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Peripheral Trigeminal Neural Processes Involved in Repellency 

Bruce P. Bryant, Monell Chemical Senses Center, 3500 Market Street, 
Philadelphia, PA 191 04 

ABSTRACT 

This paper outlines the primary factors that affect the neural mediation of behavioral 
responses to chemical irritants. First, effective irritants must permeate the cornified epithelium 
or penetrate the mucosa to gain access to nociceptive nerve endings that are present in the skin or 
mucosa. Physicochemical properties of the irritantlrepellent will determine the degree to which 
an effective concentration can be attained at the nerve endings. Second, endings of specific 
classes of somatosensory neurons are present in the periphery that, when appropriately stimulated 
by chemical as well as thermal or mechanical means, signal potential or actual tissue damage by 
causing pain or sensory irritation. Finally, secondary processes (sensitization, desensitization, and 
plasma leakage [extravasation]) that modulate the peripheral neural response to potential irritants 
are discussed. 
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INTRODUCTION 

One of the functional subclasses of neurons within the general somatosensory system is the 
group of neurons that signal pathological internal conditions (inflammation or anoxia) as well as 
thermal, mechanical, and chemical insults from the external world. An effective course for 
obtaining nonlethal repellency can target this class of neurons, the nociceptors, using chemical 
means to cause temporary irritation or pain. 

Nociceptors are present throughout the body and integument. This paper will focus on the 
trigeminal nerve because it is the branch of the somatosensory system that innervates the facial 
skin as well as the corneas, and oral and nasal mucosae. These regions of an organism are most 
likely to first encounter a repellent either during respiration, ingestion, or simply on approaching 
a source of repellent. Moreover, compared to the rest of the integument, the nerve endings 
serving the mouth, eyes, and nose, are much more accessible to chemical stimulation due to 
relative differences in skin thickness and permeability. 

Three areas of interest that are relevant to the effective stimulation of the trigeminal nerve, 
vis-a-vis repellency will be discussed. First, the permeability of the target tissue or sensory organs 
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and the physicochemical properties of a potential repellent are important because it is the 
interaction of these two factors that determines whether repellents gain access to the nerve 
endings. Second, the intrinsic sensitivities of different subclasses of nerve endings and how 
stimuli are encoded by the nervous system determine if a potential repellent causes pain and 
aversive irritation or whether it will be innocuous. Finally, there are endogenous compounds, 
which are released during irritation or painful stimulation, that are, in themselves, irritating or 
cause sensitization to other stimuli. 

STIMULUS ACCESS 

The receptive endings that serve nociception are present in the integument in the dermal and 
epidermal layers largely as free nerve endings without secondary specialized structures. In the 
cornea and nasal mucosa, these same nerve endings are located within several to tens of 
micrometers beneath the surface, embedded in the epithelium (Silver 1990, MacIver and Tanelian 
1993). Throughout the oral mucosa, nerve endings are found in the gingiva, buccal epithelium, 
and tongue (Dixon 1962). Depending upon which site is considered, (cornea, skin, oral or nasal 
mucosa), a keratinized epithelium of variable thickness is present. The outermost layer of the 
keratinized epithelium (stratum comeum) is composed of cells containing large amounts of fibrillar 
protein as well as intercellular spaces containing high concentrations of lipids. The relative 
impermeability of this layer of cells is due to its composition. 

One of the major determinants of irritancy is access to the nerve endings. If an appropriately 
impermeable integument, e.g., thickly keratinized epidermis, blocks access of a physiologically 
active irritant, no sensation occurs. Most skin areas on target animals are, for adaptive reasons, 
not easily penetrated by many chemical compounds (penetration enhancers notwithstanding). 
Instead, it is most profitable to target those mucosae in which the nerve endings are separated 
from the environment by only a few layers of epithelial cells, e.g., nasal and oral mucosae as well 
as the cornea and the respiratory epithelium. In these areas, there are two routes of access from 
the exterior of an organism into the vicinity of the nerve endings. Access via the transcellular 
route involves solubilization in and diffusion through the plasma membrane lipid bilayers and 
cytosol of the of the epidermis and dermis. Thus, one of the limiting factors of this route of access 
is lipid solubility or lipophilicity. In addition to this route, an extracellular route is present in the 
form of the tight junctions that join the first several layers of epithelial cells on their lateral 
margins. Access to the extracellular space below the epithelial tight junctions is via diffusion 
through the aqueous phase in the pores of the tight junctions or through the initial layers of 
extracellular lipids. However, since the tight junctions represent such a small fraction of the area 
of the mucosal surface through which irritants may diffuse, it is hydrophobic or some amphipathic 
compounds that will most effectively gain access to sensory endings. 

