range as that of several felids 
and hyaenids. The carnivorous bats and the remaining insectivorous bats have narrower, 
more elongate faces (zygomatic breadth is 55–70% of condylocanine length) more like 
many of the canids (Fig. 5). As one may suspect, the width of the skull affects many 
proportions of the jaw and teeth. These four bats have relatively greater masseter mus-
cle volumes and Noctilio and Scotophilus have relatively greater temporal muscle vol-
umes as well (Figs 4B, C). 

Although there is a tendency for relative canine length to increase with larger bats (the 
line in Fig. 4D is only just signifi cant), three of the four bats mentioned above have ca-
nines that are 50-60% of maxillary toothrow length. The proportion is much like that in 
cats. In addition to Scotophilus, Cheiromeles, and Noctilio, Hipposideros commersoni 
commersoni and H. c. gigas have relatively long canines. The latter two have unusually 
well-developed sagittal crests and resulting temporal muscle volumes suggesting some 
specialized canine use (Fig. 6). It is not so much the absolute length of the canines that
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Figure 4. Important ratios describing changes in proportions of the skull in insectivorous and carnivorous 
bats: A, relative zygomatic breadth correlated with SIZE; B, relative masseter volume correlated with SIZE; 
C, relative temporal volume correlated with SIZE; D, relative upper canine length correlated with SIZE; E, 
relative dentary thickness correlated with SIZE. Carnivorous bats are designated by a +. Correlation coeffi -
cients are listed in Appendix 4 and abbreviations in Appendix 1.
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makes the ratio interesting as it is the short maxillary toothrow. When the toothrow is cor-
related with SIZE, Scotophilus, Noctilio, Cheiromeles and Hipposideros commersoni have 
among the shortest lengths (Appendix 3). 

Figure 5. A comparison of wide-faced bats, felids, and ursids with bats with more elongate faces, canids, and 
ursids. All are drawn to approximately the same size. 

Figure 6. All the bats in the study arranged with the basicranial axis on the horizontal from the most posi-
tively tilted (Nyctalus lasiopterus at +24°) to the most negatively tilted (Rhinolophus luctus at -25°) plus the 
eight small-sized species. The scale is equal to 1 mm. Abbreviations are in Appendix 1. 
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The carnivorous bats tend to have thinner dentaries, lower condyles, and larger brain 
volumes than the wide-faced bats but not compared to the other insectivorous bats (Ap-
pendix 3). Dorso-ventral tilting of the head on the basicranial axis is negative for all the 
carnivores except Trachops. The wide-faced insectivores all have a positive tilt. A vector 
to the midpoint of the temporal muscle indicating the orientation of the temporal fossa in 
the carnivores seems indistinguishable from the insectivores. 

FUNCTIONAL IMPLICATIONS AND DISCUSSION 

The lengthening and more anterior-posterior orientation of the metastylar ridge on upper 
molars in mammals has long been associated with fl esh eating because of its increased 
ability to slice material instead of crush it. Ewer (1973) discusses these traits in Recent 
Carnivora such as canids, and Osborn (1907) illustrates the change in the carnassial mo-
lars in Fissipedia and Creodonta. Carnivorous bats do not go as far as many of the car-
nivorans because they still retain metacones and hypoconids and have no single carnas-
sial pair of teeth, features that may indicate they still have a healthy proportion of insects 
in their diet or that they have only recently adopted carnivorous habits. The cusp pattern 
change for increased slicing ability seen in these fl ying insectivores is distinctly different 
from that seen in terrestrial insectivorans such as the Tenrecids and Chrysoclorids, with 
zalambdodont teeth that Mills (1966) says are “specialized for pure cutting action”. 

The intraloph/interloph relationship, indicating metastylar change, for each of the up-
per molars is illustrated in Fig. 3A. Although the ratio for the third intra-interloph ratio 
(M2–M3) is low for all the carnivores, only four of the carnivores have all three intra-in-
terloph ratios of 0.51 or less: Vampyrum spectrum, Macroderma gigas, Megaderma lyra, 
and Cardioderma cor. Do these four have a greater proportion of fl esh in their diets than 
the other carnivorous bats? Interestingly, the two closely-related phyllostomids, Vampy-
rum spectrum and Phyllostomus hastatus, both large bats, have distinctly different mo-
lar patterns (Fig. 2; Slaughter, 1970; Yalden & Morris, 1975: 47). Phyllostomus hastatus 
is more catholic in its foods of fruit, insects, and fl esh, than Vampyrum, a bird specialist 
(Gardner, 1977; Dunn, 1933; Vehrencamp, Stiles & Bradbury, 1977). As can be seen in 
Fig. 3A, the ratios describing the fi rst (P4–M1) and second (M1–M2) intra-interloph rela-
tionships of Phyllostomus are well into the range of the ratios found in insectivorous bats. 
Trachops, a phyllostomid that eats both insects and vertebrates, especially frogs (Gard-
ner, 1977; Pine & Anderson, 1979; Tuttle & Ryan, 1981) and Chrotopterus, a larger phyl-
lostomid that eats vertebrates, insects, and fruit (Gardner, 1977; Sazima, 1978), both have 
fi rst and second intra-interloph ratios similar to many insectivores. The possible correla-
tion between cusp shape and the proportion of vegetable, insect or vertebrate material in 
the diets of these phyllostomid carnivores has not been examined, but it would be interest-
ing to compare the food habits of Chrotopterus and Phyllostomus hastatus, two similarly 
sized and closely-related bats. 

