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RNA interference (RNAi) is an important gene regulatory mechanism.  It involves 

21-24 nucleotide small RNA molecules that downregulate complementary, or near 

complementary, mRNA sequences through transcript degradation or translation 

repression.  The non-coding small RNA molecules act through an effector complex 

known as the RNA induced silencing complex (RISC).  The components of RISC are 

evolutionarily conserved and consist of DICER and AGO proteins as well as several 

other polypeptides.  These include, among others, MUT70, an RNA binding protein 

that has an RGG rich domain.  Protein arginine methyltransferases typically 

methylate RGG rich regions, affecting protein stability, localization, and/or 

interactions.  Here, we report that Protein Arginine Methyltransferase 2 (PRMT2) is 

required for RNAi in the green algae Chlamydomonas reinhardtii.  Phylogenetic 

analyses indicate that the PRMT2 protein likely evolved in the plant/algal lineage.  

Interestingly, PRMT2 depletion resulted in a defect in RNAi-mediated translational 

repression.  Moreover, in vitro analyses showed that MUT70 and PRMT2 interact 

directly and that PRMT2 can methylate MUT70.  A point mutation in a highly 

conserved region of the methyltransferase domain disrupted methylation activity, but 



increased the affinity of PRMT2 for the MUT70 substrate.  Our results, taken 

together, indicate that PRMT2 is required for RNAi, presumably through its 

modification of the MUT70 RISC component.  However, elucidating the precise 

mechanistic role of PRMT2 will require further exploration. 



 

 

4 

TABLE OF CONTENTS 
 

      

               Page 

 

TITLE PAGE..................................................................................................................1 

ABSTRACT....................................................................................................................2 

TABLE OF CONTENTS................................................................................................4 

ACKNOWLEDGMENTS ..............................................................................................6 

1) LITERATURE REVIEW 

 A.  RNA Interference..........................................................................................7 

 B.  Small RNA Biogenesis .................................................................................9 

 C.  RNA Induced Silencing Complex ..............................................................10 

 

2) A NOVEL PROTEIN ARGININE METHYLTRANSFERASE INTERACTS 

WITH THE RNA INDUCED SILENCING COMPLEX COMPONENT, MUT70, 

AND IS REQUIRED FOR RNA INTERFERENCE IN CHLAMYDOMONAS 

REINHARTII 

 

 A. Introduction..................................................................................................12 

 B. Materials and methods .................................................................................15  

     i. Culture Conditions, Genetic Transformations, and Generation of 

Transgenic Strains...........................................................................15 

    ii. Plasmid Construction......................................................................16 

   iii. DNA Sequence and Phylogenetic Analysis....................................17 

   iv. RNA analysis ..................................................................................17 

    v. Small RNA analysis........................................................................17 

   vi. Protein Analysis..............................................................................18  

  vii. In vitro Protein Interactions ............................................................19 

            viii. In vitro Methylation Assay.............................................................20 

 C. Results ..........................................................................................................22 

     i. PRMT2 Is Related to Protein Arginine Methyltransferases ...........22 

    ii. PRMT2 Is Involved in RNA Interference ......................................23 

   iii. PRMT2 Interacts with MUT70 in vitro ..........................................25 

   iv. PRMT2 Methylates MUT70 in vitro ..............................................26 

     

 

3) DISCUSSION AND CONCLUSIONS....................................................................27 

 Literature cited ..................................................................................................31 



 

 

5 

FIGURES 

 1) Figure 1.........................................................................................................39 

 2) Figure 2.........................................................................................................41 

 3) Figure 3.........................................................................................................43 

 4) Figure 4.........................................................................................................45 

 5) Figure 5.........................................................................................................47 

 6) Supplemental Figure 1..................................................................................49 



 

 

6 

Acknowledgements 

 

 I would like to begin by showing my sincerest gratitude to my tremendous 

advisor, Dr. Heriberto Cerutti, whom without his leadership, mentoring, and 

knowledge, none of this would be possible.  I would next like to thank my committee 

members, both of which had a tremendous influence on my research and my state of 

mind.  Thank you Dr. Atkin and Dr. Blum.  Also, I would like to acknowledge my 

fellow lab members, Fadia Ibrahim, Xingrong Ma, Scott Shaver, Armando Cassus-

Mollano, Eun-Jeong Kim, Arit Ghosh, Eniko Balassa, Zhen Wang, and Tomohito 

Yamasaki, who all significantly helped me throughout this process. 

 I would like to thank all my friends and family who helped me along the way 

as well.  I truly appreciate all their encouragement and moral support, especially 

Shannon Erdmann, who took on the greatest burden to help me accomplish my goals. 

 



 

 

7 

Literature Review 

 

Chlamydomonas reinhardtii is a single celled, eukaryotic green alga.  It is 

commonly found in the soil and can either assimilate CO2 through photosynthesis or 

use certain organic compounds such as acetate as carbon sources ([1]).  Active 

research areas involving C. reinhardtii include photosynthesis, flagellar proteins, 

gene regulation, and more recently, biofuels.  The algal genome has been sequenced 

and annotated by the Chlamydomonas community ([2],[3]).  This has led to the 

discovery of many genes that influence cell development and function.  The genome 

of C. reinhardtii also includes a complex set of non-coding RNA genes, including 

endogenous microRNAs ([4]).  

