
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Math Department: Class Notes and Learning
Materials Mathematics, Department of

1-1-2010

Class Notes for Math 915: Homological Algebra,
Instructor Tom Marley
Laura Lynch
University of Nebraska-Lincoln, llynch@ccga.edu

Follow this and additional works at: http://digitalcommons.unl.edu/mathclass
Part of the Science and Mathematics Education Commons

This Article is brought to you for free and open access by the Mathematics, Department of at DigitalCommons@University of Nebraska - Lincoln. It
has been accepted for inclusion in Math Department: Class Notes and Learning Materials by an authorized administrator of
DigitalCommons@University of Nebraska - Lincoln.

Lynch, Laura, "Class Notes for Math 915: Homological Algebra, Instructor Tom Marley" (2010). Math Department: Class Notes and
Learning Materials. Paper 8.
http://digitalcommons.unl.edu/mathclass/8

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fmathclass%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mathclass?utm_source=digitalcommons.unl.edu%2Fmathclass%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mathclass?utm_source=digitalcommons.unl.edu%2Fmathclass%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mathematics?utm_source=digitalcommons.unl.edu%2Fmathclass%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mathclass?utm_source=digitalcommons.unl.edu%2Fmathclass%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/800?utm_source=digitalcommons.unl.edu%2Fmathclass%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/mathclass/8?utm_source=digitalcommons.unl.edu%2Fmathclass%2F8&utm_medium=PDF&utm_campaign=PDFCoverPages


 

Class Notes for Math 915: Homological Algebra, Instructor Tom Marley 

Topics covered are:  Complexes, homology, direct and inverse limits, Tor, Ext, and homological 

dimensions.  Also, Koszul homology and cohomology. 

Prepared by Laura Lynch, University of Nebraska-Lincoln 

August 2010 

 

  



Homological Algebra gained popularity in Commutative Algebra in the 1950s when the following open problems were solved:

Definition Let (R, m) be a Noetherian commutative local ring. Then R is regular if m = (x1, ..., xd) where d = dim R.

Solved Open Problems

1. If R is regular, is Rp regular for all prime ideals p of R? (proved by Serre-Auslander-Buchsbaum, ’57)

2. If R is regular, is R a UFD? (proved by Auslander-Buchsbaum, ’59)

1 Direct Limits

Definition 1.1. Let C be a category and I a poset. A direct system in C indexed by I is a family of objects {Ai}i∈I in C
such that

1. For i ≤ j, there is a morphism φi
j : Ai → Aj in C.

2. For all i ∈ I, we have φi
i = 1Ai

.

3. For all i ≤ j ≤ k, the diagram below commutes.

Ai

φi
j //

φi
k

²²

Aj

Ak

φj
k~~}}

}}
}}

}}

With this notation, we say {Ai, φ
i
j}i,j∈I is a direct system.

Examples.

1. Let I be any set and give I the trivial order, that is i ≤ j for i, j ∈ I if and only if i = j. Then any family of objects of
C is automatically a direct system over I.

2. Suppose I = N, {Ai}i∈N is a set of objects, and φi : Ai → Ai+1 are morphisms. This defines a direct system where

φi
j : Ai

φi−→ Ai+1
φi+1−−−→ · · · φj−1−−−→ Aj .

Special Case. Let R be a ring, M an R−module, x ∈ Z(R). Let Mi = M for all i. Then φi
j : Mi

x−→ Mi+1
x−→ · · · x−→ Mj

(multiplication by xj−i) yields a direct system.

3. Let C =<< R −mod >>,M a left R−module, I 6= ∅ a set of R−submodules of M. Note that I is a poset where the
order is containment. For A,B ∈ I with A ⊆ B, let φA

B : A → B be the inclusion map. Then {A,φA
B}A,B∈I is a direct

system in C.
Special Case. One way to deal with a non-finitely generated module, is to consider the above situation where I is
the set of all finitely generated submodules of M. Since every element of M is contained in some finitely generated
submodule, the direct limit would have to be M.

Definition 1.2. Let {Ai, φ
i
j} be a direct system in C. A direct limit of the system is an object X of C together with morphisms

αi : Ai → X such that for all i ≤ j, the following diagram commutes

Ai
αi //

φi
j

²²

X

Aj

αj

>>~~~~~~~~

and with the following universal property: If there exists βi : Ai → Y for all i ∈ I such that βjφ
i
j = βi, then there exists a

unique morphism γ : X → Y such that γαi = βi, that is, the following diagram commutes.

Ai
βi //

αi

²²

Y

X

γ

>>~~~~~~~~



With the above notation, we say X = lim−→
i∈I

Ai.

Exercise. If the direct limit exists, then it is unique up to isomorphism.

Proof. Let {Ai, φ
i
j} be a direct system and suppose (X, αi), (Y, βi) are direct limits. Then we have the following commutative

diagram:

X Aj
αjoo βj // Y

Ai

αi

``@@@@@@@@
φi

j

OO

βi

??~~~~~~~~

By definition, this gives us maps γ : X → Y and σ : Y → X such that βi = γαi and αi = σβi. Then αi = σγαi and
βi = γσβi. By the uniqueness of the direct limit maps, since 1X : X → X and σγ : X → X with αi = 1Xαi and αi = σγαi,

we see σγ = 1X and similarly γσ = 1Y . Thus X ∼= Y.

Definition 1.3. A poset I is directed if for all i, j ∈ I there exists k ∈ I such that i ≤ k, j ≤ k.

Proposition 1.4. Let M be a left R−module, I a directed set, ordered by containment, of submodules (that is, given A,B ∈ I,

there exists C ∈ I such that A ∪B ⊆ C). Then lim−→
A∈I

A = ∪A∈IA.

Proof. First notice that ∪A∈IA is an R−submodule of M as I is directed. Define αA : A → ∪A∈IA to be inclusion. Then
αAφA

B = αB for all A ⊆ B where φA
B : A → B is also the inclusion map. So it is just left to show the universal property of

direct limits holds. Suppose there exists βA : A → Y for all A ∈ I such that βAφA
B = βB for all A ⊆ B. Define γ : ∪A∈IA → Y

as follows: Let x ∈ ∪A. Then x ∈ A for some A ∈ I and so define γ(x) = βA(x). It is easy to see this is well defined and an
R−module homomorphism (by the directed property of I). Thus lim−→A = ∪A∈IA.

Corollary 1.5. For any R−module M, M = lim−→
N∈I

N where I = {N ⊆ M |N is finitely generated}.

Example. Let R ⊆ S be commutative domains, R the integral closure of R in S. In general, R is not a finitely generated
R−module (and thus we can not say R is Noetherian when R is). To get around this, notice that R = ∪T∈IT = lim−→

T∈I

T, where

I = {T |R ⊆ T ⊆ S, T is a ring, T is a finitely generated R−module}. Here, T is Noetherian when R is.

Exercise. Let R be a ring, M an R−module, x ∈ Z(R). Recall the direct system given by Mi = M and φi
j : Mi → Mj

defined by multiplication by xj−i for i ≤ j. Then lim−→M ∼= Mx.

Proof. First note that φi
j is an R−module homomorphism as x ∈ Z(R). Define αi : Mi → Mx by m 7→ m

xi . This is an
R−module homomorphism and clearly αjφ

i
j = αi as αjφ

i
j(m) = xj−im

xj = m
xi = αi(m). To show the universal property holds,

suppose there exists Y and βi : Mi → Y such that for i ≤ j we have βjφ
i
j = βi. Define γ : Mx → Y by m

xi 7→ βi(m). Then

• γ is well-defined: Suppose a
xi = b

xj in Mx. Then there exists k such that xk(xja−xib) = 0 which implies xk+ja = xk+ib.

Then γ( a
xi ) = βi(a) = βj+k+iφ

i
j+k+i(a) = βj+k+i(xj+ka) = βj+k+i(xk+ib) = βj(b) = γ( b

xj ).

• γ is clearly an R−module homomorphism.

• γαi = βi as for a ∈ Mi, we see γ(αi(a)) = γ( a
xi ) = βi(a).

• γ is unique: Suppose there exists λ : Mx → Y such that λαi = βi. For m
xi ∈ Mx, we see λ( m

xi ) = λ(αi(m)) = βi(m) =
γ(αi(m)) = γ( m

xi ). Thus λ = γ.

Remark. Let C be a category, I a poset. A morphism F : {Ai, φ
i
j} → {Bi, ψ

i
j} of direct systems in C (with index I) is a set

of morphisms Fi : Ai → Bi for all i ∈ I such that for all i ≤ j the following diagram commutes:

Aj
Fj // Bj

Ai

φi
j

OO

Fi

// Bi

ψi
j

OO

One easily checks that this makes the direct systems in C over I a category, denoted by DirC(I).



“Definition” 1.6. A category C is called abelian if

• the Hom sets of any two objects are abelian groups,

• there exists a zero object, denoted 0 (i.e., an object that is initial and terminal - for all objects C, there exist unique
morphisms 0 → C and C → 0),

• every morphism in C has a kernel and cokernel in C,

• the concept of “exact” makes sense, and

• finite products exist (i.e., if A,B ∈ ObjC, then A×B is).

[For a more precise definition, see Wiebel’s Appendix]

Examples. << R−mod >> and Dir<<R−mod>>(I) are abelian categories.

Most of our examples are concrete categories where the objects are sets and morphisms are defined pointwise. In that
situation, we can use our notions of kernel, cokernel, and exact for the above definition. In general, it is more complicated
and technical.

Theorem 1.7. Let C be an abelian category such that arbitrary sums exist. Then any direct system in C has a direct limit.

Proof. We will prove the theorem in the case that C =<< R − mod >> . Let {Ai, φ
i
j}i,j∈I be a direct system in C. Let

F = ⊕i∈IAi. Define λi : Ai → F to be the canonical injection. Let S = {λi(a) − λjφ
i
j(a)|a ∈ Ai, i ≤ j}. Let N be the

R−submodule of F generated by S.

Claim. lim−→Ai = F/N, where αi : Ai → F/N is defined by a 7→ λi(a) + N.

Proof. By construction, λjφ
i
j = λi in F/N. So suppose there exist Y and βi : Ai → Y for all i with βjφ

i
j = βi. Define

γ̃ : F → Y by (ai) 7→
∑

βi(ai). Let u = λi(ai) − λjφ
i
j(ai). Then γ̃(u) = βi(ai) − βj(φi

j(ai)) = 0 by commutativity.
Thus γ̃(N) = 0. Thus we get the induced map γ : F/N → Y. One can show γ is unique and γαi = βi.

Corollary 1.8. Let I be a trivially ordered poset and {Ai}i∈I a family of R−modules. Then lim−→Ai = ⊕i∈IAi.

Remark. The direct limit is actually a covariant functor from DirC(I) → C. Suppose F : {Ai, φ
i
j} → {Bi, ψ

i
j} is a morphism

in DirC(I). Consider the diagrams below.

lim−→Ai lim−→Bi

Aj
Fj //

αj

aaDDDDDDDD
Bj

βj

==zzzzzzzz

Ai

φi
j

OOαi

YY222222222222222

Fi

// Bi

ψi
j

OO βi

EĒ
¯¯¯¯¯¯¯¯¯¯¯¯¯¯

⇒ lim−→Ai lim−→Bi

Aj

αj

bbEEEEEEEE

βjFj

<<yyyyyyyyy

Ai

φi
j

OOαi

YY4444444444444444

βiFi

EE®®®®®®®®®®®®®®®®

By the definition of direct limit, there exists a unique γ : lim−→Ai → lim−→Bi. Notationally, we will write γ = lim−→Fi. Thus
morphisms go to morphisms.

Example. Let C be a category, A ∈ ObjC. Let I be an index set. Define the constant direct system, denoted |A| = {Ai, φ
i
j},

by Ai = A for all i and φi
j = 1A for all i ≤ j. This is clearly a direct system over I. Now, given f : A → B in C, let

|f | : |A| → |B| be defined by fi := f : Ai → Bi for all i ∈ I. This makes | · | into a covariant functor from C → DirC(I). Note
that if C is an additive category (i.e., the Hom sets are abelian groups), then | · | is an additive functor.

Exercise. If I is a directed set and A ∈ ObjC, then lim−→|A| = A. However, this need not be true if I is not directed.

Proof. Define Ai = A and αi : Ai → A the identity map. As φi
j was also defined to be the identity map, it is clear that

αjφ
i
j = αi. So suppose there exists Y and βi : Ai → Y such that βjφ

i
j = βi for i ≤ j. Since φi

j = 1, this just says βj = βi for
all i ≤ j. As I is a directed set, this says βi = βj for all i, j ∈ I. Define γ : A → Y by a 7→ βi(a). Clearly, γαi = βi as αi is
the identity map.

Note that I needs to be directed. For example, if I has the trivial order and |I| > 1, we’ve seen lim−→Ai = ⊕i∈IAi. Of
course, ⊕i∈IAi is generally not equal to A (take A to be a field, for example).



Recall. Let f : A1 → A2 be a morphism in C. For any object C of C, we define f∗ : HomC(C,A1) → HomC(C,A2) by
h 7→ fh and f∗ : HomC(A2, C) → HomC(A1, C) by h 7→ hf.

Definition 1.9. Let C and D be categories, L : C → D and R : D → C be covariant functors. We say (L, R) is an adjoint

pair if for all A ∈ ObjC and all B ∈ ObjD, there is a bijection τAB : HomD(L(A), B) → HomC(A,R(B)) such that the
naturality condition holds, i.e., for all morphisms f : A1 → A2 in C and f : B1 → B2 in D, we have the following commutative
diagram.

HomD(L(A2), B1)
L(f)∗ //

τA2B1

²²

HomD(L(A1), B1)
g∗ //

τA1B1

²²

HomD(L(A1), B2)

τA1B2

²²
HomC(A2, R(B1))

f∗ // HomC(A1, R(B1))
R(g)∗ // HomC(A1, R(B2))

Protypical Example. Hom − ⊗ : Let R, S be rings and A an S − R−bimodule. Then A ⊗R − :<< R −mod >>→<<

S −mod >> defined by B 7→ A⊗R B and HomS(A,−) :<< S −mod >>→<< R−mod >> defined by B 7→ HomS(A,B)
are covariant functors. We proved in 902 that (A⊗R −,HomS(A,−)) is an adjoint pair.

Definition 1.10. If (L,R) is an adjoint pair, then L is called a left adjoint and R is called a right adjoint.

Fact. If L is a left adjoint, then it is right exact. Similarly, if R is a right adjoint, then it is left exact.

Theorem 1.11. Let C be a category, I a poset such that direct limits in C over I exist. Then

(
lim−→
i∈I

, | · |I
)

is an adjoint pair.

Proof. Let {Ai, φ
i
j}i,j∈I be a direct system over I. Let αi : Ai → lim−→Ai be the direct limit maps. Let g ∈ HomC(lim−→Ai, B).

Define g : {Ai, φ
i
j} → |B| to be the map formed by gαi : Aj → B (note that gαjφ

i
j = gαi). This is a morphism of direct

systems. Now, for all direct systems {Ai, φ
i
j} and B ∈ ObjC, define τ : HomC(lim−→A,B) → HomDirC(I)({Ai, φ

i
j}, |B|). We

need to show τ is bijective and natural. We leave the naturality as an exercise.

Claim. τ is bijective.

Proof. Suppose g1, g2 : lim−→Ai → B and g1 = g2. Then g1αi = g2αi for all i ∈ I. Consider the following commutative
diagram, where gk represents either g1 or g2.

lim−→Ai
gk // B

Aj

αj

bbEEEEEEEE

gkαi

>>~~~~~~~~

Ai

φi
j

OOαi

YY4444444444444444

gkαi

FF±±±±±±±±±±±±±±±

Note that both g1 and g2 make the diagram commute. So by the uniqueness of the direct limit map, g1 = g2. To show it
is onto, let f : {Ai, φ

i
j} → |B| be a morphism of direct systems. So for i ≤ j, we have the following diagram commutes:

Aj
Fj // B

Ai

φi
j

OO

Fi

??~~~~~~~~

By the definition of direct limit, there exists g : lim−→Ai → B such that Fj = gαj for all j. Then F = g = τ(g).

Exercise. Let R be a ring, S a mcs with 1 ∈ S. Put a relation ≤ on S as follows: for s, t ∈ S, say s ≤ t if and only if s is
a unit in Rt. This relation is reflexive and transitive (but not antisymmetric) and is directed. Define a direct system with
index set S by As = Rs (the s for As denotes an index, but the s for Rs denotes localization) for s ∈ S and φs

t : As → At

where r
sn 7→ r

sn for s ≤ t. Then lim−→
t∈S

Rt = RS .

Proof. For each t ∈ S, define αt : Rt → RS by r
tn 7→ r

tn . Then for s ≤ t, αtφ
s
t = αs as for φs

t and αs are just the natural
injection maps. To show the universal property, suppose there exists Y and βt : Rt → Y such that βtφ

s
t = βs. Define

γ : RS → Y by r
s 7→ βs( r

s ). Then



• γ is well-defined: Suppose r
t = a

s in Rs. Then there exists u ∈ S such that urs = uat. Then γ( r
t ) = βt( r

t ) =
βust(φt

ust)(
r
t ) = βust( r

t ) = βust(usr
ust ) = βust(uat

ust ) = βust(a
s ) = βust(φs

ust(
a
s )) = βs(a

s ) = γ(a
s ).

• γ is a R−module homomorphism: For r
t ,

a
s ∈ RS , we see γ( r

t + a
s ) = γ( rs+at

ts ) = βts( rs+at
ts ) = βts( rs

ts ) + βts(at
ts ) =

βts( r
t ) + βts(a

s ) = βt( r
t ) + βs(a

s ) = γ( r
t ) + γ(a

s ).

• γαt = βt as for r
tn ∈ Rt, we see γ(αt( r

tn )) = γ( r
tn ) = βtn( r

tn ) = βtn(φt
tn( r

tn )) = βt( r
tn ).

• γ is unique: Suppose there exists λ : RS → Y with λαt = βt. Let t ∈ S. Then λ( r
t ) = λαt( r

t ) = βt( r
t ) = γ( r

t ).

Remarks.

1. Combining this and the earlier exercise, we see RS = lim−→
t∈S

(
lim−→
t∈S

(R t−→ R
t−→ · · · )

)
. Furthermore, we can rewrite this with

a single index set, which says RS = lim−→R.

2. Note that we did not use the full power of a poset here (as our index set was NOT a poset). In general, we do not need
the antisymmetry property of a poset to define a direct system or direct limit. So to define a direct system over I, we
need only that I is reflexive, transitive (and sometimes directed).

Exercise. Let R be a commutative ring and x a non-zero-divisors of R. Define Ai = R/(xi) and φi
j : Ai → Aj by r 7→ rxj−i

for i ≤ j. Then lim−→Ai
∼= Rx/R.

Proof. Define αi : Ai → Rx/R by r 7→ r
xi . This is well-defined as if r + (xi) = s + (xi), then r − s ∈ (xi), that is, r − saxi

for some a ∈ R. Then r−s
xi = a

1 = 0 as a
1 ∈ R. So r

xi = s
xi . The αi’s are clearly R−module homomorphisms and αjφ

i
j = αi as

αjφ
i
j(r) = αj(rxj−i) = rxj−i

xj = r
xi = αi(r). Thus it is only left to show that the universal property holds. So suppose there

exists Y and βi : Ai → Y such that βjφ
i
j = βi. Define γ : Rx/R → Y by r

xi 7→ βi(r). Then

• γ is well-defined: Suppose r
xi + R = s

xj + R. Then r
xi − s

xj ∈ R, that is, rxj−sxi

xi+j = a
1 for some a ∈ R. So, there exists

k ∈ N such that (rxj − sxi)xk = axk. Since x is a non zero divisor, we must in fact have that rxj − sxi = a. So

γ

(
r

xi

)
= βi(r) = βj+iφ

i
j+i(r) = βj+i(rxj) = βj+i(a) + βj+i(sxi) = βj+1(0) + βj+iφ

i
j+i(s) = βj(s) = γ

(
s

xj

)
.

• γ is an R−module homomorphism: This is clear as βi is an R−module homomorphism.

• γαi = βi : This too is clear by our definition of gamma for γαi(r) = γ( r
xi ) = βi(r).

• γ is unique: Suppose there exists δ : Rx/R → Y such that δαi = βi. Then δ( r
xi ) = δαi(r) = βi(r) = γ( r

xi ).

Thus there exists a unique morphism γ : Rx/R → Y, which says the universal property holds. Thus lim−→
i∈N

R/(xi) ∼= Rx/R.

Remark. The above example is one of a “local cohomology module.” Also, the statement is true when x is a zero-divisor,
as long as we replace Rx/R with Rx/φ(R) where φ : R → Rx is defined by r 7→ r

1 . We assumed R was a non-zero-divisor, as
in that case φ is injective, and thus R = φ(R).

Definition 1.12. Let C be a category. Define the category Cop by ObjCop = ObjC and for all A, B ∈ ObjC, there exists a
bijection HomC(A,B) ↔ HomCop(B,A) defined by (f : A → B) ↔ (fop : B → A) such that whenever A

f−→ B
g−→ X is in C,

we have (gf)op = fopgop. This is a contravariant functor.

Remarks.

1. C is abelian if and only if Cop is abelian. In particular, A
f−→ B

g−→ C is exact in C if and only if C
gop

−−→ B
fop

−−→ A is
exact in Cop.

However, if C =<< R−mod >>, Cop 6=<< S −mod >> or << mod− S >> for any ring S.

2. (Cop)op = C.



3. Given a covariant functor F : C → D, define F op : Cop → Dop by F op(A) = F (A) for all A ∈ ObjC and given fop : B →
A, let F op(fop) = F (f)op. One can check F op(1A) = 1F op(A) for all objects A in C and F op(fg) = F op(f)F op(g). Thus
F op is a covariant functor. If C is abelian, then F op is additive. Furthermore, F is left (resp. right) exact if and only if
F op is right (resp. left) exact (by Remark 1 and the fact that F op(fop) = F (f)op).

4. Let L : C → D and R : D → C. Then (L,R) is an adjoint pair if and only if (Rop, Lop) is an adjoint pair.

Lemma 1.13. Let C be an abelian category. Then A
α−→ B

β−→ C is exact in C if for all objects M of C, we have
HomC(M, A) α∗−−→ HomC(M, B)

β∗−→ HomC(M,C) is exact.

