
University of Nebraska - Lincoln University of Nebraska - Lincoln 

DigitalCommons@University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln 

Paul Burrow Publications Research Papers in Physics and Astronomy 

4-1-2002 

Dissociative electron attachment to molecules in the gas phase Dissociative electron attachment to molecules in the gas phase 

and in rare gas solids and in rare gas solids 

Paul Burrow 
University of Nebraska - Lincoln, pburrow1@unl.edu 

Kayvan Aflatooni 
University of Nebraska-Lincoln, kaflatoo@fhsu.edu 

Follow this and additional works at: https://digitalcommons.unl.edu/physicsburrow 

 Part of the Physics Commons 

Burrow, Paul and Aflatooni, Kayvan, "Dissociative electron attachment to molecules in the gas phase and 
in rare gas solids" (2002). Paul Burrow Publications. 7. 
https://digitalcommons.unl.edu/physicsburrow/7 

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at 
DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Paul Burrow Publications by 
an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. 

https://digitalcommons.unl.edu/
https://digitalcommons.unl.edu/physicsburrow
https://digitalcommons.unl.edu/physicsresearch
https://digitalcommons.unl.edu/physicsburrow?utm_source=digitalcommons.unl.edu%2Fphysicsburrow%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=digitalcommons.unl.edu%2Fphysicsburrow%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/physicsburrow/7?utm_source=digitalcommons.unl.edu%2Fphysicsburrow%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages


Dissociative electron attachment to molecules in the gas phase
and in rare gas solids

P. D. Burrowa) and K. Aflatoonib)

Department of Physics and Astronomy, University of Nebraska–Lincoln, Lincoln, Nebraska 68588-0111

~Received 18 December 2001; accepted 16 January 2002!

Measurements of dissociative electron attachment~DEA! cross sections in chloroalkanes and
chlorofluoromethanes have shown strong correlations between the peak DEA cross sections and the
vertical attachment energies~VAEs! of these compounds. We explore the extent to which these gas
phase data can be used to predict such cross sections for molecules embedded within or on the
surface of a Kr solid. Effective VAEs are computed that include polarization of the solid by the
anion and effects due to electron motion in the lattice. Comparisons are made with recent surface
and bulk measurements and show good agreement for CF3Cl both within and on the surface.
Satisfactory agreement is found for CH3Cl in the bulk but not on the surface. ©2002 American
Institute of Physics.@DOI: 10.1063/1.1458536#

I. INTRODUCTION

The calculation of cross sections for the dissociative
electron attachment~DEA! process in the gas phase,e
1AB→AB2* →A1B2, remains a significant challenge to
theorists because of the extreme sensitivity of the process to
properties of the transient negative ion stateAB2* , particu-
larly its energy and lifetime. Additional complexity is added
when this reaction occurs in molecules on surfaces or in
solids. The conceptually simplest such environment may
well be with target molecules embedded in a rare gas lattice.
In two tour de forceexperiments, Nagesha and Sanche1 and
Fabrikantet al.2 reported absolute cross sections for produc-
tion of stable negative ions in CF3Cl and CH3Cl, respec-
tively, within a solid lattice of krypton. In more recent work,3

these authors have reported new and more reliable values of
the absolute cross sections for these two species both within
and on the surface of the rare gas film. The measurements
were accompanied2,3 by theoretical DEA cross sections ob-
tained by using a semiempiricalR-matrix method4 extended
to incorporate the effects of the condensed matter environ-
ment. In brief, these additions took account of the polariza-
tion interaction between the negative ion and the medium
and effects related to the effective mass of the electron mov-
ing in the lattice. Two models were put forth. The first uti-
lized only a polarization interaction and was most successful
for molecules on the surface of the rare gas solid. The second
incorporated both polarization and effective mass consider-
ations and was applied to molecules within the solid.

In the present report, we examine the extent to which
DEA cross sections for such compounds in and on the rare
gas solid can be obtained from recently determined empirical
relationships betweengas phasecross sections and the ver-
tical attachment energies~VAEs! required to form the tem-
porary negative ion states in the ground state geometries of

the neutral molecules.5–7 Parallel to the theoretical treatment
by Nageshaet al.,3 we incorporate effects due to polarization
and the effective mass of the electron in an empirical manner
using literature values for these quantities.