                                        

RNA Interference 

 

RNA interference (RNAi) refers to the use of double stranded RNAs (dsRNA) 

to induce a silencing effect on complementary mRNA sequences through a variety of 

mechanisms, including mRNA degradation and translational repression.  Small non-

coding RNAs, which are between 21 and 24 nucleotides in length and derive from 

dsRNAs, function through the RNAi pathway to regulate gene expression.  These 

small RNAs were first discovered in Arabidopsis thaliana but are found in most 

eukaryotes ([5]).  Small non-coding RNAs have also been found to have regulatory 

roles in prokaryotes, although, they do not function in an RNA interference type 

pathway in these organisms ([6]).  
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There are several classes of small RNAs that act as guides for the RNAi 

pathway.  The two most prominent classes are small interfering RNAs (siRNAs) and 

microRNAs (miRNAs).  SiRNAs primarily originate from transposable element 

RNA, viral RNA, or exogenous double stranded RNA.  MiRNAs originate from 

endogenous RNA transcripts and can be intronic or intergenic ([7],[8]).  In animals, 

siRNAs function primarily through the endonucleolytic cleavage of homologous 

target transcripts, whereas miRNAs function through translational repression 

([9],[10]).  Several studies have provided considerable insights on the RNA mediated 

target cleavage and degradation process, while the mechanism of translational 

repression is poorly understood ([11]).  Intriguingly, there is also some evidence that 

certain miRNAs can promote translation in animals ([12]). In plants, miRNAs, which 

are often perfectly complementary to target mRNA sequences, were originally shown 

to function through transcript degradation alone.  However, new evidence has shown 

that miRNAs can also control gene expression via translational repression as in 

metazoans ([13]).  Other classes of small RNAs related to the RNAi pathway include 

the PIWI-interacting RNAs (piRNAs), which are expressed in animal germ line cells 

and suppress transposable elements, and a newly discovered class of small RNAs in 

Neurospora crassa, which are induced by DNA damage ([14], [15],[16]).  

The downregulation of genes by RNAi affects many biological processes.  

Plant miRNAs have been implicated in response to both biotic and abiotic stresses 

([7],[17]).  Animal miRNAs have been found to be involved in developmental 

regulation, a variety of diseases, and can be markers for certain cancers in humans 

([19],[20]).  SiRNAs often function as a defense mechanism against foreign RNA 
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transcripts, such as those derived from transposons and viruses.  Interestingly, 

siRNAs can also originate from a virus to counter the host’s defense systems ([18]).   

 

Small RNA Biogenesis 

 

Small interfering RNAs are produced from long double-stranded RNA 

(dsRNA) with perfect complementarity, whether they originate in the cell from 

transgenes or transposons or from outside the cell as viral RNAs or introduced 

dsRNA molecules.  Long dsRNAs are processed by the Dicer protein, an RNase III 

enzyme, into ∼21-25 nucleotide duplexes with 2-nucleotide overhangs at the 3’ end 

([8]).    In contrast, miRNAs are transcribed from the genome into double stranded 

stem loop structures called primary miRNAs (pri-miRNAs) and are characterized by 

imperfect complementarity in the stem regions.  In animals the pri-miRNAs are 

further processed in the nucleus by another RNase III – type enzyme, Drosha, which 

cleaves the pri-miRNA 11 base-pairs away from the base of the double-stranded stem 

loop structure to produce precursor miRNAs (pre-miRNAs).  The pre-miRNAs are 

then exported to the cytoplasm via exportin 5, a nuclear transporter, and are further 

processed by Dicer in the cytosol to generate mature miRNAs ([21]).   

 The small RNA duplexes (miRNAs and siRNAs) are methylated on the 3’ 

end in plants and algae, which is a modification that stabilizes the small RNAs by 

preventing uridylation and degradation ([22],[23]).  In animals, only siRNAs and 

piRNAs have been found to be methylated by HEN1, the same methyltransferase 

used by plants and algae ([24]).  One strand of each small RNA duplex (the guide 
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strand) is eventually loaded into the RNA-induced silencing complex (RISC), the 

effector RNAi complex.  The other strand (called the passenger strand) is usually 

degraded ([25]).  

 

RNA Induced Silencing Complex (RISC) 

 

 RISC incorporates Dicer-processed small RNAs as guides to target 

homologous mRNAs for their degradation or translational repression.  Argonaute 

proteins (a class of proteins referred to as AGO) are core components of RISC.  In 

humans, RISC loading involves Dicer, AGO, and a dsRNA binding protein, TRBP 

([26]).  However, there is no TRBP homolog in Chlamydomonas reinhardtii.  Upon 

small RNA loading into RISC, the AGO proteins select the guide strand and then 

proceed to cleave the passenger strand, facilitating its removal. Yet the cleavage of 

the passenger strand is not necessary for functional RNAi, as not all AGO proteins 

contain a functional endoribonuclease domain ([27],[28]).  

  The AGO family of proteins consists of two members, the PIWI clade and the 

AGO clade.  The PIWI proteins are limited to certain eukaryotes, whereas the AGO 

proteins are found in all cell types in animals and plants ([41]).  AGO proteins contain 

two major domains, the PIWI and PAZ domains ([29]).  The PAZ domain recognizes 

the 3’ end of small RNAs, whereas the PIWI domain is homologous to RNaseH and 

cleaves target mRNAs (the slicer activity site) ([30]).  While some AGO proteins 

have redundant functions, most recognize and function with specific types of small 
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RNAs ([31]).  The nucleotides in the 2-8 positions from the 5’ end of the guide 

strand play a major role in the identification of target mRNAs ([32]).  The slicing of 

target  

transcripts by AGO then occurs after the tenth nucleotide from the 5’ end of the guide 

strand ([33],[34] ). 

 The AGO proteins can also repress translation by a largely unknown 

mechanism. Translational repression in animals requires GW182, which is a P-body 

component ([35],[36]).  Importin 8, a nuclear transport factor, has also been shown to 

interact with AGO proteins, localize to P-bodies, and be involved in the recruitment 

of RISC to mRNA targets ([37]). However, there is no evidence that translational 

repression by AGO actually requires P-bodies.     

