2001

Manure Matters, Volume 7, Number 8

Richard Stowell
University of Nebraska - Lincoln, rstowell2@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/manurematters

Part of the Agronomy and Crop Sciences Commons

http://digitalcommons.unl.edu/manurematters/8

This Article is brought to you for free and open access by the Biological Systems Engineering at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Manure Matters (newsletter) by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
As producers have been trying to deal with odor issues on their operations, many have been inundated with product advertisements and solicitations for pit additives. Understandably, producer concerns arise over product effectiveness, reliability and value. Results of an NPPC-supported study on the effectiveness of many pit additives were released this year. This article summarizes major findings of that Odor Solutions Initiative study. A full report of results from that study is available through NPPC.

Background:
The Purdue University Agricultural Air Quality Laboratory evaluated thirty-five additive products for use in manure storage pits. Dr. Albert Heber led the research team. Each product was voluntarily submitted and was tested using consistent methods over three 42-day periods. Product effectiveness was based on odor, hydrogen sulfide, and ammonia measurements of the air in the sample headspace with and without the use of the products.

Interpreting the data:
The results provide three basic pieces of information for each set of product measurements that address the following questions:

1) Was the measured level lower (better) or higher (worse) with use of the product?
2) What was the extent of the reduction (or increase) in odor/H₂S/NH₃ level with use of the product?
3) How confident can one be that the product will perform as reported?

Confidence is often indicated by a term called statistical significance. If a product is reported to have x% reduction in odor at P<0.05, then there is less than 5% chance that separate, but identically run tests would not also find a reduction in odor (although the percentage value x might change).

Effective additives, then, will produce lower levels of odor and odorous gases; will have noticeably large reductions; and will be verified by statistically significant results. A
product that apparently produced an average reduction, but did not have good statistical confidence, cannot be relied upon to produce any reduction the next time, and may at times produce elevated measurement levels. On the other hand, a product that consistently reduced measured levels (results were statistically significant), but had a low percent reduction (say less than 10%), would not make enough of a practical difference in most situations on the farm to merit its use.

Most-effective additives for odor:
Four additives were effective at P<0.25, meaning that there is better than a 75% chance that less odor would be produced with their use, based on measurements of odor dilution threshold. Odor dilution threshold measurements use human odor panels and represent detection levels. The four additives and the manufacturer and average odor reductions of each are listed below according to their relative reduction in odor dilution threshold. No additives were effective at P<0.05. Odor measurements were also made regarding odor intensity and odor offensiveness. In some cases, these measures responded differently than did the odor dilution threshold.

Product brand name	Manufacturer/supplier	% decrease	Other effects
Super Microbial Odor Control | SMSI, Inc. | 32 | |
Zymplex | World Wide Enzymes, Inc. | 28 | + 9% intense |
Alken Clear-Flo® | Phoenix Processes, Inc. | 27 | + 4% NH₃ |
Biological Manure Treatment | K-Zyme Laboratories | 25 | + 58% H₂S |

The fact that these products were effective in reducing odor levels does not necessarily mean that their use will be cost effective, of course. Application rates and cost information are available in the report or can be obtained directly from the product manufacturer or supplier. Also, information on the method and frequency of application should be evaluated to determine if management can readily accommodate use of the product. Producers should have a fairly clear idea of the level of odor control desired and the value of odor control to the operation before committing funds to any odor-control additives or technologies.

Effective additives for odorous gases:
Several products reduced hydrogen sulfide and/or ammonia concentrations. These additives and the manufacturer and average effectiveness of each are listed below according to their level of statistical significance and relative reductions in gas concentrations.