This relationship between lipophilicity and efficacy can be seen in several studies in which 
the hydrophobic nature of trigeminal stimuli was varied. For both alcohols (Simon and Sostman 
1991, Silver et al. 1986) and weak acids (Bryant and Moore 1995), the efficacy of trigeminal 
nerve stimulation increased as a function of the oil: water partition coefficient or hydrophobicity. 
Indeed, blocking the tight junctions with lanthanum chloride had no effect on the stimulatory 
efficacy of the weak acid, pentanoic acid. Thus, the design of irritants must take the hydrophobic 
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nature of the routes of access into account in order to maximize delivery of the irritant to sensory 
nerve endings. 

NEURAL CODING OF PAIN AND IRRITATION 

Most of our understanding of chemically induced sensory irritation comes from experimental 
studies on the skin in humans and other mammals (Green and Flammer 1988, LaMotte 1983). 
Recently, we have added to our understanding with studies on the oral and nasal mucosa as well 
as the cornea and trachea (Fox et al. 1995, Gallar et al. 1993). Stimulation of the nociceptive 
neurons in each of these areas gives rise to a characteristic sensation or behavioral response. 
Corneal and dental nociceptors give rise to pain while the stimulation of other tissues and organs 
can give rise to weaker sensations that elicit blinking, coughing, itching, scratching, as well as 
outright pain. The physiological basis of each of these sensations is still under investigation. 
Generally, however, much of the encoding of irritating sensations can be accounted for by certain 
classes of nociceptors in the periphery. 

Nociceptors are classified according to morphological criteria, i.e., conduction velocity and 
the degree of myelination as well as the modes of stimulation that are effective, i.e., 
thermonociceptors, mechano-heat nociceptors, etc. The types of nociceptors that are sensitive to 
chemical stimulation and are known to be involved in the sensations of pain and some forms of 
irritation are slow conducting, unrnyelinated neurons (C-polymodal nociceptors or C-PMN's), that 
are also sensitive to extremes of heat, cold and mechanical stimulation (Bessou and Perl 1969). 
The other well-characterized class of chemically sensitive nociceptors is made up of faster 
conducting, thinly myelinated A-delta fibers. Chemically sensitive A-delta neurons are also 
sensitive to mechanical and/or thermal stimulation (Perl 1968). In addition to these polymodal 
nociceptors, it is hypothesized that there are chemonociceptors that are sensitive only to noxious 
chemical stimulation (LaMotte et al. 1988). These nociceptors are thought to be involved in 
sensations produced by endogenous compounds. 

In the cases cited above, the production of a given sensation can usually be adequately 
explained by the excitation of a single class of sensory neurons. Sensations such as itch and tingle 
represent another case where the sensation is produced by excitation of several populations of 
differentially sensitive neurons. Histamine, which produces itch, and serotonin, which produces 
pain when injected subdermally, excite overlapping populations of somatosensory nerves, 
indicating that itch is not simply the excitation of histamine-sensitive nerves. Rather, several 
classes of nerves must be excited to produce the sensation (Handwerker et al. 1991). Whereas 
several pain-producing substances may sum through excitation of a single class of nociceptors, it 
remains to be determined whether other nonpainful, but nevertheless noxious, sensations could 
be produced by targeted excitation of different classes of nociceptors. 

In addition to the classically defined (high threshold) nociceptors, other chemoreceptive 
neurons have been found that are sensitive to irritating concentrations of acid and carbon dioxide 
and, therefore, may be involved in producing sensations such as the tingle and bum of carbonation 
and other weak acids. A class of lingual trigeminal neurons that are sensitive to cooling and not 
capsaicin has been described that is sensitive to irritating concentrations of weak acids (Bryant and 
Moore 1995). The fact that these are sensitive to mild cooling and not to capsaicin precludes their 
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being PMN's. In the lingual branch of the trigeminal nerve, this population of nerves makes up 
approximately 25% of the neurons sampled (P. A. Moore and B. P. Bryant, Monell Chemical 
Senses Center, unpubl. obs.). Such a large population of neurons suggests that they are 
functionally significant. The enhancement of CO, irritation by decreased temperatures (Green 
1992) supports the involvement of this class of neurons in producing irritating sensations. 