 There are other proteins that associate with RISC, but whose function remains 

uncertain.  The fragile X mental retardation protein 1 (FMRP), an RNA binding 

protein with RGG motifs, interacts with RISC and other ribosomal proteins in 

animals, though there is no corresponding homolog in Chlamydomonas reinhardtii 

([38]).   Another RNA binding protein that immunoprecipitated as a RISC component 

in Drosophila is the vasa intronic gene (VIG), which also has an RGG motif 

([39],[40]). In C. reinhardtii, VIG (named MUT70) was found to be essential for 

RNAi (unpublished data).  Recently, the protein arginine methyltransferase 5 

(PRMT5) has been co-immunoprecipitated with PIWI-like proteins in animals.  

PRMT5, with its cofactor WDR77, interacts directly with PIWI and influences 

piRNA levels ([41],[42]). 
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Introduction 

 

 

 Post-translational modifications of proteins are prevalent in all organisms.  

The encephalitogenic protein from the human brain was the first protein to be 

described as having a methylated arginine as a posttranslational modification ([43]).  

Enzymes that methylate arginine residues, most often at conserved RGG or RGR rich 

regions, are collectively known as protein arginine methyltransferases or PRMTs and 

are evolutionarily conserved in eukaryotes ([44],[47]).  Most organisms have multiple 

PRMTs: eleven in humans, nine in Arabidopsis thaliana, and three in C. reinhardtii 

([45],[46]).  PRMT activity has been found in both nuclear and cytoplasmic 

compartments, and its targets include transcription factors, histones, RNA binding 

and metabolic proteins, DNA damage repair proteins, and PIWI proteins 

([42],[48],[49]).  Arginine methylation has been implicated in affecting protein 

localization, stability, and protein-protein interactions ([50]). 

 There are three classes of PRMTs, but all of them use S-adenosyl-L-

methionine (SAM) as a methyl donor.  Class I PRMTs perform monomethylation and 

asymmetric dimethylation of ω-guanidine nitrogen atoms; class II PRMTs perform 

monomethylation and symmetric dimethylation of ω-guanidine nitrogen atoms; and 

class III are membrane bound PRMTs that perform only the monomethylation of δ-
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guanidine nitrogen atoms of arginine amino acids ([46]).  Human PRMTs have 

been the most intensely studied, and three of these enzymes are evolutionarily 

conserved in  

eukaryotes, PRMT1, PRMT3, and PRMT5.  The first two are class I PRMTs, while 

PRMT 5 is a class II PRMT ([50]).   

 Several components of RISC could be targets of arginine methylation by 

PRMTs.  These include the FMRP protein and the vasa intronic gene protein, which 

are RNA binding polypeptides with RGG rich regions.  In fact, FMRP in animals is 

methylated, and the methylation of arginines in the RGG box has a disruptive effect 

on RNA binding ([51]).  It is not known whether the vasa intronic gene protein 

(named MUT70 in Chlamydomonas) may be a target of arginine methylation.  

Interestingly, PRMT5 has recently been pulled down in an immunoprecipitation assay 

using mammalian Ago4 ([37]).  PRMT5 has also been demonstrated to be responsible 

for the methylation of PIWI proteins in animals, and the loss of PRMT5 activity 

results in lower levels of piRNAs, Ago3 and Aubergine in Drosophila ([41]). 

 In C. reinhardtii, RISC includes AGO and MUT70, among other proteins 

(unpublished data).  Intriguingly, affinity purification experiments using MUT70 as 

the bait identified a protein arginine methyltransferase (named PRMT2) as a specific 

interactor.  This finding prompted us to explore the role of PRMT2 in RNA 

interference.  We show here that PRMT2, a class I PRMT, is essential for RNAi in a 

strain of C. reinhardtii that suppresses a transgenic inverted repeat targeting the 

MAA7 gene (encoding the Tryptophan Synthase β subunit, TSβ).  A phylogenetic 

analysis shows that PRMT2 is a plant specific PRMT and shares a conserved SAM 
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binding with all related proteins.  We also demonstrate that PRMT2 interacts with 

MUT70 and methylates this protein in vitro.  Our findings suggest that methylation of  

certain RISC components is necessary for optimal RNAi function in C. reinhardtii.  
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Materials and Methods 

 

Culture Conditions, Genetic Transformations, and Generation of Transgenic Strains: 

 

 Unless otherwise noted, C. reinhardtii cells were grown on Tris-acetate-

phosphate (TAP) medium ([1]).  The wild type CC-124 and the transgenic Maa7-

IR44 strains have been previously described ([1],[52]).  Transformation with 

linearized plasmid DNA was carried out by the glass beads procedure ([53]).  The 

PRMT-IRs15 strain, in which the PRMT mRNA is downregulated, was generated by 

transformation of the Maa7-IR44 strain with its construct of an inverted repeat 

designed to produce dsRNA homologous to the 3’UTR of the PRMT2 mRNA using 

previously described procedures ([52]).  The production of the complement strains, 

PRMT-IRs15(PRMT)3, PRMT-IRs15(PRMT)7, and PRMT-IRs15(PRMT)12, were 

obtained by transformation of PRMT-IRs15 with a construct designed to contain the 

PRMT2 coding sequence with no flanking regions (3’ and 5’ UTRs) so as to avoid 

downregulation by the PRMT-IR. 