Proof. Assume C =<< R−mod >> . Let M = A. Then β∗α∗ = 0 by exactness. In particular, βα1A = 0 which says βα = 0.

So imα ⊆ kerβ. Let M = kerβ and i : kerβ → β be the inclusion map. So β∗i = βi = 0, that is, i ∈ imα∗. So there exists
h : ker β → A such that αh = i. Then ker β = i(ker β) = α(h(kerβ)) ⊆ imα.

Theorem 1.14. Let L : C → D and R : D → C be covariant functors such that (L,R) is an adjoint pair. Then L is right
exact and R is left exact.

Proof. By using Cop, it suffices to prove R is left exact. So suppose 0 → A
α−→ B

β−→ C is exact in D. We want to show
0 → R(A)

R(α)−−−→ R(B)
R(β)−−−→ R(C) is exact in C. By the lemma, it is enough to prove that for all objects M of C, we have

0 → HomC(M,R(A)) → HomC(M,R(B)) → HomC(M, R(C)) is exact. Note that by Hom − ⊗ adjointness, we have the
following commutative diagram

0 // HomC(M, R(A)) //
OO

²²

HomC(M, R(B)) //
OO

²²

HomC(M, R(C))
OO

²²
HomD(L(M), A) // HomD(L(M), B) // HomD(L(M), C)

where the bottom row is exact as HomD(L(M),−) is left exact. By commutativity, this gives us that the top row is exact.

Corollary 1.15. For any S −R bimodule A, we have A⊗R − is right exact.

Corollary 1.16. lim−→ : DirC(I) → C is right exact.

Theorem 1.17. Let (F,G) be an adjoint pair, where F : C → D and G : D → C. Let {Ai, φ
i
j}i,j∈I be a direct system in C.

Then {F (Ai), F (φi
j)} is a direct system in D and lim−→F (Ai) ∼= F (lim−→Ai), that is, left adjoints preserve direct limits.

Proof. We will show that F (lim−→Ai) has the desired universal property. Let αi : Ai → lim−→Ai be given as in the definition.
Then, we get the following commutative diagram in D :

F (lim−→Ai) F (Aj)
F (αj)oo βj // X

F (Ai)
F (αi)

eeJJJJJJJJJ
F (φi

j)

OO

βi

==zzzzzzzzz

We want to show there exists γ : F (lim−→Ai) → X making the diagram below commute. By Hom − ⊗ adjointness, consider
the following diagram

HomD(F (Aj), X)
F (φi

j)
∗

//

τ

²²

HomD(F (Ai), X)

τ

²²

βj
Â //

_

²²

βjF (φi
j) = βi
_

²²
τ(βj)

Â // τ(βj)φi
j

HomC(Aj , G(X))
(φi

j)
∗

// HomC(Ai, G(X))



Since βi 7→ τ(βi), the above diagram shows τ(βj)φi
j = τ(βi). This says that the diagram below commutes:

lim−→Ai Aj
αjoo τ(βj)// G(X)

Ai

αi

bbDDDDDDDD
φi

j

OO

τ(βi)

<<zzzzzzzz

By the universal property, there exists a unique δ : lim−→Ai → G(X) such that the diagram above commutes, that is, δαj = τ(βj)
for all j. Define γ := τ−1(δ) : F (lim−→Ai) → X. We want to show that γ(F (αi)) = βi so that our original diagram commutes.
To do this, consider the following commutative diagram

HomD(F (lim−→Ai), X) F (αi)
∗

//

τ

²²

HomD(F (Ai), X)

τ

²²

γ = τ−1(δ) Â //
_

²²

γF (αi)_

²²
δ

Â // δαi = τ(βi)

HomC(lim−→Ai, G(X))
α∗i // HomC(Ai, G(X))

This says γF (αi) 7→ τ(βi). Of course, τ is an isomorphism and βi 7→ τ(βi). Thus γ(F (αi)) = βi, giving γ the desired
commutative property. To show that γ is unique, suppose there exists γ′ : F (lim−→Ai) → X such that γ′F (αi) = βi for all
i ∈ I. As above, this would yield τ(γ′)αi = τ(βi) for all i. Of course δ = τ(γ) was chosen to be the unique map such that
δαi = τ(βi). Thus τ(γ′) = δ = τ(γ), and thus γ′ = γ as τ is injective.

Remark. The above isomorphism is indeed “natural,” that is, suppose H : {Ai, φ
i
j} → {Bi, ψ

i
j} is a morphism of direct

systems. Then the diagram below commutes.

F (lim−→Ai)
F (lim−→Hi)

//

∼=
²²

F (lim−→Bi)

∼=
²²

lim−→F (Ai)
lim−→F (Hi)

// lim−→F (Bi)

Proof. As in the theorem, let αi : Ai → lim−→Ai, βi : F (Ai) → lim−→F (Ai), and γ : F (lim−→Ai) → lim−→F (Ai) be the unique
map such that γF (αi) = βi. Now, define αi, βi, and γi to be the corresponding maps for {Bi, ψ

i
j}. Then, we want to show

γF (lim−→Hi) = (lim−→F (Hi))γ.

Consider the following commutative diagrams for i ≤ j.

lim−→Ai Aj
αjoo Hj // Bj

αj // lim−→Bi

Ai

αi

bbDDDDDDDD
φi

j

OO

Hi // Bi

ψi
j

OO

αi

<<zzzzzzzz

⇒ lim−→Ai Aj
αjoo αjHj// lim−→Bi

Ai

αi

bbDDDDDDDD
φi

j

OO

αiHi

<<zzzzzzzz

By the universal property of direct limits, there exists a unique h := lim−→Hi : lim−→Ai → lim−→Bi such that hαj = αjHj for j ∈ I.

Now, apply the functor F to the above diagrams:

lim−→F (Ai) F (Aj)
βjoo F (Hj) // F (Bj)

βj // lim−→F (Bi)

F (Ai)

βi

eeJJJJJJJJJ
F (φi

j)

OO

F (Hi)
// F (Bi)

F (ψi
j)

OO

βi

99ttttttttt

⇒ lim−→F (Ai) F (Aj)
βjoo βjF (Hj) // lim−→F (Bi)

F (Ai)

βi

eeJJJJJJJJJ
F (φi

j)

OO

βiF (Hi)

66mmmmmmmmmmmmm



Again, by the universal property, there exists a unique h′ := lim−→F (Hi) : lim−→F (Ai) → lim−→F (Bi) such that h′βj = βjF (Hj).
Now, we have the following diagram,

F (lim−→Ai)
F (h) //

OO
γ

²²

F (lim−→Bi)
OO

γ

²²
lim−→F (Ai) h′ // lim−→F (Bi)

which says γF (h)γ−1 ∈ HomD(lim−→F (Ai), lim−→F (Bi)). As stated above, we want to show that this diagram commutes. To do
so, consider the following two commutative diagrams:

lim−→F (Ai)
γ−1

// F (lim−→Aj)
F (h) // F (lim−→Bj)

γ // lim−→F (Bi)

F (Ai)

βi

ffLLLLLLLLLL
F (αi)

OO

F (Hi)
// F (Bi)

F (αi)

OO

βi

88rrrrrrrrrr

⇒ lim−→F (Ai)
γF (h)γ−1

// lim−→F (Bi)

F (Ai)

βi

OO

βiF (Hi)

66llllllllllllll

Of course, h′ : lim−→F (Ai) → lim−→F (βi) is the unique such map. Thus, h′ = γF (h)γ−1, that is, (lim−→F (Hi))γ = γF (lim−→Hi).

Corollary 1.18. Let A be an S −R bimodule. Then the functor A⊗R − preserves direct limits, that is, if {Bi, φ
i
j}i,j∈I is a

direct system of left R−modules, then {A⊗R Bi, 1⊗ φi
j} is a direct system of S−modules and lim−→A⊗R Bi

∼= A⊗R lim−→Bi as
left S−modules in a natural way.

Corollary 1.19. Let C be a category in which direct limits exist, I an index set. Then lim−→I : DirC(I) → C is a left adjoint
and thus preserves direct limits over any index set J of systems in DirC(I), that is, if {Dj}j∈J is a direct system in DirC(I)
with index set J (an object in DirDirC(I)(J)), then lim−→J lim−→IDj

∼= lim−→I lim−→JDj . Thus any two direct limits commute.

Corollary 1.20. Let {Aj}j∈J be a family of objects in DirC(I). Then lim−→I(⊕j∈JAj) ∼= ⊕j∈J(lim−→IAj).

Exercise. Let (L,R) be an adjoint pair, L : C → D, R : D → C. If R is exact, then L preserves projectives. If L is exact,
then R preserves injectives.

Proof. Note that by considering Dop, it suffices to show if R is exact, then L preserves projectives. Suppose R is exact. Let
0 → A → B → C → 0 be exact in D and let M ∈ ObjC be projective. Since R is exact, we know 0 → R(A) → R(B) →
R(C) → 0 is exact, and as M is projective, we have the top row of the following commutative diagram is exact

0 // HomC(M, R(A)) //
OO

²²

HomC(M, R(B)) //
OO

²²

HomC(M, R(C))
OO

²²
0 // HomD(L(M), A) // HomD(L(M), B) // HomD(L(M), C)

and thus the bottom row is exact. Therefore L preserves projectives.

Example. Recall (A⊗R −,HomS(A,−)) is an adjoint pair. Now, HomS(A,−) is exact if A is projective. So, by the above
exercise, if A is projective, then A ⊗R − preserves projectives, i.e., if B is a projective left R−module, then A ⊗R B is a
projective left S−module. Also, A⊗R− is exact if A is flat. So, if A is flat as a right R−module, then HomS(A,−) preserves
injectives, i.e., if B is an injective left S−module, then HomS(A, B) is an injective left R−module.

Exercise. Let M be a finitely presented left R−module (i.e., there exists an exact sequence Rm → Rn → M → 0). Let
{Ai, φ

i
j} be a direct system of R−modules over a directed index set I. Prove HomR(M, lim−→Ai) ∼= lim−→HomR(M, Ai).

Proof. First, note that
lim−→HomR(Rn, Ai) = lim−→HomR(⊕nR,Ai)

= lim−→⊕n HomR(R, Ai)

= lim−→⊕n Ai

= ⊕nlim−→Ai as direct limits commute

= ⊕nHomR(R, lim−→Ai)

= HomR(Rn, lim−→Ai)



As M is finitely presented, we have Rm → Rn → M → 0 is exact for some m,n. Since HomR(−, Ai) is left exact, we see
0 → HomR(M, Ai) → HomR(Rn, Ai) → HomR(Rm, Ai) is exact (∗). This gives us the following commutative diagram.

0 // 0 // HomR(M, lim−→Ai) α // HomR(Rn, lim−→Ai)) // HomR(Rm, lim−→Ai)

0 //

∼=

OO

0 //

∼=

OO

lim−→HomR(M, Ai)
β //

OOÂ
Â
Â

lim−→HomR(Rn, Ai) //

∼= g

OO

lim−→HomR(Rm, Ai)

∼=
OO

Note that the top row is exact as HomR(−, A) is left exact and the bottom row is exact by (∗) as I is directed. We want
to find a map f : lim−→HomR(M,Ai) → HomR(M, lim−→Ai). So, let x ∈ lim−→HomR(M, Ai). Then gβ(x) ∈ HomR(Rn, lim−→Ai).
Since the rows are exact, α is injective. So there exists a unique y such that α(y) = gβ(x). So, define f(x) = y. That
gives us our morphism f and keeps the diagram commutative. Now, by the five-lemma, we must have that f is in fact an
isomorphism.

Example. The above result fails when M is not finitely presented. For example, take Ri = R and consider the direct
system R1

x−→ R2
x−→ R3 · · · . We’ve seen lim−→Ri

∼= Rx. Notice HomR(Rx, lim−→Ri) = HomR(Rx, Rx) 6= 0 as it contains at least
the identity map. On the other hand, lim−→HomR(Rx, Ri) = 0 by Krull’s Intersection Theorem [Take f ∈ HomR(Rx, R). Let
a = f( 1

xm ). Then for all n, a = f( xn

xn+m ) = xn(f( 1
xn+m )) ∈ (xn). Thus a ∈ ∩n≥1(xn) = 0. So f( 1

xm ) = 0 for all m, which says
f = 0.]

Exercise. Let {Mi, φ
i
j} be a direct system of left R−modules over a directed index set. Suppose λR(Mi) ≤ n for all i ∈ I.

Then λR(lim−→Mi) ≤ n.

Proof. Suppose not. Then, we have a sequence of submodules of lim−→Mi of length > n. Say lim−→Mi ) Nm ⊇ Nm−1 ) · · · )
N0 = (0) where m > n. Choose bj ∈ Nj \Nj−1 for j ≥ 1. This yields a chain (b1, ..., bm) ) (b1, ...bm−1) ) · · · ) (b1) ) (0).
For each j, there exists kj such that bj = αkj (akj ), where akj ∈ Mkj by the previous theorem. Then αkj (akj ) = αtφ

kj

t (akj ).
Let cj = φ

kj

t (akj ) ∈ Mt. So we get yet another chain (αt(c1), ..., αt(cm)) ) · · · ) (αt(c1)) ) (0). Then (c1, ..., cm) ⊃ · · · ⊃
(c1) ⊃ (0) is chain of submodules of Mt, which has length ≤ n. Thus there exists j such that (c1, ..., cj) = (c1, ..., cj−1), that
is, cj = r1c1 + ... + rj−1cj−1. Then αt(cj) = r1αt(c1) + ... + rj−1αt(cj−1), a contradiction.

Exercise. Let (R, m) be a commutative local domain of dim R > 1. Can we write the field of fractions as Q = lim−→
i∈J

Ri where

Ri = R? Note: This is true if dim R = 1 as then Ry = Q for some y ∈ m \ {0}.

Theorem 1.21. Let {Ai, φ
i
j}i,j∈I be a direct system of left R−modules. Assume I is directed. Let αi : Ai → lim−→Ai. Then

1. lim−→Ai = {αi(ai)|ai ∈ Ai, i ∈ I}.

2. For i ∈ I, αi(ai) = 0 if and only if there exists t ∈ I with t ≥ i such that φi
t(ai) = 0.

3. lim−→Ai = 0 if and only if for all i ∈ I and ai ∈ Ai, there exists t ≥ i such that φi
t(ai) = 0.

Proof. First note that 1 and 2 imply 3. To prove 1, represent lim−→Ai as ⊕i∈IAi/N, where N is the submodule of ⊕Ai generated
by {λjφ

i
j(ai) − λi(ai)|ai ∈ Ai, i ≤ j ∈ I} where λi : Ai → ⊕Ai are the natural injections. Under this representation,

αi : Ai → lim−→Ai is defined by ai 7→ λ(ai) + N. Let x ∈ lim−→Ai. Then x =
∑

j∈S λj(aj) + N where S is some finite set. Choose
t ∈ I such that t ≥ j for all j ∈ S. Let bt =

∑
j∈S φj

t (aj) ∈ At. Then x = λt(b) + N = αt(b).
To prove 2, suppose φj

t (ai) = 0. Then αi(ai) = αtφ
i
t(ai) = αt(0) = −. For the other direction, suppose αi(ai) = 0. Then

λi(ai) ∈ N, which implies λi(ai) =
∑

j∈T λkj φ
j
kj

(bj) − λj(bj) for some finite set T. Choose t ∈ I such that t ≥ i and t ≥ kj

for all j ∈ T. Then
λtφ

i
tai = λtφ

i
tai − λiai + λiai = λtφ

i
tai − λiai +

∑

j∈T

λkj φ
j
kj

(bj)− λjbj .

Since kj ≤ t for all j, we have λkj φ
j
kj

bj − λjbj = λtφ
j
tbj − λjbj + λtφ

kj

t (−φj
kj

(bj)) − λkj (−φj
kj

(bj)). Resetting notation, we
have λtφ

i
t(ai) =

∑
` λtφ

`
t(c`) − λ`(c`). Assume the `’s are distinct (if not, group them). Let πj : ⊕Ai → Aj be the natural

projection. Then πj(λtφ
j
t (ai)) = 0 if j 6= t and πj(

∑
` λtφ

`
t(c`)− λ`(c`)) = −cj if j 6= t. So cj = 0 for all j 6= t, which implies

λtφ
`
t(c`)− λ`c` = 0 if ` 6= t. So λtφ

i
t(ai) = λtφ

t
t(ct)− λt(ct) = 0. Since λt is injective, we have φi

t(ai) = 0.

Theorem 1.22. Let C =<< R−mod >>, I a direct index set. Then lim−→ : DirC(I) → C is exact.



Proof. As lim−→ is a left adjoint, it is right exact. So it is enough to show that it preserves injections. Suppose 0 → {Ai, φ
i
j} F−→

{Bi, ψ
i
j} is an exact sequence of direct systems, i.e. Fi : Ai → Bi is injective for all i ∈ I.

lim−→Ai

γ=lim−→Fi

&&
Aj

αjoo Fj // Bj
βj // lim−→Bi

Ai

αi

bbDDDDDDDD
φi

j

OO

Fi // Bi

ψi
j

OO

βi

<<zzzzzzzz

Suppose γ(x) = 0 for some x ∈ lim−→Ai. Then x = αi(ai) for some ai ∈ Ai. So βi(Fi(ai)) = 0. By the previous theorem,
there exists j ≥ i such that ψi

j(Fi(ai)) = 0. Thus Fj(φi
j(ai)) = 0 which implies φi

j(ai) = 0 as Fj is injective. Thus
x = αi(ai) = 0.

Corollary 1.23. Let {Fi, φ
i
j}i,j∈I be a direct system of right R−modules over a directed index set. Suppose each Fi is flat.

Then lim−→Fi is a flat R−module.

Proof. As ⊗ is right exact, it is enough to show lim−→Fi⊗− preserves injections. So suppose 0 → A
f−→ B is an exact sequence

of left R−modules. This gives rise to a morphism of direct systems {Fi⊗R Aj , φ
i
j ⊗ 1A} → {Fi⊗R B,φi

j ⊗ 1B}. Thus we have
the commutative diagram

0 // Fj ⊗R A
1⊗f // Fj ⊗R B

0 // Fi ⊗R A

φi
j⊗1A

OO

1⊗f
// Fi ⊗R B

φi
j⊗1B

OO

where (1⊗ f)i is injective as Fi is flat. Since lim−→ is an exact functor, we have the following commutative diagram where the
top row is exact.

0 // lim−→(Fj ⊗R A)
lim−→(1⊗f)

// lim−→(Fj ⊗R B)

0 // (lim−→Fi)⊗R A
²²
∼=

OO

1⊗f
// (lim−→Fi)⊗R B

²²
∼=

OO

By commutativity, since the top is exact, we have that the bottom row is exact. Thus lim−→Fi is flat.

1.1 Inverse Limits

Definition 1.24. Let C be a category and I and index set. An inverse system in C over I is a family {Ai}i∈I of objects
in C and morphisms ψj

i : Aj → Ai whenever i ≤ j such that ψi
i = 1Ai and if i ≤ j ≤ k, then ψj

i ψ
k
j = ψk

i . An inverse limit

lim←−Ai is an object in C with maps αi : lim←−Ai → Ai which commute with ψj
i and if βi : X → Ai also commutes with ψj

i , then
there exists a unique δ : X → lim←−Ai such that αiγ = βi for all i.

Remark. {Ai, ψ
j
i } is an inverse system in C if and only if {Ai, (ψ

j
i )

op} is a direct system in Cop.

Proposition 1.25. Let C =<< R−mod >> . Then any inverse system in C has an inverse limit.

Proof. Let F =
∏

i∈I Ai and πj : F → Aj be the natural projective. Let Y = {(ai) = x ∈ F | for all i ≤ j, πi(x) = ψj
i (πj(x))}.

Define αi : Y → Ai via projection. Then Y = lim←−Ai.

Examples.

1. Let A ∈ ObjC. Then |A| is the constant inverse system over I. So Ai = A for all i ∈ I and ψj
i : Aj → Ai is the identity.

If I is directed, then lim←−|A| = A.

2. If I has the trivial order, then lim←−
i∈I

Ai =
∏

Ai.



3. Let M be a left R−module and I a left ideal of R. Then the sequence M/IM ← M/I2M ← M/I3M ← · · · defined by
x+IM ← x+I2M ← x+I3M · · · is an inverse system. The inverse limit lim←−M/InM is called that I-adic completion

if M.

Proposition 1.26. (| · |, lim←−) is an adjoint pair.

Proof. We’ve seen (lim−→, | · |) is an adjoint pair in Cop.

Corollary 1.27. lim←− is left exact.

Corollary 1.28. Right adjoints preserve inverse limits.

Corollary 1.29. The inverse limit of an inverse limit exists.

Corollary 1.30. If A is an S − R bimodule, then HomS(A, lim←−Bi) ∼= lim←−HomS(A,Bi) for any inverse system {Bi} of left
S−modules.

Caution. lim←− is not generally exact, even over directed index sets. Thus, the direct limit is far more useful in Commutative
Algebra.

Terminology. We refer to
∏

Ai as a product and ⊕Ai or
∐

Ai as a coproduct. As a result, the inverse limit is often called
the limit and the direct limit is often called the colimit.

2 Chain Complexes

Definition 2.1. Let R be a ring. A chain complex of left R−modules is a family of R−modules {Ci}i∈Z and R−module
homomorphisms di : Ci → Ci−1 such that didi+1 = 0 for all i. The di are called differentials. We denote a chain complex
by (C·, d·). Often, we suppress the indices.

Definition 2.2. A chain complex (C, d) is bounded on the right if Ci = 0 for all i ≤ n for some n. Similarly, one can
define bounded on the left and bounded.

Examples.

1. Any exact sequence with an indexing is a chain complex.

2. Let M be an R−module. Then 0 0−→ 0 0−→ M
0−→ 0 0−→ 0 · · · is a chain complex where M is said to be in the 0th spot.

3. Let R = Z/(r). Then · · · 2−→ R
3

2−→ R
2

2−→ R
1

2−→ 0
0

2−→ 0
−1
· · · is a chain complex.

4. Let M be an R−module, x ∈ R. Then · · · → 0 → M
1

x−→ M
0
→ 0 is a chain complex.