If small intra-interloph ratios indicate an increased proportion of fl esh in the diet, then 
Macroderma, Megaderma and Cardioderma ought to be strictly carnivorous. Macro-
derma, the largest Old World carnivorous bat, does have a large proportion of vertebrate 
material in its diet although it eats insects (Douglas, 1967). But Megaderma and Car-
dioderma both eat a considerable amount of insect material, especially during the season 
when insects are most abundant (Vaughan, 1976; Advani, 1981). Indeed, Vaughan found 
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that Cardioderma in Kenya consumed large arthropods, both terrestrial and aerial, most 
of the year. Cardioderma and Nycteris grandis are the smallest carnivorous species in the 
study along with Trachops. Nycteris, once thought to be only insectivorous, eats verte-
brate material as well (Whitaker & Findley, 1980; Fenton, Thomas & Sasseen, 1981). The 
cusp pattern for Nycteris could be interpreted to be insectivorous-carnivorous, but I would 
not have expected Cardioderma, with its sectional teeth to have as high a proportion of 
insect material in its food as this one study indicates. Of course, as a small ‘carnivore,’ 
it does take insect material of surprisingly large sizes (up to 80 mm). Perhaps more food 
data for this bat will clarify why it has the cusp pattern that it has, but in general, there are 
no carnivorous bats in this study that do not have the small intra-interloph ratios. There 
does seem to be some slight correlation with increased amount of vertebrate material in 
the diet and size. Vampyrum and Macroderma feed almost exclusively on vertebrate mate-
rial (Douglas, 1967; Vehrencamp, Stiles & Bradbury, 1977). 

The puzzling bat in Fig. 3A is Scotophilus gigas (possibly S. nigrita, Robbins, 1978). 
The pattern is that of a strict carnivore, but there are no good food data to support or refute 
this. Kingdon (1974) reports that he caught a specimen of S. nigrita with 2–3 g of beetles 
in its stomach, and Kock (1969) reported that this species would eat most types of insects 
in captivity and would attack and eat other bats put into the same cage. Kock (1969) also 
stated that S. gigas might be carnivorous and kill other bats, but his only evidence was the 
absence of other species in the same roost. Although the occlusal cusp pattern of S. gigas 
is that of a carnivore, the appearance of the teeth suggests more of a crushing than a slic-
ing function. Indeed, the relative tooth areas of the upper molars and the stylar shelf area 
in this species are the greatest of any bat in the study. I suspect S. gigas to be insectivo-
rous despite its cusp pattern for reasons discussed below. 

Noctilio leporinus, a piscivore, has tooth characteristics more similar to the insecti-
vores than to the carnivores. This may be a function of recent radiation from insectivory 
to piscivory. Its smaller congener N. labialis is primarily an insectivore. But it may also 
be that the characteristics of a piscivorous food item are similar to those of an insectivo-
rous food item. An interesting feature of N. leporinus is that it has retained the posterior-
most cusp on M3 (premetacrista), a feature different from the other wide-faced insectiv-
orous bats with which it shares many characteristics. Could the retention of this cusp be 
related to piscivory? It does give the toothrow an additional cusp with which to hold slip-
pery prey, and most fi sh-eating mammals have many small, pointed teeth by which to bet-
ter grasp or hold their prey. 

Carnivorous bats differ from insectivorous bats in having smaller tooth areas as mea-
sured in the occlusal plane. This is probably because of the increased slicing ability of the 
molars and less need of wide crushing surfaces. But the slicing edge, the ectoloph, espe-
cially at the metastylar ridge, is well-elevated above the hypoconal basin. This basin is 
low, expanded, and quite thin in the carnivores and looks as though it is becoming vesti-
gial. Indeed, the lower this basin the deeper the ectoloph can cut through the soft muscu-
lar outer covering of the prey. Scotophilus with its carnivore-like cusp pattern has a rather 
well-developed hypoconal shelf with little expansion of the hypoconal basin (Fig. 2). 