Product brand name	Manufacturer/supplier	% decrease	Other notes
Alken Clear-Flo® | Phoenix Processes, Inc. | 47 | + 4% NH₃ |
Super Microbial Odor Control | SMSI, Inc. | 37 | |
Biocharge Dry | Biotal, Inc. | 37 | |
INHIBODORÒ | Conklin Company, Inc. | 36 | + Odor & NH₃ |
GT-2000OC & BC-2000AF | G.T. Environmental Tech | 34 | + 2% NH₃ |
Zymplex | World Wide Enzymes, Inc. | 27 | + 9% intense |
Roebic Odor Eliminator | ROEBIC Laboratories, Inc. | 23 | + 9% NH₃ |
75% certainty of reduction in H2S

<table>
<thead>
<tr>
<th>Product</th>
<th>Manufacturer/Supplier</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBA-S</td>
<td>Desert Microbial Products</td>
<td>19</td>
</tr>
<tr>
<td>UC-40Ô Microbe Formula</td>
<td>UCI Bioaugmentation Research and Technology</td>
<td>15</td>
</tr>
<tr>
<td>PS1</td>
<td>A.D. Associates, LLC (ADA)</td>
<td>14</td>
</tr>
</tbody>
</table>

95% certainty of reduction in NH3

<table>
<thead>
<tr>
<th>Product</th>
<th>Manufacturer/Supplier</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>EM Waste Treatment</td>
<td>EM Technologies, Inc.</td>
<td>15</td>
</tr>
<tr>
<td>AWL-80</td>
<td>NatRx, Inc.</td>
<td>10</td>
</tr>
<tr>
<td>Biocharge Dry</td>
<td>Biotal, Inc.</td>
<td>7</td>
</tr>
<tr>
<td>Krystal AirÔ</td>
<td>Fischer Enterprises, Inc.</td>
<td>7</td>
</tr>
<tr>
<td>AgriKlenz Plus</td>
<td>Aqualogy BioRemedics</td>
<td>6</td>
</tr>
<tr>
<td>Manure Management Plus™</td>
<td>Cytozyme Laboratories, Inc.</td>
<td>6</td>
</tr>
<tr>
<td>Biological Manure Treatment</td>
<td>K-Zyme Laboratories</td>
<td>5</td>
</tr>
<tr>
<td>Peroxy Odor Control</td>
<td>Kennedy Enterprises</td>
<td>3</td>
</tr>
</tbody>
</table>

75% certainty of reduction in NH3

<table>
<thead>
<tr>
<th>Product</th>
<th>Manufacturer/Supplier</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>MBA-S</td>
<td>Desert Microbial Products</td>
<td>3</td>
</tr>
<tr>
<td>N-P 50</td>
<td>NEO Products</td>
<td>3</td>
</tr>
<tr>
<td>Agricycle™ & Microcycle™</td>
<td>American Bio Catalysts</td>
<td>3</td>
</tr>
<tr>
<td>Digest 54 Plus</td>
<td>Alltech, Inc.</td>
<td>2</td>
</tr>
</tbody>
</table>

While the use of additives may reduce gas concentrations, use of some of the products also increased other gas concentrations and/or did not have a desirable effect on perceived odor. Also, some products did not show any improvement in gas or odor levels and, in some cases, use of the products resulted in higher levels than in untreated manure.

Use of the additives frequently changed the manure characteristics, which is another topic in itself. One quality of additives that manufacturers frequently tout is reduction of solids. Of the 35 products tested, only EM Waste Treatment (-4%) and Lagoon Aid (-3%) demonstrated any verifiable reduction in solids content.

Illustration of sample collection for odor analysis
UNL’s Livestock Environmental Issues Committee includes representation from UNL, Nebraska Department of Environmental Quality, Natural Resources Conservation Service, Natural Resources Districts, Center for Rural Affairs, Nebraska Cattlemen, USDA Ag Research Services, and Nebraska Pork Producers Association.

Contact: Chris Henry
217 LW Chase Hall
University of NE
Lincoln, NE 68583
(402) 472-6529
chenry@unl.edu

Issued in furtherance of Cooperative Extension work, Acts of May 8 and June 30, 1914, in cooperative with the U.S. Department of Agriculture. Elbert Dickey, Director of Cooperative Extension, University of Nebraska, Institute of Agriculture and Natural Resources. University of Nebraska Cooperative Extension educational programs abide with the non-discrimination policies of the University of Nebraska Lincoln and the United States Department of Agriculture.