 To analyze the growth of the different strains on media containing 5-

fuoroindole, the five strains, CC-124, Maa7-IR44, PRMT-IRs15, PRMT-

IRs15(PRMT)3, and PRMT-IRs15(PRMT)7, were grown again for 2 days in liquid 

culture.  A volume containing 3 × 10
6
 cells was then pelleted via centrifugation at 

5,000 × rpm for five minutes and then suspended in 150 µL of liquid TAP media for a 

total of approximately 1 × 10
5 

cells.  Four dilutions followed by taking 37.5 µL of the 
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original into 112.5 µL of liquid TAP media.  The four dilutions had 2.5 × 10
4
, 1.25 

× 10
4
, 3.125 ×10

3
, and 781 cells respectively, assuming 1 × 10

5 
cells in the original 

sample.  Five µL of each dilution was plated in a row, with four rows total, one for 

each strain.  The plates were grown under indirect light for seven to ten days. 

 

Plasmid Construction 

 

 His-tagged PRMT2 was generated by amplifying the PRMT2 coding 

sequence from a cloned cDNA template with the primers PRMT-cod-F1 

(ATCCATGGTAATGTCGTCGCCAAAGTCC), and PRMT-cod-R1 

(TTGATATCTTACTCGATGTTCCAGCGGAACT) into a Chlamydomonas 

expression vector (unpublished data).  The product was then cloned in forward 

orientation into the pET-30-C+ vector (Novagen, Madison, WI, USA) using NcoI and 

EcoRV restriction sites on both plasmids.  The MUT70 coding sequence was 

previously cloned into the pET-30-C+ plasmid, and was then sub-cloned into the 

pGEX-6P-1 vector directly from the pET-30-C+ vector, using the KpnI and XhoI 

restriction sites.  To generate the point mutation of the 72nd residue from a glycine to 

and arginine in the conserved SAM binding motif, the coding sequence of PRMT2 

was modified using the Quickchange Mutagenesis Kit (Stratagene, La Jolla, CA, 

USA) using the following primers: PRMT G72R antisense (5’-

GATGCCGCTGCGGCCCACGT-3’) and PRMT G72R (5’-

ACGTGGGCACGCGCAGCGGCATC-3’). 

 



 

 

17 

 

DNA Sequence and Phylogenic Analysis: 

 

 C. reinhardtii PRMT2 (XP_001702822.1) sequence was used to BLAST 

searches on the NCBI protein database (http://blast.ncbi.nlm.nih.gov/Blast.cgi).  The 

highest scoring protein from each target organism (Chlamydomonas reinhardtii, 

Ostreococcus tauri, Arabidopsis thaliana, Oryza sativa, Caenorhabditis elegans, 

Drosophila melanogaster, and Homo sapiens) was used for phylogenetic analysis.  

The SMART database was used to identify the conserved methyltransferase domain 

present in the PRMT proteins obtained.  The protein sequences were aligned with 

ClustalX ([54]) with manual corrections made using the GENEDOC program 

(http://www/psc.edu/biomed/genedoc).  The phylogenetic relationships among related 

proteins were determined using the neighbor-joining (NJ) method ([55]), and trees 

were obtained using MEGA v4.0 ([56]), Poisson-corrected amino acid positions, and 

the bootstrap values for 1000 pseudoreplicates. 

 

RNA Analysis: 

 

Standard protocols were used for RNA extraction, fractionation by gel 

electrophoresis, and hybridization with 
32

P labeled probes ([57],[58]).  Total RNA 

was isolated with TRI reagent (Molecular Research Center, Cincinnati, OH, USA) 

according to manufacturer’s instructions.  The isolated RNA was separated by 

agarose/formaldehyde gel electrophoresis, blotted onto a Hybond-NX nylon 
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membrane (GE Healthcare, Pittsburgh, PA, USA), all northern blots were 

chemically crosslinked using EDC ([59]), and hybridized with 
32

P labeled probes 

corresponding to the PRMT2, Maa7, or Actin coding sequence ([58]).  The Actin 

probe was used for equivalent loading of samples.  

 

Small RNA Analysis 

 

For detection of small RNA, tri-reagent isolated total RNA was resolved in 

15% polyacrylamide/7M urea gels, electroblotted to Hybond-XL membranes, and 

chemically crosslinked using EDC ([58]).  The small RNA blots were then probed 

using 
32

P labeled antisense miRNA probes, miR1157 and miR912, and then a U6 

probe was used for equivalent loading of samples.  The hybridization was performed 

at 35° C for 48 hours using the High Efficiency Hybridization System (Molecular 

Research Center).   

 

 

Protein Analysis 

 

 For in vivo analysis, approximately 5 × 10
6
 cells, grown to logarithmic phase, 

were pelleted by centrifugation and resuspended in 50 µL of SDS-gel running buffer 

([58]), 10 µL aliquots of boiled samples were separated by 12% SDS-PAGE and 

electroblotted to nitrocellulose membranes ([58]).  The AcV5-tagged complemented 

PRMT2 proteins were immunodetected by overnight incubation at 4°C with a 
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1:50000 dilution of a mouse raised anti-AcV5 antibody in (AbCam, Cambridge, 

MA, USA), and after incubation, a rabbit anti-mouse secondary antibody, conjugated 

to horseradish peroxidase (HRP).  A chemiluminescent substrate (Pierce, Rockford, 

IL, USA) was used for autoradiographic detection.  For immunodetection of the 

tryptophan synthase β (TSβ) protein, an anti-TSβ antibody raised in polyclonal goat 

(kindly provided by Thomas McKnight) at a 1:4000 dilution was incubated at 4°C 

overnight.  After incubation, an anti-rabbit secondary antibody conjugated to 

horseradish peroxidase was used for autoradiography.  Coomassie Blue staining of 

the SDS-PAGE gel was used to adjust sample loading. 

