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Homological Algebra gained popularity in Commutative Algebra in the 1950s when the following open problems were solved:
Definition Let (R, m) be a Noetherian commutative local ring. Then R is regular if m = (1, ..., x4) where d = dim R.

Solved Open Problems

1. If R is regular, is R, regular for all prime ideals p of R? (proved by Serre-Auslander-Buchsbaum, ’57)

2. If R is regular, is R a UFD? (proved by Auslander-Buchsbaum, ’59)

1 Direct Limits

Definition 1.1. Let C be a category and I a poset. A direct system in C indexed by I is a family of objects {A;}icr in C
such that

1. For i < j, there is a morphism qb;- Ay — Aj inC.
2. For alli € I, we have ¢! = 14,.

3. For alli < j <k, the diagram below commutes.

With this notation, we say {A;, (JS;- Yijer is a direct system.
Examples.

1. Let I be any set and give I the trivial order, that is ¢ < j for 4,5 € I if and only if ¢ = j. Then any family of objects of

C is automatically a direct system over I.

2. Suppose I = N, {A;};en is a set of objects, and ¢; : A; — A;+1 are morphisms. This defines a direct system where
i [ Pit1 -1
QSJA1—> i+1 — —>AJ
Special Case. Let R be a ring, M an R—module, z € Z(R). Let M; = M for all i. Then ¢} : M; L My =0 5 M,
(multiplication by 27~¢) yields a direct system.

3. Let C =<< R—mod >>, M a left R—module, I # 0 a set of R—submodules of M. Note that I is a poset where the
order is containment. For A, B € I with A C B, let ¢4 : A — B be the inclusion map. Then {A, ¢4} per is a direct
system in C.

Special Case. One way to deal with a non-finitely generated module, is to consider the above situation where I is
the set of all finitely generated submodules of M. Since every element of M is contained in some finitely generated

submodule, the direct limit would have to be M.

Definition 1.2. Let {4;, (b;} be a direct system in C. A direct limit of the system is an object X of C together with morphisms

a; : Ay — X such that for all i < j, the following diagram commutes

(27

T

A

¢;
A

X

N

and with the following universal property: If there exists B; : A; — Y for all i € I such that ﬁj¢§ = [3;, then there exists a
unique morphism v : X — Y such that ya; = 3;, that is, the following diagram commutes.

Bi

A; Y

N

X



With the above notation, we say X = h_H}lAz
icl

Exercise. If the direct limit exists, then it is unique up to isomorphism.

Proof. Let {A;, ¢3} be a direct system and suppose (X, «;), (Y, 3;) are direct limits. Then we have the following commutative
diagram:

N

A;

By definition, this gives us maps v : X — Y and 0 : Y — X such that 8; = ya; and oy = 008;. Then «; = ovya; and
B; = voB;. By the uniqueness of the direct limit maps, since 1x : X — X and o7 : X — X with a; = 1x; and a; = oyay,
we see 0y = 1x and similarly yo = 1y. Thus X =Y. O

Definition 1.3. A poset I is directed if for alli,j € I there exists k € I such thati <k,j <k.

Proposition 1.4. Let M be a left R—module, I a directed set, ordered by containment, of submodules (that is, given A, B € I,

there exists C € I such that AUB C C). Then @A = UacsA.
A€l

Proof. First notice that UaerA is an R—submodule of M as I is directed. Define ayq : A — UaerA to be inclusion. Then
aa¢s = ap for all A C B where ¢4 : A — B is also the inclusion map. So it is just left to show the universal property of
direct limits holds. Suppose there exists 34 : A — Y for all A € I such that Sa¢s = Bp for all A C B. Define v : UaerA — Y
as follows: Let x € UA. Then = € A for some A € I and so define y(z) = Sa(z). It is easy to see this is well defined and an
R—module homomorphism (by the directed property of ). Thus imA = UaerA. O

Corollary 1.5. For any R—module M, M = lim N where [ ={N C M|N is finitely generated}.
Nel

Example. Let R C S be commutative domains, R the integral closure of R in S. In general, R is not a finitely generated

R—module (and thus we can not say R is Noetherian when R is). To get around this, notice that R = UrerT = limT', where

Tel
I={TIRCT CS,T isaring,T is a finitely generated R—module}. Here, T is Noetherian when R is.

Exercise. Let R be a ring, M an R—module, z € Z(R). Recall the direct system given by M; = M and (i)ﬁ» s M; — M;
defined by multiplication by 2/~* for i < j. Then limM = M,.

m

Proof. First note that d)é is an R—module homomorphism as x € Z(R). Define a; : M; — M, by m + 7. This is an

7

“(m) = zj;ijm = 7 = a;(m). To show the universal property holds,

suppose there exists Y and (; : M; — Y such that for i < j we have ﬁjqﬁ; = ;. Define v: M, — Y by & — G;(m). Then

xt

R—module homomorphism and clearly Oéjd);— =aq; as o

e 7 is well-defined: Suppose & = % in M,. Then there exists k such that z*(27a —2%b) = 0 which implies 2%+7q = 2*+b.
Then v(%) = Bi(a) = Bjrhti®hpri(@) = Birrri(@*a) = Bjpppi(@FT0) = B;(b) = (L)

e 7 is clearly an R—module homomorphism.

e ya; = 3; as for a € M;, we see y(aj(a)) = v(3%) = Bi(a).

e v is unique: Suppose there exists A : M, — Y such that Aa; = 3;. For It € M, we see A(Z) = Mai(m)) = Bi(m) =
Y(oi(m)) = v(2). Thus X = . -

Remark. Let C be a category, I a poset. A morphism F' : {4;, (b;} — {B;, 1/);} of direct systems in C (with index I) is a set

of morphisms F; : A; — B; for all i € I such that for all ¢ < j the following diagram commutes:

F.
A —>

B
s
A B

<

i
J

g —
F;

<

One easily checks that this makes the direct systems in C over I a category, denoted by Dirc(I).



“Definition” 1.6. A category C is called abelian if
e the Hom sets of any two objects are abelian groups,

e there exists a zero object, denoted 0 (i.e., an object that is initial and terminal - for all objects C, there exist unique

morphisms 0 — C and C — 0),
e cvery morphism in C has a kernel and cokernel in C,
e the concept of “exact” makes sense, and
e finite products exist (i.e., if A, B € ObjC, then A x B is).
[For a more precise definition, see Wiebel’s Appendiz/

Examples. << R —mod >> and Dir I) are abelian categories.

<<R—mod>>(

Most of our examples are concrete categories where the objects are sets and morphisms are defined pointwise. In that
situation, we can use our notions of kernel, cokernel, and exact for the above definition. In general, it is more complicated

and technical.
Theorem 1.7. Let C be an abelian category such that arbitrary sums exist. Then any direct system in C has a direct limit.

Proof. We will prove the theorem in the case that C =<< R — mod >> . Let {Ai,¢§}i,j€1 be a direct system in C. Let
F = ®icrA;. Define \; : A; — F to be the canonical injection. Let S = {Ai(a) — A;¢%(a)la € A;,i < j}. Let N be the
R—submodule of F' generated by S.

Claim. li_r)nAi = F/N, where «; : A; — F/N is defined by a — X\;(a) + N.

Proof. By construction, A;¢; = A; in F/N. So suppose there exist Y and §; : A; — Y for all i with B;j¢; = Bi. Define
¥ :F =Y by (a;) = > Bi(ai). Let u = Ni(ai) — \j¢%(ai). Then F(u) = Bi(a:i) — B;(¢%(a;i)) = 0 by commutativity.
Thus ¥(N) = 0. Thus we get the induced map v : F/N — Y. One can show + is unique and yo; = 3;. O

Corollary 1.8. Let I be a trivially ordered poset and {A;}icr a family of R—modules. Then imA; = ®ier ;.

Remark. The direct limit is actually a covariant functor from Dire(I) — C. Suppose F : {A;, ¢%} — {Bj,¢}} is a morphism
in Dir¢(I). Consider the diagrams below.

limB; =

By the definition of direct limit, there exists a unique 7 : limA; — limB;. Notationally, we will write v = limF;. Thus

morphisms go to morphisms.

Example. Let C be a category, A € ObjC. Let I be an index set. Define the constant direct system, denoted |A| = {A;, qzﬁj-},
by A; = A for all ¢ and gzﬁz = 14 for all i« < j. This is clearly a direct system over I. Now, given f : A — B in C, let
|f] : |A| — |B| be defined by f; := f: A; — B; for all ¢ € I. This makes | - | into a covariant functor from C — Dir¢(I). Note

that if C is an additive category (i.e., the Hom sets are abelian groups), then | - | is an additive functor.

Exercise. If I is a directed set and A € ObjC, then lim|A| = A. However, this need not be true if I is not directed.

Proof. Define A; = A and a; : A; — A the identity map. As gb; was also defined to be the identity map, it is clear that
a;j¢} = a;. So suppose there exists Y and f; : A; — Y such that 3;¢} = 3; for i < j. Since ¢} = 1, this just says 8; = 3; for
all ¢ < j. As I is a directed set, this says §; = ; for all ¢, j € I. Define v : A — Y by a — ;(a). Clearly, yo; = f3; as «; is
the identity map.

Note that I needs to be directed. For example, if I has the trivial order and |I| > 1, we’ve seen limA; = @ierd;. Of
course, B;crA; is generally not equal to A (take A to be a field, for example). O



Recall. Let f: A1 — As be a morphism in C. For any object C of C, we define f, : Hom¢(C, A1) — Home(C, As) by
h— fhand f*: Hom¢(As,C) — Home(A1,C) by h — hf.

Definition 1.9. Let C and D be categories, L : C — D and R : D — C be covariant functors. We say (L, R) is an adjoint
pair if for all A € ObjC and all B € ObjD, there is a bijection Tap : Homp(L(A), B) — Home(A, R(B)) such that the

naturality condition holds, i.e., for all morphisms f : Ay — As inC and f : By — By in D, we have the following commutative

diagram.
L * *
HomD(L(Ag), Bl) ﬂ> ]‘IO’ITLD(L(A:[)7 Bl) L> HOT)’LD(L(A:L), Bg)
lTAzB1 lTAlBl \LTA132
R(g)~

=
Homc<A2, R(Bl>> —— Homc<A1, R(Bl)> e Ii[O’ITLc(1417 R(Bg))
Protypical Example. Hom — ® : Let R, S be rings and A an S — R—bimodule. Then A ®g — :<< R — mod >>—<<

S —mod >> defined by B — A®p B and Homg(A, —) :<< S —mod >>—<< R — mod >> defined by B — Homg(A, B)
are covariant functors. We proved in 902 that (A ® g —, Homg(A, —)) is an adjoint pair.

Definition 1.10. If (L, R) is an adjoint pair, then L is called a left adjoint and R is called a right adjoint.

Fact. If L is a left adjoint, then it is right exact. Similarly, if R is a right adjoint, then it is left exact.

Theorem 1.11. Let C be a category, I a poset such that direct limits in C over I exist. Then (h_r)n,| . |1> s an adjoint pair.
iel

Proof. Let {A4;, (b;'}w’el be a direct system over I. Let a; : A; — limA; be the direct limit maps. Let g € Homc(li_r>nAi7 B).

Define g : {Ai,¢§} — |B| to be the map formed by ga; : A; — B (note that gajqﬁé» = gay;). This is a morphism of direct

systems. Now, for all direct systems {Ai,gbz»} and B € ObjC, define 7 : Homc(limA, B) — HomDirc(I)({Ai,gbé}, |B|). We

need to show 7 is bijective and natural. We leave the naturality as an exercise.

Claim. T is bijective.
Proof. Suppose g1, 92 : limA; — B and g1 = g2. Then gia; = g2q; for all ¢ € I. Consider the following commutative

diagram, where g represents either g; or go.

Note that both g; and go make the diagram commute. So by the uniqueness of the direct limit map, g1 = g2. To show it
is onto, let f: {4, cb;} — | B| be a morphism of direct systems. So for ¢ < j, we have the following diagram commutes:

F.
Aj HJ- B
«>z‘

|

A;

By the definition of direct limit, there exists g : limA; — B such that F; = ga; for all j. Then F' =g = 7(g). D

Exercise. Let R be a ring, S a mcs with 1 € S. Put a relation < on S as follows: for s, € S, say s < t if and only if s is
a unit in R;. This relation is reflexive and transitive (but not antisymmetric) and is directed. Define a direct system with
index set S by As = R, (the s for Ag denotes an index, but the s for Ry denotes localization) for s € S and ¢f : Ay — A,
where = — =L for s <t. Then limR; = Rg.
s s —
tes
Proof. For each t € S, define oy : Ry — Rg by /= — . Then for s <t, ay¢; = a as for ¢ and ay are just the natural
injection maps. To show the universal property, suppose there exists ¥ and §; : Ry — Y such that (9] = (B;. Define

v:Rs —Y by L (,(%). Then



e v is well-defined: Suppose 7 = ¢ in R,. Then there exists u € S such that urs = wat. Then v(}) = Bi(7) =

ﬂust( Zat)(%) = 6ubt(%) = ﬂust(%) = ﬁust(%) = 6ust(%) = Bust( fwt(%)) = 65(%) = 7(%)

e v is a R—module homomorphism: For £,% € Rg, we see y(% + ¢) = (I2tet) = g, (5tat) — 3, (22) + (i (%) =

ts ts

ﬂts(%) + ﬂts(%) = ﬁt(%) + ﬂs(%) = 7(%) + 7(%)
e yar = 3 as for th € Ry, we see ’Y(Oét(th)) = ’Y(th) = Bt"(ﬁ) = ﬂt"(éﬁin(ﬁ)) = ﬂt(tL)

e 7 is unique: Suppose there exists A\ : Rg — Y with Aay = ;. Let t € S. Then A(§) = A (F) = Be(§) = 7(5)- O
Remarks.

1. Combining this and the earlier exercise, we see Rg = lim (hLQ(R LRL . )) . Furthermore, we can rewrite this with

teS \teS
a single index set, which says Rg = limR.

2. Note that we did not use the full power of a poset here (as our index set was NOT a poset). In general, we do not need
the antisymmetry property of a poset to define a direct system or direct limit. So to define a direct system over I, we

need only that I is reflexive, transitive (and sometimes directed).

Exercise. Let R be a commutative ring and z a non-zero-divisors of R. Define A; = R/(z*) and (bé» tA; — Aj by T radTi
for i < j. Then lii)nAi ~ R,/R.

Proof. Define a; : A; — R,/R by T — L. This is well-defined as if r + (2%) = s + (%), then r — s € (%), that is, r — sax’

r

for some a € R. Then ==* = % =0as § € R. So ? = QJE The «;’s are clearly R—module homomorphisms and ozj(é;- = q; as

ajqbé» (T) = aj(rai=?) = el g = «;(7). Thus it is only left to show that the universal property holds. So suppose there

xJ

exists Y and 3; : A; — Y such that ﬁjgb; = f;. Define v : R,/R — Y by = — (;(T). Then

2zt

e v is well-defined: Suppose = + R = =% 4+ R. Then = — = € R, that is, re’ sz’ 7 for some a € R. So, there exists

't I 't I zitI

k € N such that (rz7 — sz)z* = az®. Since z is a non zero divisor, we must in fact have that 72/ — sz’ = a. So
1 (Z5) = 50 = Brbal7) = B125727) = Bys(@) + (o) = G521 ) + By a®) = 1505 = (5 ).

e v is an R—module homomorphism: This is clear as (3; is an R—module homomorphism.
e ya; = f3; : This too is clear by our definition of gamma for ya;(F) = v(%) = 3(7).
e 7 is unique: Suppose there exists § : R, /R — Y such that da; = ;. Then (%) = 6o (F) = 3;(F) = v(Z).

Thus there exists a unique morphism v : R, /R — Y, which says the universal property holds. Thus limR/ ()2 R,/R. O
ieN

Remark. The above example is one of a “local cohomology module.” Also, the statement is true when z is a zero-divisor,
as long as we replace R, /R with R,/¢(R) where ¢ : R — R, is defined by r — §. We assumed R was a non-zero-divisor, as
in that case ¢ is injective, and thus R = ¢(R).

Definition 1.12. Let C be a category. Define the category C°P by ObjC°? = ObjC and for all A, B € ObjC, there exists a
bijection Home(A, B) < Homcor (B, A) defined by (f : A — B) < (f°? : B — A) such that whenever A LB X isin C,

we have (gf)°P = f°Pg°P. This is a contravariant functor.
Remarks.

1. C is abelian if and only if C°P is abelian. In particular, A ENy RN C is exact in C if and only if C 7, B LR Ais

exact in C°P.

However, if C =<< R — mod >>, C°P £<< S — mod >> or << mod — S >> for any ring S.

2. (CoP)P = C.



3. Given a covariant functor F': C — D, define F°P : C°? — D by F°P(A) = F(A) for all A € ObjC and given f°? : B —
A, let FP(fP) = F(f)°?. One can check F'°P(14) = 1pop(4) for all objects A in C and F'P(fg) = F°P(f)F°P(g). Thus
F°P is a covariant functor. If C is abelian, then F°P is additive. Furthermore, F is left (resp. right) exact if and only if
F°P is right (resp. left) exact (by Remark 1 and the fact that F°P(f°P) = F(f)°P).
4. Let L:C — D and R: D — C. Then (L, R) is an adjoint pair if and only if (R°?, L°P) is an adjoint pair.
Lemma 1.13. Let C be an abelian category. Then A % B B, ¢ is ewact in C if for all objects M of C, we have
Home (M, A) = Home(M, B) L, Home (M, C) is exact.

Proof. Assume C =<< R—mod >> . Let M = A. Then S,a, = 0 by exactness. In particular, Sals = 0 which says Sa = 0.
So ima C ker 3. Let M = ker 8 and i : ker 8 — 3 be the inclusion map. So (i = $i = 0, that is, i € ima,. So there exists
h: ker § — A such that ah = i. Then ker § = i(ker 8) = a(h(ker 3)) C ima. O

Theorem 1.14. Let L : C — D and R : D — C be covariant functors such that (L, R) is an adjoint pair. Then L is right

exact and R is left exact.