Definition 2.3. Let (C, d) be a complex of R−modules. The module of n−cycles is defined to be ZnC := ker dn. The
n−boundaries of C are the elements of BnC := dn+1Cn+1 = imdn+1. Since d2 = 0, we see dCn+1 ⊆ ZnC. Define the nth

homology of C to be the module Hn(C) = ZnC
dCn+1

= ker dn

imdn+1
. We say a complex C is exact if Hn(C) = 0 for all n.

Examples. Considering the examples above, once again.

1. Hn(C) = 0 for all n for any exact sequence (i.e., an exact sequence is an exact complex).

2. H0(C) = M, Hi(C) = 0 for all i 6= 0.

3. Hi(C) = 0 for all i 6= 1 and H1(C) = Z/(2).

4. H0(C) = M/xM, H1(C) = {m ∈ M |xm = 0} = (0 :M x).

Definition 2.4. Let (C, d) and (D, d′) be chain complexes. A chain map φ : C → D is a family of R−module homomor-
phisms φi : Ci → Di for all i ∈ Z such that d′iφi = φi−1di (or, with suppressed indices, we usually just says dφ = φd).



Remark. Let Ch(R−mod) denote the category of chain complexes of R−modules and chain maps. In fact, it is an abelian
category with sums and products. Thus lim−→ and lim←− exist.

Exercise. Let {Ci, φ
i
j} be a direct system of chain complexes over a directed index set. Then for i ≤ j, we have the following

commutative diagram

· · · // Ci,n+1
d //

(φi
j)n+1

²²

Ci,n
d //

(φi
j)n

²²

Ci,n−1 //

(φi
j)n−1

²²

· · ·

· · · // Cj,n+1
d // Cj,n

d // Cj,n−1 // · · ·

Fixing n, we see {Ci,n, (φi
j)n} is a direct system of R−modules. Show that lim−→Ci is isomorphic to the chain complex

· · · → lim−→Ci,n → lim−→Ci,n−1. Then, find lim−→Ki in the following commutative diagram where Ki represents the complex formed
by the ith row and the first column of R′s represents index 1 and the second index 0:

K0 : 0 // R
x //

1

²²

R //

x

²²

0

K1 : 0 // R
x2

//

1

²²

R //

x

²²

0

K2 : 0 // R
x3

//

1
²²

R //

x

²²

0

...
...

Proof. Let Xn = lim−→Ci,n, αi,n : Ci,n → X where αj,nφi
j,n = αi,n and dn = lim−→di,n. Then, we want to show lim−→Ci = (X, α̂i)

where α̂i : Ci → X is defined by α̂i,n = αi,n. We have

1. X is a chain complex. Notice dn−1dn = lim−→di,n−1lim−→di,n = lim−→di,n−1di,n = lim−→0 = 0.

2. α̂i are chain maps such that α̂jφ
i
j = α̂i (since αj,nφi

j,n = αi,n for all n), α̂i,n are R−module homomorphisms and for
all n, we have the following diagram commutes (by the universal property of the direct limit):

Ci,n
αi,n //

di,n

²²

Xn

dn

²²
Ci,n−1

αi,n−1 // Xn−1

3. The universal property of direct limits holds: Suppose β̂i : Ci → Y are chain maps such that β̂jφ
i
j = β̂i. Then, for all

n we see βi,n : Ci,n → Yn are such that βj,nφi
j,n = βi,n. Of course, then there exists a unique γn : Xn → Yn such that

γnαi,n = βi,n. Define γ̂ : X → Y by γ̂n = γn. Uniqueness follows. Also, γ̂ is a chain map as we have the following
commutative diagrams:

Xn

dn

²²

γn

##
Ci,n

αi,noo βi,n //

di,n

²²

Yn

d′n
²²

Xn−1

γn−1

;;
Ci,n−1

αi,n−1oo βi,n−1 // Yn−1

⇒ Xn
γ //

dn

²²

Yn

d′n
²²

Xn−1
γn−1 // Yn−1

By the above, we see we can, in a sense, commute direct limits with chain complexes. Thus to find lim−→Ki, we simply need
to take the direct limits of each column. We’ve seen the direct limits of these sequences before. So lim−→Ki = · · · → 0 → R →
Rx → 0 → · · · where R → Rx is defined by r 7→ r

1 and αi : R → Rx are defined by r 7→ r
xi .

Remark. Let φ : C → D be a chain map of complexes. Then



1. φn(Zn(C)) ⊆ Zn(D) for all n

2. φn(Bn(C)) ⊆ Bn(D) for all n

Therefore, there exists an induced map on the homology: (φ∗)n : Hn(C) → Hn(D) defined by x 7→ φn(x).

Proof. Recall that we have the following commutative diagram

Cn+1
d //

φ

²²

Cn
d //

φ

²²

Cn−1

φ

²²
Dn+1

d // Dn
d // Dn−1

Let x ∈ Zn(C). So d(x) = 0, which implies 0 = φd(x) = dφ(x) and thus φ(x) ∈ Zn(D). Let y ∈ Bn(C). So y = d(t), which
implies φ(y) = φd(t) = dφ(t) and thus φ(y) ∈ Bn(D).

If C is a complex, one can view the homology as a complex · · · 0−→ Hn(C) 0−→ Hn−1(C) 0−→ Hn−2(C) 0−→ · · · =: H∗(C).
We let the maps be the zero maps so that the homology of this complex at a given spot is still Hn(C). In this context,
φ∗ : H∗(C) → H∗(D) is a chain map.

Definition 2.5. A chain map φ : C → D is called a quasi-isomorphism (q.i.) if φ∗ is an isomorphism, that is, φ induces
an isomorphism Hn(C) → Hn(D) for all n.

Example. Let C be a chain complex, 0 the zero chain complex. Then there is a unique chain map φ : 0 → C. Also, φ is a
q.i. if and only if C is exact.

Snake Lemma. Consider the following commutative diagram of R−modules, where the rows are exact:

A
α //

f

²²

B
β //

g

²²

C //

h

²²

0

0 // D
δ // E

ε // F

Then, the sequence

ker f
α′−→ ker g

β′−→ kerh
∂−→ cokerf

δ−→ cokerg
ε−→ cokerh

is exact. Furthermore, if α is injective, then α′ is and if ε is surjective, then ε is.

Proof. Define α′ : ker f → ker g by α′ = α|ker f . Note that the image really is ker g by commutativity of our diagram. We can
similarly define β′. Now, recall that cokerf = D/imf and cokerg = E/img. So we can get a map from D → E → E/img,

which induces the map δ : D/imf → E/img. Similarly, we can define ε. Thus, we need only to define ∂. To do so, first note
that we have the following commutative diagram:

0

²²
kerh

²²
A

α //

f

²²

B
β //

g

²²

C //

h

²²

0

0 // D

²²

δ // E
ε // F

cokerf

²²
0



Let c ∈ kerh. Choose b ∈ B such that β(b) = c. Then ε(g(b)) = h(β(b)) = h(c) = 0. So g(b) ∈ ker ε = imδ. As δ is injective,
there exists a unique d ∈ D such that δ(d) = g(b). Define ∂(c) = d = d + imf ∈ cokerf. We need to show ∂ is well-defined.
Since everything is linear, it is enough to show in the case that c = 0. So suppose c = 0. Then b ∈ kerβ = imα. So b = α(a)
for some a ∈ A. Then g(b) = δ(f(a)) which implies d = f(a). So ∂(c) = f(a) = 0.

Now, we need to show the sequence is exact.

It’s exact at cokerf : Let d ∈ cokerf and suppose d ∈ im∂. Then d = y where y ∈ D such that δ(y) ∈ img. Thus
δ(d) = δ(y) = δ(y) = 0 as δ(y) ∈ img. So im∂ ⊆ ker δ. Now suppose d ∈ ker δ. Then δ(d) inimg, which implies
δ(d) = g(b). Note hβ(b) = εg(b) = εδ(d) = 0 by exactness. Thus c = β(b) ∈ kerh. By definition of ∂, we have ∂(c) = d.

It’s exact at kerh : Let x ∈ kerh such that ∂x = 0. Then there exists b ∈ B such that βb = x and g(b) ∈ ker ε, since
εg(b) = hβb = hx = 0. By exactness, there is a unique d ∈ D with δ(d) = g(b). Since ∂(x) = d, we see d = 0, that is,
d ∈ imf. So there exists a ∈ A such that f(a) = d. Take b−α(a) ∈ B. Then g(b−α(a)) = g(b)−gα(a) = g(b)−δf(a) =
g(b)− g(b) = 0. So b− α(a) ∈ ker g. Note β′(b− α(a)) = β(b)− βα(a) = β(b) = x. So ker ∂ ⊆ imβ′. Now, let b ∈ ker g.

Then c := β(b) ∈ kerh. To define ∂c, note there exists b′ ∈ B such that β(b′) = c as hβ(b′) = 0 implies g(b′) ∈ imδ. As
δ is injective, there exists d ∈ D with g(b′) = δ(d). So ∂c = d. By well-definedness, choose b′ = b. Then g(b′) = 0, which
says d = 0 and thus imβ′ ⊆ ker ∂.

Note. The Snake Lemma is in fact true in any abelian category.

Exercise. Let M be a finitely presented R−module. Let f : N → M be a surjective homomorphism where N is finitely
generated. Prove ker f is finitely generated.

Proof. As M is finitely presented, we have Rm α′−→ Rn β−→ M → 0 is an exact sequence. Let L = kerβ = imα′. Then
0 → L

α−→ Rn β−→ M → 0 is an exact sequence, and moreover, L is finitely generated as it is the surjective image of Rm, which
is finitely generated. Thus we have the commutative diagram with exact rows below:

0 // L
α // Rn

β //

²²Â
Â
Â M //

1M

²²

0

0 // ker f
i // N

f // M // 0

where i is the natural injection map. As Rn is projective and we have a map β : Rn → M, we can define a map ε : Rn → N

such that the above diagram still commutes. Now, we need to define a map δ : L → ker f. Let ` ∈ L. Then εα(`) ∈ N and
in particular, fεα(`) = βα(`) = 0. Thus εα(`) ∈ ker f. So we may define δ = εα. Thus we have the following commutative
diagram with exact rows:

0

²²
0 // L

α //

δ

²²

Rn
β //

ε

²²

M //

1M

²²

0

0 // ker f

²²

i // N

²²

f // M

²²

// 0

cokerδ cokerε 0

By the Snake Lemma, we have 0 → cokerδ → cokerε → 0 is an exact sequence. So cokerδ ∼= cokerε. Note that cokerε is
finitely generated as it is the surjective image of N, a finitely generated R−module. Thus cokerδ is finitely generated. Now
we have 0 → δ(L) → ker f → cokerδ → 0 is an exact sequence where both δ(L) and cokerδ are finitely generated. Thus ker f

is finitely generated.

Proposition 2.6. Let 0 → A
φ−→ B

ψ−→ C → 0 be a short exact sequence of chain complexes of R−modules (or objects in any

abelian category). Then there exists a long exact sequence · · · → Hn(A)
(φ∗)n−−−→ Hn(B)

(ψ∗)n−−−−→ Hn(C) ∂n−→ Hn−1(A)
(φ∗)n−1−−−−−→

· · · .



Proof. Consider the diagram

0 // An

d

²²

φn // Bn

d

²²

ψn // Cn

d

²²

// 0

0 // An−1
φn−1

// Bn−1
ψn−1

// Cn−1
// 0

By the Snake Lemma, we have 0 → ZnA
φ−→ ZnB → ZnC is exact and An−1/dAn → Bn−1/dBn → Cn−1/dCn → 0 is exact.

So consider the following diagram, which commutes as the above diagram did.

An/dAn+1

φn //

dn

²²

Bn/dBn+1

ψn //

dn

²²

Cn/dCn+1
//

dn

²²

0

0 // Zn−1(A)
φn−1

// Zn−1(B)
ψn−1

// Zn−1(C)

Note that ker(dn) = ker dn

dAn+1
= Hn(A) and coker(dn) = Zn−1(A)

imdn
= Zn−1(A)

imdn
= Hn−1(A). By the Snake Lemma, we’re done.

Proposition 2.7. The long exact sequence on homology is natural, that is, if we have the following commutative diagram of
chain maps with exact rows,

0 // A
φ //

f

²²

B
ψ //

g

²²

C //

h

²²

0

0 // D α
// E

β
// F // 0

then there exists the following commutative diagram of long exact sequences:

Hn(A)
φ∗ //

f∗
²²

Hn(B)
ψ∗ //

g∗
²²

Hn(C)
∂n //

h∗
²²

Hn−1(A) //

f∗
²²

· · ·

Hn(D)
α∗

// Hn(E)
β∗

// Hn(F )
∂′n

// Hn−1(D) // · · ·

Proof. Note that the first two squares are easily seen to be commutative. So we need only show the third square is, that is,
we wish to show ∂′nh∗ = f∗∂n.

0 // An
φn //

d

²²

fn

zzvvvvvvvvv
Bn

ψn //

d

²²

gn

{{vvvvvvvvv
Cn

//

d

²²

hn

{{vvvvvvvvv
0

0 // Dn αn

//

d

²²

En
βn

//

d

²²

Fn
//

d

²²

0

0 // An−1
φn−1 //

fn−1

{{vvv
vv

vv
vv

Bn−1
ψn−1 //

gn−1

{{www
ww

ww
ww

Cn−1
//

hn−1

{{www
ww

ww
ww

0

0 // Dn−1 αn−1
// En−1

βn−1

// Fn−1
// 0

Let cn ∈ Hn(C). We can lift cn to some cn ∈ Zn(C) ⊆ Cn. By surjectivity, we can choose bn ∈ Bn such that ψ(bn) = cn.

Then, we can push bn down into Bn−1 to get d(bn). Note here that since cn ∈ Zn(C), we have ψn−1d(bn) = dψn(bn) = dcn = 0.

Thus bn ∈ kerψn−1 = imφn−1. So we can lift d(bn) to an−1 ∈ An−1, and thus we see f∗∂n(cn) = an−1. On the other hand,
we could first push cn to h(cn) ∈ Fn. Then, by commutativity, we know we can lift h(cn) to g(bn) ∈ En. Next, we push g(bn)
down to dg(bn) ∈ En−1 and again by commutativity, we lift it to f(an−1) ∈ Dn−1. Thus ∂′nh∗(cn) = f(an−1) = f∗(an−1).



Thus ∂′nh∗ − f∗∂n, and the statement is proven. The diagram below illustrates the diagram chase of elements:

bn
//

²²

zzvvvvvvvvv
cn

²²

||zz
zz

zz
zz

g(bn) //

²²

h(cn)

an−1 //

zzuuu
uuu

uuu
u

d(bn) //

{{vvv
vv

vv
vv

0

f(an−1) // dg(bn)

Definition 2.8. Let f : C → D be a chain map of chain complexes. We say f is null homotopic if for all n there exist
maps sn : Cn → Dn+1 such that fn = dsn + sn−1d. The collection {sn} is called the chain contraction. Two chain maps
f, g : C → D are called chain homotopic if f − g is null homotopic.

Remarks.

1. f∗ − g∗ = (f − g)∗.

2. If f, g are chain homotopic, then f∗ = g∗ : H∗(C) → H∗(D).

Proof. Let u ∈ Hn(C), where u ∈ Zn(C). To show f∗(u) = g∗(u), it is enough to show (f − g)∗(u) = 0. It suffices to
prove if f is null-homotopic, then f∗ = 0. Note f∗(u) = f(u) = sd(u) + ds(u) = s(0) = 0 (ds(u) = 0 as it is in the
boundary and d(u) = 0 as u ∈ ker d).

Note. Chain homotopy is an equivalence relation. This is different, however, from the following notion:

Definition 2.9. A chain map f : C → D is called a chain homotopy equivalence if there exists a chain map g : D → C

such that fg is chain homotopic to 1D and gf to 1C .

Note. This means, in particular, that f∗g∗ = 1∗ on H∗(D) and g∗f∗ = 1∗ on H∗(C). Thus chain homotopy equivalence
induces isomorphisms on homology.

Remark. Every chain homotopy equivalence is a quasi-isomorphism of chain complexes, however, the converse is not true.
Recall 0 → C is q.i. if and only if C is exact.

Exercise: Let C be a short exact sequence. Then 0 → C is a chain homotopy equivalence if and only if C is split exact.

Proof. Let C be the short exact sequence 0 → A → B → C → 0. First note by 0 F−→ C, we mean we have the following
diagram

0 //

F1

²²

0 //

F2

²²

0 //

F3

²²

0 //

F4

²²

0

F5

²²
0

i
// A

f
// B g

// C
j

// 0

We will first suppose C is split exact, that is, B = A ⊕ C. Define G : C → 0 by Gi = 0. Note GF = Id0 and so it is chain
homotopic to Id0. Recall, as C is split exact, that there exists φ : B → A such that φf = 1A and ψ : C → B such that
gψ = 1C . Furthermore, we can choose φ and ψ such that IdB = fφ + ψg. To show FG is chain homotopic to IdC , we want
to show IdC − FG is null homotopic. Define s1 = s4 = 0, s2 = φ, s3 = ψ. This gives us the following diagram

0
i //

F1G1

²²

A
f //

F2G2

²²

A⊕ C
g //

F3G3

²²

C
j //

F4G4

²²

0

F5G5

²²
0

i
// A

f
//

s1

ffMMMMMMMMMMMMM
A⊕ C g

//

s2

ggOOOOOOOOOOOOO
C

j
//

s3

ggPPPPPPPPPPPPP
0

s4

ffMMMMMMMMMMMMM



Now, as Gi is the zero map, FiGi = 0 for all i. Thus, we have IdA−F2G2 = IdA = φf = is1 +s2f, IdA⊕c−F3G3 = IdA⊕C =
fφ + ψg = fs2 + s3g, IdC −F4G4 = IdC = gψ = fs3 + s4g. Thus FG is chain homotopic equivalent to 1C which says 0 F−→ C
is a chain homotopy equivalence.

For the other direction, choose Gi such that we have chain homotopy equivalence. Then GF = Id0 and FG = Id0 (as we
must have that Gi is the zero map). Note that we have the following diagram

0
i //

0

²²

A //

0

²²

A⊕ C //

0

²²

C
j //

0

²²

0

0

²²
0

i
// A

f
//

s1

ffMMMMMMMMMMMMM
B g

//

s2

ggPPPPPPPPPPPPPPP
C

j
//

s3

ggPPPPPPPPPPPPP
0

s4

ffMMMMMMMMMMMMM

By definition, we see IdA = IdA − F2G2 = is1 + s2f = s2f. Thus C splits.

Comparison Theorem for Projective Resolutions. Let C be an abelian category and consider the following diagram in
C :

// Pi
d // Pi−1

d // · · · d // P1
d // P0

d // M //

f=f−1

²²

0

// Qi
d′ // Qi−1

d′ // · · · d′ // Q1
d′ // Q0

d′ // N // 0

Suppose the top row is a complex, Pi is projective for all i, and the bottom row is exact. Then there exists fi : Pi → Qi for
all i such that fidi+1 = d′i+1fi+1 for all i ≥ −1, that is, there exists a chain map which “lifts” f. Furthermore, any two such
liftings are chain homotopic.

Proof. Induct on n to show there exists fi : Pi → Qi for i ≤ n such that fidi+1 = d′i+1fi+1 for all i ≤ n− 1. For n ≤ −1, this
is trivially true (let fi = 0 for all i ≤ −2 and f−1 = f). Assume we have {fi}n

i=−1 which work. So, we have the following
commutative diagram:

0 // Zn(P ) // Pn
dn //

fn

²²

Pn−1

fn−1

²²
0 // Zn(Q) // Qn

d′n // Qn−1

As before, there exists f̃n : Zn(P ) → Zn(Q) (take f̃n = fn|Zn(P )). Since dPn+1 ⊆ Zn(P ) and Zn(Q) = dQn+1 (by exactness),

we get ˜̃
fn : dPn+1 → dQn+1 where ˜̃

fn = f̃n|dPn+1 . Now, we have the diagram below, where the bottom row is exact:

Pn+1
dn+1 // dPn+1

//

fffn

²²

0

Qn+1

d′n+1 // dQn+1
// 0

As Pn+1 is projective, we get a map fn+1 : Pn+1 → Qn+1 such that ˜̃
fndn+1 = d′n+1fn+1. It is easily seen that this implies

fndn+1 = d′n+1fn+1.

To prove that any two liftings are chain homotopic, suppose both f· and g· lift f. Then f·−g· lifts 0 : M → N. So it is enough
to show if f = 0, then any lifting of f is null-homotopic. We use induction on n to show there exist maps si : Pi → Qi+1 for
i ≤ n such that fi = di+1si +si−1di. Let si = 0 for i ≤ −1. Clearly, f−1 = 0 = ds+sd. So assume we have done this for i ≤ n.

Then fn = sn−1d+dsn, and so dsn = fn−sn−1d. Now d(fn+1−snd) = dfn+1−dsnd = dfn+1−fnd+sn−1dd = dfn+1−fnd = 0.

So im(fn+1 − snd) ⊆ ker dn+1 = imdn+2. So we have the following commutative diagram

Pn+1

fn+1−snd

²²
Qn+2

// dQn+2
// 0 exact

and as Pn+1 is projective, there exists sn+1 : Pn+1 → Qn+2 such that dn+2sn+1 = fn+1 − snd.



Definition 2.10. Let C be an abelian category and M ∈ ObjC. A projective resolution of M in C is a chain complex P·
such that

1. Pi = 0 for all i < 0

2. Pi is projective

3. Hi(P·) =





M, if i = 0,

0, otherwise.

Write P· : · · · → Pi → Pi−1 → · · · → P1
d1−→ P0

d0−→ 0 where H0(P0) = M = P0/imd1 = cokerd1. Equivalently, · · · → P2 →
P1 → P0

ε−→ M → 0 is exact where ε is called the augmentation map.

Definition 2.11. An abelian category C is said to have enough projectives if for all objects A of C, there exists a surjective
morphism P ³ A, where P is projective.

Example. C =<< R −mod >> . Every R−module is the quotient of a free module, which is projective. Thus there are
enough projectives in C.
Remark. If C is an abelian category with enough projectives, then every object of C has a projective resolution.