Phyllostomus hastatus, an omnivore, and Noctilio leporinus, a piscivore, do have 
greater relative molar areas, but the stylar shelf in P. hastatus is not great (Fig. 3D). The 
hypoconal basin is not expanded and thin in either of these two bats. Noctilio along with 
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three insectivorous bats, Cheiromeles torquatus, Scotophilus gigas, and Saccolaimus peli, 
all have large molar areas and wide faces. 

Of the four species that have wide faces (zygomatic breadth/condylocanine = 78-80%), 
three of them, Noctilio, Cheiromeles, and Scotophilus gigas have long canines relative to 
their maxillary toothrow (greater than 50%). Only Saccolaimus peli does not. 

These two features, wide faces and long canines, taken together can be interpreted to 
mean that the bite is more powerful and effective. Because the long canines are closer 
to the fulcrum of the jaw lever and because the wide zygomatic arches allow for greater 
masseter muscle volume (Fig. 4B), these bats should have a strong, deeply piercing 
bite. Food data for these particular bats are slight, but I suspect they are capable of eat-
ing hard items. In an earlier study, I found that bats with a large portion of beetles in 
their diets did have relatively longer canines (Freeman, 1981a). Beetle remains have 
been found in both Cheiromeles and Scotophilus (Kock, 1969; Freeman, 1981b) . Noc-
tilio leporinus has the longest canines and widest face, relatively, of all the bats exam-
ined. Spearing slippery vertebrate prey may need the same long canines as piercing hard 
insects (fi sh may also be hard). 

Two additional bats with long canines are Hipposideros commersoni commersoni and 
H. c. gigas. Food habit data have shown that this species is a specialist of large, well-
armored beetles (Whitaker & Black, 1976; Vaughan, 1977). The striking feature of the 
skull of this species is its unusually well-developed sagittal crest and resulting temporal 
muscle (Figs 4C, 6). In corroboration with potentially heavy and effective canine use are 
the structurally thick dentaries of H. commersoni, Cheiromeles, Scotophilus, and Noctilio 
(Fig. 4E, Appendix 3). 

The height of the condyle above the toothrow tends to be greater in bats with wide 
faces (especially, relatively). According to Maynard Smith & Savage (1959), this greater 
height allows for a longer moment arm and greater attachment area for the masseter and 
pterygoid muscles. Indeed Storch (1968) weighed the muscles in several species of bats 
with different food habits and found that the pterygoid muscles of Noctilio weighed 35% 
more than the masseter muscle. The zygomaticomandibularis and the pterygoids both are 
primarily involved with transverse movement of the jaw. I suspect that the development 
of transverse movement is especially important in all of the wide-faced bats. Mills (1967), 
in a paper comparing the lateral jaw movements of insectivorans points out that the differ-
ent shapes of the zygoma and its relationship with the base of the skull (posterior attach-
ment of the jugals?) and the coronoid processes could all three be indicative of the type of 
lateral movement of the lower jaw. The insectivoran with the wider zygoma (Erinaceus) 
was thought to have “quite marked lateral jaw movement”. Although the insertion of the 
pterygoids on the inferior medial side of the dentary was not measured, the area for inser-
tion in the wide-faced bats is large, particularly in Cheiromeles. All of these bats except 
Noctilio have high coronoid processes (Appendix 3). 

One other characteristic that is indicative of muscle relationship, in this case the direc-
tion of the pull of the temporal, is the angle between the midpoint of that muscle and a 
perpendicular through the coronoid process (lateral view of skull, Fig. 1). The midpoint 
for Noctilio is only 7” left of centre and Lasiurus only 10°, indicating that the temporal 
fossa is more vertically oriented. The pull of the temporal for these two bats is nearly di-
rectly upward, almost perpendicular to the toothrow, whereas in Rhinolophus luctus and 
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Nycteris grandis with angles of 57° and 55°, respectively, the pull of the temporal is more 
backward. The midpoints of the two large carnivores Macroderma gigas and Vampyrum 
spectrum are from 36–37° left of centre. The other wide-faced bats have angles from 26–
39°. Emerson & Radinsky (1980) found that as the temporal fossa became more vertically 
oriented in sabertooth cats, the coronoid process was lower. This is the case with Noctilio. 
The change in the temporal to a more vertical position could mean a more effi cient bite 
force for the temporal as Emerson & Radinsky (1980) suggest, but this muscle orientation 
is also affected by the tilting of the head on the basicranial axis. 