Proof. By using C°, it suffices to prove R is left exact. So suppose 0 — A = B Z, € is exact in D. We want to show
0 — R(A) B, R(B) RilIN R(C) is exact in C. By the lemma, it is enough to prove that for all objects M of C, we have
0 — Home(M,R(A)) — Home(M,R(B)) — Home(M, R(C)) is exact. Note that by Hom — ® adjointness, we have the

following commutative diagram

0 —— Home¢(M, R(A)) —— Home (M, R(B)) —— Home (M, R(C))

| | !

Homp(L(M),A) — Homp(L(M),B) — Homp(L(M),C)

where the bottom row is exact as Homp (L(M), —) is left exact. By commutativity, this gives us that the top row is exact. [
Corollary 1.15. For any S — R bimodule A, we have A ® g — is right ezact.
Corollary 1.16. lim : Dire(I) — C is right ezact.

Theorem 1.17. Let (F,G) be an adjoint pair, where F': C — D and G : D — C. Let {Ai,¢§»}i7j€1 be a direct system in C.
Then {F(A;), F(¢})} is a direct system in D and imF(A;) = F(limA;), that is, left adjoints preserve direct limits.

Proof. We will show that F (h_r)nAl) has the desired universal property. Let a; : A; — limA; be given as in the definition.

Then, we get the following commutative diagram in D :

F(limA;) 2 pa) 2 x

A
|

F(A;

N

We want to show there exists v : F' (h_n)lAz) — X making the diagram below commute. By Hom — ® adjointness, consider

the following diagram

F(o})"

HO’I’TLD(F(A]'),X) HomD(F(AZ),X)

Bi =B F(6}) = Bi

7(8)) ———=1(6;)¢;

(¢5)"

Home(Aj,G(X)) Home(A;, G(X))



Since f; — 7(8;), the above diagram shows T(ﬂj)qb; = 7(0;). This says that the diagram below commutes:

hmAl<7A ﬂG( X)

;
XT /(m)

4

By the universal property, there exists a unique ¢ : limA; — G(X) such that the diagram above commutes, that is, dc; = 7(5;)
for all j. Define v := 771(5) : F(limA;) — X. We want to show that v(F(a;)) = f; so that our original diagram commutes.
To do this, consider the following commutative diagram

(o)

Homp(F(limA;), X) Homp(F(A;), X)

Home(lim4;, G(X)) : Homc(A;, G(X))

This says vF(«;) — 7(8;). Of course, T is an isomorphism and 8; — 7(8;). Thus v(F(a;)) = Bi, giving 7 the desired
commutative property. To show that 7 is unique, suppose there exists v’ : F(limA;) — X such that v F(a;) = B; for all
i € I. As above, this would yield 7(v")a; = 7(6;) for all 4. Of course 6 = 7(y) was chosen to be the unique map such that
da; = 7(6;). Thus 7(7') = § = 7(v), and thus v/ =~ as 7 is injective. O

Remark. The above isomorphism is indeed “natural,” that is, suppose H : {Ai,(b;} — {Biﬂ/f;} is a morphism of direct

systems. Then the diagram below commutes.

F(limH;)

F(limA,) F(limB;)

\L limF"(H;) i

limF(4;) ——— limF(B;)

Proof. As in the theorem, let «; : A; — limA;, B8; : F(4;) — lUmF(A4;), and v : F(limA;) — limF'(4;) be the unique
map such that vF(a;) = B;. Now, define @;, 3;, and 7, to be the corresponding maps for {B;, 1/1;} Then, we want to show
yF(imH;) = (imF'(H;))7.

Consider the following commutative diagrams for ¢ < j.

Hj [e%]

li_H)lA aj A; B; h_r)nBi = limA, DA A *> hmB
\ T K o XJT it
Az i) Bz Az

By the universal property of direct limits, there exists a unique h := h_n)le : h_r)nAi — li_r)nBi such that ha; = a;H; for j € I.
Now, apply the functor F' to the above diagrams:

F(H;)

imF(A;) & F(A;) lim F(B;) = lmF(A) 2 pa))

S]] g7 N
B. .

&

lim F'(B;)



Again, by the universal property, there exists a unique b’ := lmF'(H;) : imF(A;) — lImF'(B;) such that h'f; = B;F(H;).
Now, we have the following diagram,

F(lim4;) —> P (limB;)

-
lim F'(4;) L lim /7

which says ¥F(h)y~! € Homp (limF(A;), imF(B;)). As stated above, we want to show that this diagram commutes. To do

so, consider the following two commutative diagrams:

. -t . F(h . Y . FE(h)y™h .
lmF(A;) > F(limA;) 0 FlimB)) T~ lmF(B) = lmF(4) 0l F(B)
N&JT F(CH)T / ﬁiT
Bi Bi BiF (H;)
F(A;) T F(B;) F(A)

Of course, ' : limF'(A;) — imF(63;) is the unique such map. Thus, A’ = FF(h)y~1, that is, (ImF(H;))y =7F(limH;). O

Corollary 1.18. Let A be an S — R bimodule. Then the functor AQ®p — preserves direct limits, that is, if {B;, (;53.}1-_,]-61 is a
direct system of left R—modules, then {A ®gr B;,1® (b;} is a direct system of S—modules and lii)nA ®r Bi 2 A®grlimB; as

left S—modules in a natural way.

Corollary 1.19. Let C be a category in which direct limits exist, I an index set. Then lim; : Dire (I) = C is a left adjoint
and thus preserves direct limits over any index set J of systems in Dirc(I), that is, if {D;}jes is a direct system in Dire(I)

with index set J (an object in Dirpir.(1)(J)), then lim lim;D; = lim lim; D;. Thus any two direct limits commute.
Corollary 1.20. Let {A;}jes be a family of objects in Dirc(ry. Then lim(®jesA;) = @jes(limrA;).

Exercise. Let (L, R) be an adjoint pair, L : C — D,R: D — C. If R is exact, then L preserves projectives. If L is exact,

then R preserves injectives.

Proof. Note that by considering D°P, it suffices to show if R is exact, then L preserves projectives. Suppose R is exact. Let
0 —-A— B — C — 0 beexact in D and let M € ObjC be projective. Since R is exact, we know 0 — R(A) — R(B) —

R(C) — 0 is exact, and as M is projective, we have the top row of the following commutative diagram is exact

0 —— Home¢(M, R(A)) —— Home(M, R(B)) —— Home (M, R(C))

| | |

0 —— Homp(L(M),A) —— Homp(L(M),B) — Homp(L(M),C)
and thus the bottom row is exact. Therefore L preserves projectives. O

Example. Recall (A®pr —, Homg(A, —)) is an adjoint pair. Now, Homg(A, —) is exact if A is projective. So, by the above
exercise, if A is projective, then A ® p — preserves projectives, i.e., if B is a projective left R—module, then A i B is a
projective left S—module. Also, A®pr — is exact if A is flat. So, if A is flat as a right R—module, then Homg (A, —) preserves

injectives, i.e., if B is an injective left S—module, then Homg (A, B) is an injective left R—module.

Exercise. Let M be a finitely presented left R—module (i.e., there exists an exact sequence R™ — R™ — M — 0). Let
{A;, ¢} be a direct system of R—modules over a directed index set I. Prove Hompg(M, limA;) = limHomp (M, A;).

Proof. First, note that
limHomg(R", A;) = limHomg(®"R, A;)
= lim &" Homp(R, A;)
= lim " 4,
@”h_n;Ai as direct limits commute
= @®"Homg(R, liigAi)
= Homp(R",lim4,;)



As M is finitely presented, we have R™ — R"™ — M — 0 is exact for some m,n. Since Hompg(—, 4;) is left exact, we see

0 — Homgr(M, A;) — Homg(R", A;) - Hompg(R™, A;) is exact (). This gives us the following commutative diagram.

—— 00— Hompg(M,limA;) —*~ Homp(R",lim4;)) —— Homp(R™,lim4;)

Ni - :“ :Tg :T

0 — limHomp(M, A;) — > limHomp(R", A;) — = limHomp(R™, A;)

Note that the top row is exact as Homp(—, A) is left exact and the bottom row is exact by (x) as I is directed. We want
to find a map f : limHomp(M, A;) — Homp(M,limA;). So, let @ € limHomp (M, A;). Then gB(z) € Homp(R", imA;).
Since the rows are exact, « is injective. So there exists a unique y such that a(y) = g8(z). So, define f(x) = y. That
gives us our morphism f and keeps the diagram commutative. Now, by the five-lemma, we must have that f is in fact an

isomorphism. O

Example. The above result fails when M is not finitely presented. For example, take R; = R and consider the direct
system Ry = Ry = Rs--- . We've seen limR; = R,. Notice HomR(Rw,li_H;Ri) = Hompg(Ry, R:) # 0 as it contains at least
the identity map. On the other hand, imHompg(R;, R;) = 0 by Krull’s Intersection Theorem [Take f € Hompg(R;, R). Let
a = f(-%). Then for all n, a = f(m“‘%) = 2" (f(=5)) € (z™). Thus a € Ny>1(2") = 0. So f(-L;) = 0 for all m, which says

xm xn +m m

f=0]

Exercise. Let {M;, ¢;} be a direct system of left R—modules over a directed index set. Suppose Agr(M;) < n for all i € I.
Then )\R(@Mi) <n.

Proof. Suppose not. Then, we have a sequence of submodules of lim M; of length > n. Say EmM; 2 N 2 N1 2 -+ 2
Ny = (0) where m > n. Choose b; € N; \ N;_; for j > 1. This yields a chain (b1, ...,b5) 2 (b1,...b;m—1) 2 -+ 2 (b1) 2 (0).
).

=

For each j, there exists k; such that b; = ay, (ax,), where ay; € My, by the previous theorem. Then ay,(ax;) = atéfj (ax,
Let ¢; = d)fj(akj) € M;. So we get yet another chain (ay(c1),...,¢(cm)) 2 -+ 2 (ag(c1)) 2 (0). Then (c¢1,..eiCp) D --+ D

(c1) D (0) is chain of submodules of M;, which has length < n. Thus there exists j such that (c1,...,¢;) = (c1, ..., ¢j—1), that
is, ¢; = ric1 + ... +rj_1cj—1. Then ay(cj) = rioy(er) + ... + rj_1ae(cj—1), a contradiction. O

Exercise. Let (R, m) be a commutative local domain of dim 12 > 1. Can we write the field of fractions as @ = limR; where
ieJd
R; = R? Note: This is true if dim R = 1 as then R, = @ for some y € m \ {0}.

Theorem 1.21. Let {A;, ¢;-}i7j61 be a direct system of left R—modules. Assume I is directed. Let oy : A; — h_H)lAl Then
1. h_H)lAl = {ai(ai)|ai S Ai,i € I}
2. Forie I, a;(a;) =0 if and only if there exists t € I with t > i such that ¢i(a;) = 0.
3. limA; = 0 if and only if for all i € I and a; € A;, there exists t > i such that ®i(a;) = 0.

Proof. First note that 1 and 2 imply 3. To prove 1, represent imA; as ®;ecr4; /N, where N is the submodule of ®A; generated
by {)\qu;(ai) —Xi(a;)|a; € Asi < j € T} where \; : A; — @A; are the natural injections. Under this representation,
a; A — h_n}lAi is defined by a; — A(a;) + N. Let = € h_r)nAl Then x = Zjes Aj(aj) + N where S is some finite set. Choose
t € I such that ¢ > j for all j € S. Let by = >~ .o #7(a;) € Ap. Then = X (D) + N = a4 ().

To prove 2, suppose ¢7 (a;) = 0. Then «;(a;) = aypi(a;) = a4(0) = —. For the other direction, suppose «;(a;) = 0. Then
Ai(ai) € N, which implies Ai(a;) = 3 ;cp Ak, (Z%,(bj) — Aj(b;) for some finite set T. Choose t € I such that ¢ > ¢ and ¢t > k;
for all j € T. Then

Ndia = Midja; — Nia; + Nia; = Mdja; — Niai + Y M, 0 (b) — Asby.
jeT
Since k; <t for all j, we have Ay, qﬁijbj — A\jbj = Nlb; — \ibj + Amfj(—qﬁf;j (b;)) — )\kj(—(/)ij (b;)). Resetting notation, we
have \@i(a;) = >, Mot (ce) — Ae(ce). Assume the £’s are distinct (if not, group them). Let m; : ©@A; — A; be the natural
projection. Then 7;(A\:](a;)) = 0 if j # t and i (3, At (ce) — Aelce)) = —c; if j #t. So ¢; = 0 for all j # ¢, which implies
At (ce) — g = 0if £ # . So \di(a;) = M\edt(ci) — Aie(cr) = 0. Since \; is injective, we have ¢i(a;) = 0. O

Theorem 1.22. Let C =<< R —mod >>, I a direct index set. Then lim : Dirc(I) — C is ezact.



Proof. As lim is a left adjoint, it is right exact. So it is enough to show that it preserves injections. Suppose 0 — {A;, gb;} L

{Bi, ¢;} is an exact sequence of direct systems, i.e. F; : A; — B; is injective for all ¢ € I.

y=limF;
limA; <—— A; —— B; & lim B;
i i
F;
P p

3 ?

Suppose y(z) = 0 for some z € limA;. Then z = a;(a;) for some a; € A;. So B;(F;(a;)) = 0. By the previous theorem,
there exists j > i such that ¢}(Fi(a;)) = 0. Thus Fj(¢’(a;)) = 0 which implies ¢%(a;) = 0 as Fj is injective. Thus
x = q;(a;) =0. O

Corollary 1.23. Let {F;, gb;'-}i,je[ be a direct system of right R—modules over a directed index set. Suppose each F; is flat.
Then IimF; is a flat R—module.

Proof. As ® is right exact, it is enough to show limF; ® — preserves injections. So suppose 0 — A I, Bis an exact sequence
of left R—modules. This gives rise to a morphism of direct systems {F; ®r A4;, ¢§» ®1a} — {F;®r B, (;5;- ® 1p}. Thus we have
the commutative diagram

T¢;®1A T¢3®1B
OHFi@)RAWFi@RB

where (1® f); is injective as F; is flat. Since h_II)l is an exact functor, we have the following commutative diagram where the

top row is exact.
im(1®f)

0 — lim(F; ®p A lim(F; ®r B)

<

0*>(li_>Fi)®RAT(I.£)nFi)®RB

By commutativity, since the top is exact, we have that the bottom row is exact. Thus h_H)lFl is flat. O

1.1 Inverse Limits

Definition 1.24. Let C be a category and I and index set. An inverse system in C over I is a family {A;}icr of objects
in C and morphisms wz : Aj — A; whenever i < j such that %! =14, and if i < j <k, then 1/)51/);? = k. An inverse limit
limA; is an object in C with maps a; : imA; — A; which commute with 1/}{ and if B; : X — A; also commutes with wf7 then
P —

there exists a unique 6 : X — limA; such that c;y = f3; for all i.
Remark. {A;,17} is an inverse system in C if and only if {A4;, (/) )°P} is a direct system in C°.
Proposition 1.25. Let C =<< R — mod >> . Then any inverse system in C has an inverse limit.

Proof. Let F' = [[,c; As and 7; : F — Aj be the natural projective. Let Y = {(a;) = 2 € F| for all i < j, m;(x) = Wl (mi(x))}.
Define «; : Y — A; via projection. Then Y = @Az O

Examples.

1. Let A € ObjC. Then |A| is the constant inverse system over I. So A; = A for all i € I and 97 : A; — A; is the identity.
If I is directed, then m|A| =A.

2. If I has the trivial order, then limA; = [] A;.
P
el



3. Let M be a left R—module and I a left ideal of R. Then the sequence M/IM « M/I?M «+ M/I*M « --- defined by
2+IM — x+1*M < x+13M - -- is an inverse system. The inverse limit linM/I”M is called that I-adic completion
if M.

Proposition 1.26. (|- |,lim) is an adjoint pair.

Proof. We've seen (lim, | - |) is an adjoint pair in C°P. O
Corollary 1.27. lim s left exact.

Corollary 1.28. Right adjoints preserve inverse limits.

Corollary 1.29. The inverse limit of an inverse limit exists.

Corollary 1.30. If A is an S — R bimodule, then Homs(A,limB;) = limHoms(A, B;) for any inverse system {B;} of left

S—modules.

Caution. @1 is not generally exact, even over directed index sets. Thus, the direct limit is far more useful in Commutative

Algebra.

Terminology. We refer to [] A; as a product and ®A; or [] A; as a coproduct. As a result, the inverse limit is often called

the limit and the direct limit is often called the colimit.

2 Chain Complexes

Definition 2.1. Let R be a ring. A chain complex of left R—modules is a family of R—modules {C;}icz and R—module
homomorphisms d; : C; — C;_1 such that d;d;+1 = 0 for all i. The d; are called differentials. We denote a chain complex
by (C.,d.). Often, we suppress the indices.

Definition 2.2. A chain complex (C,d) is bounded on the right if C; = 0 for all i < n for some n. Similarly, one can
define bounded on the left and bounded.

Examples.
1. Any exact sequence with an indexing is a chain complex.

2. Let M be an R—module. Then 0 %025 M %02 0. is a chain complex where M is said to be in the 0" spot.

l:\:\
o

3. Let R=2Z/(r). Then --- 2, ]?;2 LN ]2% ]1% (3 2, 01 .-+ is a chain complex.

4. Let M be an R—module, z € R. Then --- — 0 — ]\14 = ]\04 — 0 is a chain complex.

Definition 2.3. Let (C,d) be a complex of R—modules. The module of n—cycles is defined to be Z,C = kerd,,. The
n—boundaries of C are the elements of B,C := dy41Cpi1 = imdy,1. Since d?> = 0, we see dCy41 C Z,C. Define the nt"
homology of C' to be the module H, (C) = 2~ = Xetdu_ Yo sqy o complex C is exact if H,(C) =0 for all n.

dChri1 tMmdn 41

Examples. Considering the examples above, once again.
1. H,(C) =0 for all n for any exact sequence (i.e., an exact sequence is an exact complex).
2. Ho(C)= M, H;(C) =0 for all i # 0.
3. Hi(C)=0foralli#1and Hi(C)=2Z/(2).
4. Ho(C) = M/zM, Hi(C) ={m € M|zm =0} = (0 :ps z).