Proof. Let M be an object and fine P0
ε−→ M where P0 is projective. Next, find P1

δ0−→ ker ε
i0−→ P0 where P1 is projective.

Let d1 = i0δ0. Continuing, we get a chain as follows:

· · · // P2

δ1

²²

d2 // P1

δ0

²²

d1 // P0
ε // M // 0

ker d1

i1

;;wwwwwwwww
ker ε

i0

==zzzzzzzz

Examples.

1. Let R be a commutative ring, x ∈ R a non-zero-divisor. Then 0 → 0 → R
1

x−→ R
0
→ 0 is a projective resolution of

R/(x) = cokerx.

2. Let P be projective. Then · · · → 0 → P
0
→ 0 is a projective resolution of P.

3. Let R = Z/(4). Then · · · 2−→ R
1

2−→ R
0
→ 0 is a projective resolution of coker2 = R/(2) ∼= Z/(2) as an R−module.

Note. Projective resolutions are not unique. For example 0 → Z ⊕ Z f−→ Z ⊕ Z → 0 defined by f(r, s) = (2r, s) and
0 → Z 2−→ Z→ 0 are projective resolutions of Z/(2) as Z−modules.

Proposition 2.12. Let C be an abelian category, M ∈ ObjC, and suppose P· and Q· are projective resolutions of M. Then
there exists a chain homotopy equivalence f· : P· → Q·. That is, projective resolutions are unique up to chain homotopy
equivalence.

Proof. Suppose we are given the following diagram with exact rows

P·
ε //

²²Â
Â
Â M //

1M

²²

0

Q·
δ //

²²Â
Â
Â M //

1M

²²

0

P·
ε //

²²Â
Â
Â M //

1M

²²

0

Q·
δ // M // 0

By the comparison theorem, there exist chain maps g· : P· → Q· and h· : Q· → P· by lifting 1M . Then h·g· : P· → P· is a
lifting of 1M , as is 1P· : P· → P·. Thus h·g· is chain homotopic to 1P· . Similarly, g·h· is chain homotopic to 1Q· .



Remark. Suppose f : C → D is a chain homotopy equivalence, where C and D are chain complexes in some category C.
Let F be a covariant additive functor. Then F (f) : F (C) → F (D) is a chain homotopy equivalence.

Proof. First note that if f : C → D is null homotopic, so is F (f) (as if sn : Cn → Dn+1 is such that f = ds + sd, then
F (f) = F (d)F (s)+F (s)F (d)). In general, if fg− 1D is null homotopic, then F (f)F (g)− 1F (D) is null homotopic. Similarly,
if gf − 1C is, then so is F (g)F (f)− 1F (C).

2.1 Left Derived Functors

Definition 2.13. Let F : C → D be an additive, covariant, right exact functor on abelian categories, where C has enough
projectives. For i ≥ 0, define the ith left derived functor LiF of F as follows: Let M ∈ ObjC and P· be a projective
resolution of M. Then (LiF )(M) := Hi(F (P·)).

• This is well-defined: Suppose Q· is another projective resolution. Then there exists a chain homotopy equivalence
f· : P· → Q·. Hence, F (f·) : F (P·) → F (Q·) is a chain homotopy equivalence, which induces an isomorphism on
homology. Thus F (f∗) : H∗(F (P·)) → H∗(F (Q·)) is an isomorphism.

Now, suppose φ : M → N is a morphism in C. Let P· be a projective resolution of M, and Q· of N. By the comparison
theorem, there exists a chain map φ̃ lifting φ. Then F (φ̃) : F (P·) → F (Q·) is still a chain map. Define (LiF )(φ) = F (φ̃∗) :
Hi(F (P·)) → Hi(F (Q·)).

• This is well-defined: Suppose we had φ̃ : P· → Q· and φ̃′ : P ′· → Q′·. Note then, by the comparison theorem, that we have
maps f : P· → P ′· and g : Q· → Q′· which lift 1M giving us the following diagrams where the second is commutative:

P· //

f~~~~
~~

~~
~

eφ

²²

M

1M~~~~
~~

~~
~~

φ

²²

P ′· //

eφ′

²²

M

φ

²²

Q· //

g
ÄÄ~~

~~
~~

~
N

1NÄÄ~~
~~

~~
~~

Q′· // N

⇒ P0
//

f0

²²

M

1M

²²
P ′0 //

eφ′
²²

M

φ

²²
Q′

0
// N

Compacting the second diagram, we see that φ̃′f0 = φ and, in general, φ̃′f lifts φ. Similarly, by considering a different
portion of the cube, we get gφ̃ lifts φ and thus φ̃′f and gφ̃ are chain homotopic. Thus F (φ̃′f) and F (gφ̃) are chain
homotopic, which says F (φ̃′f)∗ = F (gφ̃)∗. Thus we see F (φ̃′)∗F (f)∗ = f(g)∗F (φ̃)∗, which says the following diagram
is commutative:

Hi(F (P·))
F (eφ)∗ //

F (f)∗
²²

Hi(F (Q·))

F (g)∗
²²

Hi(F (P ′· ))
F (eφ′)∗ // Hi(F (Q′·))

Note that F (f)∗ and F (g)∗ are isomorphisms as f and g lifted the identity maps.

Exercise. Show L0F ∼= F.

Proof. Let M ∈ ObjC and · · · → P1 → P0 → 0 be a projective resolution for M. Then F (P1)
α−→ F (P0) → F (M) → 0

is exact, as F is right exact. So F (M) ∼= F (P0)/imα. Thus, when we consider the sequence F (P1)
α−→ F (P0)

0−→ 0,

we see H0(F (P·)) = ker 0/imα = F (P0)/imα ∼= F (M). Thus (L0F )(M) := H0(F (P0)) ∼= F (M). To show L0F ∼= F,

we also need to check that F (f) = L0F (f) for f : M → N. Of course, L0F (f) : L0F (M) → L0F (N) is defined by
L0F (f) = F (f̃0) : H0F (P·) → H0(F (Q·)). Now, note that f̃0 = f0. Thus L0F (f) = F (f) and so L0F ∼= F.

Special Case. Let R, S be rings, M an S−R bimodule. Then M ⊗R− :<< R−mod >>→<< S−mod >> and we denote
Li(M ⊗R −) as TorR

i (M,−).

Remarks.



1. If N is a left R−module and P· is a projective resolution for N, then TorR
i (M, N) = Hi(M ⊗R P·).

2. If M is an S − R bimodule, then FM = M ⊗R − :<< R −mod >>→<< S −mod >> is covariant, right exact, and
additive. So, by the above exercise, TorR

0 (M,−) ∼= M ⊗R −.

Examples.

1. Compute TorZi (Z/(2),Z/(2)) for all i.

• Note that P : 0 → Z
1

2−→ Z
0
→ 0 is a projective resolution of Z/(2). Now, apply our functor Z/(2)⊗Z − to get:

0 // Z/(2)⊗Z Z 1⊗2 //

∼=
²²

Z/(2)⊗Z Z //

∼=
²²

0

0 // Z/(2) 2=0 // Z/(2) // 0

Thus TorZi (Z/(2),Z/(2)) =




Z/(2), if i = 0, 1

0, otherwise.

2. Compute Tor
Z/(2)
i (Z/(2),Z/(2)) for all i.

• Note that P : 0 → Z/(2)
0

→ 0 is a projective resolution of Z/(2). Now, apply our functor Z/(2)⊗Z/(2) − to get:

0 // Z/(2)⊗Z/(2) Z/(2) //

∼=
²²

0

0 // Z/(2) // 0

Thus Tor
Z/(2)
i (Z/(2),Z/(2)) =




Z/(2), if i = 0

0, otherwise.

3. Compute Tor
Z/(4)
i (Z/(2),Z/(2)) for all i.

• Note that P : 2−→ Z/(4)
1

2−→ Z/(4)
0

→ 0 is a projective resolution of Z/(2). Now, apply our functor Z/(2)⊗Z/(4) − to

get:
// Z/(2)⊗Z/(4) Z/(4) 1⊗2 //

∼=
²²

Z/(2)⊗Z/(4) Z/(4) //

∼=
²²

0

0 // Z/(2) 0 // Z/(2) // 0

Thus Tor
Z/(4)
i (Z/(2),Z/(2)) = Z/(2) for all i ≥ 0.

Remark. Let N be a left R−module. Then G : −⊗R N :<< S −R bimod >>→<< S −mod >> is right exact, covariant,
and additive. So one could construct LiG := TorR

i (−, N).

Q: For M an S −R bimodule and N a left R−module, is TorR
i (M, N) ∼= TorR

i (M, N) ?

A: Yes! In the case where M is a projective module, note that 0 → M → 0 is a projective resolution. Then, applying the

functor − ⊗R N, we see TorR
i (M, N) =





M ⊗R N, if i = 0

0, otherwise.
On the other hand, if P· is a projective resolution

for N. Applying M ⊗R − keeps the sequence · · · → P1 → P0 → N → 0 exact as M is projective (and thus flat). So

TorR
i (M, N) =





M ⊗R N, if i = 0,

0, otherwise.
Thus Tor = Tor. This is true when M is not projective, however we need

more machinery to prove it.



Lemma 2.14. Let C be an abelian category and consider the diagram

0 // P
δ //

f

²²

Q
ε // R //

h

²²

0

0 // L
` // M

m // N // 0

Suppose R is projective. Then there exists g : Q → M making the diagram commute.

Proof. As R is projective, the top sequence splits. Let i : Q → P be a splitting map such that iδ = 1P . Also, as R is
projective, there exists j : R → M such that mj = h. Let g = `fi + jε. Then the diagram commutes as gδ = `fiδ + jεδ = `f

as εδ = 0 and iδ = 1 and also mg = m`fi + mjε = mjε = hε.

Horseshoe Lemma.Let C be an abelian category, 0 → A → B → C → 0 a short exact sequence of objects in C, and P·, R·
projective resolutions of A and C, respectively. Then there exists a projective resolution Q· of B and chain maps i : P· → Q·
and π : Q· → R· such that 0 → P· → Q· → R· → 0 is a short exact sequence of complexes.

Proof. For each n, let Qn = Pn ⊕ Rn, in : Pn → Qn be the canonical injection and πn : Qn → Rn the canonical projective.
Clearly, 0 → Pn → Qn → Rn → 0 is exact for all n. Let d, d′ denote the differentials for P·, R·. We will define d′′n : Qn → Qn−1

inductively. Let d′′0 = 0. So we have the following diagram:

0 // P0
i0 //

ε

²²

Q0
π0 //

γ

²²Â
Â
Â R0

//

δ

²²

0

0 // A // B // C // 0

By the lemma, there exists γ : Q0 → B making the diagram commute. Furthermore, γ is surjective by the snake lemma as
0 = cokerε → cokerγ → cokerδ = 0 implies cokerγ = 0. Moreover, the snake lemma gives us that 0 → ker ε

i0−→ ker γ
π0−→

ker δ → 0 is exact. Now, since imdi ⊆ ker di, we have

0 // P1
//

d1

²²

Q1
//

²²Â
Â
Â R1

//

d2

²²

0

0 // ker ε //

²²

ker γ // ker δ //

²²

0

0 0

Again, there exists d′′1 : Q1 → ker γ ↪→ Q0 making the diagram commute. Also, imd′′1 = ker γ by the Snake Lemma and
0 → ker d1 → ker d′′1 → ker d′1 → 0 is exact. Continue inductively.

Corollary 2.15. Let C,D be abelian categories with enough projectives. Let F : C → D be a covariant, right exact, additive
functor. Given any short exact sequence 0 → L

f−→ M
N−→ 0 in C, there exists a long exact sequence · · · → LiF (L)

LiF (f)−−−−→
LiF (M)

LiF (g)−−−−→ LiF (N) ∂i−→ Li−1F (L)
Li−1F (f)−−−−−−→ · · · .

Proof. By the Horseshoe Lemma, there exists a short exact sequence of complexes 0 → P· → Q· → R· → 0 where P,Q, R

are projective resolutions of L,M, N respectively. For each n, we see 0 → Pn → Qn → Rn → 0 is split exact, which implies
0 → F (Pn) → F (Qn) → F (Rn) → 0 is split exact. Thus 0 → F (P·) → F (Q·) → F (R·) → 0 is a short exact sequence of chain
complexes in D. Thus · · · → Hi(F (P·)) → Hi(F (Q·)) → Hi(F (R·)) → Hi−1(F (P·)) → · · · is a long exact sequence.

Example. Let R be commutative, M, N R−modules, and x ∈ R a non-zero-divisor on M. Then 0 → M
x−→ M → M/xM → 0

is a short exact sequence of R−modules. Thus there exists a long exact sequence · · · → TorR
i (M,N) → TorR

i (M, N) →
TorR

i (M/xM, N) → · · · .

Exercise. Let A be an abelian category, f, g : C → D chain maps of chain complexes. Say f ' g if and only if f and g are
chain homotopic.

1. Prove ' is an equivalence relation.



Proof. (a) Reflexive: Say f· : C· → D· is a chain map. Define sn = 0. Then d′n+1sn + sn−1dn = 0 = fn − fn. Thus
f ' f.

(b) Symmetry: Suppose f· ' g·. Then there exists sn : Cn → Dn+1 such that fn − gn = d′n+1sn + sn+1dn. Then
gn − fn = dn+1(−sn) + (−sn+1)dn, which says g· ' f·.

(c) Transitivity: Say f· ' g· and g· ' h·. Then there exists sn : Cn → Dn+1 and tn : Cn → Dn+1 such that
fn − gn = d′n+1sn + sn+1dn and gn − hn = d′n+1tn + tn+1dn. This says fn − hn = (fn − gn) + (gn − hn) =
d′n+1(s + t)n + (s + t)n+1dn.

2. Let HomK(A)(C, D) denote the set of equivalence classes of chain maps from C to D (that is, HomK(A)(C,D) ∼=
HomCh(A)(C,D)/ '). Define + on HomK(A)(C, D) by [f ] + [g] = [f + g]. Prove that this is well defined.

Proof. Suppose f· ' h· and g· ' i·. Then, there exists s, t such that f − h = ds + sd and g − i = dt + td. So
(f +g)−(h+i) = (f−h)+(g−i) = d(s+t)−(s+t)d. Thus, f +g ' h+i, and so [f ]+[g] = [f +g] = [h+i] = [h]+[i].

Note that this makes HomK(A)(C, D) into an abelian group.

3. For [f ] ∈ HomK(A)(C, D) and [g] ∈ HomK(A)(D,E), define [g] ◦ [f ] = [gf ]. Show ◦ is well defined.

Proof. Say f1 ' f2 and g1 ' g2 where fi : C → D and gi : D → E. Then there exists sn : Cn → Dn+1 and
tn : Dn → En+1 such that f1 − f2 = sd + ds and g1 − g2 = td + dt. Define un : Cn → En+1 by un = g2,n+1sn + tnf1,n.

Then
un−1d + dun = g2,nsn−1d + tn−1f1,n−1d + dg2,n+1sn + dtnf1,n

= g2,nsn−1d + g2,ndsn + tn−1df1,n + dtnf1,n

= g2,n(sn−1d + dsn) + (tn−1d + dtn)f1,n

= g2,n(f1,n − f2,n) + (g1,n − g2,n)f1,n

= g1,nf1,n − g2,nf2,n.

Thus g1f1 ' g2f2 and thus [g1][f1] = [g1f1] = [g2f2] = [g2][f2].

Definition 2.16. Let A be an abelian category. The category K(A) is defined as follows: ObjK(A) is the class of chain
complexes in A and for C, D ∈ Obj(A), let HomK(A)(C, D) and composition be defined as above. Then K(A) is called the
chain homotopy category of A.

Definition 2.17. Let A be an additive category. Let f : C → D be a morphism. A kernel of f is an object K and a
morphism i : K → C such that fi = 0 and if g : A → C is a morphism such that fg = 0, then there exists a unique morphism
g :′: A → L such that g = ig′.

Note.

1. K(A) is an additive category (so Hom sets are abelian groups and there is a 0 object), but it is not abelian (as the
kernel/cokernel does not always exist).

Example. Let C· : 0 → Z⊕ Z
1

α−→ Z/(2)
0

→ 0 where β(a, b) = a + b and D· : 0 → Z/(2)⊕ Z/(2)
1

→ 0. Then, we can

define f : C· → D· by f1(a, b) = (a, b) and fi = 0 for all i 6= 1. Then f ∈ HomCh(A)(C,D) and so [f ] ∈ HomK(A)(C, D).
It can be shown that ker[f ] does not exist in K(A).

2. Often, the derived category comes up in Homological Algebra. The derived category is K(A) “localized” at the set
of quasi-isomorphisms.



Lemma 2.18. Let A be an abelian category and consider the following commutative diagram in A, where the rows are exact,
R, R′ are projective, and d′ : P ′ → A′ is onto.

0 // P
i //

efÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

d

²²

Q
π //

d

²²

R //

ehÄÄÄÄ
ÄÄ

ÄÄ
ÄÄ

d

²²

0

0 // P ′
i′

//

d′

²²

Q′
π′

//

d′

²²

R′ //

d′

²²

0

0 // A α
//

f~~~~
~~

~~
~~

B
β

//

g
~~}}

}}
}}

}
C //

h~~~~
~~

~~
~~

0

0 // A′
α′

// B′
β′

// C ′ // 0

Then there exists g̃ : Q → Q′ making the diagram commute.

Proof. As R, R′ are projective, the top two rows split. Define ρ : R → Q, ρ′ : R′ → Q′, φ : Q → P, φ′ : Q′ → P ′ such that
πρ = 1R, φi = 1P , 1Q = iφ + ρπ and similarly for the primed maps. Observe

β′gdρ = hβdρ as β′g = hβ

= hdπρ as βd = dπ

= hd as πρ = 1
= d′h̃ by commutativity
= d′π′ρ′h̃ as π′ρ′ = 1
= β′dρ′h̃ as d′π′ = β′d

Thus im(gdρ − d′ρh̃) ⊆ kerβ′ = imα′. So we can define a map τ : R → A′ by τ = (α′)−1(gdρ − d′ρ′h̃) (as α′ is injective).
Now we have,

R
γ

~~}
}

}
}

τ

²²
P ′

d′ // A′ // 0

As the bottom row is exact and R is projective, there exists γ : R → P ′ such that d′γ = τ. Define g̃ : Q → Q′ by
g̃ = i′f̃φ + i′γπ + ρ′h̃π. To show this makes our original diagram commute, note

• g̃i = i′f̃φi + i′γπi + ρ′h̃πi = i′f̃ as φi = 1 and πi = 0.

• π′g̃ = πi′f̃φ + π′i′γπ + πρ′h̃π = πρ′h̃π = h̃π as π′i′ = 0.

•

d′g̃ = d′i′f̃φ + d′iγπ + d′ρ′h̃π = α′d′f̃φ + α′d′γπ + d′ρ′h̃π as d′i = α′d′

= α′d′f̃φ + (gdρ− d′ρ′h̃)π + d′ρ′h̃π as d′γ = τ = (α′)−1(gdρ− d′ρ′h̃)
= α′d′f̃φ + gdρπ

= α′fdφ + gdρπ as d′f̃ = fd

= gαdφ + gdρπ as α′f = gα

= gdiφ + gdρπ as αd = di

= gd as iφ + ρπ = 1.

Lemma 2.19. Let A be an abelian category and consider the following diagram in Ch(A).

0 // P
i //

ef
²²

Q
π // R //

eh
²²

0

0 // P ′
i′ // Q′

π′ // R′ // 0



Suppose that the rows are exact, all complexes are 0 in negative indices, R,R′ are complexes of projective modules, and there
exists g : H0(Q) → H0(Q′) such that the following diagram commutes.

0 // P0
//

²²

Q0
//

²²

R //

²²

0

0 // H0(P )

ef∗
²²

// H0(Q)

g

²²

// H0(R)

eh∗
²²

// 0

0 // H0(P ′) // H0(Q′) // H0(R′) // 0

Then there exists g̃ : Q → Q′ making the initial diagram commute and lifting g.

Proof. Define g̃n : Qn → Qn−1 inductively. Let g̃i = 0 for all i < 0. Assume g̃i is defined for i ≤ n. Define g̃n+1:

0 // Pn+1
//

zzvvvvvvvvv

²²

Qn+1

zzu u
u

u
u

//

²²

Rn+1
//

zzuuuuuuuuu

²²

0

0 // P ′n+1
//

²²

Q′n+1
//

²²

R′n+1
//

²²

0

0 // dPn+1
//

zzvvv
vvv

vv
v

dQn+1
//

egnzzuuuuuuuuu
dRn+1

//

zzuuuuuuuuu
0

0 // dP ′n+1
// dQ′

n+1
// dR′n+1

// 0

(This is commutative). By assumption, the top 2 rows are exact and by induction and the Snake Lemma, the bottom two
rows are exact. As Rn+1, R

′
n+1 are projective and d′ : P ′n+1 → d′P ′n+1 is surjective, we are done by the previous lemma.

Note. A projective resolution (or even a chain of projectives) is not a projective object in the category of chain complexes.
Otherwise, the above two results would be trivial.

Example. Let A =<< Z − mod >> and consider the chain complex P· : 0 → Z
1

dP−−→ Z
0
→ 0, where dP is defined as

multiplication by 2. This is a chain of free (and thus projective) modules. However, P· is not a projective object in Ch(A).

Proof. We want to show that there exist chain complexes A and B in Ch(A) such that A → B → 0 is exact and we have a
map P → B, but that there does not exist a map P → A making the diagram commute. Define A· : 0 → 0 dA−−→ Z

0
→ 0 and

B· : 0 → 0 → Z/(2) → 0. Define g· : A· → B· by g0(a) = a and gi = 0 for all i 6= 0. Also define h· : P· → B· by h0(a) = a

and hi = 0 for all i 6= 0. Then we have the following diagram, where the bottom row is exact.

P·

h·
²²

A·
g· // B· // 0

Now, suppose there exists f· : P· → A·. Clearly, f1 = 0. So f0dP = dAf1 = 0. Say f0 : Z→ Z is defined by 1 7→ m. Then
0 = f0dP (1) = f0(2) = 2m = 0. Then m = 0, which says f0 = 0. Thus f· = 0, but h = gf = 0, a contradiction as h 6= 0.