II. BACKGROUND

In work reported elsewhere,5–7 the DEA cross sections
and VAEs of a large number of mono- and polychloroalkanes
and a small set of fluorinated chloromethanes have been
measured. Each of these compounds has one or more low-
lying unoccupied C–Cls* molecular orbitals, and the at-
tachment of a free electron into the lowest of these@the low-
est unoccupied molecular orbital~LUMO!# forms a transient
negative ion state that is the dominant contributor to the
DEA process at low electron energies. VAEs were deter-
mined by electron transmission spectroscopy~ETS!,8 and the
values span a range from approximately 0.4 to 3.45 eV. Total
DEA cross sections were measured as described elsewhere.5,7

At these low energies, the dominant negative ion produced is
Cl2.

The purpose of the previous work was to determine
whether thepeak DEA cross sections in these compounds
could be correlated with the VAEs. The primary outcome is
summarized in Fig. 1, in which are plotted the peak values of
the DEA cross sections as a function of VAE for the chloro-
alkanes~closed symbols! and fluorochloromethanes~open
symbols!. A clear correlation exists for each family. The
solid and dashed lines indicate fits to the data. For the chlo-
roalkanes, the dashed line is given by

sDEA
peak55.413102~1610.613VAE2.01!cm2 ~1!

and was determined by fitting to measurements in 32 chlo-
roalkanes covering the range of VAEs from 0.6 to 2.7 eV.
The average deviation of the data from the line is 38%, ex-
cluding the apparently anomalous point for CH2Cl2 .

The result for CH3Cl at a measured VAE of 3.45 eV
warrants a few comments. Because of the small magnitude of
its DEA cross section and problems with trace amounts of
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contaminants, only an upper bound to the peak DEA cross
section at room temperature could be determined.9 However,
Fabrikant4,10 has computed a value of 4310223 cm2 for
DEA from the vibrational ground state of CH3Cl, using his
semiempiricalR-matrix approach. This point is indicated in
Fig. 1 as a closed diamond, but was not included in the fit to
the experimental data. We note, however, that it is in quite
good agreement with thatpredictedby extension of the best-
fit line to higher VAE.

The solid line in Fig. 1 for the chlorofluoromethanes is
expressed by

sDEA
peak52.973102~1610.81VAE1.69!cm2 ~2!

and shows the best fit to results in four fluorinated chlo-
romethanes with VAEs ranging from 0.9 to 2.2 eV. The de-
viations from this line are quite small, but this reflects in part
the small number of data points.

The correlations between the peak DEA cross sections
and VAE are discussed in more detail elsewhere.5,7 In brief,
we have argued that they arise primarily from the monotonic
dependences of the temporary negative ion lifetimes on VAE.
Our ETS data6 show that the widths,G, of these resonances
vary with VAE in a manner consistent with the Wigner
threshold law11 for electron tunneling through an angular
momentum barrier. This is illustrated for the chloroalkanes in
Fig. 2 in which is plotted a quantity that is proportional to the
width of the resonance structure in the total scattering cross
section6 as a function of VAE. The solid line shows a best fit
to the data having a threshold-law form,G}VAE l 11/2, where
l is the angular momentum quantum number characterizing
the barrier. After making allowance for smaller contributions
from Franck–Condon overlaps, as discussed in more detail
elsewhere,5 the resonance widths are found to vary as
VAE'1.5, consistent with electron tunneling through anl
51 barrier. This behavior could be anticipated from theps

character of the C–Cls* orbital.
The results suggest a picture in which the angular mo-

mentum barrier responsible for trapping the electron into the

LUMO, and through which it must tunnel to escape, is es-
sentially the same for all the compounds of a given family.
Changing the energy of the temporary negative ion, that is,
VAE, simply shifts its location higher or lower inside this
barrier thus shortening or lengthening the lifetime. As shown
by O’Malley,12 the DEA cross section is exponentially sen-
sitive to the latter. The cross section also depends exponen-
tially on the time required for the components of the negative
ion to separate to the crossing with the neutral potential
curve. However, based on simple modeling of the potential
curves, the variation of separation times with VAE was found
to be weaker.6 As Eq.~1! shows, VAE enters to the power of
2.01 in the best-fit curve. Our treatment suggests that ap-
proximately 1.5 of this exponent arises from the dependence
on lifetime and the remaining amount to the variation of
separation times with VAE.

Finally, it is important to note that the actual electron
energies at which the cross sections reach their maximum
values are not involved in these correlations. Only the VAEs
are employed.

