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ABSTRACT 
Sound reflections from most finite surfaces, such as overhead reflector panels, include a 
component known as edge diffraction.  Edge diffraction is the scattered energy required to 
maintain a continuous sound field despite the discontinuity in acoustical impedance presented 
by the scatterer.  Edge diffraction can interfere with primary scattered energy to produce comb 
filtering at receiver locations.  Several decades ago, the effect of changing the edge profile of 
loudspeaker boxes was investigated with the goal of producing a smoother frequency response.  
By rounding the edges of loudspeaker boxes, the edge diffraction could be decreased 
noticeably [H. F. Olson, J. Aud. Eng. Soc. 17 (1), 22-29 (1969)].  In the current study, boundary 
element methods are used to study the results of rounding the edges of suspended reflector 
panels with the same intent of diminishing the boundary wave to achieve a smoother response 
across the audience area.  Specific attention is given to the spatial range and frequency range 
over which this effect can be achieved. 
 
INTRODUCTION AND BACKGROUND 
This paper investigates the simulated responses of reflector panels with convex edges.  The 
convex edges are designed to smooth the scattered response from the reflector panel.  The 
background for this investigation comes from investigations of direct radiator loudspeakers. 
 
The diffracted wave from direct radiator loudspeakers 
The effect of sound diffracted from the edge of a finite baffle has been well documented.  When 
a source is placed in a finite baffle, secondary sources appear at the edge of the baffle where 
the sound wave is diffracted.  The interference between the direct energy and the energy 
diffracted from the edge creates fluctuations in the total sound field, as shown in Figure 1 (after 
Beranek [1]).  The frequencies at which interferences occur can be calculated based on travel 
time from the source in the middle of the baffle and from the edge. 
 

 
 

Figure 1.- Diffracted wave from the edge of a baffle (after Beranek [1]). 
 
A comprehensive measurement study was undertaken by Olson [2] in which the shape of direct 
radiator loudspeaker enclosures was varied with the goal of reducing the strength of the 
diffracted wave.  With a diminished diffracted wave, or boundary wave, the response from the 
radiator is much smoother because it is not subject to the interferences between the direct and 
diffracted energy.  Olson found that a spherical loudspeaker enclosure produced no boundary 
wave due to the absence of sharp edges or discontinuities. 
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Reflector panels 
The response from a reflector panel is comparable to the response from a source in a finite 
baffle.  Reflector panel responses are also affected by comb filtering between the primary 
scattered energy and the diffracted energy from the panel edge. 
 
An examination of curved reflecting surfaces was undertaken by Rindel [3].  The focus of this 
investigation was the change in reflected level due to the curvature of a surface.  The change in 
reflected level is the level reflected by the reflector of interest normalized to the level reflected 
by an infinitely large reflector.  According to his geometric approach, Rindel found that the 
change in reflected level could be expressed as follows: 

θcos
1log10

*

R
aL +−=Δ

  (Eq. 1) 
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21* **2
aa
aaa

+
=  (Eq. 2) 

where R is the radius of curvature, θ is the angle of incidence with respect to the surface 
normal, a1 is the distance from the source to the reflector, and a2 is the distance from the 
reflector to the receiver. 
 
EXPERIMENTAL PROCEDURE 
The reflector panels are simulated using a 2-D direct boundary element method (BEM) in    
Sysnoise Rev. 5.6.  All panels are meshed in I-DEAS 10 NX Series with a density of at least 6 
elements per wavelength.  A typical source and receiver distance of 15 meters is chosen to 
represent the typical placement of reflector panels in concert halls.  A plane wave source is 
used because of the far source-receiver distance.  The surface of each reflector panel is 
considered rigid and assigned infinite impedance. 
 
Three separate source-receiver configurations are investigated (Figure 2).  Each configuration 
corresponds to a particular source receiver pair in a concert hall.  In configuration (i), the sound 
energy is normally incident, and the receiver is within the specular reflection zone.  This 
corresponds to the case of a performer using a reflector panel to monitor his own performance.  
In configuration (ii), the sound energy is incident at 45 degrees, and the receiver is within the 
specular reflection zone.  This corresponds to the case when a reflector panel normal to the 
floor is located between two musicians on opposite sides of the stage, or between an onstage 
source and an audience member.  In configuration (iii), the sound energy is normally incident on 
the reflector panel, but the receiver is outside of the specular reflection zone.  This corresponds 
to the case when a reflector panel is located directly above a performer, but the receiver is 
outside the specular reflection zone. 
 