  

In vitro Protein Interactions 

 

 The recombinant proteins MUT70-GST, MUT70-His, PRMT2-G72R-His, 

and PRMT2-His were produced in BL21-DE3 Escherichia coli cells via 0.3 mM 

IPTG induction for three hours at room temperature.  The cells were pelleted and then 

lysed and the proteins purified using GST or His purification kits (Novagen, Madison, 

WI, USA).  For the GST pulldown, the glutathione beads were blocked for 2 hours 

with 1% bovine serum albumin at 4°C prior to adding lysate, and the MUT70-GST 

was immobilized on the glutathione beads ([48]).  In concert, the PRMT2-His and 

PRMT2-G72R-His recombinant proteins were purified and eluted, followed by 

dialysis in 50 mM NaH2PO4 pH 7.2 overnight at 4°C.  After dialysis, glycerol was 

added to a final concentration of 30% and stored at -20°C.  20 µL of the purified 

PRMT2-His or PRMT2-G72R-His solution was added to the MUT70-GST on 



 

 

20 

glutathione beads in 50 mM NaH2PO4 pH 7.2 with 0.1% Tween and incubated 

overnight at 4°C.  After the incubation, it was centrifuged at 1000 rpm for 1 minute 

and the supernatant was discarded.  The beads were then washed twice with 50 mM 

NaH2PO4 pH 7.2 and then resuspended in 50 µL of SDS gel loading buffer and 

examined by western blot ([58]).  The primary antibody used was an S-tag antibody 

conjugated to HRP (Novagen, Madison, WI, USA) to analyze the bound proteins. 

 For the His pulldown, PRMT2-His and PRMT2-G72R-His recombinant 

proteins were purified and immobilized on the His-tag beads (Novagen Madison, WI, 

USA).  At the same time, the recombinant MUT70-GST was purified, eluted 

(Novagen, Madison, WI, USA), and was subject to dialysis in 50 mM NaH2PO4 pH 

7.2 overnight at 4°C and concentration of 30% glycerol was added and stored at -

20°C.  The incubation and washes were conducted in the same conditions as the GST 

pulldown. The bound proteins were analyzed by western blot using a GST primary 

antibody raised in a mouse (Applied Biological Materials Inc., Richmond, BC, 

Canada). 

 

In vitro Methylation Assay: 

 

 The PRMT2-His and PRMT2-G72R-His proteins were purified, eluted 

(Novagen, Madison, WI, USA), and were subject to dialysis in 50 mM NaH2PO4 pH 

7.2 overnight at 4°C, then brought to a 30% glycerol concentration.  The MUT70-His 

recombinant protein was purified and immobilized on the His-tag beads (Novagen, 

Madison, WI, USA).  The bound recombinant MUT70-His protein was incubated 
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with 10 µCi of (methyl-C
14

) S-adenosyl-L-methione (SAM), 50 mM NaH2PO4 pH 

7.2, either 5 µL of MUT70-His BL21 DE3 cell extract, 2 µL of PRMT2-His, or 2 µL 

of PRMT-G72R-His in a 40 µL reaction at room temperature for three hours.  

Following the reaction, 15 µL of 3× SDS gel loading buffer was added and 

subsequently boiled and loaded into a 10% SDS-PAGE gel.  The gel was then stained 

with Coomassie Blue G-200 stain, dried onto filter paper, and then exposed to 

phosphorimager for 24 hours. 
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Results 

 

PRMT2 Is Related to Protein Arginine Methyltransferases 

 

Analysis of the predicted polypeptide encoded by the PRMT2 gene in C. 

reinhardtii indicated that it possesses a well-conserved protein methyltransferase 

domain.  We were also able to identify a conserved SAM binding domain within the 

methyltransferase motif ([44]) (Figure 1A).  Within this sub-domain, there is a highly 

conserved region that contains the following sequence:  VLDVG_G (Figure 1B).  A 

point mutation in the last G (to an R) has been shown to eliminate all methylation 

activity in vitro ([60],[61]).  A phylogenetic analysis using the neighbor-joining 

method showed that PRMT2 is related to other class I asymmetric 

dimethyltransferases, including human PRMT3.  However, PRMT2 clusters together 

with proteins from Arabidopsis, Oryza, and Ostreococcus in a well-supported group 

(Figure 1C).  Although human PRMT3 is the more closely related mammalian 

homolog to C. reinhardtii PRMT2, it falls into a different clade of the tree together 

with proteins from C. elegans, Drosophila, Arabidopsis and Oryza (Figure 1C).  This 

observation suggested that PRMT2 orthologs might have evolved specifically within 

the plant/algal lineage. 
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PRMT2 Is Involved in RNA Interference 

 

 Previous work has shown that MUT70, a component of RISC, co-

immunoprecipitates with PRMT2 in C. reinhardtii (unpublished data).  Thus, we 

decided to investigate the role of PRMT2 in RNAi.  To this end, we used the Maa7-

IR44 strain.  This strain has an inverted repeat transgene targeting the MAA7 mRNA, 

and, as a consequence, the protein produced by this gene, tryptophan synthase β 

subunit (TSβ), is downregulated.  The TSβ protein converts 5-fluoroindole into a 

toxic tryptophan analog ([54]).  However, downregulation of MAA7 by RNAi allows 

the cells to grow in the presence of 5-fluoroindole.  If PRMT2 is involved in RNAi, 

we predicted that the depletion of this protein would result in increased levels of 

MAA7 RNA and/or the TSβ protein and inability of the cells to grow in the presence 

of 5-fluoroindole. 