III. DISCUSSION

The striking relationships between the peak DEA cross
section and VAE in the two molecular families illustrated in
Fig. 1 span almost seven orders of magnitude in cross sec-
tion. In the present paper we suggest a different way to uti-
lize these data. Rather than considering the data as a collec-
tion of discrete points for different molecules,we propose
viewing the best-fit line as the ‘‘trajectory’’ that would be
followed by any one particular compound under circum-
stances that alter its VAE. For example, placing a molecule
on a polarizable medium will stabilize the negative ion state
relative to the neutral molecule by the associated surface

FIG. 1. Peak cross sections for the dissociative electron attachment process
as a function of vertical attachment energy~VAE! in the chloroalkanes
~closed symbols! and chlorofluoromethanes~open symbols!. The dashed and
solid lines indicate best fits to these two data sets, respectively. The anoma-
lous point for CH2Cl2 is not included in the fit. The CH3Cl data point was
computed from theory~Refs 4 and 10!.

FIG. 2. The widths of resonance peaks in the total scattering cross section as
measured by the dip to peak energy separation in the derivative of transmit-
ted electron current as a function of the VAE of various chloroalkanes. The
solid line shows a best fit to these data of the formA3VAEn.
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polarization energy,Ep
s , thus lowering the VAE from its gas

phase value. This yields an effective VAEeff5VAE2Ep
s that

can be used in Eq.~1! or ~2! to predict the associated peak
DEA cross section. This procedure thus corresponds to the
first model utilized by Nageshaet al.3 but with the arduous
R-matrix scattering calculation replaced with the empirical
relationships illustrated in Fig. 1.

For the case of molecules placed within the rare gas
lattice, Nageshaet al.3 incorporated a second model that in-
cluded a stabilization owing to bulk polarization and a more
interesting effect associated with the Bloch wave description
of a free electron moving in the lattice. Because the effective
mass of the electron in this medium is less than that in
vacuum, the electron momentum in the medium, for a given
kinetic energy, is less than that in the gas phase, leading to a
reductionof the decay width. We can connect this immedi-
ately to our results in Fig. 2, which show resonance widths as
a function of VAE. Again regarding the solid best-fit line as
the ‘‘trajectory’’ followed by the width of a particular com-
pound under circumstances in which the VAE is changed, we
see that areduction of the width is equivalent to a decrease
in effective VAE. From Fig. 1, it is clear that such a reduction
produces a larger peak DEA cross section.

We incorporate this effect heuristically with the follow-
ing discussion. Consider an autodetaching electron tunneling
through the angular momentum barrier and emerging into
either the rare gas lattice or the vacuum with a kinetic energy
E. We have then that

E5
\2k2

2m
5

\2k* 2

2m*
, ~3!

where the symbols with asterisks indicate values within the
rare gas lattice. If the reduced mass,m* , is less thanm, then
k* ,k. From the Wigner threshold law for tunneling through
a spherical barrier, we have thatG}k2l 11. If k* ,k, then
G* ,G, as noted by Nageshaet al.3

For a given electron energyE, Eq. ~3! implies that

S k*

k D 2

5
m*

m
. ~4!

Thus we can incorporate the threshold law in terms of the
ratio of the two resonance widths as

G*

G
5F S k*

k D 2G l 11/2

5S m*

m D l 11/2

. ~5!

At this point, we invoke our empirically determined relation-
ship, shown in Fig. 2, connectingG and VAE, namely that
G}(VAE) l 11/2. We associate the width in the medium,G* ,
with an effective VAE that we label VAEeff and write

G*

G
5S m*

m D l 11/2

5S VAEeff

VAE D l 11/2

. ~6!

Thus the reduced mass of the electron in the medium leads to
an effective VAEeff given by VAEeff5(m* /m)VAE in the ab-
sence of other effects. Bearing in mind the role of polariza-
tion in the medium described earlier, we can summarize the
inclusion of both these effects, corresponding to the second
model of Nageshaet al.,3 with an effective VAE given by

VAEeff5~m* /m!~VAEgas2Ep
b!, ~7!

where Ep
b corresponds to the bulk polarization energy. As

mentioned earlier, when the molecule is on the surface,
VAEeff5VAEgas2Ep

s , andEp
s is the surface polarization en-

ergy.

IV. RESULTS

In this section, we examine how well these effective
VAEs predict the measured surface and bulk DEA cross sec-
tions when used with Eq.~1! or ~2!. First, we require experi-
mental values forEp

s , Ep
b , andm* in Kr. By observing shifts

from the gas phase energy of the N2
2 temporary anion state

when N2 resides on the surface or in bulk Kr, Michaud and
Sanche13 arrive at values ofEp

s50.72 eV andEp
b51.15 eV.