Reorienting the skulls in this small sample of bats from seven families so that the 
basicranial axis is horizontal reveals enormous differences (Fig. 6). Heads with posi-
tive angles of inclination generally belong to bats that emit their echolocating pulses 
orally and negative angles belong to nasal emitters. The range of difference is from 
+24° in Lasiurus borealis and Nyctalus lasiopterus to –25° in Rhinolophus luctus. No-
tice that the reorientation of Rhinolophus skulls cause the swollen nasal region to point 
directly forward. All four of the wide-faced bats have positive angles and are oral emit-
ters. Trachops, a nasal emitting carnivore, is exceptional with a positive angle of +5°, 
and Tadarida brasiliensis and Molossus molossus, both small oral emitters, have a slight 
negative angle of –2°. For comparison, a single non-echolocating pteropid, Epomorpho-
rus minor, was found to have an angle of –9°. 

Correlating all characters against the basicranial angle (BCA) reveals that the method 
of echolocating may be affecting several of the skull characters measured (Fig. 7). 
Height of the condyle above the toothrow has a strong positive correlation with BCA. 
High condyles occur only in the oral-emitting bats. Vertical orientation of the temporal 
fossa is negatively correlated with BCA such that the oral emitters have the more verti-
cally oriented temporal muscle. Neither of these characters can be clearly interpreted at 
this time, but both must have to do with not only how prey is detected, but also how it 
is consumed. 

A fi nal interesting correlation is the relationship of external ear area and BCA. 
These are also negatively correlated so that the bats with the greatest area are the 
nasal emitters (negative BCA) and bats with the smallest are oral emitters (positive 
BCA). The carnivores have the greatest ear areas as well as the greatest brain volumes 
(Fig. 7, Appendix 3). 

The four wide-faced bats have small ears that are widely separated on the skull and ap-
pear to face a more lateral than anterior direction. I suspect that none of these bats have 
the ability to detect prey well in dense clutter (Simmons, Fenton & O’Farrell, 1979, dis-
cuss kinds of calls in different habitats), but pursue prey in habitats with few or no obsta-
cles. The ability to detect whether a target is coming or going is shown in the constant fre-
quency (CF) component of the echolocating call (Simmons et al., 1979). Although three 
of these wide-faced bats have not been recorded in the fi eld, their confamilials have a 
large CF component in their calls (Fenton & Bell, 1981). Data suggest that although Noc-
tilio has the ability to use multiple harmonic signals, which are usually associated with 
dense clutter, it routinely uses a single harmonic that may be best for detection of rip-
ples or disturbance and the water surface (Simmons et al., 1979). Simmons (pers. comm.) 
suggests that Cheiromeles with its small widely-separated, laterally-facing ears may be 
hearing audible sounds of insects while avoiding obstacles with higher frequency sounds. 
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Whatever the specifi cs of these wide-faced bats, it presently looks as though they may be 
better at target detection rather than for target identifi cation and localization.

All of the carnivorous bats have large ear areas, large brain volumes, and well-devel-
oped nose leaves. Megaderma and Phyllostomus hastatus are known to have a “high reso-

Figure 7. These three characters are signifi cantly correlated with the basicranial axis (Appendix 4 has corre-
lation coeffi cients). A. Height of condyle above the toothrow, B. midpoint of temporal fossa, C. ear area. In C, 
SCO is represented by S. nigrita, Nla by N. noctula, and Chr, Eun and Oto are not represented. Carnivorous 
species are denoted with a +, small species by , and abbreviations are in Appendix 1.
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lution, clutter-rejecting pursuit strategy” (Simmons et al.,1979). These are calls with mul-
tiple frequency modulated harmonics that are more sophisticated at determining what 
the object is rather than just its movement. Those bats as well as Cardioderma, Vampy-
rum, Nycteris grandis and Trachops all hear low intensity sounds well (Simmons & Stein, 
1980; Barclay et al., 1981). In addition, these bats perch on branches upside down scan-
ning the environment with their heads cocked back, their ears and nose leaves constantly 
moving (Hipposideros commersoni also does this). These bats are also consuming prey 
while perching, whereas many of the aerial pursuers are probably both detecting and con-
suming prey on the wing. 

Another way in which skull shape may be determined by auditory requirements in 
bats is suggested by the work of Masterton et al. (1969) and Heffner & Heffner (1980) 
who think that it is the functional interaural distance that limits high frequency hearing in 
mammals. Test animals for these studies range from small to very large mammals; only 
three bats were included. The smallest (Myotis) had a high frequency cut-off greater than 
Eptesicus, then Rhinolophus. In a study of bats only, it would be interesting to see if bats 
with wide faces and widely separated ears heard high frequencies less well than bats of 
the same size, but with closer-set ears. 