Definition 2.4. Let (C,d) and (D,d’) be chain complezes. A chain map ¢ : C — D is a family of R—module homomor-
phisms ¢; : C; — D; for all i € Z such that dip; = ¢;—1d; (or, with suppressed indices, we usually just says dp = ¢d).



Remark. Let Ch(R —mod) denote the category of chain complexes of R—modules and chain maps. In fact, it is an abelian
category with sums and products. Thus lim and lim exist.
Exercise. Let {C;, gb;} be a direct system of chain complexes over a directed index set. Then for ¢ < j, we have the following

commutative diagram

d d
/> Uin+1 Ci,n Cz}nfl

\L((b;)vl.%»l \L(‘b;)n l(qﬁ;)nl
d

d
«——=Cjnt1 Cjn Cjn-1

Fixing n, we see {C; », ((;S;)n} is a direct system of R—modules. Show that limC; is isomorphic to the chain complex
RN HLQCi,n — lii)nCi’n,l. Then, find h_I)IlKZ in the following commutative diagram where K; represents the complex formed

by the i*" row and the first column of R’s represents index 1 and the second index 0:

Ky: O R R 0
1 T
22
Ky: 0 R — R 0
1 xT
23
Ky 0 R R 0
1 xT

Proof. Let X,, = h_n>10i7,b,ai7,L : Csn — X where aj,nqﬁé-’n = o, and d, = h_H)ldim. Then, we want to show lii)nC’i = (X, &)

where ¢&; : C; — X is defined by &; , = ; ,. We have
1. X is a chain complex. Notice d,,_1d,, = h_n)ldi,n,lli_rqdi,n = liiqdi,nqdi,n = h_r)nO =0.

N . ALt — AL () . i— . A - _ i
2. &; are chain maps such that ozj(bj = &; (since a]md)jm = w;, for all n), &; , are R—module homomorphisms and for

all n, we have the following diagram commutes (by the universal property of the direct limit):

(623

Cin .

w

Qi n—1
Ci,nfl — X,

3. The universal property of direct limits holds: Suppose BZ : C; — Y are chain maps such that quﬁé = Bi. Then, for all
n we see [3; ,, : C;, — Y, are such that ﬁj,n(bém = Bin. Of course, then there exists a unique v, : X,, — Y;, such that
YnQin = Bin. Define 4 : X — Y by 4;, = ~,. Uniqueness follows. Also, 4 is a chain map as we have the following

commutative diagrams:

Tn
m ¥
X, Cin Y, = X, —Y,
ldn d; ni ld; \Ldn ld/
Qin—1 Bin—1 Yn—1
anl < Ci,nfl — Frpn—1 Xn—l > Yn—l
Tn—1

By the above, we see we can, in a sense, commute direct limits with chain complexes. Thus to find lii)nKi, we simply need
to take the direct limits of each column. We've seen the direct limits of these sequences before. So lmK; =--- —0— R —

Ry — 0 — .- where R — R, is defined by r — { and «a; : R — R, are defined by r — . O

Remark. Let ¢ : C — D be a chain map of complexes. Then



1. ¢.(Z,(C)) C Z,,(D) for all n
2. ¢n(Bn(C)) C By(D) for all n
Therefore, there exists an induced map on the homology: (¢.)n : H,(C) — H,(D) defined by T — ¢, (z).

Proof. Recall that we have the following commutative diagram

d d
CnJrl —C, —— Ch_1

Ll

D7l+1 e Dn —— Dn—l

Let x € Z,(C). So d(x) = 0, which implies 0 = ¢d(x) = d¢(x) and thus ¢(z) € Z,(D). Let y € B,(C). So y = d(t), which
implies ¢(y) = ¢d(t) = d¢(t) and thus ¢(y) € B, (D). O

If C is a complex, one can view the homology as a complex - - H,(C) N n-1(C) BN n—2(C) %= H.(C).

We let the maps be the zero maps so that the homology of this complex at a given spot is still H,(C). In this context,
¢« : Ho(C) — H.(D) is a chain map.

Definition 2.5. A chain map ¢ : C — D is called a quasi-isomorphism (q.i.) if ¢. is an isomorphism, that is, ¢ induces
an isomorphism H,(C) — H, (D) for all n.

Example. Let C be a chain complex, 0 the zero chain complex. Then there is a unique chain map ¢ : 0 — C. Also, ¢ is a

q.i. if and only if C' is exact.

Snake Lemma. Consider the following commutative diagram of R—modules, where the rows are exact:

1—2-p o0 0
ool
0 D—Lsp—sF

Then, the sequence

ker f 2 keryg 7 kerh & coker f 5 cokerg = cokerh
1s exact. Furthermore, if o is injective, then o' is and if € is surjective, then € is.

Proof. Define o : ker f — ker g by o' = a|ier . Note that the image really is ker g by commutativity of our diagram. We can
similarly define 8’. Now, recall that cokerf = D/imf and cokerg = E/img. So we can get a map from D — E — FE/img,
which induces the map & : D/imf — E/img. Similarly, we can define €. Thus, we need only to define 9. To do so, first note

that we have the following commutative diagram:

0
ker h
A—2sp—L o 0
f lg h
0 D—sE—>F
coker f




Let ¢ € ker h. Choose b € B such that 5(b) = c¢. Then €(g(b)) = h(6(b)) = h(c) = 0. So g(b) € kere = imd. As § is injective,
there exists a unique d € D such that §(d) = g(b). Define d(c) = d = d + imf € cokerf. We need to show 0 is well-defined.
Since everything is linear, it is enough to show in the case that ¢ = 0. So suppose ¢ = 0. Then b € ker § = ima. So b = a(a)
for some a € A. Then ¢g(b) = §(f(a)) which implies d = f(a). So 9(c) = f(a) = 0.

Now, we need to show the sequence is exact.

It’s exact at cokerf : Let d € cokerf and suppose d € imd. Then d = 3 where y € D such that 6(y) € img. Thus

5(d) = 4(y) = 6(y) = 0 as 6(y) € img. So im0 C kerd. Now suppose d € kerd. Then &(d) inimg, which implies
5(d) = g(b). Note h3(b) = eg(b) = €5(d) = 0 by exactness. Thus ¢ = 3(b) € ker h. By definition of 9, we have d(c) = d.

It’s exact at kerh : Let a € ker h such that dx = 0. Then there exists b € B such that b = z and g(b) € kere, since
€g(b) = hB3b = hx = 0. By exactness, there is a unique d € D with &(d) = g(b). Since d(x) = d, we see d = 0, that is,
d € imf. So there exists a € A such that f(a) = d. Take b—a(a) € B. Then g(b—a(a)) = g(b) —ga(a) = g(b) —df(a) =
g(b) — g(b) =0. So b — a(a) € kerg. Note 8'(b— a(a)) = B(b) — Ba(a) = B(b) = z. So ker d C im(3'. Now, let b € ker g.
Then ¢ := 3(b) € ker h. To define dc, note there exists b’ € B such that §(b') = ¢ as h3(d') = 0 implies ¢g(b') € imd. As
J is injective, there exists d € D with g(b') = (d). So dc = d. By well-definedness, choose b’ = b. Then g(b') = 0, which
says d = 0 and thus imf3’ C ker 9. 0

Note. The Snake Lemma is in fact true in any abelian category.

Exercise. Let M be a finitely presented R—module. Let f : N — M be a surjective homomorphism where N is finitely
generated. Prove ker f is finitely generated.

’
[e3%

Proof. As M is finitely presented, we have R™ — R" B, M = 0is an exact sequence. Let L = ker 3 = ima’. Then
0—L% R SoM - 0 is an exact sequence, and moreover, L is finitely generated as it is the surjective image of R, which

is finitely generated. Thus we have the commutative diagram with exact rows below:

« B

0 L R" M 0
I
| llM
i v f
0 ker f N M 0

where 4 is the natural injection map. As R™ is projective and we have a map 3 : R™ — M, we can define a map ¢ : R* — N
such that the above diagram still commutes. Now, we need to define a map ¢ : L — ker f. Let £ € L. Then ea(f) € N and
in particular, fea(f) = Ba(f) = 0. Thus ea(f) € ker f. So we may define 6 = ea. Thus we have the following commutative
diagram with exact rows:

0
0 L gy 0
l ) l € 1
i f
0 ker f N M 0
cokerd cokere 0

By the Snake Lemma, we have 0 — cokerd — cokere — 0 is an exact sequence. So cokerd = cokere. Note that cokere is
finitely generated as it is the surjective image of IV, a finitely generated R—module. Thus cokerd is finitely generated. Now
we have 0 — §(L) — ker f — cokerd — 0 is an exact sequence where both §(L) and cokerd are finitely generated. Thus ker f

is finitely generated. O

Proposition 2.6. Let0 — A 2, B Y 0 =0 be a short exact sequence of chain complexes of R—modules (or objects in any

abelian category). Then there exists a long exact sequence -+ — H,(A) (Bo)n, H,(B) Wl H,(C) Sn, H,_1(4) (Badama,



Proof. Consider the diagram

0 A, Pn B, Vn c, 0
o
0—— An—l ﬁ B, s Cn—l 0

By the Snake Lemma, we have 0 — Z,, A LA Z.B — Z,C is exact and A, _1/dA,, — B,_1/dB,, — Cp_1/dC,, — 0 is exact.

So consider the following diagram, which commutes as the above diagram did.

An/dAn+1 &) Bn/dB7z+1 &) Cn/dcn—i-l —0

SRk

0——=Z,-1(A) Zn—1(B) v Zn-1(C)

n—

Note that ker(d,,) = X9 — [f, (A) and coker(d,) = Zooi(A) _ ZnorlA) H,_1(A). By the Snake Lemma, we’re done. [

dAni1 imd,, imd,

Proposition 2.7. The long exact sequence on homology is natural, that is, if we have the following commutative diagram of

chain maps with exact rows,
é %

0 A B C 0
ol
0 D—~E—5~F 0

then there exists the following commutative diagram of long exact sequences:

Ho(A) == H,(B) —2> H, (C) —2 Hyy 1 (A) — -+

| |o |- |

Hy (D) —— Hn(E) 5 H,(F) — n-1(D) ——---

n

Proof. Note that the first two squares are easily seen to be commutative. So we need only show the third square is, that is,

we wish to show 9/, h. = f.Op.

0 A, B, Cp 0
/ d / d /hn d
O Dn An ETL Bn Fn 0
d d d
Pn— Yoy —
0 An—l - Bn—l - Cn—l 0
0 anl Q1 Enfl Bt anl 0

Let &, € H,(C). We can lift ¢, to some ¢, € Z,(C) C C,. By surjectivity, we can choose b,, € B,, such that ¥ (b,) = ¢,.
Then, we can push b, down into B,,_1 to get d(b,). Note here that since ¢,, € Z,,(C), we have ¢,,_1d(b,,) = di,,(b,) = de,, = 0.
Thus b, € ker,,—1 = im¢,—1. So we can lift d(b,,) to a,—1 € A,_1, and thus we see f.0,(¢,) = @,—1. On the other hand,
we could first push ¢, to h(c,) € F,. Then, by commutativity, we know we can lift h(c,) to g(b,) € E,. Next, we push g(b,)
down to dg(b,) € E,—1 and again by commutativity, we lift it to f(a,—1) € Dy—1. Thus 9, h.(c,) = m = fu(@n1).




Thus 9], hy — f«Oy, and the statement is proven. The diagram below illustrates the diagram chase of elements:

O

Definition 2.8. Let f : C — D be a chain map of chain complexes. We say f is null homotopic if for all n there exist
maps Sy, : Cp — Dyy1 such that f, = ds, + sp—1d. The collection {s,} is called the chain contraction. Two chain maps

f,9:C — D are called chain homotopic if f — g is null homotopic.

Remarks.

1. f* —gx = (f_g)*~

2. If f, g are chain homotopic, then f. = g. : H.(C) — H.(D).
Proof. Let uw € H,(C), where u € Z,(C). To show f.(u) = g«(u), it is enough to show (f — g).(uw) = 0. It suffices to

prove if f is null-homotopic, then f. = 0. Note fi(a) = f(u) = sd(u) + ds(u) = s(0) = 0 (ds(u) = 0 as it is in the
boundary and d(u) = 0 as u € kerd). O

Note. Chain homotopy is an equivalence relation. This is different, however, from the following notion:

Definition 2.9. A chain map f: C — D is called a chain homotopy equivalence if there exists a chain map g: D — C

such that fg is chain homotopic to 1p and gf to 1¢.

Note. This means, in particular, that f.g. = 1. on H.(D) and g.f. = 1. on H,(C). Thus chain homotopy equivalence

induces isomorphisms on homology.

Remark. Every chain homotopy equivalence is a quasi-isomorphism of chain complexes, however, the converse is not true.

Recall 0 — C is q.i. if and only if C' is exact.

Exercise: Let C be a short exact sequence. Then 0 — C is a chain homotopy equivalence if and only if C is split exact.

Proof. Let C be the short exact sequence 0 — A — B — C — 0. First note by 0 EiN C, we mean we have the following

diagram
0 0 0 0 0
iFl le ng iﬂ lFs
0——A 7 B——C 7 0

We will first suppose C is split exact, that is, B = A ® C. Define G : C — 0 by G; = 0. Note GF = Idy and so it is chain
homotopic to Idy. Recall, as C is split exact, that there exists ¢ : B — A such that ¢f = 14 and ¥ : C — B such that
gy = 1¢. Furthermore, we can choose ¢ and v such that Idg = f¢ 4+ ¥g. To show F'G is chain homotopic to Id¢, we want
to show Id¢ — F'G is null homotopic. Define s1 = s4 = 0, s9 = ¢, s3 = . This gives us the following diagram

i f AaC g J

0 A C 0
lN lFN lFsc\:a\ iFN J/F"’G"’
0 A C 0

@ ! A8C g J




Now, as G; is the zero map, F;G; = 0 for all . Thus, we have Idq — FoGg = Ids = ¢f =is1+saf, [dage — F3Gs = [dage =
fo+1vg = fso+s3g,1dc — F4Gy = Ide = gy = fs3 + s4g. Thus FG is chain homotopic equivalent to 1¢ which says 0 e
is a chain homotopy equivalence.

For the other direction, choose G; such that we have chain homotopy equivalence. Then GF = Idy and FG = Id, (as we

must have that G; is the zero map). Note that we have the following diagram

0 L4 AaC c—"! 0
0 0 0 0 0
0 ; A 7 B 7 C r 0
By definition, we see Idq = Ids — FoGo = is1 + sof = sof. Thus C splits. O

Comparison Theorem for Projective Resolutions. Let C be an abelian category and consider the following diagram in

C:

131' Pi—l P1 Po M 0
lf:fl
Q—Qi 1t~ 15 L5 LN 0

Suppose the top row is a complex, P; is projective for all i, and the bottom row is exact. Then there exists f; : P; — Q; for
all i such that fidii1 = dj | fiy1 for alli > —1, that is, there exists a chain map which “lifts” f. Furthermore, any two such

liftings are chain homotopic.

Proof. Induct on n to show there exists f; : P, — @Q; for i <n such that f;d;11 = d;+1fi+1 for all i < n —1. For n < —1, this
is trivially true (let f; = 0 for all ¢ < —2 and f_; = f). Assume we have {f;}?" _; which work. So, we have the following

commutative diagram:

As before, there exists f,, : Z, (P) — Z,(Q) (take fr=Fn

we get }; :dPp+1 — dQn41 where 3“; = }Z|dpn+1. Now, we have the diagram below, where the bottom row is exact:

Zn(P))- Since dPy, 11 € Z,(P) and Z,(Q) = dQn 11 (by exactness),

dn+t1

Priq dPp i1 0
Fu
d;1+1
QnJrl dQn+1 0

As P, is projective, we get a map fn41 : Ppy1 — Qnt1 such that /J-C\»,;dn_l,_l = dy, 1 fns1. It is easily seen that this implies
fndn+1 = d;z+1fn+1~

To prove that any two liftings are chain homotopic, suppose both f. and g. lift f. Then f.—g. lifts 0 : M — N. So it is enough
to show if f = 0, then any lifting of f is null-homotopic. We use induction on n to show there exist maps s; : P; — @Q;41 for
i < nsuch that f; = d;118;+s;-1d;. Let s; = 0 for ¢ < —1. Clearly, f_1 = 0 = ds+ sd. So assume we have done this for i < n.
Then f,, = sp_1d+ds,, and so ds,, = fr—sp—1d. Now d(fn1+1—8nd) = dfpnt1—dsnd = df 41— frd+sp—1dd = df 41— fnd = 0.

So im(frni1 — snd) C kerd,, 11 = imd,42. So we have the following commutative diagram

Pn+1
lfn,-plsnd

Qny2 —> dQpt2 — 0 exact

and as P, is projective, there exists s,11 : P41 — Qni2 such that dy 105,11 = frr1 — Spd. O



Definition 2.10. Let C be an abelian category and M € ObjC. A projective resolution of M in C is a chain complex P.
such that

1. P,=0 foralli<O
2. P; is projective
M, ifi=0,

3. H;(P) =
0, otherwise.

Write P.: -« — Py — P,y — - — Py 2 By 2% 0 where Ho(Py) = M = Py/imdy = cokerd;. Equivalently, -+ — Py —
P, — Py = M — 0 is exact where € is called the augmentation map.

Definition 2.11. An abelian category C is said to have enough projectives if for all objects A of C, there exists a surjective

morphism P — A, where P is projective.

Example. C =<< R — mod >> . Every R—module is the quotient of a free module, which is projective. Thus there are
enough projectives in C.

Remark. If C is an abelian category with enough projectives, then every object of C has a projective resolution.

Proof. Let M be an object and fine Py = M where P, is projective. Next, find P, 20, kere 20, Py where P; is projective.

Let dq = ipdp. Continuing, we get a chain as follows:

P, P, Py—> M 0
o e
11 10
ker dy ker e

Examples.

1. Let R be a commutative ring, x € R a non-zero-divisor. Then 0 — 0 — l;% =z 1(1)% — 0 is a projective resolution of
R/(x) = cokerx.

2. Let P be projective. Then --- — 0 — ]03 — 0 is a projective resolution of P.
3. Let R=7/(4). Then - -- 2, }1% 2, 1(‘)% — 0 is a projective resolution of coker2 = R/(2) =2 Z/(2) as an R—module.
Note. Projective resolutions are not unique. For example 0 — Z @ Z ENY// @ Z — 0 defined by f(r,s) = (2r,s) and

0 — Z 2 Z — 0 are projective resolutions of Z/(2) as Z—modules.