Theorem 2.20. Let F : C → D be a covariant, right exact, additive functor on abelian categories, where C has enough
projectives. Consider the following commutative diagram:

0 // A
α //

f

²²

B
β //

g

²²

C //

h

²²

0

0 // A′
α′ // B′ β′ // C ′ // 0



Then the corresponding diagram of long exact sequences on LiF commutes, that is, LF is a covariant functor from <<

SES in C >>→<< LES in D >> .

Proof. Let P·, R·, P ′· , R
′
· be projective resolutions for A, C,A′, C ′ respectively. By the Horseshoe Lemma, there exists projec-

tive resolutions Q·, Q′
· of B,B′ such that 0 → P → Q → R → 0 and 0 → P ′ → Q′ → R′ → 0 are exact. By the Comparison

Theorem, there exists f̃ , h̃ that lift f, h. By the above lemma, there exists g̃ : Q → Q′ lifting g and making the diagram
commute. Now, apply F :

0 // F (P ) //

²²

F (Q) //

²²

F (R) //

²²

0

0 // F (P ′) // F (Q′) // F (R′) // 0

Note that the rows are exact as R is projective (and F preserves split exact sequences). The diagram of long exact sequences
of LiF commutes by naturality of the connecting homomorphism in the long exact sequence on homology.

Definition 2.21. Let C be a chain complex in A. Let p ∈ Z. Define a chain complex C[p] by C[p]n := Cp+n and d[p]n :
C[p]n → C[p]n−1 by (−1)pdp+n.

Example. Suppose C is the complex Cn
n

d−→ Cn−1
n−1

d−→ Cn−2
n−2

d−→ · · · . Then, C[−1] is the complex Cn−1
n

−d−−→ Cn−2
n−1

−d−−→

Cn−3
n−2

−d−−→ · · · , that is, the complex C shifted to the left by one.

Remark. Hn(C[p]) ∼= Hn+p(C) for all n.

Definition 2.22. Let f : B → C be a chain map of complexes. Define the mapping cone of f, denoted cone(f), to be
the chain complex such that cone(f)n = Bn−1 ⊕ Cn for all n and dn : Bn−1 ⊕ Cn → Bn−2 ⊕ Cn−1 is defined as (b, c) 7→
(−d(b), d(c)−f(b)). [This is a chain complex as dn−1dn((b, c)) = dn−1(−d(b), d(c)−f(b)) = (d2(b)−d2(c)−df(b)+fd(b)) = 0.]

Now, define g : C → cone(f) where gn : Cn → Bn−1 ⊕ Cn is defined by c 7→ (0, c). This is an injective chain map.
Similarly, define h : cone(f) → B[−1] by hn : Bn−1 ⊕ Cn → B[−1]n = Bn−1 where (b, c) 7→ −b. This too is a chain map.
Note that 0 → Cn

g−→ Bn−1 ⊕ Cn
h−→ Bn−1 → 0 is exact. Thus 0 → C → cone(f) → B[−1] → 0 is a short exact sequence of

complexes. Hence, we get a long exact sequence · · · → Hn(C) → Hn(cone(f)) → Hn(B[−1]) ∂n−→ Hn−1(C) → · · · .

Claim. ∂n = (f∗)n−1 : Hn(B) → Hn−1(C).

Proof. First consider the following diagram:

0 // Cn
//

−d

²²

Bn−1 ⊕ Cn
//

²²

Bn−1
//

−d

²²

0

0 // Cn−1
// Bn−2 ⊕ Cn−1

// Bn−2
// 0

Let b ∈ Zn−1(B). Lift b to (−b, 0) in Bn−1 ⊕ Cn. Now, push to (−d(−b), d(0) − fn−1(−b)) = (0, fn−1(b)). This lifts
uniquely to fn−1(b) ∈ Cn−1. In Hn−1(C), the image is dn(b) = fn−1(b) = (fn−1)∗(b). Thus ∂n−1 = (fn−1)∗.

Exercise. Let f : C → D be a chain map in an abelian category. Let i : C → cone(1C) = Cn−1 ⊕ Cn be the natural
injection, that is, in : Cn → Cn−1 ⊕ Cn where c 7→ (0, c). This is a chain map. Prove that f is null-homotopic if and only if
there exists a chain map g : cone(1C) → D such that gi = f.

Proof. Let c : Cn → Cn−1, d : Dn → Dn−1, e : cone(1C)n → cone(1C)n−1 be the differential maps for each of the complexes.
First, suppose f is null-homotopic. Then there exists sn : Cn → Dn+1 such that fn = dsn+sn−1c. Define gn : Cn−1⊕Cn → Dn

by (x, y) 7→ fn(y)− sn−1(x). Then gnin(y) = gn(0, y) = fn(y)− sn−1(0) = fn(y). To show g is a chain map, note that

gn−1e(x, y) = gn−1(−c(x), c(y)− x)
= fn−1(c(y)− x)− sn−2(−c(x))
= fn−1(c(y))− fn−1(x) + sn−2(c(x))
= dfn(y)− dsn−1(x) = d(fn(y)− sn−1(x)) = dgn(x, y).



To prove the other implication, suppose g : cone(1C) → D is defined such that gi = f and g is a chain map (so that
gn−1e = dgn). Define sn : Cn → Dn+1 by x 7→ gn+1(x, 0). Then

dsn(x) + sn−1c(x) = dgn+1(x) + gn(c(x), 0)
= gne(x, 0) + gn(c(x), 0)
= gn(−c(x), x) + gn(c(x), 0)
= gn(0, x) = gni(x) = fn(x)

2.2 The Koszul Complex and regular sequences

Definition 2.23. Let R be a commutative ring and C a chain complex of R−modules. Given x ∈ R, there is an induced
chain map x̂ : C → C where x̂n : Cn → Cn is defined by c 7→ xc for all n. This is in fact a chain map as for c ∈ Cn, we have
d(xc) = xd(c) as d is R−linear.

Definition 2.24. Let x1, ..., xn ∈ R. Define the Koszul complex K·(x1, ..., xn) inductively as follows: For n = 1, let K·(x1) be
the chain complex 0 → R

1

x1−→ R
0
→ 0. Given K·(x1, ..., xn−1), let K·(x1, .., xn) be the mapping cone of x̂n : K(x1, ..., xn−1)

xn−−→
K(x1, ..., xn−1).

Example. We will compute K·(x1, x2). Consider the following diagram, where Ri = R′i = R for all i.

B : 0 // R1
x1 //

x2

²²

R0
//

x2

²²

0

C : 0 // R′1
x1 // R′0 // 0

Then, K·(x1, x2) : 0 → R1
2

α−→ R0 ⊕R′1
1

β−→ R′0
0
→ 0 where α(1) = (−d(1),−f(1)) = (−x1,−x2), β(1, 0) = −x2, and

β(0, 1) = x1. Compacting the indices (since everything is just R), we see K·(x1, x2) : 0 → R
α−→ R2 β−→ R → 0 where α is

multiplication by (−x1,−x2) and β is multiplication by the matrix

[
−x2

x1

]
.

Exercise. Find K·(x1, x2, x3).

Proof. Using K·(x1, x2) above, we construct K·(x1, x2, x3) :

0 // R1
//

x3

²²

R2 //

x3

²²

R2
//

x2

²²

0

0 // R′1 // R2
0

// R′2 // 0

where the maps on the rows are defined as above. Then, K·(x1, x2, x3) is the chain complex 0 → R1 ⊕ 0 α−→ R2 ⊕ R′1
β−→

R2 ⊕R2
0

γ−→ 0⊕R′2 → 0, where the maps are defined as follows:

α(1, 0) = (−d(1), d(0)− f(1)) = (x1, x2,−x3)

β(1, 0, 0) = (−d(1, 0), d(0)− f(1, 0)) = (x2,−x3, 0)
β(0, 1, 0) = (−d(0, 1), d(0)− f(0, 1)) = (−x1, 0, x3)
β(0, 0, 1) = (−d(0, 0), d(1)− f(0, 0)) = (0,−x1,−x2)

γ(1, 0, 0) = (−d(1), d(0, 0)− f(1)) = (0,−x3)
γ(0, 1, 0) = (−d(0), d(1, 0)− f(0)) = (0,−x2)
γ(0, 0, 1) = (−d(0), d(0, 1)− f(0)) = (0, x1)

Finally, compacting the indices, we see K·(x1, x2, x3) is the chain complex 0 → R
α−→ R3 β−→ R3 γ−→ R → 0 where

α(1) = (x1, x2,−x3), β is multiplication by the matrix




x2 −x3 0
−x1 0 −x3

0 −x1 −x2


 , and γ is multiplication by the matrix



−x3

−x2

x1


 .



Remark. If x̂ : C → C is as above, then (x̂)∗ : H∗(C) → H∗(C) is also multiplication by x.

Definition 2.25. Let x1, ..., xn ∈ R. Then the ith Koszul Homology of x1, .., xn, denoted Hi(x1, ..., xn) is the ith homology
of the Koszul complex, that is, Hi(K(x1, ..., xn)).

Proposition 2.26. Let x1, ..., xn ∈ R. Then there exists a long exact sequence on Koszul Homology · · · → Hi+1(x1, ..., xn) →
Hi(x1, ..., xn−1)

xn−−→ Hi(x1, ..., xn−1) → Hi(x1, ..., xn) → · · · .

Proof. Let x̂n : K·(x1, ..., xn−1) → K·(x1, ..., xn−1). Then K·(x1, ..., xn) = cone(x̂n). Thus there exists a short exact sequence
of complexes 0 → K·(x1, ..., xn−1) → cone(x̂n) → K·(x1, ..., xn−1)[−1] → 0, which says there is a long exact sequence on
homology, namely the one above.

Definition 2.27. Let R be a commutative ring, x1, ..., xn ∈ R. We say x1, ..., xn is a regular sequence if (x1, ..., xn)R 6= R

and for i = 1, .., n, xi is a non-zero-divisor in R/(x1, ..., xi−1).

Exercise. Show Ki(x1, ..., xn) = R(n
i) for 0 ≤ i ≤ n and Ki(x1, ..., xn) = 0 otherwise. Also, show Hn(x1, ..., xn) =

annR(x1, ..., xn) = (0 :R (x1, ..., xn)).

Proof. We will induct on n. For n = 1, we have 0 → R
1

x1−→ R
0
→ 0. Clearly, K(x1)i =





R = R(1
0), if i = 0,

R = R(1
1), if i = 1,

0, otherwise

. So

suppose the claim holds for n − 1. Then K·(x1, ..., xn) is the mapping cone of x̂n : K·(x1, ..., xn−1) → K·(x1, ..., xn−1)

and so K(x1, ..., xn)i = K(x1, ..., xn−1)i−1⊕K(x1, ..., xn−1)i =





R(n−1
i−1) ⊕R(n−1

i ) = R(n−1
i−1)+(n−1

i ), if 1 ≤ i ≤ n− 1,

R0 ⊕R(n−1
0 ) = R(n

0) = R, if i = 0,

R(n−1
n−1) ⊕ 0 = R(n

n) = R, if i = n,

0, otherwise.

. Since

(
n−1
i−1

)
+

(
n−1

i

)
=

(
n
i

)
, we are done.

For the second claim, we will also induct on n. For n = 1, H1(K·(x1)) = kerx1/im0 = annR(x1). So suppose the claim is
true for n− 1. Then Hn−1(x1, ..., xn−1) = annR(x1, ..., xn−1). Consider the long exact sequence

· · · → Hn(x1, ..., xn−1)︸ ︷︷ ︸
=0

→ Hn(x1, ..., xn)
g−→ Hn−1(x1, ..., xn−1)︸ ︷︷ ︸

=annR(x1,...,xn)

xn−−→ Hn−1(x1, ..., xn−1)︸ ︷︷ ︸
=annR(x1,...,xn)

→ · · · .

Now, g is injective, and thus Hn(x1, ..., xn) ∼= img = ker xn = {r ∈ annR(x1, ..., xn−1)|rxn = 0} = annR(x1, ..., xn).

Proposition 2.28. Suppose x1, ..., xn is a regular sequence. Then Hi(x1, ..., xn) =





R/(x1, ..., xn), if i = 0

0, otherwise.

Proof. We will use induction on n. When n = 1, note that x1 is a non-zero-divisor on R. Recall K(x1) : 0 → R
1

x1−→ R
0
→ 0.

Note that multiplication by x1 is injective as x1 is a non-zero-divisor. So H1(x1) = 0. Also H0(x1) = ker 0/im(x1) = R/(x1).
So let n > 1 and assume the hypothesis holds for n− 1. From the long exact sequence on Koszul Homology,

· · · → Hi(x1, ..., xn−1)︸ ︷︷ ︸
=0 if i>0

→ Hi(x1, ..., xn) → Hi−1(x1, .., xn−1)︸ ︷︷ ︸
=0 if i>1

xn−−→ Hi−1(x1, ..., xn−1) → · · ·

we see Hi(x1, .., xn) = 0 for i > 1. For i = 1, we have

0 → H1(x1, ..., xn) → R/(x1, ..., xn−1)
xn−1−−−→ R/(x1, ..., xn−1) → H0(x1, ..., xn) → 0.

Note again that multiplication by xn is injective as xn is a non-zero-divisor. Thus H1(x1, ..., xn) ∼= kerxn = 0. Now,
H0(x1, ..., xn−1) = coker(xn) = R/(x1, ..., xn).

Remark. If x1, ..., xn is a regular sequence, the Koszul complex is a projective resolution of R/(x1, ..., xn).



Definition 2.29. A double chain complex C·,· in an abelian category A is a family of objects {Cp,q}p,q∈Z and morphisms
dv

p,q : Cp,q → Cp,q−1 and dh
p,q : Cp,q → Cp−1,q for all p, q where (dv)2 = (dh)2 = 0 and dvdh + dhdv = 0 (that is, the squares

anticommute). The diagram of C·,· looks like

²² ²² ²²
Cp−1,qoo

dv

²²

Cp,q
dh

oo

dv

²²

Cp+1,q
dh

oo

dv

²²

oo

Cp−1,q−1oo

²²

Cp,q−1
dh

oo

²²

Cp+1,q−1
dh

oo

²²

oo

Example. Let C·, D· be chain complexes. Define a double chain complex T·,· by Tp,q = Cp ⊗ Dq for all p, q ∈ Z where
dh

p,q : Cp ⊗Dq → Cp−1 ⊗Dq is the map dC ⊗ 1 and dv
p,q : Cp ⊗Dq → Cp ⊗Dq−1 is the map (−1)p ⊗ dD.

Definition 2.30. Let T be a double complex. Define a chain complex Tot
Q

(T ) by Tot
Q

(T )n =
∏

i+j=n Ti,j and dn :
Tot

Q
(T )n → Tot

Q
(T )n−1 by c ∈ Ti,j 7→ dv(c)+dh(c), that is, dtot = dV

T +dh
T . Note d2 = (dv +dh)2 = 0 by anticommutativity.

So this is a chain complex. Similarly, define Tot⊕(T ) by Tot⊕(T )n = ⊕i+j=nTi,j and dtot = dv
T + dh

T .

Definition 2.31. Let C·, D· be chain complexes. Then the tensor product of two chain complexes C ⊗ D is the
chain complex Tot⊕(T ), where T is the double complex {Cp ⊗ Dq} defined above, that is (C ⊗ D)n = ⊕

i+j=n
Ci ⊗ Dj and

d : (C ⊗D)n → (C ⊗D)n−1 is defined by ci ⊗ dj 7→ d(ci)⊗ dj + (−1)ici ⊗ d(dj) for ci ∈ Ci, dj ∈ Dj .

Example. Find K·(x1)⊗K·(x2).

Proof. Let C· : 0 → R1
x1−→ R0 → 0 and D· : 0 → R′1

x2−→ R′2 → 0. Then we have

0

²²

0

²²
0 R0 ⊗R′1oo

dv

²²

R1 ⊗R′1
dh

oo

(dv)′

²²

0oo

0 R0 ⊗R′0oo

²²

R1 ⊗R′0
(dh)′

oo

²²

0oo

0 0

where dh(1⊗ 1) = x1⊗ 1, dv(1⊗ 1) = 1⊗x2, (dv)′(1⊗ 1) = −1⊗x2, and (dh)′(1⊗ 1) = x1⊗ 1. Then, we get 0 → R1⊗R′1
α−→

(R0⊗R′1)⊕(R1⊗R′0)
β−→ R0⊗R′0 → 0 where α is defined by α(1⊗1) = (x1⊗1,−1⊗x2) and β is defined by β(1⊗1, 0) = 1⊗x2

and β(0, 1⊗ 1) = x1⊗ 1. Compacting, we see 0 → R → R2 → R → 0 where 1 7→ (x1,−x2), (1, 0) 7→ x2, and (0, 1) 7→ x1. This
gives an alternated construction of the Koszul complex, that is, K·(x1, ..., xn) = K(x1, ..., xn−1)⊗K(xn) = ⊗n

i=1K·(xi).

Definition 2.32. A double complex T is said to be first quadrant (or second quadrant, upper half plane, etc) if
Ti,j = 0 when (i, j) is outside of the first quadrant (or second quadrant, upper half plane, etc). T is said to be bounded if
for all n ∈ Z there exists only finitely many nonzero terms Ti,j such that i + j = n.

Example. First and Third Quadrant complexes are bounded.

Remark. If T is bounded, then Tot
Q

(T ) = Tot⊕(T ) and we simply write them as Tot(T ).

Acyclic Assembly Lemma. Let C be a bounded double complex such that either all of the rows are exact or all of the
columns are exact. Then Tot(C) is exact.

Proof. By interchanging rows and columns, it suffices to prove in the case when all the columns are exact. By shifting the
double complex to the left or right, it is enough to show H0(Tot(C)) = 0. By shifting C along i + j = 0, we can assume



Ci,−i = 0 for i < 0 and, since bounded, for i > n as well for some n. Thus, any element of Tot(C)0 can be represented as
(c0, ..., cn) where ci ∈ Ci,−i. Let c = (c0, ..., cn) ∈ Z0(Tot(C)). Then dv(ci−1)+dh(ci) = 0 for all i = 0, ..., n. We want to show
there exists b = (b0, ..., bn) ∈ Tot(C) where bi ∈ Ci,−i+1 such that d(b) = c, that is dv(bi) + dh(bi+1) = ci for i = 0, ..., n.

Define bi inductively. Let bn+1 = 0. As c is a cycle, dv(cn) = 0. As columns are exact, there exists bn ∈ Cn,−n+1 such
that dv(bn) = cn. Thus dv(bn) + dn(bn+1) = cn. So suppose there exists bn, bn−1..., bj+1 such that dv(bi) + dh(bi+1) = ci for
j + 1 ≤ i ≤ n. Notice

dv(cj − dh(bj+1)) = dv(cj)− dvdh(bj+1)
= dv(cj) + dhdv(bj+1)
= dv(cj) + dh(cj+1 − dh(bj+2))
= dv(cj) + dh(cj+1) = 0

As the columns are exact, there exists bj ∈ Cj,−j+1 such that dv(bj) = cj − dh(bj+1). Note dh(b0) = 0, thus the induction
must end.

Exercise.

1. Let R be a commutative ring, M, N R−modules. Prove AnnRTorR
i (M, N) ⊇ AnnRM + AnnRN for all i.

Proof. We want to show AnnRM,AnnRN ⊆ AnnRTorR
i (M, N). Let P· be a projective resolution for N. Then

TorR
i (M,N) = Hi(M ⊗R P·) = ker di+1/imdi. Thus, elements are of the form

∑
m⊗ p where m ∈ M, p ∈ Pi.

Let r ∈ AnnRM. Then r(m ⊗ p) = (rm) ⊗ p = 0 ⊗ p = 0. Thus r ∈ AnnRTorR
i (M,N). Similarly, as TorR

i (M,N) =
Hi(Q· ⊗R N) where Q· is a projective resolution of M, we see AnnRN ⊆ AnnRTorR

i (M, N).

2. Let F : A → D be an exact covariant functor on abelian categories. Prove that for any chain complex C in A,

Hi(F (C)) ∼= F (Hi(C)) for all i.

Proof. Suppose we have that the sequence 0 → ker f
i−→ A

f−→ B
π−→ cokerf → 0 is exact. Then, as F is exact, the top

row of the following diagram is exact.

0 // F (ker f)
F (i) // F (A)

∼=
²²

F (f) // F (B)
F (π) //

∼=
²²

cokerf // 0

0 // kerF (f)
ei // F (A)

F (f) // F (B) eπ // cokerF (f) // 0

By universality of the kernel and cokernel, we get induced maps τ : F (ker f) → kerF (f) and σ : cokerF (f) →
F (cokerf). By the Five Lemma, they must in fact be isomorphisms.

Now, note that 0 → ker dn+1 → imdn → Hn(C) → 0 is exact, and thus the following rows are exact:

0 // F (ker dn+1)

∼=
²²

// F (imdn) // F (Hn(C)) //

∼=
²²

0

0 // kerF (dn+1) // imF (dn) // Hn(F (C)) // 0

By exactness (lift, push, push), we get α : F (Hn(C)) → Hn(F (C)). By the Five Lemma (one can show that the diagram
above commutes as the isomorphisms are natural), α must be an isomorphism.

3. Let {Mi}i∈I be a direct system of right R−modules over a directed index set I. Prove that for all left R−modules,

TorR
j

(
lim−→
i∈I

Mi, N

)
∼= lim−→

i∈I

TorR
j (Mi, N) for all j.

Proof. Let P· be a projective resolution of N. Then lim−→(Mi⊗RP·) is isomorphic to the chain complex · · · → lim−→Mi⊗Pk →



lim−→Mi ⊗R Pk−1 → · · · . Of course, the following diagram commutes:

lim−→(Mi ⊗ Pk) //

∼=
²²

lim−→(Mi ⊗ Pk−1)

²²
(lim−→Mi)⊗ Pk // (lim−→Mi)⊗ Pk−1

As it commutes in a natural way, we see Hj(lim−→(Mi ⊗R P·)) ∼= Hj((lim−→Mi ⊗R P ).