In all of the above discussion, nothing has been said about the gape of the jaws. Calcu-
lating gape in these bats is diffi cult and seems to involve several features peculiar to bats. 
First, what effect might the method of echolocating (oral or nasal emission) have on gape; 
and second, what effect might feeding while fl ying have on gape. 

Several morphological characters may be related to how wide a bat could open its jaws. 
Herring & Herring (1974) have investigated aspects of the superfi cial masseter on gape 
and Emerson & Radinsky (1980) have looked at aspects of the temporal on gape in saber-
tooth cats. None of the animals examined echolocate or feed in the air. Bats tend to have 
a masseter origin/insertion ratio of greater than 1.0 and angle φ of less than 90°. These 
features make the bats similar to Didelphis which has a wide gape (Herring & Herring, 
1974). Interestingly, Noctilio has a temporal origin/insertion ratio of 2.9 that is similar to 
sabertooths but its temporal φ is only 62°. The remaining bats have an average temporal 
φ of 67° with a range 48° to 94°, and temporal origin/insertion ratio average of 1.8 with a 
range of 1.3 (Eumops perotis) to 2.4 (Lasiurus borealis). 

The use of a wide gape as a threat posture is common in molossids such as Nyctino-
mops macrotis, Eumops perotis, and Otomops martiennseni. The last two can open their 
mouths 90° or more (Fig. 8; Howell, 1920; Walker, 1975), and Kallen & Gans (1972) re-
port the gape of Myotis lucifugus to be over 90°. These are all orally-emitting bats. None 
of the formulae estimating gape by Herring & Herring, and used by Emerson & Radinsky 
on sabertooths, predicted these wide gapes. Eumops perotis and Otomops martiennseni 
have long dentary lengths that would span a greater arc as the dentary is depressed and 
low coronoid processes that indicate longer temporalis fi bres and greater stretch (Mat-
thew, 19 10; Emerson & Radinsky, 1980). Both are probably features of a greater gape. 
But other questions come to mind. If the basicranial angle is negative as in the nasal emit-
ters, can the mouth open as widely or will the dentary be obstructed by the chest and 
neck? Does a laterally-fl ared angular process of the lower jaw allow greater depression 
of the dentary without being blocked by the neck muscles? Emerson & Radinsky (1980) 
found that sabertooth cats, which were thought to have greater gapes than modern cats, 



FUNCTIONAL CRANIAL ANALYSIS OF LARGE ANIMALIVOROUS BATS (MICROCHIROPTERA)                401 

had laterally displaced angular processes, low coronoids and vertically-oriented temporal 
fossae, and positive facial inclination relative to the basicranial axis (Eusmilus is the ex-
treme with +22°). These authors mention that with these features, and a lowered glenoid 
fossa, the mandible “would have impinged less on the structures ventral to the braincase 
or neck than in modern felids”. Following this logic, Noctilio leporinus, which has later-
ally-fl aring angular processes, with its low coronoids, vertically-oriented temporal fossa, 
and +17° BCA, should have a wide gape. Indeed, its high temporal origin/insertion ratio 
also in the range of the sabertooths, suggests wide gape. Is it coincidence that Noctilio has 
the longest upper canines relative to its maxillary toothrow among all large bats studied? 
Could Noctilio be considered a sabertooth bat? 

Figure 8. The faces of three bats: Otomops, an insectivore: Vampyrum, a carnivore; and Cheiromeles, a wide-
faced insectivore.
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CONCLUSION 

Because all of these large animalivorous bats use their canines and temporal muscles to 
help in capture of prey items, whether soft or hard, analogy with members of Carniv-
ora would not be out of order. Turnbull (1970) found much similarity in the musculature 
and lever mechanics with members of his Specialized Group I (the “carnivore-shear” or 
“scissors” type of mastication) and members of the Generalized Group that included in-
sectivores. He did, however, point out that there was a lessening of importance of the 
pterygoideus musculature with the increase in the masseter group that offset the powerful 
temporalis, the primary prey-seizing muscle. 