Proposition 2.12. Let C be an abelian category, M € ObjC, and suppose P. and Q. are projective resolutions of M. Then
there exists a chain homotopy equivalence f. : P. — Q.. That is, projective resolutions are unique up to chain homotopy

equivalence.

Proof. Suppose we are given the following diagram with exact rows

P—>M—0
|

I 1m

¥ §

Q. —M—0
|

I 1m

v €
P——M—0
|

| 1m

¥ §

Q. —M—0

By the comparison theorem, there exist chain maps g. : P. — Q. and h. : Q. — P. by lifting 13;. Then h.g. : P. — P. is a
lifting of 157, as is 1p : P. — P.. Thus h.g. is chain homotopic to 1p . Similarly, g.h. is chain homotopic to 1¢ . O



Remark. Suppose f : C' — D is a chain homotopy equivalence, where C' and D are chain complexes in some category C.

Let F be a covariant additive functor. Then F(f) : F(C) — F(D) is a chain homotopy equivalence.

Proof. First note that if f : C — D is null homotopic, so is F(f) (as if s, : Cp, = Dyy1 is such that f = ds + sd, then
F(f)=F(d)F(s)+ F(s)F(d)). In general, if fg—1p is null homotopic, then F'(f)F(g) — 1g(p) is null homotopic. Similarly,
if gf — 1¢ is, then so is F(g)F(f) — 1p(c)- O

2.1 Left Derived Functors

Definition 2.13. Let F' : C — D be an additive, covariant, right exact functor on abelian categories, where C has enough
projectives. For i > 0, define the it" left derived functor L;F of F as follows: Let M € ObjC and P. be a projective
resolution of M. Then (L;F)(M) := H;(F(P)).

o This is well-defined: Suppose Q. is another projective resolution. Then there exists a chain homotopy equivalence
f : P — Q.. Hence, F(f) : F(P) — F(Q.) is a chain homotopy equivalence, which induces an isomorphism on
homology. Thus F(f.): H.(F(P.)) — H.(F(Q.)) is an isomorphism.
Now, suppose ¢ : M — N is a morphism in C. Let P. be a projective resolution of M, and Q. of N. By the comparison
theorem, there exists a chain map ¢ lifting . Then F((E) : F(P) — F(Q.) is still a chain map. Define (L;F)(¢) = F(g*) :
Hi(F(P.)) — Hi(F(Q.)).
o This is well-defined: Suppose we had (E: P — Q. and 5’ : P’ — @'. Note then, by the comparison theorem, that we have
maps f: P.— P’ and g : Q. — Q' which lift 1); giving us the following diagrams where the second is commutative:

P M = Po——M
Al AL
P’ M Pi——M
~ ¢ o
(b/
Q. N Qy——=N
/ A
Q' N

Compacting the second dzagmm we see that QS’fO ¢ and, in general, qS’f lifts ¢. Similarly, by considering a different
portion of the cube, we get gé lifts ¢ and thus ¢'f and gé are chain homotopic. Thus F(¢ f) and F(g(b) are chain
homotopic, which says F((Z’f)* = F(ga)* Thus we see F((g’)*F(f)* = f(g)*}7'(§5)*7 which says the following diagram

15 commutative:

Hi(F(P) ~ D% m(F Q)

lF(f)* iF(g)*

Hi(F(P")) H;(F(Q))

Note that F(f)« and F(g). are isomorphisms as f and g lifted the identity maps.

F(¢)-
E—

Exercise. Show LoF = F.

Proof. Let M € ObjC and --- — P, — Py — 0 be a projective resolution for M. Then F(P,) % F(Py) — F(M) — 0
is exact, as F is right exact. So F(M) = F(P)/ima. Thus, when we consider the sequence F(P;) < F(Pp) 2 o,
we see Ho(F(P)) = ker0/ima = F(PO)/ima ~ F(M). Thus (LoF)(M) := Ho(F(Fy)) = F(M). To show LoF = F,
we also need to check that F(f oF(f) for f : M — N. Of course, LoF(f) : LoF(M) — LoF(N) is defined by

) =
LoF(f) = F(fo) : HyF(P.) — Ho(F(Q )) Now, note that fo = fo. Thus LoF(f) = F(f) and so LoF = F. O

Special Case. Let R, S be rings, M an S — R bimodule. Then M ® p — :<< R —mod >>—<< S —mod >> and we denote
Li(M ®g —) as TorF(M, —).

Remarks.



1. If N is a left R—module and P. is a projective resolution for N, then Torf*(M, N) = H;(M ®@g P.).

2. If M is an S — R bimodule, then Fj; = M ®p — :<< R — mod >>—<< § — mod >> is covariant, right exact, and
additive. So, by the above exercise, Torf{(M,—) =~ M ®g —.

Examples.
1. Compute Tor(Z/(2),7Z/(2)) for all 4.

e Note that P:0 — % 2, % — 0 is a projective resolution of Z/(2). Now, apply our functor Z/(2) ®z — to get:

0—=17/(2) @7 Z —

|

0 Z/(2)

Z/(Q) ®Qz L —0

|

Z/(2) ——=0

1R
1R

S]]
I
=}

Z/(2), ifi=0,1
Thus Tor?(Z/(2),Z/(2)) =
0, otherwise.

2. Compute ToriZ/(Q) (Z/(2),2/(2)) for all 3.

e Note that P:0 — Z/(2) — 0 is a projective resolution of Z/(2). Now, apply our functor Z/(2) ®z,(2) — to get:
0

0—=7Z/(2) ®z/2) Z/(2) —=0

lu

0 Z/(2) 0

7/(2), ifi=0
Thus Tor™ @ (2)(2), 2/(2)) = 4 2/ @ 1
0, otherwise.

3. Compute Tor™®(z/(2),Z/(2)) for all i.

e Note that P : 2 7/(4) 2, Z/(4) — 0 is a projective resolution of Z/(2). Now, apply our functor Z/(2) ®z,4) — to
1 0
get:

——>Z/(2) ®za) ) (4) =2 L/ (2) ©za) Z/(4) —> 0

: :

— % S 7/2 0 7./(2) 0

Thus Tor” ™ (2,/(2),Z/(2)) = Z/(2) for all i > 0.

Remark. Let N be a left R—module. Then G: — ®r N :<< S — R bimod >>—<< S — mod >> is right exact, covariant,
and additive. So one could construct L;G := Torf(—, N).

Q: For M an S — R bimodule and N a left R—module, is Tor (M, N) = Torf(M, N) ?

A: Yes! In the case where M is a projective module, note that 0 — M — 0 is a projective resolution. Then, applying the

R M@rN, ifi=0 ) ) o )
functor — ®pg N, we see Tor;"(M,N) = On the other hand, if P. is a projective resolution
0, otherwise.

for N. Applying M ®p — keeps the sequence --- — P, — Py — N — 0 exact as M is projective (and thus flat). So
M®@grN, ifi=0, . . o

TorE(M,N) = Thus Tor = Tor. This is true when M is not projective, however we need
0, otherwise.

more machinery to prove it.



Lemma 2.14. Let C be an abelian category and consider the diagram

0 P—2sQ—°>nR 0
L |
0 L—tsy-"snN 0

Suppose R is projective. Then there exists g : Q — M making the diagram commute.

Proof. As R is projective, the top sequence splits. Let i : Q — P be a splitting map such that i = 1p. Also, as R is
projective, there exists j : R — M such that mj = h. Let g = £fi + je. Then the diagram commutes as g6 = £fid 4 jed = L f
as € = 0 and id = 1 and also mg = mlfi + mje = mje = he. O

Horseshoe Lemma. Let C be an abelian category, 0 — A — B — C — 0 a short exact sequence of objects in C, and P., R.
projective resolutions of A and C, respectively. Then there exists a projective resolution Q. of B and chain mapsi: P. — Q.

and m: Q. — R. such that 0 —» P. — Q. — R. — 0 is a short exact sequence of complexes.

Proof. For each n, let Q,, = P, Ry, i, : P, — Q, be the canonical injection and 7w, : QQ, — R, the canonical projective.
Clearly, 0 — P, — @Q,, — R,, — 01is exact for all n. Let d, d’ denote the differentials for P., R.. We will define d!! : Q,, — Qn—1
inductively. Let dj = 0. So we have the following diagram:

o

0 Py —"> Qp Ro 0
|
Lo
Y
0 A B C 0

By the lemma, there exists v : Qg — B making the diagram commute. Furthermore, 7y is surjective by the snake lemma as
0 = cokere — cokery — cokerd = 0 implies cokery = 0. Moreover, the snake lemma gives us that 0 — kere % kery —%

ker § — 0 is exact. Now, since imd; C ker d;, we have

0 Py Q1 Ry 0
|
idl | idQ
\
0 kere ker~y ker & 0

|

Again, there exists df : Q1 — kery — Qo making the diagram commute. Also, imd] = ker~y by the Snake Lemma and

0

0 — kerd; — kerd{ — kerd] — 0 is exact. Continue inductively. O

Corollary 2.15. Let C,D be abelian categories with enough projectives. Let F : C — D be a covariant, right exact, additive
L;F
functor. Given any short exact sequence 0 — L ERy VRN 0 in C, there exists a long exact sequence - -+ — L;F(L) RN

LiF(M) 259 Ny 2 L ) B0

Proof. By the Horseshoe Lemma, there exists a short exact sequence of complexes 0 — P. — . — R. — 0 where P,Q, R
are projective resolutions of L, M, N respectively. For each n, we see 0 — P, — @,, — R, — 0 is split exact, which implies
0— F(P,) — F(Q,) — F(R,) — 0is split exact. Thus 0 — F(P.) — F(Q.) — F(R.) — 0 is a short exact sequence of chain
complexes in D. Thus --- — H;(F(P.)) — H;(F(Q.)) — H;(F(R.)) — H;_1(F(P.)) — --- is a long exact sequence. O

Example. Let R be commutative, M, N R—modules, and z € R a non-zero-divisor on M. Then 0 — M = M — M/xM — 0
is a short exact sequence of R—modules. Thus there exists a long exact sequence - -+ — Torf*(M,N) — Tor®(M,N) —
TorB(M/zM,N) — --- .

Exercise. Let A be an abelian category, f,g : C — D chain maps of chain complexes. Say f ~ ¢ if and only if f and g are

chain homotopic.

1. Prove ~ is an equivalence relation.



Proof. (a) Reflexive: Say f.: C. — D. is a chain map. Define s,, = 0. Then d, 5, + sp—1d, = 0 = f, — f,. Thus
f=r

(b) Symmetry: Suppose f. ~ g.. Then there exists s, : C,, — D,4+1 such that f, — g, = d/n_HSn + Sp41dn. Then
Gn — fn = dny1(=5n) + (=8Sny1)dy, which says g. ~ f..

(¢) Transitivity: Say f. ~ ¢g. and ¢g. ~ h.. Then there exists s, : C,, — Dp41 and ¢, : C, — Dyy1 such that
o= 9n = dy 150 + Spg1dy, and g, — hy = d) gty + thidy,. This says fr, — hy = (fn — gn) + (gn — hn) =
dpy1(s+ )0 + (5 +1)nt1dn. O

2. Let Hompg()(C, D) denote the set of equivalence classes of chain maps from C to D (that is, Homg4)(C, D) =
Homepa)(C, D)/ ~). Define + on Homg4)(C, D) by [f] + [g] = [f + g]. Prove that this is well defined.

Proof. Suppose f. ~ h. and g. ~ i.. Then, there exists s,t such that f —h = ds + sd and g — i = dt + td. So
(f+9)—(h+i) = (f—h)+(9—i) = d(s+1)—(s+t)d. Thus, f+g = h+i, and so [f]+[g] = [f+g] = [h+i] = [A]+[i]. O

Note that this makes Homg4)(C, D) into an abelian group.

3. For [f] € Homg4)(C, D) and [g] € Homg (D, E), define [g] o [f] = [gf]. Show o is well defined.

Proof. Say fi ~ fo and g1 ~ g5 where f; : C — D and g; : D — E. Then there exists s, : C, — D,41 and
tn : Dy — Epqq such that fi — fo = sd + ds and g1 — go = td + dt. Define u,, : C), — En11 by Un = g2 n+15n + tnfin-

Then
Up—1d+dun, = gonsSp-1d+tn-1fin-1d+ dgani15n + din fin
= Go.nSn—1d+ g2 ndsy +tn_1dfin + dtnfin
= gon(Sn—1d+dsy) + (tn—1d + dty) f1.n
= Gnlfin— fon) + (910 —920)f1n
= ginfin — G2nf2n
Thus g1 f1 ~ g2f2 and thus [g1][f1] = [91 /1] = [92/2] = [92][/2]- O

Definition 2.16. Let A be an abelian category. The category K(A) is defined as follows: ObjK(A) is the class of chain
complezes in A and for C,D € Obj(A), let Homga)(C, D) and composition be defined as above. Then K(A) is called the
chain homotopy category of A.

Definition 2.17. Let A be an additive category. Let f : C — D be a morphism. A kernel of f is an object K and a
morphism i : K — C such that f; =0 and if g : A — C is a morphism such that fg = 0, then there exists a unique morphism

g+ A— L such that g = ig’.
Note.
1. K(A) is an additive category (so Hom sets are abelian groups and there is a 0 object), but it is not abelian (as the

kernel/cokernel does not always exist).

Example. Let C. : 0 — ZelBZ % 7Z/(2) — 0 where B3(a,b) =a+band D.: 0 — Z/(2) ®Z/(2) — 0. Then, we can
0 1

define f : C. — D. by fi(a,b) = (@,b) and f; = 0 for all i # 1. Then f € Homcy(a)(C, D) and so [f] € Hom () (C, D).
It can be shown that ker[f] does not exist in K (A).

2. Often, the derived category comes up in Homological Algebra. The derived category is K(A) “localized” at the set

of quasi-isomorphisms.



Lemma 2.18. Let A be an abelian category and consider the following commutative diagram in A, where the rows are exact,

R, R’ are projective, and d' : P — A’ 1is onto.

0 pP— Q—= R 0
% ! d % ¢
0 P — Q — R’ 0
d d’ L d
0 A— B—; C 0
7 e e
0 A — B’ c’ 0

Then there exists g : Q — Q' making the diagram commute.

Proof. As R, R’ are projective, the top two rows split. Define p: R — Q,p' : R — Q',¢ : Q — P,¢' : Q' — P’ such that
mp=1g,¢i = 1p,1g = i¢ + pm and similarly for the primed maps. Observe

B'gdp = hBdpas f'g=hp
= hdmp as fd =dr
= hdasmp=1
= d'h by commutativity
= dr'phast'p =1
= pldp'hasdr =pd

Thus im(gdp — d'ph) C ker 8/ = ime/. So we can define a map 7: R — A’ by 7 = (/)" Y(gdp — d'p'h) (as o is injective).

Now we have,

P == A —>0

As the bottom row is exact and R is projective, there exists v : R — P’ such that d'y = 7. Define g : Q@ — Q' by

G=1i'f¢+i'vym + p'hr. To show this makes our original diagram commute, note
o Gi=1i'foi+i'ymi+ phmi=1if as ¢i = 1 and i = 0.

o ©'§=mi'fo+7i'vm +mp'hr = wp'hr = hr as i’ = 0.

dG=difé+divr+dphr = odfo+o'dyr+dphrasdi=ad
= odfo+ (gdp—dph)r+dphras dy=1= (/) (gdp— d'p'h)
= a’d’f(;SJrgdpﬂ

= o/ fdp+ gdpr as d'f = fd

= gadd+ gdpr as o' f = ga

= gdi¢+ gdpm as ad = di
gd as i¢p + pm = 1.

Lemma 2.19. Let A be an abelian category and consider the following diagram in Ch(A).




Suppose that the rows are exact, all complexes are 0 in negative indices, R, R’ are complexes of projective modules, and there

exists g : Ho(Q) — Ho(Q') such that the following diagram commutes.

0 Py Qo R 0

5

]
0 — Ho(P) — Ho(Q) — Ho(R) —0
ol

0 — Ho(P') — Ho(Q') —— Ho(R') —=0
Then there exists g : Q — Q' making the initial diagram commute and lifting g.

Proof. Define g, : Q,, — Q,—1 inductively. Let g; = 0 for all 7 < 0. Assume g; is defined for ¢ < n. Define gp41:

0 PnJrl QnJrl RnJrl 0
/ ad /
0 Py L Qi1 ‘/ 1 0
0 dPn-i—l dQn+1 dR71+1 —>0
l / l gn /
0 AP, Q11 ARy, ¢, 0

(This is commutative). By assumption, the top 2 rows are exact and by induction and the Snake Lemma, the bottom two

rows are exact. As R, 41, R;,, are projective and d' : P}, | — d'P} ., is surjective, we are done by the previous lemma. [

Note. A projective resolution (or even a chain of projectives) is not a projective object in the category of chain complexes.

Otherwise, the above two results would be trivial.

Example. Let A =<< Z — mod >> and consider the chain complex P. : 0 — % dr, % — 0, where dp is defined as

multiplication by 2. This is a chain of free (and thus projective) modules. However, P. is not a projective object in Ch(A).

Proof. We want to show that there exist chain complexes A and B in Ch(A) such that A — B — 0 is exact and we have a
map P — B, but that there does not exist a map P — A making the diagram commute. Define A. : 0 — 0 da, Z — 0 and
B.:0—-0—2Z/(2) — 0. Define g. : A. — B. by go(a) =@ and ¢g; = 0 for all i # 0. Also define h. : P. — B. byho( y=a

and h; = 0 for all ¢ # 0. Then we have the following diagram, where the bottom row is exact.

Now, suppose there exists f. : P. — A.. Clearly, f1 = 0. So fodp = daf1 = 0. Say fo : Z — Z is defined by 1 — m. Then
0= fodp(1) = fo(2) = 2m = 0. Then m = 0, which says fo = 0. Thus f. =0, but h = gf = 0, a contradiction as h £20. O

Theorem 2.20. Let F' : C — D be a covariant, right exact, additive functor on abelian categories, where C has enough

projectives. Consider the following commutative diagram:

0 1—>p- . 0
ool
0—> 4~ = 0 ——0



Then the corresponding diagram of long exvact sequences on L;F commutes, that is, LF is a covariant functor from <<
SES in C >>—<< LES inD >> .