Now, as I is directed, lim−→ is an exact covariant functor. Thus Hj(lim−→Mi ⊗R P ) ∼= lim−→Hj(Mi ⊗R P ). Hence,

TorR
i ((lim−→Mi, N) = Hj((lim−→Mi)⊗R P·)

= Hj(lim−→(Mi ⊗ P·))

= lim−→TorR
i (Mi ⊗ P·)

4. Let R be a PID, M, N R−modules. Prove that TorR
i (M,N) = 0 for all i ≥ 2.

Proof. First suppose M is finitely generated. Find f : Rn → M which is onto. Then 0 → ker f → Rn f−→ M → 0 is
exact. Since R is a PID, submodules of free modules are free. Thus ker f is free and we have a projective resolution.
Now, tensor our projective resolution with N to get 0 → ker f ⊗R N → Rn ⊗R N → M ⊗R N → 0, which says
TorR

i (M, N) = 0 for all i ≥ 2. Now, suppose M is not finitely generated. Then M = lim−→Mj , where {Mj}j∈J is the set

of finitely generated submodules of M and J is directed. So TorR
i (M,N) = TorR

i

(
lim−→
j∈J

Mj , N

)
= lim−→

j∈J

TorR
i (Mj , N) = 0

for all i ≥ 2.

5. Let R be commutative, M, N R−modules. Prove TorR
i (M,N) ∼= TorR

i (N,M) for all i.

Proof. Recall that P· ⊗R N ∼= N ⊗R P·. Thus TorR
i (M, N) = Hi(P· ⊗R N) ∼= Hi(P· ⊗R N) ∼= Hi(N ⊗R P·) =

TorR
i (N, M).

6. Let R be a commutative domain, Q its field of fractions. Prove that for all R−modules M, TorR
1 (Q/R,M) = T (M),

the torsion submodule of M.

Proof. Note that 0 → R
i−→ Q

π−→ Q/R → 0 is exact. Since TorR
i (−, M) = Hi(− ⊗R P·) is a left derived functor, we

have the following sequence is exact

· · · → TorR
1 (Q,M)︸ ︷︷ ︸

=0 as Q is flat

→ TorR
1 (Q/R, M) → TorR

0 (R,M)︸ ︷︷ ︸
=R⊗RM=M

→ TorR
0 (Q,M)︸ ︷︷ ︸

=Q⊗RM=M(0)

→ · · ·

(as Q = R(0)). Thus we have the exact sequence 0 → TorR
1 (Q/R, M) α−→ M

β−→ M0. This says α is injective, and thus
TorR

1 (Q/R,M) ∼= im(α) = ker β. Now, m ∈ kerβ if and only if m
1 = 0

1 which is if and only if there exists r ∈ R \ {0}
such that rm = 0 (i.e., m ∈ T (M)). Thus kerβ = T (M) and TorR

1 (Q/R,M) ∼= T (M).

Two Homology Filtrations on a double complex

Let C be a double complex, Zv
p,q(C) = ker dv

p,q and Bv
p,q(C) = imdv

p,q+1. By anticommutativity, dh(Zv
p,q) ⊆ Zv

p−1,q and
dh(Bv

p,q) ⊆ V v
p−1,q. Similarly, if we let Zh(C) = ker dh

p,q and Bh
p,q(C) = imdh

p+1,q, then dv(Zh
p,q) ⊆ Zh

p,q−1 and dv(Bh
p,1) ⊆

Bh
p,q−1. Thus we get an induced map dh : Hv

p,q(C) = Zv
p,q(C)/Bv

p,q(C) → Hv
p−1,q(C). So for each q, we get a chain complex

· · · dh←− Hv
p−1,q(C) dh←− Hv

p,q(C) dh←− · · · . Denote this complex as Hv
Q(C). Let Hh

p Hv
q (C) = Hp(Hv

q (C)) = ker dh
p,q/imdh

p+1,q.



Similarly, let Hh
p (C) denote the complex

...

²²
Hh

p,q+1(C)

dv

²²
Hh

p,q(C)

²²
...

Define Hv
q Hh

p (C) = Hq(Hh
p (C)).

If C is a first quadrant double complex, then both “filtrations” Hh
p Hv

q (C) and Hv
q Hh

p (C) “converge” to Hp+q(Tot(C)).
[To understand the meaning of converge, refer to spectral sequences in Wiebel.]

Theorem 2.33. Let C be a first quadrant double complex of R−modules. Suppose Hv
p,q(C) = 0 for all q > 0 (that is, the

columns of C are exact, except maybe at q = 0). Then Hh
q Hv

0 (C) ∼= Hp(Tot(C)). Similarly, if Hh
p,q(C) = 0 for all p > 0,

then Hv
q Hh

0 (C) ∼= Hq(Tot(C)). Hence, if Hv
p,q = 0 for all q > 0 and Hh

p,q = 0 for all p > 0, then Hh
p Hv

0 (C) = Hv
p Hh

0 (C).

To prove this theorem, we need a few results. But first, we will consider the consequences of the theorem.

Recall. If M is a right R−module, N a left R−module, P· a projective resolution of M and Q· a projective resolution for
N, then TorR

i (M,N) = Hi(M ⊗R Q·) and TorR
i = Hi(P· ⊗R N).

Corollary 2.34. For all i, TorR
i (M, N) = TorR

i (M, N).

Proof. With the notation above, let T be the double complex {Pp ⊗ Qq}p,q∈Z. Then T is first quadrant. The qth row of T

is P· ⊗R Q·. We know P· → M → 0 is exact. As Qq is projective (and thus flat), P· ⊗ Qq → M ⊗ Qq → 0 is exact. Thus

Hh
p,q(T ) =





0, if p > 0

M ⊗R Qq, if p = 0.
Then the complex Hh

0 (T ) is · · · → M ⊗R Qq+1 → M ⊗R Qq → M ⊗R Qq−1 → · · · , that

is, Hh
0 (T ) = M ⊗R Q·. Therefore, Hv

q Hh
0 (T ) = Hq(M ⊗R Q·) = Torq(M, N). Using the facts that Q· → N → 0 and P· is

flat, we get Hv
p,q(T ) =





0, if q > 0,

Pp ⊗R N, if q = 0.
Similarly, Hh

p Hv
0 (T ) = Hp(P · ⊗RN) = Torp(P· ⊗R N).

Definition 2.35. Let C, D be double complexes. A morphism f : C → D is a family of maps {fp,q : Cp,q → Dp,q}p,q∈Z
such that fdv = dvf and fdh = dhf.

Remark. If f : C → D is a morphism of double complexes, then it induces a chain map f̃ : Tot(C) → Tot(D) (define it
componentwise). It is a chain map as f(dv + dh) = (dv + dv)f.

Lemma 2.36. Let C be a first quadrant double complex and D a chain complex (consider it as a double complex with only one
nonzero row). Suppose f : C → D is a map of double complexes. Then we get the induced map f̃ : Tot(C) → Tot(D) = D.

Let T be the double complex obtained by adjoining D to the q − 1 row of C with the differential in D multiplied by −1 and
let dv

p,0 : Tp,0 = Cp,0 → Tp,−1 = Dp,0 be the map fp,0. The cone(f̃) = Tot(T )[−1].

Proof. Note that cone(f̃)n = Tot(C)n−1⊕TotDn = ⊕
p+q=n−1

Cp,q⊕Dn and cone(f̃)n−1 = ⊕
p+q=n−2

Cp,q⊕Dn−1. Note that we

get maps −d : ⊕
p+q=n−1

Cp,q → ⊕
p+q=n−2

Cp,q,−f̃ : ⊕
p+q=n−1

Cp,q → Dn−1, and d : Dn → Dn−1. Then, our map from cone(f̃)n →
cone(f̃)n−1 is defined by (c, dn) 7→ (−d(c), d(dn)− f̃(c)) = (−d(c), d(dn)− f(cn−1,0)) where c = (c0,n−1, c1,n−2, ..., cn−1,0) ∈
Tot(C)n−1.

Similarly, we have Tot(T )[−1]n = Tot(T )n−1 = ⊕
p+q=n−1

Cp,q⊕Dn and Tot(T )n−1 = ⊕
p+q=n−2

Cp,q⊕Dn−1. Note that we now

have maps −dTot(T ) : Tot(T )n−1 → Tot(T )n−2,−d : ⊕
p+q=n−1

Cp,q → ⊕
p+q=n−2

Cp,q,−f : ⊕Cp,q → Dn−1 and −d : Dn → Dn−1.

One can see that −dTot(T ) will be defined above. Thus cone(f̃) = Tot(T )[−1].



Proof. (Of Theorem) Suppose C is a first quadrant double complex and suppose the columns are exact except at p = 0. Let
fp,0 : Cp,0 → Hv

p,0 = Cp,0/imd′p,1 be the natural surjection. Consider Hv
0 (C) as a double complex concentrated in row q = 0

and f : C → Hv
0 (C) defined as above.

0 C0,0oo

²²

C1,0oo

²²

C2,0
dh

oo

²²

oo

0 H0,0(C)oo

²²

H1,0(C)oo

²²

H2,0(C)
dh

oo

²²

oo

0 0 0

This gives a chain map f̃ : Tot(C) → Hv
0 (C). Recall f̃ is a quasi-isomorphism if and only if cone(f̃) is exact. Now, let T

be the double complex obtained by putting Hv
0 (C) into row q = −1, multiply the differential by −1, and keeping C in the

first quadrant, with dv
p,0 = fp,0 for all p. Then T is a bounded complex where all of the columns are exact. By the acyclic

assembly lemma, Tot(T ) is exact. Thus Tot(T )[−1] is exact, and thus by the lemma, cone(f̃) is exact. Therefore, f̃ is a
quasi-isomorphism. Thus Hp(Tot(C)) ∼= Hh

p Hv
0 (C) for all p.

Exercise. If R is a Noetherian, commutative ring, M, N finitely generated R−modules, then TorR
i (M, N) is finitely generated

for all i.

Recall. Let (R, m) be a commutative local Noetherian ring, M a finitely generated R−module. TFAE

1. λR(M) < ∞

2. M is Artinian and Noetherian

3.
√

Ann(M) ⊇ m

4. R/Ann(M) is zero-dimensional

5. Mp = 0 for all p 6= m.

Proposition 2.37. If λ(TorR
0 (M, N)) < ∞, then λ(TorR

i (M,N)) < ∞ for all i.

Proof. Suppose λ(M ⊗N) = λ(TorR
0 (M,N)) < ∞. Then m ⊆

√
AnnR(M ⊗R N) =

√
AnnRM + AnnRN(∗). By the above

exercise, TorR
i (M, N) is finitely generated for all i ≥ 0. By exercise 1 above, AnnTorR

i (M, N) ⊇ AnnM + AnnN. By (∗), we
have

√
AnnRTorR

i (M,N) ⊇ m, which implies λ(TorR
i (M,N)) < ∞ for all i.

Note. If M or N has a projective resolution of finite length, then TorR
i (M, N) = 0 for i >> 0.

Definition 2.38. Let (R, m) be a local commutative ring, M, N finitely generated R−modules such that λ(M ⊗R N) < ∞.

Suppose M or N has a projective resolution of finite length. Then the intersection multiplicity χ(M, N) is defined to be
χ(M, N) =

∑∞
i=0(−1)iλ(TorR

i (M,N)).

Conjectures.

1. Non-negativity: χ(M, N) ≥ 0

2. Vanishing: χ(M, N) = 0 if dimR M + dimR N < dim R where dimR M = dim(R/AnnM).

3. Nonvanishing: χ(M, N) 6= 0 if dim M + dim N = dim R.

Serre proved the above three conjectures in the case that R is a regular local ring.

Proposition 2.39. Let R be a ring, F a right R−module. TFAE

1. F is flat.

2. TorR
i (F,N) = 0 for all i ≥ 1 and left R−modules N.

3. TorR
i (F,N) = 0 for all finitely generated R−modules.



Proof. (1) ⇒ (2) ⇒ (3) is clear. So we shall just prove (3) ⇒ (1). For an arbitrary module N, note that N = lim−→
Ni f.g.

Ni. So

TorR
i (F, N) = lim−→TorR

i (F, Ni) = 0 (Exercise 3 above works both ways as −⊗RN is also a left adjoint and thus lim−→(Mi⊗N) ∼=
(lim−→Mi)⊗N.) Now, it is enough to show F ⊗R− preserves short exact sequences. Let 0 → A → B → C → 0 be a short exact
sequence. Then applying F⊗R−, we get a long exact sequence on Tor: 0 = TorR

1 (F, C) → F⊗RA → F⊗RB → F⊗RC → 0.

But then 0 → F ⊗R A → F ⊗R B → F ⊗R C → 0 is exact, which says F is flat.

Proposition 2.40. Let f : R → S be a ring homomorphism. Suppose R is commutative and S is a flat R−algebra. Then
for all R−modules M, N we have TorS

i (M ⊗R S, N ⊗R S) ∼= (TorR
i (M, N))⊗R S.

Proof. Let P· be a projective resolution of M. Then P· ⊗R S is a projective resolution of M ⊗R S as an S−module. So
TorS

i (M ⊗R S,N ⊗R S) = Hi((P ⊗R S) ⊗S (N ⊗R S)) = Hi((P ⊗R N) ⊗R S) = Hi(P ⊗R N) ⊗ S = TorR
i (M,N) ⊗R S as

−⊗R S is an exact functor (as S is flat).

Corollary 2.41. Let R be commutative, W a multiplicatively closed subset of R, M,N R−modules. Then TorRW
i (MW , NW ) =

(TorR
i (M, N))W for all i ≥ 0.

Exercise. Let R be a commutative ring and I, J ideals. Then TorR
i (R/I, R/J) ∼= I ∩ J/IJ.

Proof. As 0 → I → R → R/I → 0 is exact, we get the following long exact sequence on Tor:

· · · → TorR
1 (R, R/J)︸ ︷︷ ︸

=0 as R is flat

→ TorR
1 (R/I,R/J) → TorR

0 (I, R/J)︸ ︷︷ ︸
∼=I⊗RR/J

i⊗1−−→ TorR
0 (R, R/J)︸ ︷︷ ︸

∼=R⊗R/J∼=R/J

→ · · ·

which yields the exact sequence 0 → TorR
1 (R/I, Rj)

ψ−→ I/IJ
φ−→ R/J where φ(i + IJ) = i + J. Then, ψ is injective, and

TorR
1 (R/I,R/J) ∼= imψ = ker φ = I ∩ J/IJ.

As a result, since every R−module is projective and thus flat in a semisimple ring, we see 0 = TorR
1 (R/I,R/J) = I∩J/IJ,

which implies I ∩ J = IJ and I = I2.

Exercise. Let f : R → S be a homomorphism of commutative rings. Let x1, ..., xn ∈ R. Prove K·(x1, .., xn) ⊗R S ∼=
K·(f(x1), ..., f(xn)).

Proof. This is easily proven for the n = 1, 2 case, however it gets significantly more complicated after that. The statement,
however, is true.

Exercise. Let S be a commutative ring, x1, ..., xn ∈ S. Let R = S[T1, ..., Tn] be a polynomial ring in n variables over S.

Define a ring homomorphism f : R → S by Ti 7→ xi. Prove Hi(x1, ..., xn) ∼= TorR
i (R/(T1, ..., Tn), S).

Proof. By a previous exercise, we know K·(T1, ..., Tn) ⊗S R ∼= K·(x1, ..., xn). Note that K·(T1, ..., Tn) is a free resolution as
T1, ..., Tn are variables. Also, Ti is a non-zero-divisor of S/(T1, ..., Ti−1), which implies T1, ..., Tn is a regular sequence. Now,
TorR

i (S/(T1, ..., Tn), R) = Hi(K(T1, ..., Tn)⊗R) = Hi(K·(x1, ..., xn)) = Hi(x1, ..., xn).

This shows the following:

1. Hi(x1, ..., xn) ∼= Hi(xσ(1), ..., xσ(n)) for all σ ∈ Sn.

2. If R is Noetherian and x1, ..., xn ∈ J(R) is a regular sequence, then xσ(1), ..., xσ(n) is a regular sequence.

Exercise. Let R be a commutative domain, which is not a field. Then Q(R) is not projective.

Proof. Suppose Q is projective. Then there exists Q′ such that Q⊕Q′ = ⊕
i∈I

R. So we can find i : Q ↪→ ⊕
i∈I

R which is nonzero.

Then there exists a nonzero component, say j ∈ I and so ρ := πji : Q → R is nonzero. Let r = ρ(1). As ρ is nonzero, there
exists some a

b ∈ Q such that ρ(a
b ) 6= 0. Then 1

b ρ(a) 6= 0, which says aρ(1) = ρ(a) 6= 0. Thus ρ(1) 6= 0. Now r = nρ( 1
n ) ∈ (n)

for all (n) ∈ R \ {0}. Assume r 6= 0. Then r ∈ (r2), which says r = sr2 for some s ∈ R. Then (1− sr)r = 0, which says r is a
unit as R is a domain. As R is not a field, there exists v ∈ R which is not a unit. Then, r ∈ (v) 6= R, a contradiction. Thus
Q is not projective.



Theorem 2.42. Let R be a Noetherian commutative ring, x1, ..., xn ∈ J(R). Then x1, ..., xn is a regular sequence if and only
if H1(x1, ..., xn) = 0.

Proof. We have already proved the forward direction, so suppose H1(x1, ..., xn) = 0 and induct on n. If n = 1, then
0 = H1(x1) ∼= (0 : x1). Thus x1 is a non-zero-divisor on R, which says it is a regular sequence. So suppose true for
n − 1 elements. Consider the long exact sequence on Koszul homology: · · · → H1(x1, ..., xn) xn−−→ H1(x1, ..., xn−1) →
H1(x1, ..., xn) = 0. This says H1(x1, ..., xn−1) = xnH1(x1, ..., xn−1) ⊆ J(R)H1(x1, ..., xn−1). Now, as R is Noetherian,
H1(x1, ..., xn−1) is finitely generated. By NAK, H1(x1, ..., xn−1) = 0. Thus x1, ..., xn−1 is a regular sequence. Now, consider
0 = H1(x1, ..., xn) → R/(x1, ..., xn−1︸ ︷︷ ︸

=H0(x1,...,xn−1)

xn−−→ R/(x1, ..., xn−1) → · · · . As this sequence is exact, xn is a non-zero-divisor in

R/(x1, ..., xn). Hence, {x1, ..., xn} is a regular sequence.

Definition 2.43. A flat resolution of an R−module M is a complex F· such that

1. Fi = 0 for all i < 0

2. Fi is flat for all i

3. Hi(F·) =





M, if i = 0

0, if i 6= 0.
. If Fn 6= 0 and Fi = 0 for all i > n, we say F· has length n.

Remark. Any projective resolution of M is a flat resolution. Hence flat resolutions always exist.

Lemma 2.44 (Dimension Shifting Lemma). Let R be a ring and 0 → C → Fn−1 → · · · → F0 → M → 0 be exact, where
Fi is flat for all i. Then, for all i ≥ 1, T orR

i (C, N) ∼= Torn+i(M, N) for all R−modules N.

Proof. We will induct on n. For n = 0, we have 0 → C → F0 → M → 0 is exact. From the long exact sequence on Tor,
this gives us · · · → TorR

i+1(F0, N)︸ ︷︷ ︸
=0

→ TorR
i+1(M,N) → TorR

i (C, N) → TorR
i (F0,M)︸ ︷︷ ︸

=0 if i≥1

→ · · · , which says TorR
i+1(M,N) ∼=

TorR
i (C,N). So suppose true for n− 1. Let D = ker(Fn−1 → Fn−2) = coker(C → Fn−1). By induction, Torn+i−1(M, N) ∼=

TorR
i (D,N) for all i ≥ 1. By the n = 1 case, we have TorR

i+1(D,N) ∼= TorR
i (C, N) for all i ≥ 1.

Proposition 2.45 (Flat Resolution Lemma). Let R be a ring, M a right R−module, N a left R−module. Let F· be a
flat resolution of M. Then TorR

i (M,N) ∼= Hi(F· ⊗R N) for all i ≥ 0.

Proof. We will induct on i. If i = 0, then · · · d2−→ F1
d1−→ F0 → M → 0 is exact. By the right exactness of tensor products,

this says F1⊗R N → F0⊗R N → M ⊗R N is exact. Hence H0(F·⊗R N) ∼= M ⊗R N ∼= TorR
0 (M, N). Let K1 be the kernel of

the map F0 → M. By exactness, K1 = coker(F2 → F1). So we have the exact sequences 0 → K1
i−→ F0 → M → 0 and F2

d2−→
F1 → K1 → 0. Tensor with N to get the long exact sequence TorR

1 (F0, N)︸ ︷︷ ︸
=0

→ TorR
1 (M,N) → TorR

0 (K1, N)︸ ︷︷ ︸
=K1⊗RN

→ TorR
0 (F0, N)︸ ︷︷ ︸

=F0⊗RN

.

We also have that F2 ⊗R N
d2⊗1−−−→ F1 ⊗R N → K1 ⊗R N → 0 is exact. So consider the commutative diagram

F2 ⊗R N

φ

²²

d2⊗1 // F1 ⊗R N //

=

²²

K1 ⊗R N

i⊗1

²²

// 0

0 // ker(d1 ⊗ 1) // F1 ⊗R N // F0 ⊗R N

By the Snake Lemma, TorR
1 (M, N) ∼= ker(i⊗ 1) ∼= cokerφ ∼= H1(F· ⊗R N).

Now, suppose the theorem holds up to i. By dimension shifting, we know TorR
i+1(M, N) ∼= TorR

i (K1, N). Note F ′· :=

· · ·F2
d2−→ F1 → 0 is a flat resolution of K1. Thus TorR

i (K1, N) ∼= Hi(F ′· ⊗R N) ∼= Hi+1(F· ⊗R N) for i ≥ 1.

Note. A similar result holds if one takes a flat resolution of N.

Definition 2.46. Let R be a ring and M an R−module. The flat dimension of M is

fdRM := inf{n|M has a flat resolution of length n}.

Theorem 2.47. Let M be an R−module. TFAE



1. fdRM ≤ n

2. For every exact sequence Fn−1
dn−1−−−→ Fn−2 → · · · → F0 → M → 0 such that Fi is flat for all i, ker dn−1 is flat.

3. TorR
n+1(M, N) = 0 for all R−modules N.

Proof. Note that (2) ⇒ (1) ⇒ (3) is clear, So suppose (3) holds. Let Fn = ker dn−1. Then 0 → Fn → Fn−1
dn−1−−−→ · · · → F0 →

M → 0 is exact. By the dimension shifting lemma, TorR
1 (Fn, N) ∼= TorR

n+1(M, N) = 0 for all R−modules N. Hence, Fn is
flat.