We generated an inverted repeat transgene intended to target the 3’ UTR of 

the PRMT2 mRNA and, thus, downregulate the methyltransferase.  The PRMT2-IR 

transgene was then introduced into the Maa7-IR44 strain.  The obtained line, 

containing two inverted repeat transgenes targeting MAA7 and PRMT2, respectively, 

was named PRMT-IRs15.  The PRMT2 transcript levels were reduced about 19% in 

PRMT-IRs15, relative to the parental strain, as shown by a northern blot analysis of 

total RNA (Figures 2A and 2B).  We also complemented the PRMT-IRs15 strain with 

an epitope (AcV5)-tagged PRMT2 expressed from a transgene with a different 

3’UTR and, therefore, not targeted by the RNAi-triggering inverted repeat (Figure 2, 

strains PRMT-IRs15(PRMT)7 and PRMT-IRs15(PRMT)3).  The complemented lines 
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expressed the AcV5-tagged PRMT2 as revealed by immunoblot analyses (Figure 

2C).  Moreover, in these strains, the PRMT2 mRNA levels were similar to those of 

the parental strain, Maa7-IR44 (Figure 2A and 2B) 

 The phenotype of PRMT-IRs15 resembled that of the wild type strain (CC-

124), which expresses the TSβ protein and is sensitive to 5-fluoroindole (Figure 3A).  

In contrast, the complemented strains retained the ability to grow on medium 

containing 5-fluoroindole, strongly supporting the argument that the PRMT2 protein 

is necessary for RNAi.  However, there was no difference in small RNA levels 

(miR1157 and miR912) among any of the strains (Figure S1), suggesting that PRMT2 

is not required for the biogenesis of small RNAs.  

 Based on the lack of sensitivity to 5-fluoroindole, we expected that the MAA7 

mRNA levels in the Maa7-IR44 strain would be downregulated.  In contrast, the 

PRMT-IRs15 line was anticipated to have restored MAA7 mRNA levels and the 

complement strains were expected to have similar MAA7 mRNA levels to Maa7-

IR44.  However, as shown in Figures 3B and 3C, this was not the case.  All strains 

had slightly reduced MAA7 mRNA levels relative to the wild type Chlamydomonas 

strain, CC-124.  Interestingly, further analysis showed significant downregulation of 

the TSβ protein in the Maa7-IR44 strain whereas expression of this protein in PRMT-

IRs15 was similar to the wild type strain (Figure 2D).  These results suggested that 

TSβ is mainly regulated at the translational level in the Maa7-IR44 strain and that the 

PRMT2 protein appears to be required for this translational repression in 

Chlamydomonas reinhardtii.  
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PRMT2 Interacts with MUT70 in vitro 

 

 Given that PRMT2 is required for translational repression mediated by RNAi 

and has a conserved methyltransferase domain, we next set out to determine targets 

for methylation.  One RISC component with RGG rich domains is MUT70 (Figure 

4A).  Moreover, as already mentioned, PRMT2 was shown to co-purify with epitope-

tagged MUT70 (unpublished data).  To determine if MUT70 and PRMT2 interact 

directly, PRMT2-His and MUT70-GST fusions were used in an in vitro pulldown 

assay.  Another protein, PRMT2-G72R-His containing a point mutation at residue 72, 

that changes a glycine amino acid to an arginine and abolishes the methyltransferase 

activity ([61]), was also included in the assays (Figure 4B).  All three tagged proteins 

were tested for interactions in two separate assays.  First, the purified MUT70-GST 

fixed to glutathione beads was used to pulldown either PRMT2-His or PRMT2-

G72R-His.  Both PRMT2 proteins interacted with MUT70-GST, with PRMT2-G72R-

His having stronger affinity for MUT70-GST (Figure 4B).  Indeed, the mutation of 

the PRMT2 methyltransferase domain was expected to prolong substrate association 

because of the deficient catalytic activity and presumably delayed substrate release.  

However, the affinity of PRMT2 for MUT-70 was fairly weak since only a small 

amount of the input protein was retained in the MUT70-GST associated beads (Figure 

4B).  Similar results were obtained using PRMT2-His or PRMT2-G72R-His to 

pulldown MUT70-GST (Figure 4C).  These results suggested that MUT70, which has 

two RGG rich regions, could interact directly, albeit weakly, with PRMT2. 
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PRMT2 Methylates MUT70 in vitro 

 

 The sequence analysis of PRMT2 indicated that it might have 

methyltransferase activity, and we have shown that it interacts in vitro with MUT70.  

We therefore tested if PRMT2 can methylate MUT70.    Using purified recombinant 

proteins, we set out to see if PRMT2-His modifies MUT70-His when C
14

 labeled 

SAM was used as a methyl donor.  By autoradiographic detection, MUT70-His was 

indeed found to be methylated by PRMT2-His in this in vitro assay (Figure 5).  

PRMT2-His methylated multiple proteins from an E. coli cell lysate, with the most 

pronounced band being the induced MUT70-His.  Using purified MUT70-His as the 

substrate resulted in a stronger degree of methylation.  In contrast, the PRMT2-G72R 

mutated protein showed no methylation activity, as expected, because of the point 

mutation in the SAM binding domain ([61]). Our results demonstrate that 

recombinant PRMT2 is functional as a protein methyltransferase and that MUT70 is a 

substrate for the PRMT2 activity at least in vitro.  
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Discussion and Conclusions 

 

 The machinery of the RNA interference pathway has been studied intensely, 

from components involved in the biogenesis of small RNAs to those responsible for 

the degradation of target mRNAs. However, there are still questions that need to be 

answered.  For example, little is known about the regulation of gene expression by 

RNAi through translational repression ([62],[63]).  The proteins associated with AGO 

and Dicer and their roles as a part of RISC are also poorly understood.  Somewhat 

surprisingly and contrary to previous beliefs, it has recently been reported that 

complementary siRNAs with no mismatches can induce translational repression 

([13]).   