The sensitivity of sensory neurons is subject to modulation as a result of direct excitation and 
by chemical influences from the surrounding tissue. Desensitization, the diminished sensation or 
responsiveness over time or with repetitive stimulation, is caused by both peripheral and central 
nervous system (CNS) processes. In some management situations, desensitization may occur and 
would be undesirable, lessening the effectiveness of a repellent. The opponent process, 
sensitization, also is due to both peripheral and central processes and could potentially be used to 
enhance repellent efficacy. Sensitization refers to increased sensitivity to subsequent stimulation 
by a single mode of stimulus. Another form of sensitization is seen in cross-sensitizing processes 
in which stimulation by one class of stimuli, i.e., chemical, results in enhanced sensitivity to 
another class of stimuli. For instance, after extreme thermal (Mizumura et al. 1992) or chemical 
stimulation by endogenous compounds (bradykinin, serotonin, histamine and prostaglandin El) 
(Davis et al. 1993), some nerve endings become sensitized to thermal and mechanical stimuli. 
Although the detailed mechanisms of sensitization are not currently understood, various classes 
of proinflammatory mediators (prostanoids and eicosanoids) as well as histamine and serotonin 
from mast cells are involved. These compounds are either directly active on the free nerve 
endings or sensitize the endings to other chemical stimuli (e.g., protons) or to mechanical andlor 
thermal stimuli. The potential for synergistic or hypersensitizing interactions between chemicals 
in a repellent or between a chemical repellent and other sensory stimuli, such as thermal or 
mechanical sensation, has not received adequate attention. 

Two other elements play important roles in the sensory response to chemical irritation. 
First, mast cells, elements of the immune system, are present in the integument, with relatively 
higher density of these cells in the oral and nasal mucosae (Majeed 1994). Mast cells contain 
histamine and serotonin as well as enzymes which are involved in the defensive function of the 
cells. Upon adequate stimulation (chemical or immunogenic), the mast cells degranulate, 
releasing their contents. Serotonin and histamine induce sensations of itch and pain as well as 
taking part in the sensitization of nerve endings to other stimulation (Reeh 1994). Recently, a 
close association of mast cells and nerve endings has been recognized, suggesting a role for the 
interaction of these two elements in neurogenic irritation and mast cell sensitization of nerve 
endings (Purcell and Atterwill 1995). 

Second, in addition to their function as afferent nerves sending sensory information to the 
CNS, a subpopulation of somatosensory nerve endings also demonstrates efferent nerve function. 
This is observed as the release of various neuropeptides such as substance (SP) and calcitonin 
gene-related peptide (CGRP) in response to adequate and frequently noxious stimulation. Release 
of these neuropeptides can be stimulated by efferent activity of the CNS as well as by peripheral 
excitation of the nerve endings. This later case is known as axon reflex and doesn't require any 
participation of the CNS. Stimulation and depolarization of nerve endings by noxious stimuli 
spread to other branches of the stimulated nerve causing local secretion of neuropeptides. These 
neuropeptides are vasoactive, causing changes in the permeability and dilation state of the 
microvasculature, which results in plasma leakage into the affected tissue. Plasma leakage 
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delivers elements of the immune system to the affected area as well as diluting the interstitial 
fluids and removing noxious chemical conditions. In addition, SP plays a role in the sensitization 
of nerve endings to subsequent stimulation by the inflammatory mediators (Reeh 1994). 

Non-nociceptive sensory receptors may also play a role in repellency. Some sensory endings 
that are sensitive to innocuous thermal stimuli are sensitive to chemical stimuli. For instance, in 
addition to stimulating polymodal nociceptors, capsaicin stimulates non-nociceptive warm sensitive 
receptors. Menthol, on the other hand stimulates cooling sensitive receptors, giving rise to 
cooling sensations. While the bulk of the frankly irritating sensations due to both menthol and 
capsaicin are likely due to stimulation of polymodal nociceptors, the stimulation of relatively 
innocuous yet inappropriate thermal sensations in the right behavioral context may be aversive. 

CELLULAR MECHANISMS OF NEURONAL ACTIVATION 

The sensation of pain or irritation in the CNS is caused by depolarization of the 
somatosensory nerve endings. Thus, any mechanism that causes dendritic depolarization of a 
certain subpopulation of nerve endings, the nociceptive endings, can cause pain or irritation. This 
population of neurons is partially defined by the presence of specific transduction mechanisms that 
are sensitive to noxious stimuli (extremes of temperature, pressure, pH, or endogenous compounds 
that induce pain or sensory irritation). Nociceptive neurons are defined as well as by the 
functional identity of the higher order neurons to which the sensory neurons project. Thus, in 
addition to activation of nociceptors via stimulus-specific transduction mechanisms, other 
nonspecific actions of irritants on nerve endings have the potential for causing depolarization of 
the endings and a sensation of pain or irritation. Four of the known or putative transduction 
mechanisms of trigerninal neuronal activation are outlined below. With variations in the chemical 
identity of effective stimuli, these are identical in principal to the mechanisms that give rise to 
chemical sensitivity in the olfactory and gustatory systems: 