 
 

Figure 2.- Geometry of configurations (i), (ii), and (iii) 
 
FIRST STUDY 
For the first study, three types of panels are investigated under the above three configurations: 
a flat reflector (F), a circle (S), and a square reflector with convex edges (CR) (Figure 3). Since 
the investigation is 2-D, each panel is simulated in place of the reflector in Figure 2 with the 
orientation shown in Figure 3. 
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Figure 3.- Reflectors investigated in first study a) F b) S, and c) CR.  Dimensions are in meters. 
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Figure 4.- Responses from a) configuration (i), b) configuration (ii), c) configuration (iii)  
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Figure 4 shows the BEM results.  With the exception of a low frequency ripple, the exclusively 
round reflector (S) response varies little with frequency for all configurations (i), (ii), and (iii).  
The change in level due to curvature predicted by equation 1 between the flat panel, F(i), and 
the curved panel, S(i), is 13 dB.  If the response in Figure 4[a] were extended to a higher 
frequency range where geometrical acoustics is valid, this prediction is expected to be met.  In 
configuration (ii), the 15 dB change in level between (F) and (S) predicted by equation 1 is not 
met anywhere in this frequency range.  The maximum change in level observed at mid 
frequencies is 10 dB.  For configuration (iii), equation 1 is invalid because the receiver is outside 
of the geometrical reflection zone for (F). 
 
No comb filter is present at higher frequencies for the flat panel (S) in configuration (i).  The 
arrival of the boundary wave is not expected until 9125 Hz and is therefore not shown in this 
frequency range.  A comb filter can be seen in configuration (ii) of 3830 Hz, which corresponds 
to a difference in travel distance of .09 m.  The predicted frequency of the comb filter in this 
configuration is 3715 Hz.  For configuration (iii), the flat panel response shows a comb filter of 
277 Hz.  The predicted comb filter for this configuration is 324 Hz. 
 
The rounded panel (CR) behaves almost identically to the flat panel for configuration (i).  In 
configuration (ii), the rounded panel also behaves similar to the flat panel, but the fine structure 
is different.  In configuration (iii), the curved panel behaves much more like the circular panel.  
This corresponds to a comment from Beranek [4] that the sharp drop off of reflected energy 
outside the specular reflection zone can be avoided if panel edges are curved. 
 
Discussion of low- and mid-frequency ripple 
The low- and mid-frequency ripple is present in all curves of Figure 4, but it is most easily 
observed in the responses from S.  This ripple can be understood in terms of the reflection 
coefficient of sound normally incident on the curved surface of a rigid, infinite cylinder.  The 
scattered pressure is proportional to the reflection coefficient.  Ripples occur in the low 
frequency response from a cylinder at locations where the magnitude of the reflection coefficient 
is at a minimum. 
  
SECOND STUDY 
Reflective panels in the shape of (CR) made of solid material would be both prohibitively 
expensive and heavy.  More practical would be a reflector with the shape of (CR) made of a thin 
(but rigid) panel (Figure 5). 
 

 
 

Figure 5.- The “open” version of the curved panel, CRO.  Dimensions are in meters.  Panel 
thickness is 5 cm. 

 
The response from (CRO) is identical to the response from (CR) for normal incidence/reflection.  
For configurations (ii) and (iii), CRO shows fluctuations on the order of 3 dB that are not present 
in the response from (CR).  However, narrow band fluctuations of such small magnitude are 
considered negligible. 
  
THIRD STUDY 
A third study is conducted to investigate the influence of curvature radius on the frequency 
response.  The radius of curvature is halved from 0.75 meters (CRO) to 0.375 meters (CROA) 
to 0.1875 meters (CROB).  Results for reflectors with various curvature radii are shown in 
Figure 6. 
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Figure 6.- Responses for panels of various curvature. 
 
For the normal incidence/reflection configuration (i), the responses for each panel are nearly 
identical.  For 45-degree incidence/reflection, configuration (ii), the responses are also nearly 
identical between the frequencies of 125 Hz and 4 kHz.  Below 125 Hz the panels with the 
greater radius reflect more energy, and above 4 kHz there are differences in the fine structure of 
up to 10 dB.  For configuration (iii), the receiver outside of the specular zone, the response level 
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is approximately the same for all panels below 125 Hz.  Above 125 Hz, a larger radius leads to 
a higher reflected SPL.  The increase in scattered SPL with doubling of radius is 3 dB. 
 
CONCLUSIONS 
It has been shown using 2D BEM that reflector panels with convex edges have clear 
advantages over common flat reflector panels as well as purely round reflector panels.  
Reflector panels with convex edges (CRO) perform better than completely round reflector 
panels (S) in the specular reflection zone because they reflect much more energy in the 
geometrical acoustical range.  For the typical dimensions considered here (a 1.5 meter reflector 
panel placed 15 meters above the source and receiver plane) the increase in level from a purely 
round reflector is approximately 13 dB for normal incidence and approximately 10 dB at mid 
frequencies for 45° incidence.  Furthermore, the reflector panel with convex edges performs 
better than the flat reflector outside of the geometrical reflection zone by approximately 6 dB per 
octave increase. 
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