Several lines of Carnivora have increasingly wider skulls (Radinsky, 1981a,b), particu-
larly mustelids and ursids. Sicher (1944) and Moore (1981) present this example: a polar 
bear, Thalarctos, with a narrow skull is strictly carnivorous; Ursus, a bear with intermedi-
ate skull width, is omnivorous; and Ailuropoda, the panda, has a wide skull and is strictly 
herbivorous (Fig. 5). This is a trend toward increased hardness of food. Davis (1964), too, 
gives an example of increasing power in carnivoran jaws with increasingly hard food. He 
calculated zygomatic breadth/condylobasal length ratios for three groups of carnivorans. 
The “generalized fl esh-eating carnivores” like Canis and Viverra have a ratio of 57% and 
50%, respectively, the “predominantly herbivorous carnivores” like Procyon and Ailurus 
have a ratio of 68% and 75%, respectively, and the “extremely powerful jawed carni-
vores” like Ursus, Hyaena, and Ailuropoda, have ratios of 63%, 71%, and 82%, respec-
tively. In Radinsky’s study, Tayra has a ratio of 62% and Enkydra of 82%; Thalarctos at 
57% and Helarctos at 93%. This last has the widest skull of any bear, even greater than 
Ailuropoda, a specialist on hard bamboo. Radinsky (1981b) questions whether the wider 
skull in Helarctos does indicate that the jaws are more powerful and food items harder. He 
considered Helarctos an omnivore based on information from Walker (1975). Helarctos 
may not have specialized food habits like the panda, but it does have an unusual lifestyle. 
It is the only arboreal bear. Schaller (1964:216) reported that it makes nests out of sticks 
high in the trees. The bear weighs 65–80 kg, about the size of an American black bear, and 
its limbs are modifi ed for climbing. Perhaps the unusually wide jaws have a specifi c role 
in this arboreal lifestyle. 

Widening of the skull is a frequent phenomenon in carnivorans, and, as is apparent in 
this study, in microchiropterans as well. Indeed, a recent study by Corruccini & Beecher 
(1982) show that squirrel monkeys raised on hard food items have signifi cantly wider 
dental arches (width of maxilla) than squirrel monkeys raised on soft foods. As in the ex-
ample of the bears, I think the wide- faced bats have more powerful jaws than the insec-
tivorous and carnivorous bats with more elongate faces and have the ability to chew very 
hard food items. Although the temporalis musculature still has the primary task of cap-
turing prey items, probably the relative importance of the pterygoid and zygomaticoman-
dibularis muscles, with their ability to move the jaw transversely, has increased. Exactly 
why increased transverse action might be an aid to mastication of hard insects has not 
yet been elucidated, but, certainly having less transverse activity in the carnivorous bats 
would mean having greater vertical movement and slicing ability. 

An interesting trend in jaw and ear morphology can be seen in the molossids. Oto-
mops and Cheiromeles are opposites in that the fi rst has a low condyle and the second 
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an elevated one. Both are oral emitters, but Otomops has enormous ears compared to 
the small laterally-facing ears of Cheiromeles (Fig. 8). Using the standard argument 
of Maynard Smith & Savage (1959), the low condyle could mean that Otomops has a 
stronger temporal relative to its masseter and Cheiromeles has a stronger masseter rel-
ative to its temporal. In a previous paper I suggested that Otomops may be a soft-item 
insectivore and Cheiromeles, a hard- item insectivore, or at least that it could eat any-
thing up to the hardness of beetles (Freeman, 1979). Otomops shares these two traits, 
large ears and low condyles, among others, with carnivorous bats. Perhaps the fl esh-
eating bats passed through an insectivore stage more similar to Otomops before becom-
ing carnivores rather than a hard-item insectivore stage like Cheiromeles (see also Gil-
lette, 1975). 

Carnivorous bats with their elongate skulls have several features that are indistinguish-
able from insectivorous bats that I would consider soft-item specialists (Freeman, 1979). 
The fl esh-eating bats are often bigger versions of the soft-item specialists. There are no 
very small strict carnivores in this study. Trachops cirrhosus, Nycteris grandis, and Car-
dioderma are known to eat insects as well as fl esh. Also, because there are many char-
acters in common among fl esh- eaters and soft-item eaters, there is no distinct boundary 
where insectivory ends and carnivory begins. They both have elongate faces, thinner den-
taries, lower condyles, larger brain cases, and bigger ear areas than their wide-faced rela-
tives. Their bigger, closer-set ears may allow them to be more discriminating and aurally 
more sophisticated predators. 

It is the wide-faced bats, durophagus bats, that are the unusual ones, and not the carniv-
orous bats. Because of their wide, powerful, jaws; long canines; large molars; robust jaws; 
and small, well-separated, laterally-facing ears, these bats may be non-discriminating and 
aurally less sophisticated generalists that can only target their prey and feed on any kind 
of edible insect, hard or soft. In addition, the powerful bite and long canines of the duro-
phagus bats would be critical to the immediate puncturing of hard-shelled, possibly hard-
to-grasp prey while fl ying. On the other hand, the carnivorous bats could easily puncture 
their vertebrate prey but may need time to process it. The former may be eating on the 
wing while the latter are probably resting on a perch to eat. 