Proof. Let P, R., P!, R be projective resolutions for A, C, A’, C' respectively. By the Horseshoe Lemma, there exists projec-
tive resolutions Q.,Q’ of B, B’ such that 0 = P - Q — R — 0 and 0 — P’ — Q' — R’ — 0 are exact. By the Comparison
Theorem, there exists f,ﬁ that lift f,h. By the above lemma, there exists § : Q@ — @’ lifting ¢ and making the diagram
commute. Now, apply F':

0——F(P)—— F(Q) F(R) 0

0—=F(P) —=F(Q) F(R) 0
Note that the rows are exact as R is projective (and F' preserves split exact sequences). The diagram of long exact sequences
of L; F commutes by naturality of the connecting homomorphism in the long exact sequence on homology. O
Definition 2.21. Let C be a chain complex in A. Let p € Z. Define a chain complex C[p] by Clpl, = Cptn and d[p],
C[p]n - C[p}n—l by (_1)pdp+n~
Example. Suppose C is the complex C, 4, Ch_1 4, Ch_a LA Then, C[—1] is the complex Cj,_1 -4, Ch_a -4,

n n—1 n—2 n n—1

Ch_s =4, ... , that is, the complex C' shifted to the left by one.
n—2

Remark. H, (C[p]) = H,1,(C) for all n.

Definition 2.22. Let f : B — C be a chain map of complexes. Define the mapping cone of f, denoted cone(f), to be
the chain complex such that cone(f)n, = Bn—1 @ Cy, for alln and d,, : Bp_1 ® C,, — Bp_2 ® Cp_1 is defined as (b, c) —
(—d(b),d(c)—f(b)). [This is a chain complez as dy,_1d,((b,¢)) = dp_1(—d(b),d(c)— f(b)) = (d?(b)—d?(c)—df (b)+ fd(b)) = 0.]

Now, define g : C — cone(f) where g, : C,, — B,_1 ® C, is defined by ¢ — (0,¢). This is an injective chain map.

Similarly, define h : cone(f) — B[ 1] by hy, : Bp—1 ® C,, — B[-1},, = B,—1 where (b,c) — —b. This too is a chain map.

Note that 0 — Cp, & B,_1 & Cy, 2 B,_; — 0 is exact. Thus 0 — C — cone(f) — B[—1] — 0 is a short exact sequence of

complexes. Hence, we get a long exact sequence - -- — H,,(C) — H,(cone(f)) — H,(B[-1]) Sn, n—1(C) — -+ .

Claim. 8 = (fu)n_1: Ho(B) — Ho_1(C).

Proof. First consider the following diagram:

0 Cn anl 2, Cn anl 0
R |-
0 On—l Bn—2 o Cn—l Bn—2 0

Let b € Z,,_1(B). Lift b to (=b,0) in B,_1 ® C,. Now, push to (—d(—b),d(0) — fn—1(=b)) = (0, fn—1(b)). This lifts
uniquely to f,_1(b) € Cp_1. In H,,_1(C), the image is d,,(b) = fu_1(0) = (frn_1)«(b). Thus 8,1 = (fa_1)«-

Exercise. Let f : C — D be a chain map in an abelian category. Let ¢ : C — cone(lg) = Cp—1 @ C,, be the natural
injection, that is, i, : C;, — Cph—1 ® C), where ¢ — (0, ¢). This is a chain map. Prove that f is null-homotopic if and only if

there exists a chain map g : cone(l¢) — D such that gi = f.

Proof. Let ¢: Cp, — Cp_1,d: Dyy — Dy—q, € : cone(le)n — cone(leg)n—1 be the differential maps for each of the complexes.
First, suppose f is null-homotopic. Then there exists s,, : C,, — D,,4+1 such that f,, = ds,,+s,_1c. Define g,, : C;,_1®C,, — D,
by (z,y) = fn(y) = sn—1(2). Then gnin(y) = gn(0,y) = fn(y) — $n-1(0) = fu(y). To show g is a chain map, note that

gnre(x,y) = gna(—c(x),cly) — )

fn 1(c(y) — x) = sp—2(—c(z))

= fao1(c(®)) = fa1(x) + sn_2(c(x))

= dfn(y) —dsp-1(x) = d(fu(y) — sn-1(x)) = dgn(z,y).



To prove the other implication, suppose ¢ : cone(lg) — D is defined such that gi = f and ¢ is a chain map (so that
gn—1€ = dgy,). Define s, : C,, — Dy 41 by  — gpi1(x,0). Then

dsn(z) + sn—1c(z) = dgnt1(z) + gn(c(2),0)
gne(z,0) + gn(c(z),0)

= gn(—c(x),2) + gn(c(x),0)

= gn(0,2) = gni(x) = fu(x) O

2.2 The Koszul Complex and regular sequences

Definition 2.23. Let R be a commutative ring and C' a chain complex of R—modules. Given x € R, there is an induced
chain map & : C — C where &, : Cp, — C,, is defined by ¢ — xc for all n. This is in fact a chain map as for ¢ € C,, we have
d(zc) = xzd(c) as d is R—linear.

Definition 2.24. Let x4, ...,x, € R. Define the Koszul complex K.(x1, ..., z,) inductively as follows: Forn =1, let K.(x1) be
the chain complexr 0 — }1% =, ]0% — 0. Given K.(x1,...,xp_1), let K.(21,..,x,) be the mapping cone of Ty, : K(T1, ... Tp_1) —
K(x1, ..., Tp_1)-

Example. We will compute K.(x1,z2). Consider the following diagram, where R; = R, = R for all i.

Z1

B:0 Ry Ry 0
-
C:0 R} ——= R}, 0

Then, K.(z1,22) : 0 - Ry = Ry @ R) LN R, — 0 where a(l) = (=d(1),-f(1)) = (—=z1,—2x2),5(1,0) = —x2, and
2 1 0
£(0,1) = x;. Compacting the indices (since everything is just R), we see K.(z1,22) : 0 — R % R? P, R = 0 where a is

—x
multiplication by (—z1,—x2) and § is multiplication by the matrix [ 2] )
T

Exercise. Find K (z1,x2,3).

Proof. Using K.(z1,z2) above, we construct K.(z1,zo,x3) :

0 R1 R2 R2 0
Pk
0 R} R? R} 0

where the maps on the rows are defined as above. Then, K.(x1,22,23) is the chain complex 0 — Ry & 0 LR R LN
Ry & R% Loaw R}, — 0, where the maps are defined as follows:

a(1,0) = (=d(1),d(0) — f(1)) = (z1,x2, —x3)

£(1,0,0) = (=d(1,0),d(0) = f(1,0)) = (x2,—25,0)

B(0,1,0) = (=d(0,1),d(0) — f(0,1)) = (—z1,0,3)

£0,0,1) = (=d(0,0),d(1) — f(0,0)) = (0,—z1,—2)
7(1,0,0) = (—d(1),d(0,0) — f(1)) = (0,—x3)
7(0,1,0) = (=d(0),d(1,0) — f(0)) = (0,—z2)
7(0,0,1) = (=d(0),d(0,1) = f(0)) = (0,1)

Finally, compacting the indices, we see K.(x1,x2,23) is the chain complex 0 — R < R3 LN R* 5 R — 0 where
To —I3 0 —I3
a(l) = (1,22, —x3), O is multiplication by the matrix |—z; 0  —z3]|, and v is multiplication by the matrix | —z,

0 —I1 —X2 I



Remark. If & : C' — C is as above, then (&), : H.(C) — H,(C) is also multiplication by x.

Definition 2.25. Let zy,...,x, € R. Then the i*" Koszul Homology of x1, .., T, denoted H;(z1, ..., 7,) is the it" homology
of the Koszul complez, that is, H;(K(x1,...,Zn)).

Proposition 2.26. Let z1,...,x, € R. Then there exists a long exact sequence on Koszul Homology - - - — H;11(x1, ..., ) —

Hi(xl, ...,fﬂn,l) Z.n> Hi(xl, ...,.’£n71) — Hi(.%l, ,xn) — e

Proof. Let &y, : K.(x1,...,2p—1) — K.(21,...,2p—1). Then K.(z1,...,x,) = cone(&,). Thus there exists a short exact sequence
of complexes 0 — K.(21,...,2n—1) — cone(Z,) — K.(z1,...,2n—1)[—1] — 0, which says there is a long exact sequence on

homology, namely the one above. O

Definition 2.27. Let R be a commutative ring, x1, ..., x, € R. We say x1, ...,x, is a regular sequence if (z1,...,x,)R # R

and for i =1,..,n, T; is a non-zero-divisor in R/(x1,...,x;_1).

Exercise. Show K;(x1,...,x,) = R() for 0 < i < n and K;(zy,...,2,) = 0 otherwise. Also, show H,(x1,...,x,) =

anng(z1,....xn) = (0 :g (1, ..., 2,)).

R=R0), ifi=o,
Proof. We will induct on n. For n = 1, we have 0 — 11% 4, Iéi — 0. Clearly, K(z1); = S R= 3(1)7 ifi=1, . So

0, otherwise
suppose the claim holds for n — 1. Then K.(z1,...,z,) is the mapping cone of &, : K. (x1,....,2n-1) — K.(z1,...,Tpn_1)

n—1 n—1

R g r(T) = RGZDH(T) . if1<i<n—1,

R'eR(") = RG) = R, if i =0,

and so K(Il,...,SCn)i :K(x17"'7x’n—1)i—1 @K(:z:l,...,:z:n_l),; = ne1 . . Since
R(nfl) D0 = R(n) = R, if¢ = n,
0, otherwise.

=+ (7Y = (1), we are done.

i—1 %
For the second claim, we will also induct on n. For n =1, Hy(K.(z1)) = ker z1 /im0 = annpr(x1). So suppose the claim is

true for n — 1. Then H,,_1(x1,...,2n—1) = anng(z1,...,2n—1). Consider the long exact sequence

'*)Hn(xlv-"axn—l) —)Hn(ajl,...,l‘n) 2, n—l(xla---azn—l) Zn, n—l(gj17"'7xn—l) —> e

=0 —anng(@1yen) —anng(@1,.n)

Now, g is injective, and thus H, (21, ...,z,) = img = ker T,, = {r € anng(x1, ..., xp_1)|re, = 0} = anng(z1, ..., ).

R/(x1,...;xyn), ifi=0

0, otherwise.

Proposition 2.28. Suppose x1, ..., T, is a reqular sequence. Then H;(x1,...,Tn) =

Proof. We will use induction on n. When n = 1, note that x; is a non-zero-divisor on R. Recall K(z1) : 0 — 1? ML 1(3]3 — 0.
Note that multiplication by z; is injective as 2 is a non-zero-divisor. So Hi(x1) = 0. Also Ho(x1) = ker 0/im(z1) = R/(x1).

So let n > 1 and assume the hypothesis holds for n — 1. From the long exact sequence on Koszul Homology,

v Hy(wy, ey ) — Hi(21, o) — Hio1 (21, 0y Bpy) 2 Hy g (01, ey Tpe1) —
S~—_—— —

=0 if i>0 =0 if i>1
we see H;(x1,..,2,) =0 for i > 1. For ¢ = 1, we have

Tn—1

O — Hl(xl, ,.I'n) — R/(.’El, ...,.CL‘n,1) e R/(.ﬁl)l, ...,In,1> — HQ(CII], ,J}n) — 0

Note again that multiplication by Z,, is injective as T, is a non-zero-divisor. Thus Hi(z1,...,x,) = kerz,, = 0. Now,
Ho(z1, ..., xn—1) = coker(T,) = R/ (21, ..., Tpn)- O

Remark. If zq, ..., 2, is a regular sequence, the Koszul complex is a projective resolution of R/(x1, ..., Zp).



Definition 2.29. A double chain complex C.. in an abelian category A is a family of objects {Cp 4 }p.qez and morphisms
b Cpg— Cpg—1 and dlt .- Cp g — Cp_1,4 for all p,q where (d*)* = (d")? = 0 and d°d" + d"d" = 0 (that is, the squares
anticommute). The diagram of C.. looks like

C’p+1,q <~
dv d d¥

<~ Cp—Lq—l <T" Cp,q—l <;d} Cp+17q—1 <~
3

Example. Let C.,D. be chain complexes. Define a double chain complex T'. by T, , = C, ® D, for all p,q € Z where
dh : Cp® Dy — Cp_y @ Dy is the map do ® 1 and db , : C, @ Dy — Cp @ Dy_1 is the map (—1)P @ dp.

Definition 2.30. Let T be a double compler. Define a chain complex Tot!l(T) by Totl(T), = [Lij=nTij and dy :
Totl(T),, — Totl(T),—1 by c € T; ; +— d¥(c)+d"(c), that is, dyor = d¥ +dl. Note d> = (d"+d")? = 0 by anticommutativity.
So this is a chain complex. Similarly, define Tot®(T) by Tot®(T),, = @it j=nTy; and dyor = d% + d.

Definition 2.31. Let C.,D. be chain complexes. Then the temnsor product of two chain complexes C ® D is the
chain complex Tot®(T), where T is the double complex {C, ® D,} defined above, that is (C ® D), = & C; ® D; and

i+j=n
d: (C®D), — (C®D),_1 is defined by ¢; @ dj — d(c;) ® d; + (—1)'¢c; @ d(d;) for ¢; € C;,d; € D;.
Example. Find K. (z1) ® K.(x2).

Proof. Let C.: 0 — Ry 2 Ry — 0 and D.: 0 — R} =% R, — 0. Then we have

0<~—Ro®R|<—— R @R <—0
dv (dv)/

Oe—&®%zﬁm®%e—ﬂ

0 0

where d"(1®1) =21 ®1,d°(1®1) = 1 @29, (d*)(1®1) = =1 @ x5, and (d")(1®1) = 21 ® 1. Then, we get 0 — R; ® R} %
(Ro®@R)® (R1®Ry) LN Ry® R{, — 0 where « is defined by a(1®1) = (1 ®1, —1®x2) and § is defined by 3(1®1,0) = 1®x
and $(0,1®1) = x; ® 1. Compacting, we see 0 — R — R?> — R — 0 where 1 — (21, —23), (1,0) + 23, and (0,1) + x;. This
gives an alternated construction of the Koszul complex, that is, K.(z1,...,xn) = K(Z1, ..., Tp—1) @ K(x,) = @1 K.(z;). O

Definition 2.32. A double complex T is said to be first quadrant (or second quadrant, upper half plane, etc) if
T;; = 0 when (i,]) is outside of the first quadrant (or second quadrant, upper half plane, etc). T is said to be bounded if

for all n € Z there exists only finitely many nonzero terms T; ; such that i + j = n.
Example. First and Third Quadrant complexes are bounded.
Remark. If T is bounded, then TotIl(T) = Tot®(T) and we simply write them as T'ot(T).

Acyclic Assembly Lemma. Let C be a bounded double complex such that either all of the rows are exact or all of the

columns are exact. Then Tot(C') is ezact.

Proof. By interchanging rows and columns, it suffices to prove in the case when all the columns are exact. By shifting the
double complex to the left or right, it is enough to show Hy(Tot(C)) = 0. By shifting C along i + j = 0, we can assume



C;,—; = 0 for i < 0 and, since bounded, for ¢ > n as well for some n. Thus, any element of Tot(C)o can be represented as
(o, ..y cn) Where ¢; € C; ;. Let ¢ = (cq, ..., ¢n) € Zo(Tot(C)). Then d¥(c;—1) +d"(c;) = 0 for all i = 0, ..., n. We want to show
there exists b = (bo, ..., b,) € Tot(C) where b; € C; _; 41 such that d(b) = c, that is d¥(b;) + d"(biz1) = ¢; for i = 0,...,n
Define b; inductively. Let b,11 = 0. As ¢ is a cycle, d”(¢,) = 0. As columns are exact, there exists b, € C, _p4+1 such
that d¥(b,) = ¢,,. Thus d”(b,) + d"(bn+1) = ¢n. So suppose there exists by, by,—1...,bj41 such that d¥(b;) + d"(bi11) = ¢; for
7+ 1 <1 < n. Notice

dv(cj_dh(bj+1)) = d”(cj) (J+1)
- d”(c]>+dhd“<b )
= d’(¢j) + (CJ+1 dh(bj+2))
(cj) +

d¥(cj) +d"(cj11) =0

As the columns are exact, there exists b; € Cj _;1 such that d¥(b;) = ¢; — d"(bj4+1). Note d"(bg) = 0, thus the induction

must end. [

Exercise.

1. Let R be a commutative ring, M, N R—modules. Prove AnngTor?(M,N) D AnngM + AnngN for all 4.

Proof. We want to show AnngM, AnngN C AnngTorE(M,N). Let P. be a projective resolution for N. Then
TorB(M,N) = H;(M ®g P.) = kerd;;/imd;. Thus, elements are of the form >.m @ p where m € M,p € P;.
Let r € AnngM. Then r(m ® p) = (rm) @ p = 0@ p = 0. Thus r € AnngTorF(M, N). Similarly, as Torf (M, N) =

H;(Q. ®r N) where Q. is a projective resolution of M, we see AnngpN C AnngTorf(M,N). O

2. Let F : A — D be an exact covariant functor on abelian categories. Prove that for any chain complex C' in A,
H;,(F(C)) = F(H;(C)) for all 1.

Proof. Suppose we have that the sequence 0 — ker f L AL BT coker f — 0 is exact. Then, as F is exact, the top

row of the following diagram is exact.

0 —— Fker £) 2% pa) 2YL pB) 27 cokerf —— 0
0 —— ker F(f) —— F(4) 2L F(B) — 2 cokerF(f) — 0

By universality of the kernel and cokernel, we get induced maps 7 : F(ker f) — ker F(f) and o : cokerF(f) —

F(coker f). By the Five Lemma, they must in fact be isomorphisms.