Corollary 2.48. Let R be a ring. Then fdRM ≤ n for all finitely generated R−modules M if and only if fdRM ≤ n for all
R−modules M.

Proof. We need only prove the forward direction. Let M be an R−modules and recall M = lim−→
M ′ f.g.

M ′. Hence, for all

R−modules N, TorR
n+1(M,N) = lim−→TorR

n+1(M
′, N) = 0.

Proposition 2.49. Let (R, m) be a commutative quasi-local ring and M a finitely presented R−module. Let Rm φ−→ Rn ε−→
M → 0 be a finite presentation. TFAE

1. φ(Rm) ⊆ mRn

2. φ⊗ 1 : Rm ⊗R R/m → Rn ⊗R R/m is the zero map.

3. n = µR(M)

4. ker ε ⊆ mRn.

Proof. Note that (1) ⇔ (4) as the sequence is exact. To show (1) ⇔ (2), consider the following diagram with exact rows:

Rm ⊗R R/m
φ⊗1 //

∼=
²²

Rn ⊗R R/m //

∼=
²²

M ⊗R/m //

∼=
²²

0

Rm/mRn φ // Rn/mRn // M/mM // 0

Now, φ⊗ 1 = 0 if and only if φ = 0 which is if and only if φ(Rm) ⊆ mRn.

To show (2) ⇔ (3), note that φ ⊗ 1 = 0 if and only if φ = 0 which is if and only if Rn/mRn ∼= M/mM which is if and
only if µR(m) = n by NAK.

Definition 2.50. Let (R, m) be a commutative Noetherian local ring and M a finitely generated R−module. A minimal

free resolution of M is a resolution F· of M such that

1. Fi is free of finite rank for all i.

2. di(Fi) ⊆ mFi−1 for all i.

Lemma 2.51. Minimal free resolutions exist.

Proof. Consider the following diagram, where m0 = µR(M) and m1 = µR(K1) :

Rm1
d1 //

""EE
EE

EE
EE

Rm0 // M // 0

K1

<<yyyyyyyy

""EE
EE

EE
EE

E

0

Since m0 = µR(M), we see K1 ⊆ mRm0 by the above proposition. Thus d1(Rm1) ⊆ mRm0 . Let K2 = ker d1 and
let d̃2 = Rm2 → K2 be a surjective homomorphism where m2 = µR(K2). Let d2 : Rm2 → Rm1 be the composition
Rm2

d2−→ K2 ↪→ Rm1 . Then Rm2
d2−→ Rm1

d1−→ Rm0 → M is exact and minimal. Now, repeat with K3 = ker d2.



Lemma 2.52. Let (R,m) be local and φ : F → G a map of finitely generated free R−modules. Then φ is an isomorphism if
and only if φ : F/mF → G/mG is an isomorphism.

Proof. Let K = kerφ,C = cokerφ. Since F/mF
φ−→ G/mG → C/mC → 0 is exact and φ is surjective, we have C = mC.

By NAK, C = 0. Now, we have 0 → K → F
φ−→ G → 0 is exact. As G is free, this sequence splits. Thus 0 → K/mK →

F/mF
φ−→ G/mG → 0 is exact. As φ is an isomorphism, K = mK and thus K = 0 by NAK.

Theorem 2.53. Let (R, m) be a local ring and f : M → N an isomorphism of finitely generated R−modules. Let F·, G·
be minimal free resolutions of M and N, respectively. Then any chain map φ· : F· → G· lifting f is a chain isomorphism.
Moreover, φi|Bi(F ) : Bi(F ) → Bi(G) is an isomorphism for all i ≥ 0. (Recall Bi(F ) = imdi+1).

Proof. Consider the following diagram:

F· : · · · // Fi
di //

φi

²²

Fi−1
di−1 //

φi−1

²²

· · · d1 // F0
//

φ0

²²

0

G· : · · · // Gi

d′i // Gi−1
//

d′i−1 // · · · // G0
// 0

We know φ· : F· → G· lifting f exists by the comparison theorem. Now, consider the following diagram with exact rows:

F1
d1 //

φ1

²²

F0
ε //

φ0

²²

M

f

²²

// 0

G1

d′1 // G0
δ // N // 0

Now, tensor with R/m to get:

F1 ⊗R R/m
d1⊗1 //

φ1⊗1

²²

F0 ⊗R R/m
ε⊗1 //

φ0⊗1

²²

M/mM

f

²²

// 0

G1 ⊗R R/m
d′1⊗1 // G0 ⊗R R/m

δ⊗1 // N/mN // 0

Note d1 ⊗ 1 = d′1 ⊗ 1 = 0 by the above proposition. Thus ε⊗ 1 and δ⊗ 1 are isomorphisms. Since f is an isomorphism, so is
φ0 ⊗ 1.

By the Lemma, we have φ0 is an isomorphism. By exactness, we have B0(F ) = imD1 = ker ε and B0(G) = imd′1 = ker δ.

Thus we have the diagram below where φ̃0 = φ0|B0(F ) :

0 // B0(F ) //

eφ0

²²

F0
ε //

φ0

²²

M //

f

²²

0

0 // B0(G) // G0
// N // 0

By the Five Lemma, φ̃0 is an isomorphism.
To complete the proof, apply this argument to the resolutions

F ′· : · · · // F2
d2 //

φ2

²²

F1
d1 //

φ1

²²

B0(F ) //

eφ0

²²

0

G′· : · · · // G2

d′2 // g1
d′1 // B0(G) // 0

Since φ̃0 is an isomorphism and F ′· and G′· are minimal free resolutions of B0(F ) and B0(G), respectively, we get φ1 is an
isomorphism and φ1|B1(F ) : B1(F ) → B1(G) is an isomorphism. Continue.

Corollary 2.54. Let M be a finitely generated R−module, where (R, m) is local. Then any two minimal free resolution of
M are chain isomorphic.



Definition 2.55. Let (R, m) be local and M a finitely generated R−module. The ith syzygy of M, denoted syzi(M), is
defined to be Bi(F ) where F is any minimal free resolution of M.

Exercise. Let (R,m) be local, M a finitely generated R−module. Let F·, G· be free resolutions of M, where F· is minimal.
Prove that G· = F· ⊕ L· (as chain complexes) for some exact complex of free modules L·.

Proof. If i > 0, then 0 = Hi(G·) = Hi(F·) ⊕ Hi(L·), which says Hi(L·) = 0 for all i > 0. Consider the following diagram,
where ψ· and φ· are liftings of 1M .

F· //

ψ·
²²

M //

1M

²²

0

G· //

φ·
²²

M //

1M

²²

0

F· // M // 0

Then φ·ψ· lifts 1M . By the theorem, φ·ψ· is a chain isomorphism. Let g· : F· → F· be the inverse of φ·ψ·. Then g·φ· : G· → F·
is the splitting map for the exact sequence 0 → F·

ψ·−→ G· → G·/ψ(F·) → 0 (note ψ· is injective as (g·φ·)ψ· = 1). Thus
G· = F· ⊕ L·, where L· = G·/ψ(F·).

Exercise. Let (R, m) be local and x1, ..., xn ∈ m a regular sequence. Then K·(x1, ..., xn) is a minimal free resolution of
R/(x1, ..., xn).

Proof. We will induct on n. For n = 1, we have K·(x) is the chain 0 → R → R → 0. Tensoring with R/m, we have
0 → R⊗R R/m → R⊗R R/m → 0 where a⊗ b 7→ xa⊗ b = a⊗ xb = 0 as x ∈ m. Thus K·(x) is minimal by the proposition.
So, suppose true for n > 1. Recall K·(x1, ..., xn−1) = cone(x̂n). Suppose we have φi : K·(x1, ..., xn−1)i−1⊕K·(x1, ..., xn−1)i →
K·(x1, ..., xn−1)i−2 ⊕K·(x1, ..., xn−1)i−1 where (a, b) 7→ (−φ′i−1(a), φ′i(b)− xna). Then, applying −⊗R/m gives us

(a, b)⊗ 1 //

∼=
²²

(−φ′i−1(a), φ′i(b)− xna)⊗ 1

∼=
²²

(a⊗ 1, b⊗ 1) // (−φ′i−1(a)⊗ 1, (φ′i(b)− xna)⊗ 1)

Now, −φ′i−1(a)⊗ 1 = 0 = φ′i(b)⊗ 1 by induction and xna⊗ 1 = a⊗ xn = 0 as xn ∈ m. Thus φi ⊗ 1 is the zero map, which
implies K·(x1, ..., xn) is minimal by the proposition.

Fact. If x1, ..., xn ∈ R and K·(x1, ..., xn) is the Koszul complex, then imdi ⊆ (x1, ..., xn)Ki−1.

Exercise. If x1, ...xn for a regular sequence, then TorR
i (R/(x1, ..., xn), R/(x1, ..., xn)) ∼= (R/(x1, ..., xn))(

n
i).

Definition 2.56. Let (R, m) be local, M a finitely generated R−module. For i ≥ 0, the ith Betti number of M is defined
by βi(M) = rankFi, where F· is a minimal free resolution of M.

By the exercise, if x1, ..., xn form a regular sequence, then βi(R/(x1, ..., xn)) =
(
n
i

)
.

Open Problem. Let (R, m) be a local ring and M a finitely generated R−module such that pdRM = n. Then βi(M) ≥ (
n
i

)

for all i ≥ 0. Note: This is called the Buchsbaum-Eisenbud-Horrocks Conjecture.

Proposition 2.57. Let (R, m, k) be local, M finitely generated. Then for all i ≥ 0, βi(M) = dimk TorR
i (M, k). (By exercise

1 above, as m = annk, m ⊆ annTorR
i (M, k), which says Tor is a k−module).

Proof. Let F· be a minimal free resolution of M. By definition, Fi
∼= Rβi(M). So TorR

i (M,k) = Hi(F·⊗R k), which yields the
following exact sequence where all of the maps are the zero map (by Proposition 2.49): · · · → Rβi+1(M)⊗Rk → Rβi(M)⊗Rk →
· · · . Thus TorR

i (M,k) = Rβi(M) ⊗R k = kβi(M).

Corollary 2.58. Let (R, m) be local, and M finitely generated. TFAE

1. pdRM ≤ n.

2. fdRM ≤ n.



3. TorR
n+1(M, k) = 0.

Proof. (1) ⇒ (2) as every projective module is flat. (2) ⇒ (3) by the flat resolution lemma. (3) ⇒ (1) as then βi(M) = 0 for
all i ≥ n + 1, which says pdR(M) ≤ n by the proposition.

Corollary 2.59. Let (R, m) be local, M finitely generated. Then pdRM = fdRM = sup{n|TorR
n (M, k) 6= 0}.

Theorem 2.60. Let (R, m, k) be local. TFAE

1. pdRM < ∞ for all finitely generated R−modules M.

2. fdRM < ∞ for all R−modules M.

3. pdRk < ∞.

4. TorR
n (k, k) = 0 for some n ≥ 0.

5. For all R−modules N, M, there exists ` such that TorR
n (M, N) = 0 for all n ≥ `.

Proof. Note (2) ⇒ (5) follows from the Flat Resolution Lemma, (5) ⇒ (4) is clear, (4) ⇒ (3) follows from the corollary with
M = k, (3) ⇒ (1) is the corollary (compute TorR

i (M, k) using a projective resolution of k), and (1) ⇒ (3) is clear. Thus, its
enough to show (3) ⇒ (2). Let n = pdRk. Then TorR

n+1(M, k) = 0 for all ` > n. If M is finitely generated, then pdRM ≤ n,

which implies TorR
n+1(M,N) = 0 for all N. For an arbitrary M, TorR

n+1(M, N) ∼= lim−→
Mi f.g.

TorR
n+1(Mi, N) = 0 for all N. Thus

fdRM ≤ n.

2.3 Regular Local Rings

Generalized Krull’s Principal Ideal Theorem. Let R be a commutative Noetherian ring. Let p be a prime ideal which
is minimal over (x1, ..., xn). Then ht(p) ≤ n, where ht(p) = sup{n| there exist primes q0 ( q1 ( · · · ( qn = p} = dim Rp. In
particular, any prime p needs at least ht(p) generators.

If (R, m) is local, then m needs at least ht(m) = dim R generators.

Example. Let R = k[x1, ..., xn] be a polynomial ring over a field and m = (x1, ..., xn). Then ht(m) ≤ n by Krull’s Principal
Ideal Theorem. On the other hand, ht(m) ≥ n as (x1, ..., xn) ) (x1, ..., xn−1) ) · · · ) (x1) ) (0) is a chain of primes. Thus
ht(m) = n.

Definition 2.61. A local ring (R, m) is called regular if m = (x1, ..., xd) where d = dim R for some x1, ..., xd ∈ m.

Examples. k[x1, ..., xn](x1,...,xn), any field, and any local PID (like Z(p)) are all regular local rings.

Note. In the case R = k[x1, ..., xn]m (where m = (x1, ..., xn)x1,...,xn), we have x1, ..., xn is a regular sequence in R. So
K·(x1, ..., xn) is a minimal free resolution of R/(x1, ..., xn) ∼= k. So pdRk ≤ n, which implies pdRM ≤ n for all finitely
generated R−modules M. Its “easy” to see that if R is a regular local ring, then pdRR/m < ∞.

Theorem 2.62 (Auslander, Buchsbaum, Serre, ’57). Let (R, m, k) be a local ring. TFAE

1. R is regular

2. pdRk < ∞

3. pdRM < ∞ for all finitely generated R−modules M.

Corollary 2.63. Let R be a regular local ring, p ∈ SpecR. Then Rp is a regular local ring.

Proof. Let M = R/p and 0 → Fn → Fn−1 → · · · → F0 → R/p → 0 be exact, where Fi are free. Then 0 → (Fn)p →
(Fn−1)p → · · · → (F0)p → Rp/pRp → 0 is a finite free Rp− resolution of Rp/pRp. Thus Rp is regular.

Exercise.

1. Let R be commutative, M, N R−modules. Let p ∈ SpecR. Consider the natural R−linear map φ : HomR(M, N)p →
HomRp(Mp, Np), defined by f

s 7→ f̃
s where f̃

s : Mp → Np is defined by m
t 7→ f(m)

st . Prove that if M is finitely presented,
then φ is an isomorphism.



Proof. First note the following

(HomR(Rm, N))p
∼= (⊕mHomR(R, N))p

∼= (⊕mN)p
∼= ⊕Np

∼= ⊕mHomRp(Rp, Np) ∼= HomRp(Rm
p , Np).

Note also that this isomorphism is natural as it is a composition of natural isomorphisms. Now, as M is finitely
presented, we have Rn → Rm → M → 0 is exact. This sequence stays exact if we localize and then Hom, or if we Hom
and then localize. Thus we have the following commutative diagram with exact rows

0 //

∼=
²²

0 //

∼=
²²

HomR(M, N)p
//

φ

²²

HomR(Rm, N)p
//

∼=
²²

HomR(Rn, N)p

∼=
²²

0 // 0 // HomRp(Mp, Np) // HomRp(Rm
p , Np) // HomRp(Rn

p , Np)

This is in fact commutative by the naturality of φ. By the Five Lemma, φ is an isomorphism.

2. Let R be commutative, M a finitely presented R−module. Prove that M is a projective R−module if and only if Mp

is a free Rp−module for all p ∈ SpecR.

Proof. For the forward direction, note that if M is projective, then M ⊕N = Rn for some R−module N. As localizing
commutes with direct sums, this says Mp ⊕ Np = Rn

p , which says Mp is a projective Rp module. Of course, as M is
finitely presented, Mp is and thus Mp is free as it is a finitely generated projective over a local ring. To prove the
backwards direction, we wish to show HomR(M,−) is exact. As HomR(M,−) is left exact, it is enough to show that
for any surjection φ : X → Y that φ∗ : HomR(M,X) → HomR(M,Y ) is also surjective. This is true if it is locally
surjective, that is, if φ∗

1 : (HomR(M,X))p → (HomR(M, Y ))p is surjective for all p ∈ SpecR. Of course, by the above
exercise, we have the following commutative diagram.

(HomR(M, X))p

∼=
²²

φ∗
1 // (HomR(M, Y ))p

∼=
²²

HomRp(Mp, Xp) // HomRp(Mp, Yp)

As Mp is free, it is projective and thus the bottom map is surjective. Thus φ∗
1 is surjective for all primes p, which says

φ∗ is surjective and thus M is projective.

3. Let f : R → S be a ring homomorphism, M a flat right R−module. Prove M ⊗R S is a flat right S−module. In
particular, if R is commutative and M is flat, then MS is flat as an RS−module for a mcs S of R.

Proof. Let A,B be left S−modules with 0 → A
g−→ B exact. Then 0 → S ⊗S A

1⊗g−−→ S ⊗S B is exact. Apply M ⊗R −
to get the following commutative diagram (as the columns are natural isomorphisms):

0 // M ⊗R (S ⊗S A)
1⊗(1⊗g) //

∼=
²²

M ⊗R (S ⊗S B)

∼=
²²

(M ⊗R S)⊗S A
(1⊗1)⊗g // (M ⊗R S)⊗S B

Thus M ⊗R S preserves injections, which implies it is flat.

Similarly, if M is flat, then M/IM is a flat R/I−module.

4. Let R be commutative, M a finitely presented flat R−module. Prove M is projective.

Proof. First, we shall prove a claim.

Claim. Let (R,m) be quasi-local, M a finitely presented flat R−module. Then M is free.



Proof. As M is finitely presented, it is finitely generated. Thus Rn φ−→ M → 0 is surjective for n = µR(M) =
µR/m(M/mM) = dimR/m(M/mM). By a previous exercise, Rn finitely generated and M finitely presented implies

kerφ is finitely generated. Also, 0 → kerφ
i−→ Rn φ−→ M → 0 is exact. This gives us the following long exact

sequence on Tor.

· · · → TorR
1 (M,R/m)︸ ︷︷ ︸

=0

→ TorR
0 (kerφ, R/m)︸ ︷︷ ︸

=ker φ/m ker φ

→ TorR
0 (Rn, R/m)︸ ︷︷ ︸
(R/m)n

f−→ TorR
0 (M, R/m)︸ ︷︷ ︸
=M/mM

→ 0

Clearly, f is surjective. Note it is injective as well as the domain and image are n−dimensional vector spaces. So
kerφ/m kerφ = 0, which says kerφ = m ker φ. Recall kerφ is finitely generated and so kerφ = 0 by Nakayama’s
Lemma. Thus M is free.

Now, let M be a finitely presented flat R−module. Then Mp is finitely presented by the previous exercise and is thus
flat. Further, Rp is local and so Mp is a free Rp−module. By exercise 2 above, M is a projective R−module.

This is also true in the noncommutative case, but the proof is harder.

Exercise. Find a commutative ring R and a finitely generated flat R−module M such that M is not projective. (Note: R

can not be Noetherian).

3 Cochain Complexes

Definition 3.1. Let A be an abelian category. A cochain complex C · in A is a family of objects {Cp}p∈Z and morphisms
dp : Cp → Cp+1 for all p such that dp+1dp = 0 for all p. A cochain complex is written as C · : · · · → Cp → Cp+1 →
Cp+2 → · · · . Let Zp(C) = ker dp be the p−cocycles of C and Bp(C) = imdp−1 be the p−coboundaries of C. Also, we
define Hp(C) = Zp(C)/Bp(C) to be the pth cohomology of C.

Remarks.

1. Any cochain complex C · in A can be viewed as a chain complex C ′· by letting Ci = C−i and di = d−i. Then d−i :
C−i → C−i+1. Note Hp(C) = H−p(C ′).

2. Every cochain complex C in A corresponds uniquely to a chain complex in Aop, where C : · · ·Ci → Ci+1 → · · · maps
to Cop : · · · ← Ci ← Ci+1 ← · · · (where Ci = (Cop)i).

Proposition 3.2. Let 0 → A
f−→ B

g−→ C → 0 be a short exact sequence of cochain complexes. Then there exists a natural
long exact sequence on cohomology: · · ·Hp(A)

f∗−→ Hp(B)
g∗−→ Hp(C) ∂−→ Hp+1(A) → · · · .

Definition 3.3. Let A be an abelian category. An object I of A is injective if HomA(−, I) is an exact functor. A is said
to have enough injectives if every object can be embedded in an injective object.

Example. << R−mod >> and << mod−R >> have enough injectives.

Note.

• A has enough injectives if and only if Aop has enough projectives.

• An object is injective in A if and only if it is projective in Aop.

Definition 3.4. Let A be an abelian category and M ∈ ObjA. An injective resolution of M is a cochain complex I in A
such that

1. Ii = 0 for all i < 0

2. Ii is injective for all i.

3. Hi(I ′) =





M if i = 0,

0 if i 6= 0.



So 0 → M
ε−→ I0 d0

−→ I1 d1

−→ · · · is exact where ε is the augmentation map. The injective dimension of M, denoted idRM,

is the length of the shortest injective resolution of M.

Note. If A has enough injectives, then injective resolutions exist:

0 // M
ε // I0

""FF
FF

FF
FF

F
d0

/_________ I1 d1
/_________

##GGGGGGGGG I2 · · ·

cokerε

<<xxxxxxxxx

##FFFFFFFFF cokerd1

::ttttttttt

%%JJJJJJJJJJ

0 0

Example. 0 → Q → Q/Z → 0 is an injective resolution of Z. This is, in fact, the shortest one. Otherwise, Z would be
injective. However, if that were the case, then we’d have the following

Z

0 // Z

1

OO

2 // Z

f
_?

?
?

?

Say f(1) = a. Then 2a = 1, a contradiction. Thus Z is not injective (as a Z−module). So idZZ = 1.

Comparison Theorem for Injective Resolutions. Let A be an abelian category. Consider the following diagram of
cochain complexes in A :

0 // M //

φ

²²

I0 // I1 // · · ·

0 // N // E0 // E1 // · · ·

Suppose the top row is exact and Ei is injective for all i. Then there exists a cochain map f · : E· → I · lifting φ. Furthermore,
any two such liftings are cochain homotopic.