Finally, there are several skull and jaw characters that are not correlated with size but 
are correlated with how the bat’s head is held during life and potentially with its echolo-
cating abilities. This suggests that echolocation and how the environment and prey are 
detected are a more important aspect of their biology than how prey are consumed. The 
tooth cusp pattern is still the primitive tribosphenic insectivorous pattern that has changed 
little in 65 million years while ears and noses have become very elaborate. Detecting mor-
phological change that may be controlled by behavioral phenomenon such as echoloca-
tion rather than by the feeding mechanism in the skulls of these bats could have profound 
effects on microchiropteran taxonomy and phylogeny. Simmons & Stein (1980) have al-
ready started looking at the evolution of bats in this light, and although I do not agree with 
their interpretation of what is primitive and derived (it is hard for me to believe that the 
carnivorous bats with elaborate ears and noseleaves and sophisticated ultrasonic calls are 
primitive), I commend them for their fresh approach and emphasis on this critical behav-
ioral feature of microchiropterans. 
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APPENDIX 1. SPECIES MEASURED 

A.  Saccolaimus peli (Sac) 
B.  Taphoeous nudiventris (Tap) 
C.  Noctilio leporinus (Noc) 
D.  Nycteris grandis (Nyc) 
E.  Macroderma grandis (Mac)
F.  Megaderma lyra (Meg) 
G.  Cardioderma cor (Car) 
H.  Rhinolophus bctus (Rlu) 
I.  Rhinolophus rufus (Rru) 
J.  Hipposideros commersoni gigas (Hcg) 
K.  Hipposideros c. commersoni (Hcc) 
L.  Hipposideros lankadiva (Hla) 
M.  Hipposideros pratti (Hpr) 

N.  Vampyrum spectrum (Vam) 
O.  Phyllostomus hastatus (Phy) 
P.  Chrotopterus auritus (Chr) 
Q.  Trachops cirrhosus (Tra) 
R.  Scotophilus gigas (Sco) 
S.  Ia io (Ia) 
T.  Myotis myotis (Myo) 
U.  Nyctalus lasiopterus (Nla) 
V.  Cheiromeles torquatus (Chi) 
W.  Eumops perotis (Epr) 
X.  Eumops underwoodi (Eun) 
Y.  Otomops martiensseni (Oto) 
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APPENDIX 2. CHARACTERS 

1. Condylocanine length (CCL)—from occipital condyle to anterior edge of canine. 
2. Maxillary toothrow (MTR)—length from posterior edge of M3 to anterior edge of canine (not alveolar length). 
3. Zygomatic breadth—greatest width across the zygoma. 
4. Maxillary breadth—greatest width across maxilla from the labial sides of the M3s. Divided by maxillary toothrow 

for relative width. 
5. Upper canine length—greatest length from dorsal rim of cingulum to ventral tip of unworn tooth. 
6. Dentary length (DL)—from midpoint of mandibular condyle to anterior edge of dentary. 
7. Dentary thickness—a calculation taken from the area of the depth and lateral width of the dentary at the base of 

the protoconid of M2. Following Radinsky, 1981a, the second moment of the area is derived and converted to 
the fourth root for comparison with other linear measurements. 

8. Coronoid height—greatest length from tip of coronoid to indentation in the ventral border of dentary. 
9. Height of condyle—the height in lateral view from a line (cross hair in microscope) through the valleys between 

the protoconids and hypoconids of M, and M3 to the superior edge of the mandibular condyle. 
10. Temporal volume— (a) temporal fossa length-greatest length from the posteriormost edge of either the lamb-

doidal or sagittal crest to the anteriormost muscle scars at the eminence posterior to the eye. This point is ho-
mologous to a postorbital process and the scars can usually be located under a scope with good light. Used in 
calculation of temporal volume. (b) Temporal fossa depth-derived by subtracting the width at the postorbital 
constriction from the zygomatic breadth and dividing by 2. Used in calculation of temporal volume. (c) Tempo-
ral fossa height-from the glenoid cavity to a point on the sagittal crest directly dorsal to the cavity. Usually the 
lower jaw of the calipers will rest in both cavities and against the postglenoid processes. Used in calculation of 
temporal volume. 

11. Midpoint of temporal—an angle taken from drawing of lateral side of skull between a line drawn through the 
midpoint of the temporal fossa length and tip of the coronoid and a line through the glenoid cavity and the ante-
rior junction of M’ with the maxilla. The angle indicates the degree of vertical orientation of the temporal fossa 
relative to the coronoid process. 