These values are also used in the analysis in Nageshaet al.3

Determination of the electron effective mass in Kr is
more problematic. Nageshaet al.3 employm* /m50.42 from
Ref. 14. A case can also be made for a somewhat higher
value. A detailed experimental study ofm* in anargonsolid
by Perluzzoet al.15 found m* /m50.5360.01. Somewhat
earlier, the same workers, Baderet al.,16 found that
mKr* /mAr* 51.18. Using the value for argon by Perluzzo
et al.15 in this ratio yieldsmKr* /m50.63.

Table I summarizes the present predictions for the peak
DEA cross sections of CF3Cl and CH3Cl inside the Kr me-
dium ~‘‘bulk’’ values! or on the surface, together with the
measured values from Nageshaet al.3 and the semiempirical
R-matrix calculations of this same reference. We associate
error limits of 638% on our predicted values arising from
the average scatter in the chloroalkane data shown in Fig. 1.
Nageshaet al.3 report experimental errors of648% in the
measured values. Predicted peak cross sections in the bulk
are shown form* /m50.42 as well as 0.63. TheR-matrix
calculations3 were carried out only with 0.42.

A. CF3Cl inside the Kr medium

The predicted peak cross sections with the two choices
of m* /m straddle the experimental result, with both in agree-
ment well within the experimental errors. The predicted
cross section usingm* /m50.63 falls in slightly better agree-
ment. TheR-matrix calculation does not fare as well here,
lying a factor of 3.3 higher than the experimental cross sec-
tion.

B. CF3Cl on the Kr surface

The peak cross sections in this environment are all in
excellent agreement, again well within experimental error.
Nageshaet al.3 also reportR-matrix calculations usingEp

values of 1.15 and 1.25 eV as well as 0.72 eV. Our predicted
peak cross sections using these parameters also track these
results closely.

C. CH3Cl inside the Kr medium

Similar to the case with CF3Cl in the bulk, the predicted
peak cross sections straddle the experimental value with the
two choices of m* /m. In this example, however, with
m* /m50.42 the cross section lies within the respective error
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limits while that for m* /m50.63 is approximately a factor
of 3 smaller than experiment. TheR-matrix value is smaller
by a factor of 2. The latter cross section, however, was
reached after modification of the negative ion potential curve
from that originally calculated for gas phase studies.4 The
motivations for this are discussed in Nageshaet al.3

D. CH3Cl on the Kr surface

For this environment, the predicted peak cross section is
almost three orders of magnitude smaller than the measured
value. The originalR-matrix treatment of this process2 simi-
larly yielded a cross section that was about 50 times too
small. Nageshaet al.3 note that agreement with experiment
can be reproduced only with substantial semiempirical ad-
justments. This, in part, was a consideration in modifying the
negative ion potential curve as mentioned previously. By de-
creasing the C–Cl distance at which the anion and neutral
curves cross, a cross section in much better agreement with
the experimental value could be attained.

Given the data in Fig. 1, the only parameter available in
the present analysis is the surface polarizability. To reach the
measured value of the peak cross section,Ep

s would have to
be 1.8 eV rather than the value of 0.72 eV used in our model
and which gave a good result in CF3Cl. We can only provide
one possible rationale for this, namely that the static dipole
moment of CH3Cl is substantially larger than that of CF3Cl,
and thus that theEp

s inferred from N2
2 on the Kr surface13

may not be appropriate.

V. CONCLUSIONS

Gas phase DEA cross sections and VAEs within a family
of closely related molecules can be used to estimate the peak
DEA cross sections of these molecules when they are placed
within a Kr lattice, given the bulk polarization energy and

the effective mass of the free electron moving in the lattice.
A similar treatment incorporating only the surface polariza-
tion energy is successful for CF3Cl but fails for CH3Cl. This
result could imply that the CH3Cl anion potential curve on
the surface and in the bulk is altered from that found in the
gas phase, as suggested by Nageshaet al.,3 and consequently
that the connection with the gas phase data we describe here
might not be useful. Alternatively, since modification of the
CF3Cl curve was not required, the problem may lie with the
surface polarization energy of CH3Cl2 being substantially
greater than that found for N2

2 owing to the large dipole
moment of CH3Cl. Additional measurements with molecules
in these families with differing dipole moments would be
useful to resolve this puzzle. Measurements in media with a
range of different values for the electron effective mass
would also test the suitability of the present empirical ap-
proach.

Finally, we note that the gas phase DEA cross sections
discussed here are those with peaks at electron energies gen-
erally well above'0.1 eV. The DEA process also yields a
small narrow peak at nominally zero energy that becomes
more pronounced as VAE decreases.5 At very low VAEs
~,0.3 eV!, this component may also contribute substantially
to the total cross sections, however, our treatment does not
include it.
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