3.1 Right Derived Functors

Definition 3.5. Let F : A → B be a covariant, additive, left exact functor on abelian categories. Define the ith right

derived functor of F by RiF := Hi(F (I ·)), where I · is any injective resolution of N. If f : N1 → N2, let I ·1, I
·
2 be

injective resolutions of N1, N2, respectively. By the comparison theorem, there exists a cochain map φ· : I ·1 → I ·2 lifting f. Set
(RiF )(f) := F (φi)∗ : (RiF )(N1) → (RiF )(N2).

Remark. R0F = F.

Horseshoe Lemma for Injective Resolutions. Suppose we have the following diagram

I · E·

0 // A

OO

// B // C //

OO

0

where I · and E· are injective resolutions of A and C, respectively. Then, there exists an injective resolution C · of B such
that 0 → I · → C · → E· → 0 is exact.

Theorem 3.6. Let A be an abelian category with enough injectives. For any short exact sequence 0 → A → B → C → 0 in
A, there exists a long exact sequence on right derived functors · · · → RiF (A) → RiF (B) → RiF (C) → Ri+1F (A) → · · · ,

which is natural.

Definition 3.7. Let A =<< R−mod >> and F = HomR(M,−) for some R−modules M. Then F : A →<< Z−mod >> .

Define RiF (−) to be Exti(M,−).



To compute ExtiR(M, N), let I · be an injective resolution of N. Then ExtiR(M, N) = Hi(HomR(M, I ·)). The Ext functor
gets its name from the bijective correspondence of Ext1R(M, N) and modules X such that 0 → N → X → M → 0 is a short
exact sequence. The module X is called a extension of M by N . This is referred to as the Yoneda description of Ext. In
this correspondence, Ext1R(M, N) = 0 if and only if every extension of M by N splits.

As with Tor, there are two ways to define Ext. The second way is via a right derived functor of a contravariant functor:

Definition 3.8. Let F : A → B be a contravariant left exact additive functor on abelian categories, where A has enough
projectives. Define the ith right derived functor of F as follows: Let M ∈ ObjA and P· a projective resolution of M. Then
F (P·) can be viewed as a cochain complex where F (P0)i = F (P0)i for all i.

· · · → P2
2
→ P1

1
→ P0

0
→ 0 ⇒ 0 → F (P0)

0
→ F (P1)

1
→ F (P2)

2
→ · · ·

Define RiF (M) := Hi(F (P·)). As before, using the comparison theorem for projective resolutions, one can show RiF is a
well-defined contravariant functor from A → B.

Remarks.

1. R0F = F

2. If 0 → A → B → C → 0 is a short exact sequence in A, then one obtains the natural long exact sequence · · ·RiF (C) →
RiF (B) → RiF (A) → Ri+1F (C) → · · · for all i.

3. Given F : A → B as above, define F op : Aop → B by F op(A) = F (A) for all A ∈ ObjAop = ObjA and F op(f) = F (fop)
for all morphisms f in Aop. Then, we have

F : A
f−→ B

F

²²

F op : B
fop

−−→ A

F op

²²

F (A)
F (f)−−−→ F (B) F op(B)

F (f)−−−→ F op(A)

So F op is a covariant left exact functor and RiF = (RiF op)op.

Definition 3.9. If F = HomR(−, N) for some left R−module N, then we denote RiF (−) by ExtiR(−, N).

Theorem 3.10. For all R−modules M, N, we have ExtiR(M, N) ∼= ExtiR(M,N).

To prove this, we first need to define the following:

Definition 3.11. A cochain double complex in A is a family of objects {Cp,q}p,q∈Z and morphisms dv : Cp,q → Cp,q+1

and dh : Cp,q → Cp+1,q such that dvdh +dhdv = (dv)2 = (dh)2 = 0. If C is a cochain double complex, then the total complex

Tot⊕(C) is define by Tot⊕(C)n = ⊕
p+q=n

Cp,q and dtot = dv + dh.

Example. Let P· be a chain complex, I · a cochain complex. Let HomA(P, I) denote the cochain double complex
HomA(P, I)p,q = HomA(Pp, I

q) where dv : HomA(Pp, I
q) → HomA(P p, Iq+1) is given by f 7→ (−1)p+q+1dIf and dh :

HomA(Pp, I
q) → HomA(Pp+1, I

q) is given by f 7→ fdP (where dI is the differential on I and dP the differential on P.

Proof of Theorem (Sketch). Let P· be a projective resolution of M and I · an injective resolution of N. Form the cochain
double complex C = HomA(P·, I ·). As I · is injective, the rows are exact except in the 0th spot and as P· is projective, the
columns are exact except in the 0th spot. From this, we create a new cochain double complex T by adding HomA(M, I ·)
in the p = −1 column and HomA(P·, N) in the q = −1 row. Then T has exact rows and exact columns. As with
Tor, one can use the acycle assembly lemma (for cochain double complexes in the third quadrant) to conclude Tot(T )
is exact. There are morphisms of cochain double complexes f : C → HomA(M, I ·) and g : C → HomA(P·, N). These
induce chain maps f̃ : Tot(C) → HomA(M, I ·) and g̃ : Tot(C) → Hom(P·, N). As with Tor, cone(f̃) = Tot(T )[−1] and
cone(g̃) = Tot(T )[−1], both of which are exact. Thus f̃ , g̃ are quasi-isomorphisms and thus induce maps on homology. Hence,
ExtiR(M,N) = Hi(HomA(M, I ·)) ∼= Hi(HomA(P·, N)) = ExtiR(M,N).



Dimension Shifting Lemma. Let 0 → N → I0 → I1 → · · · → In−1 → C → 0 be an exact sequence in A and suppose Ii

is injective for all i. Then, for all objects M in A, ExtiA(M, C) ∼= Exti+n
A (M, N) for all i ≥ 1.

Proof. Let n = 1. Then 0 → N → I0 → C → 0 is exact. Apply HomA(M,−) to get the long exact sequence

· · · → ExtiA(M, I0)︸ ︷︷ ︸
=0 for i≥1

→ ExtiA(M, C) → Exti+1
A (M,N) → Exti+1

A (M, I0)︸ ︷︷ ︸
=0 for i≥1

→ · · ·

where the first and last modules are zero as I0 is injective. Thus ExtiA(M, C) ∼= Exti+1
A (M, N) for all i ≥ 1. For n > 1, we

have 0 → M → I0 → · · · → In−2 → K → 0 and 0 → K → In−1 → C → 0 are exact. By the n− 1 and n = 1 cases, done.

Lemma 3.12. Suppose 0 → K → Pn−1 → · · · → P0 → M → 0 is exact, where the Pi are projective for all i. Then for all
objects N of A, we have ExtiA(K,N) ∼= Exti+n

A (M, N) for all i ≥ 1.

Proposition 3.13. Let A be an abelian category with enough projectives. Let M ∈ ObjA and n ∈ Z. Then TFAE

1. pdM ≤ n.

2. Given any exact sequence 0 → K → Pn−1 → · · · → P0 → M → 0, where Pi are projective for all i, then K is projective.

3. Extn+1
A (M, N) = 0 for all objects N of A.

Proposition 3.14. Let R be a ring, N a left R−module, and n ∈ Z. TFAE

1. idRN ≤ n.

2. For all short exact sequences 0 → N → I0 → · · · → In−1 → C → 0 where Ii is injective for all i, we have C is injective.

3. Extn+1
R (M, N) = 0 for all M.

4. Extn+1
R (R/I, N) = 0 for all left ideals I.

Proof. As << R −mod >> has enough injectives, (2) ⇒ (1) ⇒ (3) ⇒ (4) are clear. Thus, we need only show (4) ⇒ (2). To
do so, we will first prove the following claim:

Claim. N is injective if and only if Ext1R(R/I,N) = 0 for all left ideals I of R.

Proof. By Baer’s Criterion, N is injective if whenever we have the following diagram

N

0 // I

f

OO

i // R

`@
@

@
@

where the bottom row is exact, there exists g : R → N making the diagram commute. Now, consider 0 → I → R →
R/I → 0 and apply HomR(−, N). Then we have

0 → HomR(R/I,N) → HomR(R, N) i∗−→ HomR(I,N) → Ext1R(R/I,N)︸ ︷︷ ︸
=0 by hypothesis

→ · · ·

where i∗(g) = gi. By exactness, i∗ is surjective, which implies there exists g ∈ HomR(R, N) such that gi = i∗(g) = f.

Thus N is injective.

Now, we will induct on n. For n = 1, we have 0 → I0 ↪→ C → 0 and Ext2R(R/J,N) = 0 for all left ideals J. By dimension
shifting, this says Ext1R(R/J,C) = 0. Thus C is injective by the lemma.

Exercise. Let R be a ring, M a left R−module. Prove TFAE

1. M is flat.

2. For all right ideals I of R, the map I ⊗R M → R⊗R M where i⊗m 7→ i⊗m is injective.



3. TorR
1 (R/I, M) = 0 for all right ideals I of R.

Proof. First, we prove (1) ⇒ (2). Suppose M is flat and I is a right ideal. Then 0 → I
i−→ R → R/I → 0 is exact. As M is

flat, 0 → I ⊗M
i⊗1−−→ R⊗M → R/I ⊗M → 0 is exact and thus i⊗ 1 is injective.

To prove (2) ⇒ (3), suppose i⊗ 1 is injective and I is a right ideal. Then 0 → I → R → R/I → 0 is exact. Thus we have
the following long exact sequence on Tor:

· · · → TorR
1 (R, M)︸ ︷︷ ︸

=0 as R is flat

→ TorR
1 (R/I, M) → TorR

0 (I, M)︸ ︷︷ ︸
∼=I⊗M

→ TorR
0 (R, M)︸ ︷︷ ︸
∼=R⊗M

→ · · ·

Let f be the map from TorR
1 (R/I,M) → I ⊗M. Then f is injective, which implies TorR

1 (R/I, M) ∼= imf = ker(i⊗ 1M ) = 0.

To prove (3) ⇒ (1), we will first prove the following claim:

Claim. Suppose TorR
1 (R/I,M) = 0 for all right ideals I. Then TorR

1 (N, M) = 0 for all finitely generated right R−modules
N.

Proof. Induct on the number of generators of N. First, suppose N = n1R for some n1 ∈ R. Then N ∼= R/I where
I = AnnRn1. Then we have the short exact sequence 0 → 0 → N → R/I → 0, giving us the following long exact
sequence on Tor:

· · · → 0 → TorR
1 (N, M) → TorR

1 (R/I,M)︸ ︷︷ ︸
=0

→ 0 → · · · .

So TorR
1 (N, M) = 0. So suppose N = n1R + ... + nkR and that the claim holds for modules with k− 1 generators. Let

N ′ = n1R + ... + nk−1R. So N = N ′ + nkR. Then, 0 → N ′ → N → N/N ′ → 0 is a short exact sequence, giving us the
following long exact sequence on Tor:

· · · → TorR
1 (N ′,M)︸ ︷︷ ︸

=0 by induction

→ TorR
1 (N,M) → TorR

1 (N/N ′,M)︸ ︷︷ ︸
=0 by n=1 case

→ · · ·

Thus TorR
1 (N, M) = 0.

Recall that M is flat if and only if TorR
1 (N, M) = 0 for all finitely generated R−modules N.

Corollary 3.15. Let R be a ring, M a left R−module. Then TFAE

1. fdRM ≤ n.

2. TorR
n+1(R/I,M) = 0 for all right ideals of R.

Proof. Follows from the exercise and dimension shifting.

Corollary 3.16. Let R be a ring, n ∈ Z. TFAE

1. fdRM ≤ n for all left R−modules M.

2. fdRR/I ≤ n for all left ideals I of R.

3. fdRN ≤ n for all right R−modules N.

4. fdRR/I ≤ n for all right ideals I of R.

5. TorR
n+1(M, N) = 0 for all right R−modules M and left R−modules N.

If there exists n ∈ Z which satisfies the conditions above, the least such n is called the weak dimension or Tor dimension

of R.

Proof. We’ve already shown (1) ⇔ (5) ⇔ (3). To prove (2) ⇒ (3), if fdRR/I ≤ n for all left ideals I, then TorR
n+1(M, R/I) = 0

for all M and I. Thus fdRM ≤ n for all right R−modules by the corollary. To prove (5) ⇒ (4), we have TorR
n+1(R/I,N) = 0

for all N, which implies fdRR/I ≤ n. Lastly, to prove (4) ⇒ (2), let I be a left ideal. Then for any right ideal J,

TorR
n+1(R/J,R/I) = 0, which says fdRR/I ≤ n by the corollary.



Theorem 3.17 (Auslander ’55). Let R be a ring and n ∈ Z. TFAE

1. pdRM ≤ n for all left R−modules M.

2. pdRM ≤ n for all finitely generated left R−modules M.

3. pdRR/I ≤ n for all left ideals I of R.

4. idRN ≤ n for all left R−modules N.

5. Extn+1
R (M, N) = 0 for all left M,N.

If such an n exists, the least such n is called the left global dimension of R, denoted l.gl.dimR.

Theorem 3.18. Note that (1) ⇒ (2) ⇒ (3) is clear. To prove (3) ⇒ (4), note that if Extn+1
R (R/I, N) = 0 for all left ideals

I of R, then idRN ≤ n by Proposition 3.14. Now, (4) ⇒ (5) is clear and (5) ⇒ (1) follows from Proposition 3.13.

Similarly, we can define the right global dimension with an analogous theorem on right R−modules.

Example. Let R be a PID, not a field. Then pdRM ≤ 1 for all finitely generated R−modules M (by the Structure Theorem
for finitely generated modules over a PID). By Auslander’s Theorem, pdRM ≤ 1 for all R−modules M. In particular, if we
have F

φ−→ Q → 0 where Q is the field of fractions and F is free, then kerφ is free.

Fact. If R is a ring and M a finitely presented left or right flat R−module, then M is projective. (We proved in the
commutative case.)

Exercise. Let R be left Noetherian. Then

1. fdRM = pdRM for all finitely generated left R−modules M.

2. l.gl.dimR = weak dimR.

Proof. 1. We know fdRM ≤ pdRM as a projective resolution is a flat resolution. So we need only show fdRM ≥ pdRM.

Let M be a finitely generated flat left R−module. Then M is finitely presented (as R is Noetherian). Recall a finitely
presented flat module is projective, and so M is projective. Thus every flat resolution of finitely generated modules
is a projective resolution. Now, suppose fdRM = n (if ∞, we are done). Let Fn−1

φ−→ · · · → F0 → M → 0 be a
finitely generated flat chain (the “start” of a projective resolution). Recall kerφ is a finitely generated projective. Thus
0 → K → Fn−1 → · · · → F0 → 0 is a projective resolution. Thus pdRM ≤ n.

2. Recall that l.gl.dimR is the least such n such that pdRR/I ≤ n for all I and the weak dimR is the least such n such
that fdRR/I ≤ n for all I. By part 1, these are the same.

An analogous result holds when R is right Noetherian.

Theorem 3.19. Let R be a ring. TFAE

1. l.gl.dimR = 0

2. r.gl.dimR = 0

3. R is left Noetherian and weak dimR = 0

4. R is right Noetherian and weak dimR = 0

5. R is semisimple.

Proof. Recall that R is semisimple if and only if every left R−module is projective which is if and only if every right R−module
is projective. Then (1) ⇔ (5) follows as every left R−module is projective and (5) ⇔ (2) follows as every right R−module is
projective. Now (3) ⇔ (4) ⇔ (5) follows from the above exercise.

Exercise. Let R be a ring. TFAE

1. weak dimR = 0



2. R is von Neumann regular

Proof. First, we will prove the forward direction. Let I be a finitely generated ideal. Now, 0 → I → R → R/I → 0 is exact
and as R, I are finitely generated, we see R/I is finitely presented. As weak dimR = 0, R/I is flat, and thus is projective.
Thus the sequence splits and R = I ⊕R/I.

To prove the backward direction, suppose I is a finitely generated ideal of R. Then R = I ⊕R/I. Then R/I is projective
(it is a direct summand of a free module) and hence flat. Thus fdRR/I = 0. Now, suppose I is not finitely generated. Let
I = lim−→

Iα∈J

Iα where J is the set of all finitely generated ideals.

Claim. R/I = lim−→
Iα∈J

R/Iα.

Proof. Note that we have the following commutative diagram:

0 // Iα

incl

²²

// R

=

²²

// R/Iα
//

f

²²

0

0 // Iβ // R // R/Iβ
// 0

where f(r + Iα) = r + Iβ . As lim−→ is exact, we get 0 → lim−→Iα → R → lim−→R/Iα → 0 is exact. As I = lim−→Iα, we have
R/I ∼= lim−→R/Iα by exactness.

Let M be a left R−module. Then, TorR
0 (R/I, M) = TorR

0 (lim−→R/Iα, M) = lim−→TorR
0 (R/Iα,M) = 0.

Note. Let (R,m, k) be a regular local ring. Then m = (x1, ..., xd) where d = dim R. Then pdRk = d as the Koszul Complex
is a minimal free resolution of k. Then TorR

d+1(M, k) = 0 for all R−modules M. This implies βd+1 = 0 if M is finitely
generated. Thus pdRM ≤ d for all finitely generated R−modules M.

Theorem 3.20. In a Noetherian local ring (R, m, k), TFAE

1. gl.dimR = n

2. R is a regular local ring of dimension n.

Proof. (2) ⇒ (1) follows from the above note. To prove (1) ⇒ (2), note that pdRk ≤ n implies R is a regular local ring by
Theorem 2.62. Then, by the note, dim R = pdRk = gl.dimR = n.

Examples.

1. R = k[x](x) is a regular local ring of dimension 1 (where k is a field and x a variable)

2. R = k[x1, ..., xt](x1,...,xt) is a regular local ring of dimension t.

Exercise. Let (R, m) be a local, Noetherian, commutative ring. Prove R is a regular local ring if and only if idRk < ∞.

Proof. For the forward direction, if R is a regular local ring of dimension n, then gl.dimR = n. By Auslander’s Theorem,
this says idRN ≤ n for all modules N. In particular, idRk < ∞.

For the backward direction, suppose idRk < ∞. Then ExtiR(M, k) = 0 for all i ≥ n + 1 and all R−modules M. Let F be
a minimal free resolution of k. Recall ExtiR(k, k) = Hi(Hom(F·, k)). Thus 0 = Hi(Hom(F·, k)) for all i ≥ n + 1. Now, recall
that k = HomR(k, k) and thus we have the following naturally commutative diagram:

· · · // Hom(Fi,HomR(k, k))
ψ //

∼=
²²

Hom(Fi−1,HomR(k, k)) //

∼=
²²

· · ·

Hom(k ⊗ Fi, k)
ψ′ // Hom(k ⊗ Fi−1, k)

Now, recall that if we have an exact sequence Rm φ−→ Rn → k → 0 and we apply −⊗R k, we get that φ⊗1 : Rm⊗k → Rn⊗k

is the 0 map. So k ⊗ Fi → k ⊗ Fi−1 is the zero map, which implies ψ′ = 0 and thus ψ = 0. Thus 0 = Hi(Hom(F·, k)) =
Hom(Fi, k) ∼= Hom(⊕βiR, k) ∼= ⊕βiHom(R, k) ∼= kβi(k) where βi(k) = rankFi. Thus βi(k) = 0, which says F· is a finite
projective resolution of k. Thus pdRk < ∞ and so R is a regular local ring by Theorem 2.62.



Exercise. Let φ : R → S be a ring homomorphism of commutative rings such that S is flat as an R−module. Prove

1. If M is a finitely presented left R−module, then HomR(M, N)⊗R S ∼= HomS(M⊗R S, N⊗R S) for all left R−modules.

Proof. First note that HomR(Rn, N) ⊗R S ∼= (⊕n
i=1N) ⊗R S ∼= ⊕n

i=1(N ⊗R S) ∼= HomS(Sn, N ⊗R S), where the
isomorphisms are natural. Now, let Rm → Rn → M → 0 be exact. Then 0 → HomR(M,N) → HomR(Rn, N) →
HomR(Rm, N) is exact. Now, if we apply −⊗R S, we stay exact as S is flat. Thus, we have the following commutative
diagram with exact rows:

0 //

∼=
²²

0 //

∼=
²²

HomR(M,N)⊗ S // HomR(Rn, N)⊗ S //

∼=
²²

HomR(Rm, N)⊗ S

∼=
²²

0 // 0 // HomS(M ⊗R S, N ⊗R S) // HomS(Sn, N ⊗ S) // HomS(Sn, N ⊗ S)

By the exactness and the Five Lemma, done.

2. If R is Noetherian, then (ExtiR(M, N))⊗R S ∼= ExtiS(M ⊗R S, N ⊗R S) if M is finitely generated.

Proof. Let P· be a finitely generated projective resolution for M. Then

ExtiR(M, N)⊗R S = Hi(HomR(P·, N))⊗R S

= Hi(HomR(P·, N)⊗R S)
= Hi(HomS(P·S,N ⊗ S)
= ExtiS(M ⊗R S, N ⊗R S) as P· ⊗ S is a projective resolution as S is flat

Corollary 3.21. Let R be Noetherian, W a multiplicatively closed subset of R, M a finitely generated R−module. Then
ExtiR(M, N)W

∼= ExtiRW
(MW , NW ).

Corollary 3.22. Let R be Noetherian, E an injective R−module. Then ES is an injective RS−module for all multiplicatively
closed subsets S of R.

Proof. Recall idRN = 0 if and only if Ext1R(R/I, N) = 0 for all I. Let IS be an ideal of RS for an ideal I of R. Then
Ext1R(RS/IS , ES) ∼= (Ext1R(R/I,E))S = 0 as E is injective. Thus ES is injective.

Definition 3.23. Let (R,m) be a commutative, local, Noetherian ring. R is called Gorenstein if idRR < ∞.

Corollary 3.24. If (R, m) is Gorenstein, so is Rp for any p ∈ SpecR.

Proof. Say 0 → R → I0 → · · · → In → 0 is exact. Then 0 → Rp → I0
p → · · · → In

p → 0 is exact and Ii
p are injective. Thus

idRpRp < ∞.

Corollary 3.25. Regular local rings are Gorenstein.

Proof. In a regular local ring, idRM < ∞ for all modules M.
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