12. Temporal origin/temporal insertion—a ratio of the origin, from the condyle to the midpoint of the temporal fossa 
length (see Emerson & Radinsky, 1980), over the length of the insertion, from the condyle to the tip of the cor-
onoid. These are taken from the drawing of the lateral side of the skull and used in estimating the gape of the 
temporal muscle. 

13. Temporal φ—the angle between the insertion and origin taken from lateral drawing and presumably related to 
gape (Emerson and Radinsky, 1980). 

14. Masseter volume— (a) masseter length—also the masseter origin, from the glenoid fossa to the anteriormost ex-
tent of muscle scar on the ventral surface of the anterior junction of the zygoma with the maxilla (scars can be 
seen with scope). Used in formulation of masseter volume and masseter origin/insertion ratio (Herring & Her-
ring, 1974) in estimating gape of masseter. (b) Masseter depth—a fi gure derived from subtracting the width be-
tween the lingual mandibular foramen at the base of the coronoids from the zygomatic breadth and dividing by 
2. Disarticulated mandibles can be easily reglued at the symphysis by keeping the cranium upside down dur-
ing the glueing process and allowing the mandible to rest properly in the upper toothrows. Used in calculation 
of masseter volume. (c) Masseter width—also the masseter insertion, from the midpoint of the condyle to the tip 
of the angular process. Used in the calculation of the masseter volume and for masseter insertion/origin ratio in 
connection with estimating gape (Herring & Herring, 1974). 

15. Masseter origin/masseter insertion—a ratio of the masseter length over masseter width. 
16. Masseter φ—the angle between the origin and insertion taken from a lateral drawing and used in estimating gape 

(Herring & Herring, 1974). 
17. Relative molar area—the area of the occlusal surface of the upper P4–M3 taken with a polar planimeter from a 

drawing. Converted to its square root for comparison with linear measurements. Relative area derived by dividing 
by upper molar row length taken from drawing (anterior edge of P4 to posterior edge of M3). 

18. Relative stylar shelf area—occlusal area of upper P4–M3 of the stylar shelf only, the raised shelf limited by the 
ectoloph on the lingual side, including the paracone and parastyle of P4 and converted to square root for linear 
comparison. Relative stylar area derived by dividing by upper molar row length (P4–M3) taken from drawing. 

19. Total intraloph/interloph—a ratio of the sum of the lengths of the internal cusps on the upper molar (postparacrista 
and premetacrista) over the sum of the lengths of shared cusps between the molars (the metacrista of the anterior 
molar or parastyle of P4 and the paracrista of the following molar). There are three of these sets of cusps that can 
be measured in the upper toothrow, when summed they make the total intraloph/interloph (P4–M3) ratio. 

Small bats: 
Z. Peropteyx kappleri (Per) 
1. Rhinolophus blasii (Rbl)   
2. Hipposideros caffer (Hcf) 
3. Macrotus californicus (Mca) 

4. Lasiurus borealis (Las) 
5. Myotis velifer (Mvl) 
6. Tadarida brasiliensis (Tad) 
7. Molossus molossus (Mol) 
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20. M3 talonid/M3 trigonid—a ratio representing the relative occlusal width of the talonid to the trigonid of M,. The 
talonid becomes smaller as the premetacrista of the M3 decreases in size and the ratio is <1.0. A ratio of <1.0 
represents equal talonid and trigonid. 

21. M2 hypoconid/ M2 protoconid—a ratio representing the relative lateral height of the hypoconid to the protoco-
nid. A ratio of 1.0 means equal cusp heights, and <1.0 when the hypoconid is smaller than the protoconid. 

22. Braincase volume—volume of braincase is derived from the amount of lead dust shot ( # 12) contained in the 
braincase and converted to the cube root for linear comparison. 

23. Basicranial angle—taken from lateral drawing of the cranium from the basicranial axis (where a pin has been 
glued to the basicranium) to a line passing through the juncture of the maxilla and anterior edge of the canine 
and posterior edge of M3. 

24. Ear area—greatest length times greatest width of pinna of wet specimen and converted to square root for linear 
comparison. 

APPENDIX 3. 
Ten characters (logged to base 10) correlated with SIZE. Abbreviations are found in Appendix 1.

A. Condylocanine length. B. Zygomatic breadth. C. Maxillary toothrow length. D. Upper canine length. E. Dentary 
thickness. F. Dentary length. G. Masseter volume. H. Temporal volume. I. Brain volume. J. Coronoid height. The 
carnivorous bats are denoted by squares. 
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APPENDIX 4. 

Reduced major axes of logged (base 10) data† 

† Angles and ratios are not logged; areas and volumes have been taken to the appropriate root. N is 33 ex-
cept for Ear area (29)
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