Protein arginine methyltransferases have been found to interact with the RNA 

interference machinery ([51], [37], unpublished data), and in animals have been 

shown to play a role in piRNA function through the methylation of Ago3 ([41], [42]).  

However, these findings involved symmetric arginine methylation catalyzed by 

PRMT5 homologs.  Other studies reported the occurrence of asymmetric methylation 

of the RISC interactor, FMRP, but this modification has not been implicated in RNAi 

([51]).   Here we have shown for the first time that putative asymmetric arginine 

methylation may be required for RNAi translational repression mediated by RNAi in 

the model organism Chlamydomonas.  PRMT2, a protein arginine methyltransferase 

related to enzymes that catalyze asymmetric arginine methylation, is necessary for 
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RNAi in Chlamydomonas reinhardtii.  In fact, we have previously shown that 

PRMT2 co-purifies in vivo with MUT70 (unpublished data), which is a component 

RISC ([39]).  MUT70 is an RNA binding protein that has two RGG rich regions, 

potential targets for arginine methylation.  We have also demonstrated here that these 

proteins directly interact in vitro, and that recombinant PRMT2 is able to methylate 

recombinant MUT70.   

 The interaction between the recombinant PRMT2 and MUT70 proteins was 

relatively weak when compared to the amount of input proteins.  We hypothesized 

that a mutation in the SAM binding domain of PRMT2 would allow PRMT2 and 

MUT70 to have a stronger interaction because of delayed substrate release by a 

catalytically inactive enzyme.  Indeed, the mutant PRMT-G72R protein showed 

increased affinity for MUT70, but the interaction was still very weak compared to the 

input protein amounts.  Future experiments will be needed to validate the interaction 

between PRMT2 and MUT70, perhaps by using affinity purification from 

Chlamydomonas cells, or by transforming the point-mutated PRMT2 into C. 

reinhardtii and using this tagged protein to identify interactors in pulldown assays.  

 Recent studies have identified arginine methylation as necessary for efficient 

RNA interference by piRNAs in metazoans.  This modification stabilizes PIWI 

proteins in Drosophila ([41]).  The murine PIWI proteins interact with and are 

methylated by PRMT5, along with its cofactor, WDR77.  The PIWI associated RISC 

includes different interactors than the AGO associated RISC, but the mouse homolog 

of Vasa has been implicated as a PIWI interactor ([42]).  Interestingly, the vasa 

intronic gene (called MUT70 in Chlamydomonas) is located within an intron of the 
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Vasa gene and is expressed at its highest levels in germline cells in Drosophila, 

although the two proteins share nothing else in common ([40]).   

We have shown that PRMT2 interacts with and methylates MUT70.  In the 

present study, we were unable to pulldown any RISC specific interactors while using 

epitope-tagged PRMT2 (data not shown).  The same was seen when using an epitope-

tagged PRMT5 in Drosophila germline cells, but its epitope-tagged cofactor, 

WDR77, did interact with the PIWI proteins.  However, we have previously shown 

that MUT70 co-purifies with PRMT2 when an epitope-tagged MUT70 is used for 

affinity purification.  This is similar to the findings that epitope-tagged PIWI proteins 

pulldown PRMT5 in metazoans.   These observations raise the possibility that an 

accessory protein may be the keystone to an interaction between PRMT2 and RISC.  

There are RGG regions at the N-terminal end of both the murine and 

Drosophila PIWI proteins that have been shown to be methylated by PRMT5 and are 

subsequently recognized and bound by Tudor-domain containing proteins ([64]).  

Tudor motifs are known to bind methylated arginines.  This recognition and binding 

by Tudor proteins has been shown to be needed for proper subcellular localization of 

the polypeptides ([41], [42]).  It seems reasonable, given this evidence, to look for 

Tudor proteins in Chlamydomonas in order to assess their role in RNAi. 

 New directions to examine the direct function of PRMT2 in RNA interference 

should also include in vivo methylation studies of MUT70 and AGO proteins.  

Further analysis of the methylation sites on MUT70 would likely give insight to the 

function of the methylation itself.  The methylation of arginine residues neutralizes 

positive charges, and the methylation of multiple residues would alter the properties 
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of the protein more than at a single site.  Therefore, the amount of methylation of 

the target protein should be identified.  Arginine methylation also alters RNA binding 

on certain RNA binding proteins as is the case in FMRP ([51]).  Thus, MUT70 

methylation may alter specificity of the mRNA targets that are though to be scanned 

by this protein.  Another possibility is that the methylation could affect localization of 

the MUT70 protein within the cell.  The human Ki-1 antigen (which is related to 

MUT70) is methylated by PRMT1 and has both cytoplasmic and nuclear localization 

with higher concentrations in the cytoplasm.  However, after treatment with 

methylation inhibitors, the Ki-1 antigen displays reduced concentration in the 

cytoplasm ([65]).  Thus, the methylation on MUT70 could alter its subcellular 

localization, which would in turn affect the effectiveness of RNA interference, as 

seen for PIWI methylation and Tudor protein interactions.  
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Figure 1.  Phylogenetic analysis of PRMT2.  (A) Representation of the PRMT2 

protein sequence showing a conserved methyltransferase domain, which contains a 

SAM binding motif.  (B) Alignment of the SAM binding domain of related PRMT 

sequences using ClustalX.  The asterisk denotes the conserved glycine that was 

changed to an arginine to produce a nonfunctional mutant. (C) A neighbor-joining 

tree showing the phylogenetic relationship among 15 protein arginine 

methyltransferases.  Sequences aligned with the ClustalX program were used to draw 

a tree with the MEGA 4 program.  The numbers on the branches indicate bootstrap 

values as a percentage based on 1000 pseudoreplicates (only values greater than 60% 

are shown).  Abbreviations are as follows: Cr is C. reinhardtii, Ot is O. tauri, AT is 