Now, note that 0 — kerd,,4+1 — imd,, — H,(C) — 0 is exact, and thus the following rows are exact:

0 —— F(kerd,,1) — F(imd,) — F(H,(C)) —=0

im lm

0 ——ker F(dyy1) —imF(d,) — H,(F(C)) —=0
By exactness (lift, push, push), we get o : F(H,(C)) — H,(F(C)). By the Five Lemma (one can show that the diagram

above commutes as the isomorphisms are natural), @ must be an isomorphism. O

3. Let {M;}icr be a direct system of right R—modules over a directed index set I. Prove that for all left R—modules,

Torf limM;, N | = hmTor (M;, N) for all j.
-
iel iel

Proof. Let P. be a projective resolution of N. Then li_n>1(Mi®RP_) is isomorphic to the chain complex - -+ — ImM;® P, —



limM; @ Py—1 — --- . Of course, the following diagram commutes:

lim(M; ® Py) —— lm(M; @ Py—1)

L

(h_H}le) ® Pk E— (hi}an) ® P}c,1

As it commutes in a natural way, we see H;(lim(M; ®g P.)) = H;((imM; ®g P).

Now, as I is directed, lim is an exact covariant functor. Thus H;(limM; ®r P) = limH;(M; @ P). Hence,

Torf((limM;,N) = H;((limM;) & P)

H;(lim(M; ® P.))
= limTorf'(M; ® P.)

4. Let R be a PID, M, N R—modules. Prove that Torf’(M, N) =0 for all i > 2.

Proof. First suppose M is finitely generated. Find f : R™ — M which is onto. Then 0 — ker f — R" EI VN 0 is
exact. Since R is a PID, submodules of free modules are free. Thus ker f is free and we have a projective resolution.
Now, tensor our projective resolution with N to get 0 — kerf g N — R" ®gr N — M ®r N — 0, which says
TorE(M,N) = 0 for all i > 2. Now, suppose M is not finitely generated. Then M = limM;, where {M;} ;e is the set

of finitely generated submodules of M and J is directed. So TorZ(M,N) = Torf (hmMj, N) = limTorf(M;,N) =0
= —

jeJ jeJ
for all 7 > 2. O

5. Let R be commutative, M, N R—modules. Prove Torf (M, N) = Torf(N, M) for all i.

Proof. Recall that P. @ N = N ®p P. Thus Torf(M,N) = H;(P. ®x N) = H;(P. ®k N) = H;(N ®x P) =
TorE(N, M). O

6. Let R be a commutative domain, @ its field of fractions. Prove that for all R—modules M, Torf(Q/R, M) = T(M),

the torsion submodule of M.

Proof. Note that 0 —» R 5 Q & Q/R — 0 is exact. Since Torf(—, M) = H;(— ®g P) is a left derived functor, we

have the following sequence is exact

-+ — Tor{(Q,M) — Tor{(Q/R,M) — Tor{(R,M) — Torf!(Q,M) — -+
N———

=0 as Q is flat =RQrM=M =Q®rM=M )

(as @ = R(gy). Thus we have the exact sequence 0 — Torf(Q/R, M) & M LN M. This says « is injective, and thus

Torf(Q/R, M) = im(a) = ker 3. Now, m € ker 8 if and only if 2 = ¥ which is if and only if there exists r € R\ {0}

such that rm = 0 (i.e., m € T(M)). Thus ker 8 = T(M) and Torf*(Q/R, M) = T(M). O

Two Homology Filtrations on a double complex

Let C be a double complex, Z! (C) = kerdy , and By (C) = imd}, ,,,. By anticommutativity, d"(Z2 ) C Z2 |,

d"(Bp,) € VX, . Similarly, if we let Z"(C) = kerd! , and Bl (C) = imd}, , ,, then d*(Z}!,) C Z], | and d*(B},) C

. L P,
B;)l,q;l. Thus we get an induced map d: Hp (C)=Z) (C)/B} (C)— Hy_y,
dar dn

S HY L (0) il HY (C) <= -+ . Denote this complex as HY(C). Let H'H!(C) = H,(HY(C)) = kerdl:  /imdl, | .

and

(C). So for each g, we get a chain complex



Similarly, let H[,‘ (C) denote the complex

Define H};H[}(C) = Hq(H;L(C)).
If C is a first quadrant double complex, then both “filtrations” H;}H;’(C) and H}I’HS(C’) “converge” to Hpyq(Tot(C)).

[To understand the meaning of converge, refer to spectral sequences in Wiebel.|

Theorem 2.33. Let C be a first quadrant double complex of R—modules. Suppose H1’7’7q(0) =0 for all ¢ > 0 (that is, the
columns of C are exact, except maybe at ¢ = 0). Then Hl?H{)’(C) = H,(Tot(C)). Similarly, if HI}}’q(C) =0 for all p > 0,
then HYH{ (C) = Hy(Tot(C)). Hence, if HY , =0 for all ¢ >0 and H}}, =0 for all p > 0, then H}H§(C) = HYH}(C).

To prove this theorem, we need a few results. But first, we will consider the consequences of the theorem.

Recall. If M is a right R—module, N a left R—module, P. a projective resolution of M and (. a projective resolution for
N, then Torf{(M,N) = Hy(M ®r Q.) and Tor;' = H;(P. ®g N).

Corollary 2.34. For all i, Tor(M,N) = Torf(M, N).

Proof. With the notation above, let T be the double complex {P, ® Q,}p4ez. Then T is first quadrant. The ¢** row of T
is P.®r Q.. We know P. — M — 0 is exact. As Qg is projective (and thus flat), P. ® Q, — M ® Q4 — 0 is exact. Thus

0, ifp>0
H! (T) = b Then the complex H(;L(T) s - =2 M®rQqr1 > MORrRQg —> MR®rQq—1 — -+, that

e M®rQq ifp=0.
is, H!(T) = M ®g Q.. Therefore, HYH{/(T) = Hy(M @r Q.) = Torq(M,N). Using the facts that Q. — N — 0 and P. is
0, itg>0, .
flat, we get Hy (T) = Similarly, HI’}HE{(T) = Hy(P-®grN) =Tor,(P.®r N). O

Definition 2.35. Let C,D be double complezes. A morphism f: C — D is a family of maps {fpq : Cp.q = Dpqgtpqcz
such that fd" = d'f and fd" = d"f.

Remark. If f: C — D is a morphism of double complexes, then it induces a chain map f : Tot(C) — Tot(D) (define it
componentwise). It is a chain map as f(d" + d") = (d¥ + d*)f.

Lemma 2.36. Let C be a first quadrant double complex and D a chain complex (consider it as a double complex with only one
nonzero row). Suppose f : C — D is a map of double complexes. Then we get the induced map f: Tot(C) — Tot(D) = D.
Let T be the double complex obtained by adjoining D to the ¢ — 1 row of C' with the differential in D multiplied by —1 and

let dy o : Tpo = Cpo — Tp 1 = Dpo be the map fpo. The cone(f) = Tot(T)[—1].

Proof. Note that cone(f), =Tot(C)p_1®TotD, = & Cpq®Dyand cone(f)n1= & Cpq®D,_1. Note that we
p+g=n—1 p+g=n—2
getmaps —d: @& Cphqo— @& Cpq—f: @ Cpq— Dy_1,andd: D, — D,_;. Then, our map from cone(f), —
p+g=n—1 p+g=n—2 p+g=n—1

cone(f)n—1 is defined by (¢, dy,) — (—d(c),d(d,) — f(c)) = (=d(c), d(dy) — f(cn=1,0)) where ¢ = (con—1,¢1,n—2, -, Cn—1,0) €
TOt(C)n_l.

Similarly, we have Tot(T)[—1], = Tot(T)p—1 = @& Cpe®DpandTot(T)p—1= & Cp®D,_1. Note that we now
p+g=n—1 p+q=n—2
have maps —dpoyr) : Tot(T)n—1 — Tot(T)p—2,—d: & Cpq— & Cpq,—f:8Cpq— Dy yand—d: D, — D, ;.
p+g=n—1 ptq=n—2

One can see that —dr, 7y will be defined above. Thus cone(f) = Tot(T)[-1]. O



Proof. (Of Theorem) Suppose C is a first quadrant double complex and suppose the columns are exact except at p = 0. Let
fpo: Cpo — Hy o= Cpo/imd, ; be the natural surjection. Consider Hg(C') as a double complex concentrated in row ¢ = 0

and f: C — HY(C) defined as above.

0 Co,0 Cio Cao

L

0<— Hopo(C)<— H1,0(C) <=—— Hoo(C) =—

]

0 0 0

This gives a chain map ]7: Tot(C) — HY(C). Recall f is a quasi-isomorphism if and only if cone(f) is exact. Now, let T
be the double complex obtained by putting HJ(C) into row ¢ = —1, multiply the differential by —1, and keeping C' in the
first quadrant, with dp , = fp,0 for all p. Then T'is a bounded complex where all of the columns are exact. By the acyclic
assembly lemma, Tot(T) is exact. Thus Tot(T)[—1] is exact, and thus by the lemma, cone(f) is exact. Therefore, f is a
quasi-isomorphism. Thus H,(Tot(C)) = H[}H{j (C) for all p. O

Exercise. If R is a Noetherian, commutative ring, M, N finitely generated R—modules, then T'or*(M, N) is finitely generated

for all 7.

Recall. Let (R, m) be a commutative local Noetherian ring, M a finitely generated R—module. TFAE
1. Ag(M) < 0
2. M is Artinian and Noetherian
3. /Ann(M) 2 m
4. R/Ann(M) is zero-dimensional
5. M, =0 for all p # m.

Proposition 2.37. If \(Torf (M, N)) < oo, then \(TorE(M,N)) < oo for all i.

Proof. Suppose A(M ® N) = A(Tor{{(M, N)) < co. Then m C \/Annr(M ®r N) = /AnngM + AnngN(x). By the above
exercise, Torf'(M, N) is finitely generated for all i > 0. By exercise 1 above, AnnTort(M, N) D AnnM + AnnN. By (x), we
have \/AnngTorf (M, N) O m, which implies A\(Tor (M, N)) < oo for all 4. O

Note. If M or N has a projective resolution of finite length, then Torf{(M, N) = 0 for i >> 0.

Definition 2.38. Let (R, m) be a local commutative ring, M, N finitely generated R—modules such that A\(M ®r N) < occ.
Suppose M or N has a projective resolution of finite length. Then the intersection multiplicity x(M, N) is defined to be
V(M N) = S o (— 1) A(TorB(M, N)).

=0
Conjectures.

1. Non-negativity: x(M,N) >0

2. Vanishing: x(M,N) =0 if dimp M + dimr N < dim R where dimp M = dim(R/AnnM).

3. Nonvanishing: x(M,N) # 0 if dim M + dim N = dim R.

Serre proved the above three conjectures in the case that R is a regular local ring.
Proposition 2.39. Let R be a ring, F' a right R—module. TFAE

1. F is flat.

2. Torf(F,N) =0 for all i > 1 and left R—modules N.

8. Torf(F,N) =0 for all finitely generated R—modules.



Proof. (1) = (2) = (3) is clear. So we shall just prove (3) = (1). For an arbitrary module NV, note that N = lim N;. So
N; f.g.
Torf(F,N) = HL)DTOTZR(F, N;) = 0 (Exercise 3 above works both ways as —®@g IV is also a left adjoint and thus lim(M; ® N) =

(hi,an) ® N.) Now, it is enough to show F' ® g — preserves short exact sequences. Let 0 — A — B — C' — 0 be a short exact
sequence. Then applying F®pr —, we get a long exact sequence on Tor: 0 = Torf(F,C) — FQrA — F@rB — FRrC — 0.
But then 0 - F®r A — F ®r B — F ®r C — 0 is exact, which says F is flat. O

Proposition 2.40. Let f : R — S be a ring homomorphism. Suppose R is commutative and S is a flat R—algebra. Then
for all R—modules M, N we have Tory (M ®r S,N ®r S) = (TorF(M,N)) ®g S.

Proof. Let P. be a projective resolution of M. Then P. ® S is a projective resolution of M ®p S as an S—module. So
Tor? (M ®r S,N ®r S) = Hi(P®r S) ®s (N®r S)) = H{((PRr N)®r S) = Hi(P®r N)® S = TorF(M,N) ®r S as
— ®pg S is an exact functor (as S is flat). O

Corollary 2.41. Let R be commutative, W a multiplicatively closed subset of R, M, N R—modules. Then TO?“ZRW (Mw, Nw) =
(TorE(M,N))w for alli > 0.

Exercise. Let R be a commutative ring and I, J ideals. Then Tor®(R/I,R/J) = 1N J/IJ.

Proof. As0— I — R — R/I — 0 is exact, we get the following long exact sequence on Tor:

= TorP(R,R/J) = TorF(R/I,R)J) — TorE(I,R)J) “Z5 Torf(R,R)J) — - --
ﬁ—/

=0 as R is flat ~IQrR/J ~RQR/J=R/J

which yields the exact sequence 0 — Torf(R/I, R;) 2, I/1J 2, R/J where ¢(i + I.J) = i + J. Then, 1 is injective, and
TorF(R/I,R/J) = imy =ker¢ = INJ/IJ. o

As a result, since every R—module is projective and thus flat in a semisimple ring, we see 0 = Tor®(R/I, R/J) = INJ/IJ,
which implies I N.J = I.J and I = I?.

Exercise. Let f : R — S be a homomorphism of commutative rings. Let z1,...,z, € R. Prove K.(z1,..,2,) Qg S =

K. (f(@1); 0 f(n))-

Proof. This is easily proven for the n = 1,2 case, however it gets significantly more complicated after that. The statement,

however, is true. U

Exercise. Let S be a commutative ring, z1,...,z, € S. Let R = S[T1,...,T,] be a polynomial ring in n variables over S.
Define a ring homomorphism f : R — S by T; — ;. Prove H;(z1,...,z,) = Tor®(R/(Ty, ..., T,), S).

Proof. By a previous exercise, we know K.(T1,...,T,) ®s R = K.(x1,...,z,). Note that K.(T1,...,T},) is a free resolution as
Ty, ..., T, are variables. Also, T; is a non-zero-divisor of S/(71,...,T;—1), which implies 71, ..., T}, is a regular sequence. Now,
TO?"?(S/(Tl, ...,Tn), R) = HZ(K(Tl, ,Tn) ® R) = HZ(K(xl, ,l’n)) = Hi(:vl, ,.’En) D

This shows the following:

L Hi(z1, ., 0) = Hi(Zg(1), -, To(ny) for all o € S,,.

2. If R is Noetherian and 1, ...,x, € J(R) is a regular sequence, then z, (1), ..., T5(n) is a regular sequence.
Exercise. Let R be a commutative domain, which is not a field. Then Q(R) is not projective.

Proof. Suppose @ is projective. Then there exists Q' such that Q® Q' = & R. So we can find i : Q — & R which is nonzero.
= il

Then there exists a nonzero component, say j € I and so p := m;i : Q — R is nonzero. Let 7 = p(1). As p is nonzero, there
exists some ¢ € @ such that p(%) # 0. Then $p(a) # 0, which says ap(1) = p(a) # 0. Thus p(1) # 0. Now r = np(L) € (n)
for all (n) € R\ {0}. Assume r # 0. Then r € (r2), which says r = sr? for some s € R. Then (1 — sr)r = 0, which says 7 is a
unit as R is a domain. As R is not a field, there exists v € R which is not a unit. Then, r € (v) # R, a contradiction. Thus

@ is not projective. O
J



Theorem 2.42. Let R be a Noetherian commutative ring, x1,...,x, € J(R). Then x1, ..., x, is a reqular sequence if and only
Zf Hl(arl, ceey Qj‘n) =0.

Proof. We have already proved the forward direction, so suppose Hi(z1,...,2,) = 0 and induct on n. If n = 1, then
0 = Hi(xy) = (0 : 21). Thus z; is a non-zero-divisor on R, which says it is a regular sequence. So suppose true for
n — 1 elements. Consider the long exact sequence on Koszul homology: --- — Hy(x1,...,2,) —= Hi(21,..., %0 1) —
Hy(z1,...,x,) = 0. This says Hy(21,...,2n-1) = TpHi(x1,....2n_1) € J(R)Hi(x1,...,2n—-1). Now, as R is Noetherian,
Hy(z1,...,xn—1) is finitely generated. By NAK, Hi(z1,...,2n—1) = 0. Thus 1, ..., z,—1 is a regular sequence. Now, consider

0 = Hy(x1,....,x,) — R/(x1,....xn_1 = R/(x1,...,2n_1) — ---. As this sequence is exact, x, is a non-zero-divisor in
R/(x1,...,xy). Hence, {x1,...,x,} is a regular sequence. O
Definition 2.43. A flat resolution of an R—module M is a complex F. such that
1. F; =0 foralli <0
2. F; is flat for all i
M, ifi=0

3. H;(F) = IfF, #£0 and F; =0 for all i > n, we say F. has length n.
0, if i #0.

Remark. Any projective resolution of M is a flat resolution. Hence flat resolutions always exist.

Lemma 2.44 (Dimension Shifting Lemma). Let R be a ring and 0 - C — F,_y — -+ — Fy — M — 0 be exact, where
F; is flat for all i. Then, for all i > 1, TorE(C,N) = Tor,;(M,N) for all R—modules N.

Proof. We will induct on n. For n = 0, we have 0 — C — Fy; — M — 0 is exact. From the long exact sequence on Tor,

this gives us -+ — Torfi,(Fo,N) — TorE | (M,N) — Tor®(C,N) — Torf(Fy, M) — ---, which says Torf (M,N) =
—_—— —_———
-0 =0 if i>1
TorE(C, N). So suppose true for n — 1. Let D = ker(F,,—; — F,,_2) = coker(C — F,_1). By induction, Tor, ;1 (M, N) =
Torf(D,N) for all i > 1. By the n =1 case, we have Tor (D, N) = Torf(C,N) for all i > 1. O

Proposition 2.45 (Flat Resolution Lemma). Let R be a ring, M a right R—module, N a left R—module. Let F. be a
flat resolution of M. Then Torf*(M,N) = H;(F. @ N) for all i > 0.