Specific receptor proteinsfion channels are known or are strongly inferred to mediate 
the reception of irritants such as capsaicin and menthol (Rang et al. 1991, Swandulla 
et al. 1987). The activation of some of these receptors is directly coupled to ion 
channels, the opening of which causes depolarization of the nerve ending. The best 
understood of these chemonociceptive mechanisms is the receptorlion channel which 
mediates the neuronal effects of capsaicin. Capsaicin, as well as many analogues of 
this vanilloid compound, activate a nonspecific cation channel, causing entry of Na+ 
and Ca2+ and depolarization of neurons bearing the vanilloid receptor. Prolonged 
exposure to high concentrations of intracellular Ca2+ can lead to desensitization and 
ultimately to cell death of capsaicin-sensitive neurons (Szolcsanyi 1993). Because it 
is doubtful that mammals evolved a receptor for capsaicin, it has been hypothesized 
that there is an endogenous ligand for this receptor (James et al. 1993). Protons are 
perhaps the best candidate as being an "endogenous vanilloid. " Low pH activates the 
same conductances as capsaicin (Bevan and Docherty 1993) and exhibits synergistic 
interactions with capsaicin (Martenson et al. 1994). This receptor is a prime target for 
the induction of repellency. 
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2. Depolarization of sensory endings is also mediated indirectly by the coupling of 
specific receptors to ion channels by one of several candidate second messenger 
systems (cyclic nucleotides and/or phosphoinositides). In these cascades, various 
enzymes are present (Rang et al. 1991) that are susceptible to activation or inhibition, 
providing an alternative route for activation of neuronal depolarization. Perhaps the 
best understood mechanism of this type is the transduction of the endogenous algogen, 
bradykinin. This nonapeptide is released on cellular injury and activates a specific 
tachykinin receptor (Rang et al. 1991). Coupled to this is the activation of 
phospholipases C and A, which affect intracellular Ca2+ and thus the state of 
depolarization. 

3. A direct role for ion channels in irritation is strongly suggested by the fact that many 
ionic stimuli are strong irritants. Green (Gilmore and Green 1993) has demonstrated, 
in humans, that high concentrations of NaCl are rated as irritating, as well as being 
salty. KC1, which causes depolarization, elicited pain when applied directly to the 
exposed skin of a blister (Dash and Deshpande 1976). Specific identification of ion 
channels, using ion channel blockers to reduce irritation, is lacking. Moreover, the 
irritation produced by ionic stimuli requires either high concentrations or removal of 
the epithelial permeability barrier. 

4. Nonspecific mechanisms that cause perturbation of the lipid phase of the membranes 
of nerve endings may lead to dendritic depolarization. This has been proposed to be 
the mechanism by which some organic solvents induce irritationlpain sensations. It has 
recently been demonstrated that high concentrations of capsaicin induced conductances 
in artificial planar lipid bilayers. The experiments indicate that capsaicin molecules 
alone can induce discrete conductances in artificial lipid bilayers without the 
intervention of receptors or ion channels (Feigin et al. 1995). This suggests strongly 
that a similar nonspecific mechanism could occur directly in the lipid phase of nerve 
endings. Thus, capsaicin or other irritants that induce conductances in dendritic 
membrane could cause depolarization. 

One can see from this list of cellular mechanisms that for a given management problem, a 
large number of potential targets or entry points into the sensory system of animals exists that can 
be manipulated biochemically to produce aversive pain and irritation. Indeed, the chemical 
defenses of many plants and animals take advantage of the intermediate points in these pain 
pathways to activate nociceptors. 

SUMMARY AND RESEARCH NEEDS 

1. With a better understanding of the molecular and neural basis of irritancy, molecules 
can be designed that will be optimized in a variety of relevant parameters such as 
stimulatory efficacy, access efficacy, and quality and intensity of irritation (pain versus 
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other less intense irritation). Moreover, the potential for synergistic interactions 
among components of a repellent mixture should be examined more closely. 

2. Taxonomic differences in sensitivity to irritants have been identified. The mechanistic 
bases of these differences could be better understood to enhance target species 
specificity. 

3. The h l l  range of irritating sensations should be examined. For a given management 
situation, outright pain may not be necessary. Numbness, tingling, itching, and 
inappropriate thermal sensations to which the animals do not adapt may be sufficient 
deterrents. 
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