A. thaliana, Os is O. sativa, Ce is C. elegans, Dmel is D. melanogaster, and Hs is H. 

sapiens.  The accession numbers for the protein sequences used are as follows: 

Cr_PRMT2, XP_001702822.1; Ot07g00730, CAL54346.1; Os06g0142800, 

NP_001056772.1; OsJ_16622, EAZ32411.1; Os07g0671700, NP_001060600.1; 

AT1G04870, NP_563720.1; AT3G20020, NP_188637.2; AT4G29510, 

NP_194680.1; AT3G06930, NP_850528.1; AT5G49020, NP_974913.1; 

Dmel_CG6563, NP_731984.1; Dmel_CG5358, NP_649963.1; Ce_Y113G7B.17, 

NP_507909.1; Hs_PRMT3, NP_005779.1; and Hs_CARM1, NP_954592.1.
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Figure 2 

 

Refer to “A Novel Protein Arginine Methyltransferase.ppt” 
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Figure 2.  RNAi mediated suppression of PRMT2 in Chlamydomonas reinhardtii 

and complementation of the epi-mutant with a PRMT2 transgene having an unrelated 

3’ UTR.  (A) Northern blot Analysis of PRMT2 mRNA levels from the wild type 

strain (CC-124), Maa7-IR44, which has a transgene targeting the MAA7 gene, PRMT-

IRs15, which has a transgene targeting the PRMT2 gene introduced into the Maa7-

IR44 strain, and the PRMT2 complemented strains, PRMT-IRs15(PRMT)3 and 

PRMT-IRs15(PRMT)7.  (B) The graph illustrates PRMT2 mRNA levels normalized 

to the wild type strain.  The results are the average of three independent experiments 

+/- the standard deviation.  (C) Western blot analysis of ACV5-tagged PRMT2 

protein expression levels.  An AcV5-tagged MUT70 was used as a positive control.
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Figure 3 

 

Refer to “A Novel Protein Arginine Methyltransferase.ppt” 
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Figure 3.  PRMT2 is required for RNAi in Chlamydomonas.  (A) Growth and 

survival of the indicated strains on TAP or on TAP media containing 5-fluoroindole.  

The panel includes the wild type strain (CC-124), the transgenic parental strain 

(Maa7-IR44), the downregulated PRMT2 strain (PRMT-IRs15), and the PRMT2 

complementary strains (PRMT-IRs15(PRMT)3 and PRMT-IRs15(PRMT )7).  (B) 

Northern blot analysis of MAA7 mRNA levels in the indicated strains.  The Actin 

mRNA amount was used as a control for equivalent loading of the lanes.  (C) The 

graph represents MAA7 mRNA levels normalized to the wild type strain.  The results 

are the average of three independent experiments +/- the standard deviation.  (D) 

Western blot analysis of tryptophan synthase β subunit levels in the indicated strains.  

The same samples were run in parallel and stained with Coomassie Blue as a control 

for equivalent loading of the lanes. 
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Figure 4 

 

Refer to “A Novel Protein Arginine Methyltransferase.ppt” 
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Figure 4.  PRMT2 interacts with the RISC component MUT70 in vitro.  (A) Diagram 

of the MUT70 protein showing RGG/RGR rich regions.  (B) SDS-PAGE analysis of 

an in vitro pulldown assay, using glutathione beads bound to either GST or a 

MUT70-GST fusion protein.  After incubation with PRMT2, PRMT2-G72R, or an 

ALFin-like protein a western blot analysis was performed using an S-tag antibody to 

detect bound PRMT2, PRMT2-G72R, and the ALFin-like protein (right panel).  The 

left panel shows 5% of the input PRMT2, PRMT2 G72R, and the Zn finger protein 

that were incubated in the pulldown assay.  Coomassie Blue stained gels of equivalent 

samples are shown at the bottom.  (C) SDS-PAGE analysis of an in vitro pulldown, 

using His, PRMT2-His or PRMT2 G72R-His bound to Ni-NTA His beads to 

pulldown Mut70-GST.  After incubation with MUT70-GST, a Western blot analysis 

using an anti-GST antibody was used to test for interaction.  The membranes stained 

with Ponceau S are shown at the bottom. 
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Figure 5 

 

Refer to “A Novel Protein Arginine Methyltransferase.ppt” 
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Figure 5.  PRMT2 methylates MUT70 in vitro.  SDS-PAGE analysis of a C
14

-

SAM methylation assay.  The MUT70-His protein bound to Ni-NTA beads or an E. 

coli cell extract expressing MUT70-His were incubated with C
14

 labeled SAM and 

purified PRMT2-His, PRMT2-G72R-His, or nothing in vitro. Methylation activity 

was detected by autoradiography (top panels).  The corresponding Coomassie Blue 

stained gels are shown at the bottom. 
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Supplemental Figure 1 

 

Refer to “A Novel Protein Arginine Methyltransferase.ppt” 
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Supplemental Figure 1. PRMT2 depletion has no affect on miRNA levels.  (A) A 

northern blot analysis of miRNAs miR1157 and miR912 in the wild type strain, the 

transgenic parental strain, the downregulated PRMT2 strain, and a complemented 

strain.  Detection of U6 snRNA was used as a control for equivalent loading of the 

lanes. (B) The graph represents miRNA levels normalized to those of the wild type 

strain.  The results are the average of two independent experiments. 

 

 


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	11-2009

	A Novel Protein Arginine Methyltransferase Interacts with the RNA Induced Silencing Complex Component, MUT70, and Is Required For RNA Interference in Chlamydomonas reinhardtii
	James Becker

	Microsoft Word - 198196-text.native.1269819473.doc