Proof. We will induct on 4. If ¢ = 0, then --- LN R 4, Fy — M — 0 is exact. By the right exactness of tensor products,
this says F; @g N — Fy ®r N — M ®g N is exact. Hence Ho(F. ®@r N) =2 M ®@p N = Torl (M, N). Let K; be the kernel of
the map Fy — M. By exactness, Ky = coker(Fy — F1). So we have the exact sequences 0 — K3 4, Fy— M — 0 and Fy G2,
Fy — K| — 0. Tensor with N to get the long exact sequence Torf(Fo, N) — Torfy(M, N) — Torf (K1, N) — Tor{(Fy, N).

=0 =K1®rN =Fy®rN

We also have that Fr @ g NV 4281, Fi®r N — K1 ®zg N — 0 is exact. So consider the commutative diagram

F2®RNﬂ>FI®RN*>K1®RN*>O

NN

0——=ker(di ®1) —= Fi Qg N ——= Fy ®r N

By the Snake Lemma, Torfi(M, N) = ker(i ® 1) = coker¢ = H,(F. @ N).
Now, suppose the theorem holds up to i. By dimension shifting, we know Torﬁl(M, N) = Torf'(K;,N). Note F’' :=
- Fy 2, By — 0'is a flat resolution of K. Thus Torf(K,,N)= H;(F' ®gr N) = H;y1(F ®g N) for i > 1. O

Note. A similar result holds if one takes a flat resolution of N.

Definition 2.46. Let R be a ring and M an R—module. The flat dimension of M is
fdrM = inf{n|M has a flat resolution of length n}.

Theorem 2.47. Let M be an R—module. TFAE



1. fdgM <n
2. For every exact sequence F,,_1 Anot, Fo_o— -+ — Fy — M — 0 such that F; is flat for all i, kerd,_1 is flat.

3. Torl (M,N) =0 for all R—modules N.

Proof. Note that (2) = (1) = (3) is clear, So suppose (3) holds. Let F,, = kerd,_1. Then 0 — F,, — F,,_4 Gn1, Fy—

M — 0 is exact. By the dimension shifting lemma, Torf*(F,, N) = Torfgrl(M, N) =0 for all R—modules N. Hence, F, is
flat. O

Corollary 2.48. Let R be a ring. Then fdrgM < n for all finitely generated R—modules M if and only if fdgM < n for all
R—modules M.

Proof. We need only prove the forward direction. Let M be an R—modules and recall M = lim M ’. Hence, for all
M’ f.g.
R—modules N, Torf, |(M,N) =limTor}t ,(M',N) = 0. O

€

Proposition 2.49. Let (R, m) be a commutative quasi-local ring and M a finitely presented R—module. Let R™ 2, R —
M — 0 be a finite presentation. TFAE

1. ¢(R™) C mR"

2. 91: R"®r R/m — R" ®r R/m is the zero map.
3. n=pur(M)

4. kere C mR".

Proof. Note that (1) < (4) as the sequence is exact. To show (1) < (2), consider the following diagram with exact rows:

Rm®RR/m&>R"®RR/m—>M®R/m—>O

-k

R™/mR" R"/mR"™ M/mM ——0

Now, ¢ ® 1 = 0 if and only if ¢ = 0 which is if and only if ¢(R™) C mR".
To show (2) < (3), note that ¢ ® 1 = 0 if and only if ¢ = 0 which is if and only if R"/mR™ =2 M/mM which is if and
only if pr(m) =n by NAK. O

Definition 2.50. Let (R,m) be a commutative Noetherian local ring and M a finitely generated R—module. A minimal

free resolution of M is a resolution F. of M such that
1. F; is free of finite rank for all 1.
2. d;(F;) CmF;_1 for alli.

Lemma 2.51. Minimal free resolutions exist.

Proof. Consider the following diagram, where mg = pgr(M) and my = pr(Ky) :

dy

R™ R™Mo M 0
Ky
0

Since mg = pr(M), we see K1 C mR™ by the above proposition. Thus d;(R™!) C mR™. Let K5 = kerd; and
let JQ = R™ — K, be a surjective homomorphism where my = pgr(Ks). Let dy : R™ — R™! be the composition
R™ ©, K, < R™ . Then R™ % Rmi %, Rmo ) s exact and minimal. Now, repeat with K3 = ker ds. O



Lemma 2.52. Let (R,m) be local and ¢ : F — G a map of finitely generated free R—modules. Then ¢ is an isomorphism if
and only if ¢ : F/mF — G/mG is an isomorphism.

Proof. Let K = ker ¢,C' = cokerd. Since F/mF 2, G/mG — C/mC — 0 is exact and ¢ is surjective, we have C' = mC.
By NAK, C' = 0. Now, we have 0 - K — F %, G = 0is exact. As G is free, this sequence splits. Thus 0 — K/mK —

F/mF 2, G/mG — 0 is exact. As ¢ is an isomorphism, K = mK and thus K = 0 by NAK. O

Theorem 2.53. Let (R,m) be a local ring and f : M — N an isomorphism of finitely generated R—modules. Let F.,G.
be minimal free resolutions of M and N, respectively. Then any chain map ¢. : F. — G. lifting f is a chain isomorphism.
B,(F) : Bi(F') — Bi(G) is an isomorphism for all i > 0. (Recall B;(F) = imd;1).

Moreover, ¢;

Proof. Consider the following diagram:

Fo:o.. F; ‘> F,_,4 Fy 0
i@' l%l id’o
y @,
G:  —G —>G;i Gy 0

Iy @ Fo——=M 0
\L% l@) lf
d" 5
G1 Gy N 0

Now, tensor with R/m to get:

P @ R/m 2E% Fyop Rim <2 M/mM —— 0

lqﬁl@l i@)@l if

di®1
Gh ®RR/m1*>GO ®RR/m6®;1>N/mN*>O

Note d; ® 1 = d} ® 1 = 0 by the above proposition. Thus ¢ ® 1 and § ® 1 are isomorphisms. Since f is an isomorphism, so is
Po ® 1.
By the Lemma, we have ¢y is an isomorphism. By exactness, we have By(F) = imD; = ker e and By(G) = imd} = ker d.

Thus we have the diagram below where 50 = ¢y Bo(F)

0 By(F) Fob——=M 0
J((EO ifbo lf
0 By(G) Gy N 0

By the Five Lemma, % is an isomorphism.

To complete the proof, apply this argument to the resolutions

o B2 By(F) 0
\L% l% i bo
d! d;
G- Gy —2> g1 By(G) 0

Since ¢y is an isomorphism and F’ and G’ are minimal free resolutions of By(F) and Bo(G), respectively, we get ¢y is an

isomorphism and ¢1|p,(r) : B1(F) — B1(G) is an isomorphism. Continue. O

Corollary 2.54. Let M be a finitely generated R—module, where (R, m) is local. Then any two minimal free resolution of

M are chain isomorphic.



Definition 2.55. Let (R,m) be local and M a finitely generated R—module. The i'" syzygy of M, denoted syz;(M), is
defined to be B;(F) where F is any minimal free resolution of M.

Exercise. Let (R, m) be local, M a finitely generated R—module. Let F., G. be free resolutions of M, where F. is minimal.

Prove that G. = F. @ L. (as chain complexes) for some exact complex of free modules L..

Proof. If i > 0, then 0 = H;(G.) = H;(F.) ® H;(L.), which says H;(L.) = 0 for all ¢ > 0. Consider the following diagram,
where 1. and ¢. are liftings of 1j,.

F—M-—0
b |
G ——M—=0
|o l

F——sM—0

Then ¢.1p. lifts 15;. By the theorem, ¢.7. is a chain isomorphism. Let g. : F. — F. be the inverse of ¢.1.. Then g.¢. : G. — F.
is the splitting map for the exact sequence 0 — F. LNy RN G./Y(F.) — 0 (note 1. is injective as (g.¢.)1p. = 1). Thus
G.=F @ L., where L. = G./y(F.). O

Exercise. Let (R,m) be local and x1,...,x, € m a regular sequence. Then K.(z1,...,2,) is a minimal free resolution of
R/(l‘l, ey xn)

Proof. We will induct on n. For n = 1, we have K.(z) is the chain 0 — R — R — 0. Tensoring with R/m, we have
0— R®rR/m — R®r R/m — 0 where a®b+ xa @b =a®xb=0 as z € m. Thus K.(x) is minimal by the proposition.
So, suppose true for n > 1. Recall K.(z1, ..., z,—1) = cone(a,). Suppose we have ¢; : K.(x1,...,xpn—1)i—1 O K. (21, ..., Tp_1); —

K(x1,...;Tn-1)i—2 ® K.(z1, ..., Tn_1)i—1 where (a,b) — (—¢;_;(a), ¢;(b) — zna). Then, applying — ® R/m gives us

(a,0) @ T ———(=¢;_;(a), ¢;(b) —zna) @1

|

(@@Lb®1) —= (=¢;_1(a) @ L (¢(b) — zna) @ 1)

IR
. <
1R

Now, —¢._1(a) ® 1 =0 = ¢(b) ® 1 by induction and r,a ® 1 = a® 7T, = 0 as z,, € m. Thus ¢; ® 1 is the zero map, which

implies K.(x1,...,%,) is minimal by the proposition. O
Fact. If 21,...,x, € R and K.(x1, ..., z,) is the Koszul complex, then imd; C (z1, ..., z,)K;_1.
Exercise. If x1,...7, for a regular sequence, then Torf*(R/(z1,...,x), R/(%1, ..., ) = (R/(z1, ,Jrn))(”

Definition 2.56. Let (R, m) be local, M a finitely generated R—module. For i > 0, the i" Betti number of M is defined

by Bi(M) = rankF;, where F. is a minimal free resolution of M.
By the exercise, if 21, ..., 2, form a regular sequence, then 8;(R/(z1,...,x,)) = (’.L).

?

Open Problem. Let (R,m) be a local ring and M a finitely generated R—module such that pdg M = n. Then 3;(M) > (7)
for all ¢ > 0. Note: This is called the Buchsbaum-Fisenbud-Horrocks Conjecture.

Proposition 2.57. Let (R, m, k) be local, M finitely generated. Then for all i > 0, 3;(M) = dimy, Torf(M, k). (By ezercise

1 above, as m = annk, m C annTorf(M, k), which says Tor is a k—module).

Proof. Let F. be a minimal free resolution of M. By definition, F; = R% (M) So Tor®(M,k) = H;(F ®gr k), which yields the
following exact sequence where all of the maps are the zero map (by Proposition 2.49): --- — RPt(M@pk — RFEM@pk —
-+ . Thus Torf(M,k) = RPM) @p k = EH M), O

Corollary 2.58. Let (R, m) be local, and M finitely generated. TFAE
1. pdgM < n.



3. Torlt ((M,k) =0.

Proof. (1) = (2) as every projective module is flat. (2) = (3) by the flat resolution lemma. (3) = (1) as then §;(M) = 0 for
all i > n + 1, which says pdr(M) < n by the proposition. O

Corollary 2.59. Let (R,m) be local, M finitely generated. Then pdgM = fdrM = sup{n|TorZ(M, k) # 0}.
Theorem 2.60. Let (R, m, k) be local. TFAE

1. pdrM < oo for all finitely generated R—modules M.

2. fdgM < oo for all R—modules M.

3. pdrk < oc.

4. TorE(k, k) =0 for somen > 0.

5. For all R—modules N, M, there exists  such that Tor®(M,N) =0 for all n > .

Proof. Note (2) = (5) follows from the Flat Resolution Lemma, (5) = (4) is clear, (4) = (3) follows from the corollary with
M =k, (3) = (1) is the corollary (compute Tor(M, k) using a projective resolution of k), and (1) = (3) is clear. Thus, its
enough to show (3) = (2). Let n = pdgk. Then Torl (M, k) =0 for all £ > n. If M is finitely generated, then pdrM < n,

which implies Torerl(M, N) =0 for all N. For an arbitrary M, To7“7}f°+1(]\47 N) lim Torerl(Mi, N) =0 for all N. Thus
M; f.g.

fdpM < n. O
2.3 Regular Local Rings

Generalized Krull’s Principal Ideal Theorem. Let R be a commutative Noetherian ring. Let p be a prime ideal which
is minimal over (x1,...,xy). Then ht(p) < n, where ht(p) = sup{n| there exist primes qo C ¢1 < --- C ¢n =p} =dim R,. In

particular, any prime p needs at least ht(p) generators.
If (R, m) is local, then m needs at least ht(m) = dim R generators.

Example. Let R = k[z1, ..., ;] be a polynomial ring over a field and m = (1, ..., 2, ). Then ht(m) < n by Krull’s Principal
Ideal Theorem. On the other hand, ht(m) > n as (21, ...,2n) 2 (X1,..c,Tn-1) 2 -+ 2 (z1) 2 (0) is a chain of primes. Thus
ht(m) = n.

Definition 2.61. A local ring (R, m) is called regular if m = (x1, ...,xq) where d = dim R for some x1,...,xq € m.
Examples. k[z1,...,%p)(,,....z,), any field, and any local PID (like Z,) are all regular local rings.

Note. In the case R = k[z1,...,2p]m (where m = (21,...,%n)s,,....0, ), We have 1,...,2, is a regular sequence in R. So
K.(z1,...,25) is a minimal free resolution of R/(z1,...,x,) = k. So pdrk < n, which implies pdgM < n for all finitely
generated R—modules M. Its “easy” to see that if R is a regular local ring, then pdgrR/m < co.

Theorem 2.62 (Auslander, Buchsbaum, Serre, '57). Let (R, m, k) be a local ring. TFAE
1. R s reqular
2. pdrk < oo
3. pdrM < oo for all finitely generated R—modules M.

Corollary 2.63. Let R be a regular local ring, p € SpecR. Then R, is a reqular local ring.

Proof. Let M = R/p and 0 — F,, — F,_1 — --- — Fy — R/p — 0 be exact, where F; are free. Then 0 — (F,),
(Fp-1)p — -+ — (Fo)p — Rp/pR, — 0 is a finite free R,— resolution of R,/pR,. Thus R, is regular.

Ol

Exercise.

1. Let R be commutative, M, N R—modules. Let p € SpecR. Consider the natural R—linear map ¢ : Homgr(M, N), —
Hompg, (M, Np), defined by { — { where { : M, — N, is defined by 3 — LT) Prove that if M is finitely presented,

S

then ¢ is an isomorphism.



Proof. First note the following

(Homp(R™,N)), = (€™ Hompg(R,N))p = (6™ N)p = &N, = @" Homp, (Ry, Np) = Hompg, (R, Np).
Note also that this isomorphism is natural as it is a composition of natural isomorphisms. Now, as M is finitely
presented, we have R — R™ — M — 0 is exact. This sequence stays exact if we localize and then Hom, or if we Hom

and then localize. Thus we have the following commutative diagram with exact rows

——0—> Homg(M,N), —— Hompr(R™,N), —— Hompg(R",N),

N

——> 0 ——> Hompg,(M,, N)) —— Hompg, (R, N;) — Hompg, (R

1R

OSO=———09O

Np)

n
vy )
This is in fact commutative by the naturality of ¢. By the Five Lemma, ¢ is an isomorphism. O

. Let R be commutative, M a finitely presented R—module. Prove that M is a projective R—module if and only if M,
is a free R,—module for all p € SpecR.

Proof. For the forward direction, note that if M is projective, then M @ N = R" for some R—module N. As localizing

commutes with direct sums, this says M, & N, = R}, which says M, is a projective R, module. Of course, as M is

V4 )
finitely presented, M), is and thus M, is free as it is a finitely generated projective over a local ring. To prove the

backwards direction, we wish to show Hompg(M, —) is exact. As Hompg(M, —) is left exact, it is enough to show that
for any surjection ¢ : X — Y that ¢, : Homgr(M,X) — Hompg(M,Y) is also surjective. This is true if it is locally
surjective, that is, if % : (Homp(M, X)), — (Homgr(M,Y)), is surjective for all p € SpecR. Of course, by the above

exercise, we have the following commutative diagram.

P
1

(Homp(M, X)), —— (Hompr(M,Y)),

F

Home (Mpa Xp) I Home (Mp’ YL)

As M), is free, it is projective and thus the bottom map is surjective. Thus ¢T is surjective for all primes p, which says

¢ is surjective and thus M is projective. O

. Let f: R — S be a ring homomorphism, M a flat right R—module. Prove M ®pg S is a flat right S—module. In

particular, if R is commutative and M is flat, then Mg is flat as an Rg—module for a mcs S of R.

Proof. Let A, B be left S—modules with 0 — A % B exact. Then 0 — S ®g A 199, g ®g B is exact. Apply M ®p —

to get the following commutative diagram (as the columns are natural isomorphisms):

1®(1
04>M®R(S®5A) 3(1®9) M®R(S®SB)

: :

181)®
(M®RS)®SA¥>(M®RS)®SB

Thus M ®p S preserves injections, which implies it is flat. O

Similarly, if M is flat, then M/IM is a flat R/I—module.

. Let R be commutative, M a finitely presented flat R—module. Prove M is projective.

Proof. First, we shall prove a claim.

Claim. Let (R, m) be quasi-local, M a finitely presented flat R—module. Then M is free.



Proof. As M is finitely presented, it is finitely generated. Thus R" %M = 0is surjective for n = pugr(M) =
Brym(M/mM) = dimp,,(M/mM). By a previous exercise, R" finitely generated and M finitely presented implies
ker ¢ is finitely generated. Also, 0 — ker ¢ L R" % M — 0 s exact. This gives us the following long exact

sequence on Tor.

- — Torf(M, R/m) — Torl (ker ¢, R/m) — Tor(R", R/m) ER Torf{ (M, R/m) — 0

=0 =ker ¢/m ker ¢ (R/m)™ =M/mM

Clearly, f is surjective. Note it is injective as well as the domain and image are n—dimensional vector spaces. So
ker ¢/mker ¢ = 0, which says ker ¢ = mker ¢. Recall ker ¢ is finitely generated and so ker ¢ = 0 by Nakayama’s

Lemma. Thus M is free.

Now, let M be a finitely presented flat R—module. Then M, is finitely presented by the previous exercise and is thus

flat. Further, R, is local and so M, is a free R,—module. By exercise 2 above, M is a projective R—module. O

This is also true in the noncommutative case, but the proof is harder.

Exercise. Find a commutative ring R and a finitely generated flat R—module M such that M is not projective. (Note: R

can not be Noetherian).

3 Cochain Complexes

Definition 3.1. Let A be an abelian category. A cochain complex C" in A is a family of objects {CP},cz and morphisms
d? : CP — CPT! for all p such that dP*1dP = 0 for all p. A cochain complex is written as C* : --- — CP — CPtl —
CP+2 — ... Let ZP(C) = kerdP be the p—cocycles of C and BP(C) = imdP~' be the p—coboundaries of C. Also, we
define HP(C) = Z?(C)/BP(C) to be the p*" cohomology of C.

Remarks.

1. Any cochain complex C" in A can be viewed as a chain complex C’ by letting C; = C~% and d; = d~*. Then d~* :
C~" — C~"1. Note HP(C) = H_,(C").

2. Every cochain complex C' in A corresponds uniquely to a chain complex in A°, where C : ---C* — C**! — ... maps
to CP: ..« O e~ Ol «— ... (where C* = (CP),).

Proposition 3.2. Let 0 — A 1B % ¢ = 0 be a short exact sequence of cochain complexes. Then there exists a natural
long exact sequence on cohomology: --- HP(A) EAN HP(B) L= H?(0) 2, HPHL(A) — ..

Definition 3.3. Let A be an abelian category. An object I of A is injective if Hom4(—,I) is an exact functor. A is said

to have enough injectives if every object can be embedded in an injective object.

Example. << R —mod >> and << mod — R >> have enough injectives.

Note.
e A has enough injectives if and only if A°P has enough projectives.
e An object is injective in A if and only if it is projective in AP.

Definition 3.4. Let A be an abelian category and M € ObjA. An injective resolution of M is a cochain complex I in A
such that

1. I =0 for alli < 0

2. I' is injective for all i.
M ifi=0,
0 if i # 0.

3. H(I') =



0 1
S00— M S 10 % 1V s s exact where € is the augmentation map. The injective dimension of M, denoted idr M,

is the length of the shortest injective resolution of M.

Note. If A has enough injectives, then injective resolutions exist:

cokere cokerd"
0 \

Example. 0 — Q — Q/Z — 0 is an injective resolution of Z. This is, in fact, the shortest one. Otherwise, Z would be

injective. However, if that were the case, then we’d have the following

Say f(1) = a. Then 2a = 1, a contradiction. Thus Z is not injective (as a Z—module). So idzZ = 1.

Comparison Theorem for Injective Resolutions. Let A be an abelian category. Consider the following diagram of

cochain complezxes in A :

0 M IO Il
&
0 N EY E!

Suppose the top row is exact and E' is injective for alli. Then there exists a cochain map f : E* — I' lifting ¢. Furthermore,

any two such liftings are cochain homotopic.

3.1 Right Derived Functors

Definition 3.5. Let F : A — B be a covariant, additive, left evact functor on abelian categories. Define the i'" right
derived functor of F by R'F := H'(F(I')), where I' is any injective resolution of N. If f : Ny — Ny, let I;,1I; be
injective resolutions of N1, Na, respectively. By the comparison theorem, there exists a cochain map ¢ : I, — I, lifting f. Set

(R'F)(f) := F(¢")* : (R'F)(N1) — (R'F)(N2).
Remark. R'F = F.

Horseshoe Lemma for Injective Resolutions. Suppose we have the following diagram

I E
0 A B C 0

where I and E° are injective resolutions of A and C, respectively. Then, there exists an injective resolution C* of B such
that 0 - I - C" — E° — 0 is exact.

Theorem 3.6. Let A be an abelian category with enough injectives. For any short exact sequence 0 - A — B — C — 0 in
A, there exists a long exact sequence on right derived functors --- — R'F(A) — R'F(B) — R'F(C) — R™MF(A) — -+,

which is natural.

Definition 3.7. Let A =<< R—mod >> and F = Hompg(M, —) for some R—modules M. Then F : A << Z—mod >> .
Define R'F(—) to be Ext'(M —).



To compute Exty (M, N), let I be an injective resolution of N. Then Exty (M, N) = H'(Homg(M,I")). The Ext functor
gets its name from the bijective correspondence of Exth(M, N) and modules X such that 0 - N — X — M — 0 is a short
exact sequence. The module X is called a extension of M by N. This is referred to as the Yoneda description of Ext. In
this correspondence, Exth(M, N) = 0 if and only if every extension of M by N splits.

As with Tor, there are two ways to define Ext. The second way is via a right derived functor of a contravariant functor:

Definition 3.8. Let F' : A — B be a contravariant left exact additive functor on abelian categories, where A has enough
projectives. Define the it" right derived functor of F as follows: Let M € ObjA and P. a projective resolution of M. Then
F(P) can be viewed as a cochain complex where F(Py)t = F(Py); for all i.

2 1 0 0 1 2

Define R'F(M) := H'(F(P))). As before, using the comparison theorem for projective resolutions, one can show R'F is a

well-defined contravariant functor from A — B.
Remarks.
1. RRF=F

2. If 0 - A — B — C — 0 is a short exact sequence in A, then one obtains the natural long exact sequence - -- R'F(C) —
R'F(B) - R'F(A) — RHF(C) — - for all i.

3. Given F': A — B as above, define F°P : A°? — B by F°P(A) = F(A) for all A € ObjA°? = ObjA and F°P(f) = F(f°P)

for all morphisms f in A°?. Then, we have

F: 44 B FoP: J: AN
g -
F(4) ™2, F(B) For(B) £, por(a)

So F°P is a covariant left exact functor and R‘F = (R'FP)°P.
Definition 3.9. If F = Hompg(—, N) for some left R—module N, then we denote R'F(—) by Ext'(—, N).
Theorem 3.10. For all R—modules M, N, we have Extly(M, N) = Ext'y (M, N).
To prove this, we first need to define the following:

Definition 3.11. A cochain double complex in A is a family of objects {CP}, sez and morphisms d* : CP4 — CP4F1
and d" : CP9 — CP+L4 gych that d¥d" +dhdY = (d¥)? = (d")? = 0. If C is a cochain double complez, then the total complex
Tot®(C) is define by Tot®(C), = @ CPY and dyoy = d° + d".

p+qg=n

Example. Let P. be a chain complex, I' a cochain complex. Let Hom4(P,I) denote the cochain double complex
Hom (P, 1)»? = Homa(P,,1%) where d* : Hom4(P,,1?) — Hom4(P?,19%1) is given by f +— (=1)PT¢*d;f and d" :
Homy(Py,I?) — Hom4(Ppy1,1?) is given by f — fdp (where d; is the differential on I and dp the differential on P.

Proof of Theorem (Sketch). Let P. be a projective resolution of M and I' an injective resolution of N. Form the cochain

double complex C' = Hom4(P.,I'). As I is injective, the rows are exact except in the 0"

spot and as P. is projective, the
columns are exact except in the 0" spot. From this, we create a new cochain double complex T by adding Hom4(M,I")
in the p = —1 column and Hom4(P.,N) in the ¢ = —1 row. Then T has exact rows and exact columns. As with
Tor, one can use the acycle assembly lemma (for cochain double complexes in the third quadrant) to conclude Tot(T)
is exact. There are morphisms of cochain double complexes f : C — Homa(M,I') and g : C — Homa(P.,N). These
induce chain maps f : Tot(C) — Homa(M,I') and § : Tot(C) — Hom(P.,N). As with Tor, cone(f) = Tot(T)[—1] and
cone(g) = Tot(T)[—1], both of which are exact. Thus f, g are quasi-isomorphisms and thus induce maps on homology. Hence,
Ext'y(M,N) = H'(Homa(M,I')) = H(Homs(P.,N)) = Exto(M, N). O



Dimension Shifting Lemma. Let0 — N — [0 — ' — ... — [""! — C — 0 be an ezact sequence in A and suppose I
is injective for all i. Then, for all objects M in A, Ext'y(M,C) = Ea:ti‘{”(M, N) for alli > 1.

Proof. Let n =1. Then 0 — N — I° — C — 0 is exact. Apply Hom (M, —) to get the long exact sequence
- — Exty (M, I°) — Exty(M,C) — Ext'{'(M,N) — Ext'{'(M,I°) — -
—_———— —_————
=0 for i>1 =0 for i>1

where the first and last modules are zero as IV is injective. Thus Ext’y(M,C) = Eactf[{l(M, N) for all ¢ > 1. For n > 1, we

have 0 = M - 1° — ... - "2 5 K -0and 0 - K — I" ! — C — 0 are exact. By the n—1 and n = 1 cases, done. [

Lemma 3.12. Suppose 0 - K — P, 1 — -+ — Py — M — 0 is exact, where the P; are projective for all i. Then for all
objects N of A, we have Ext’y (K, N) = Exti'{'"(M7 N) for alli> 1.

Proposition 3.13. Let A be an abelian category with enough projectives. Let M € ObjA and n € Z. Then TFAE
1. pdM < n.
2. Given any ezact sequence 0 - K — P, 1 — -+ — Py — M — 0, where P; are projective for all i, then K is projective.
3. Ext" ™ (M,N) =0 for all objects N of A.
Proposition 3.14. Let R be a ring, N a left R—module, and n € Z. TFAE
1. idgN <n.
2. For all short exact sequences 0 — N — [0 — ... — ["~1 — C — 0 where I' is injective for all i, we have C' is injective.
3. Ext’yt (M, N) =0 for all M.
4. BExt™ (R/I,N) =0 for all left ideals I.

Proof. As << R —mod >> has enough injectives, (2) = (1) = (3) = (4) are clear. Thus, we need only show (4) = (2). To

do so, we will first prove the following claim:

Claim. N is injective if and only if Exth(R/I, N) =0 for all left ideals I of R.

Proof. By Baer’s Criterion, N is injective if whenever we have the following diagram

where the bottom row is exact, there exists g : R — N making the diagram commute. Now, consider 0 — [ — R —
R/I — 0 and apply Hompg(—, N). Then we have

0 — Hompr(R/I,N) — Homg(R,N) =, Hompg(I,N) — Exth(R/I,N) — ---
—_————

=0 by hypothesis

where i*(g) = gi. By exactness, i* is surjective, which implies there exists ¢ € Homg(R, N) such that gi = i*(g) = f.

Thus N is injective.

Now, we will induct on n. For n = 1, we have 0 — I° < C — 0 and Ext%(R/J,N) = 0 for all left ideals J. By dimension
shifting, this says Exth(R/J,C) = 0. Thus C is injective by the lemma. O

Exercise. Let R be a ring, M a left R—module. Prove TFAE
1. M is flat.

2. For all right ideals I of R, the map I ® g M — R ®r M where i ® m — i @ m is injective.



3. Torf(R/I, M) = 0 for all right ideals I of R.

Proof. First, we prove (1) = (2). Suppose M is flat and I is a right ideal. Then 0 — I LR — R/I — 0 is exact. As M is
flat, 0 = T @ M BLRoM — R/I ® M — 0 is exact and thus ¢ ® 1 is injective.
To prove (2) = (3), suppose ¢ ® 1 is injective and I is a right ideal. Then 0 - I — R — R/I — 0 is exact. Thus we have

the following long exact sequence on Tor:

- — Tor®(R,M) — Torf(R/I, M) — Torf(I, M) — Torf(R,M) — ---
N————’

=0 as R is flat ~2TQM ~RRM

Let f be the map from Torf(R/I, M) — I ® M. Then f is injective, which implies Torf(R/I, M) = imf = ker(i® 157) = 0.
To prove (3) = (1), we will first prove the following claim:

Claim. Suppose Torf(R/I, M) = 0 for all right ideals I. Then Torf(N, M) = 0 for all finitely generated right R—modules
N.

Proof. Induct on the number of generators of N. First, suppose N = n;R for some n; € R. Then N = R/I where
I = Anngn;. Then we have the short exact sequence 0 — 0 — N — R/I — 0, giving us the following long exact
sequence on Tor:

= 0—Torf(N,M) — Torf(R/I,M) -0 — ---
=0

So Torf{(N, M) = 0. So suppose N = n; R+ ... + n, R and that the claim holds for modules with k — 1 generators. Let
N =nR+ ...+ ng_1R. So N = N 4+ niR. Then, 0 - N' — N — N/N’ — 0 is a short exact sequence, giving us the

following long exact sequence on Tor:
- — Torf(N', M) — Torfy(N, M) — Torfy(N/N', M) — - --
Thus Torf{ (N, M) = 0.
Recall that M is flat if and only if Torf*(N, M) = 0 for all finitely generated R—modules N. O
Corollary 3.15. Let R be a ring, M a left R—module. Then TFAE
1. fdpM <n.
2. Torl ((R/I,M) =0 for all right ideals of R.
Proof. Follows from the exercise and dimension shifting. O

Corollary 3.16. Let R be a ring, n € Z. TFAE

~

. fdrM < n for all left R—modules M.

NS}

. fdrR/I <n for all left ideals I of R.

o

. fdrN < n for all right R—modules N.

BN

. fdrR/I < n for all right ideals I of R.
5. TorE (M,N) =0 for all right R—modules M and left R—modules N.

If there exists n € Z which satisfies the conditions above, the least such n is called the weak dimension or Tor dimension

of R.

Proof. We’ve already shown (1) < (5) < (3). To prove (2) = (3), if fdrR/I < nfor allleft ideals I, then Tor? , (M, R/I) = 0
for all M and I. Thus fdrM < n for all right R—modules by the corollary. To prove (5) = (4), we have TorZ (R/I,N) =0
for all N, which implies fdgrR/I < n. Lastly, to prove (4) = (2), let I be a left ideal. Then for any right ideal J,
Tor ((R/J,R/I) =0, which says fdgR/I < n by the corollary. O



Theorem 3.17 (Auslander ’55). Let R be a ring and n € Z. TFAE
1. pdrM <mn for all left R—modules M.
2. pdrM < n for all finitely generated left R—modules M.
3. pdrR/I <n for all left ideals I of R.
4. idrN <n for all left R—modules N.
5. Extyt (M, N) =0 for all left M, N.
If such an n exists, the least such n is called the left global dimension of R, denoted l.gl.dimR.

Theorem 3.18. Note that (1) = (2) = (3) is clear. To prove (3) = (4), note that if Ext}s™ (R/I,N) = 0 for all left ideals
I of R, then idgN < n by Proposition 3.14. Now, (4) = (5) is clear and (5) = (1) follows from Proposition 3.13.

Similarly, we can define the right global dimension with an analogous theorem on right R—modules.

Example. Let R be a PID, not a field. Then pdgM < 1 for all finitely generated R—modules M (by the Structure Theorem
for finitely generated modules over a PID). By Auslander’s Theorem, pdgM < 1 for all R—modules M. In particular, if we
have F 2 @ — 0 where @ is the field of fractions and F' is free, then ker ¢ is free.

Fact. If R is a ring and M a finitely presented left or right flat R—module, then M is projective. (We proved in the

commutative case.)

Exercise. Let R be left Noetherian. Then
1. fdgM = pdrM for all finitely generated left R—modules M.
2. l.gl.dimR = weak dimR.

Proof. 1. We know fdrM < pdrM as a projective resolution is a flat resolution. So we need only show fdrM > pdrM.
Let M be a finitely generated flat left R—module. Then M is finitely presented (as R is Noetherian). Recall a finitely
presented flat module is projective, and so M is projective. Thus every flat resolution of finitely generated modules
is a projective resolution. Now, suppose fdgM = n (if oo, we are done). Let F,_; L Fob - M — 0 be a
finitely generated flat chain (the “start” of a projective resolution). Recall ker ¢ is a finitely generated projective. Thus

0—-K—F,_1— - — Fy— 0is a projective resolution. Thus pdpM < n.

2. Recall that l.gl.dimR is the least such n such that pdgR/I < n for all I and the weak dimR is the least such n such
that fdgrR/I <n for all I. By part 1, these are the same. O

An analogous result holds when R is right Noetherian.
Theorem 3.19. Let R be a ring. TFAE

1. l.gl.dimR =0

2. r.gl.dimR=0

3. R is left Noetherian and weak dimR =0

4. R is right Noetherian and weak dimR =0

5. R is semisimple.

Proof. Recall that R is semisimple if and only if every left R—module is projective which is if and only if every right R—module
is projective. Then (1) < (5) follows as every left R—module is projective and (5) < (2) follows as every right R—module is
projective. Now (3) < (4) < (5) follows from the above exercise. O

Exercise. Let R be a ring. TFAE

1. weak dimR =0



2. R is von Neumann regular

Proof. First, we will prove the forward direction. Let I be a finitely generated ideal. Now, 0 — I — R — R/I — 0 is exact
and as R, T are finitely generated, we see R/I is finitely presented. As weak dimR = 0, R/I is flat, and thus is projective.
Thus the sequence splits and R =1 ® R/I.

To prove the backward direction, suppose [ is a finitely generated ideal of R. Then R = I @ R/I. Then R/I is projective
(it is a direct summand of a free module) and hence flat. Thus fdgR/I = 0. Now, suppose [ is not finitely generated. Let

I' = lim I, where J is the set of all finitely generated ideals.
IneJ
Claim. R/I = lim R/I,.
—
In€J
Proof. Note that we have the following commutative diagram:

0 I, R R/1, 0
lincl l— if
0 Is R R/Ig 0

where f(r + In) = r + I. As lim is exact, we get 0 — lim/, — R — limR/l, — 0 is exact. As I = lim/,, we have
R/I = 1limR/I, by exactness.

Let M be a left R—module. Then, Torf(R/I, M) = Tor(lf(lii)nR/Ia,M) = li_r)nTor(If(R/Ia,M) = 0. O

Note. Let (R, m, k) be a regular local ring. Then m = (z1, ..., z4) where d = dim R. Then pdrk = d as the Koszul Complex
is a minimal free resolution of k. Then Torff;rl(M, k) = 0 for all R—modules M. This implies G411 = 0 if M is finitely
generated. Thus pdrM < d for all finitely generated R—modules M.

Theorem 3.20. In a Noctherian local ring (R, m,k), TFAE
1. gl.ldimR=n
2. R is a regular local ring of dimension n.

Proof. (2) = (1) follows from the above note. To prove (1) = (2), note that pdrk < n implies R is a regular local ring by
Theorem 2.62. Then, by the note, dim R = pdrk = gl.dimR = n. O

Examples.
1. R = k[z](y) is a regular local ring of dimension 1 (where & is a field and = a variable)
2. R=k[z1,...,%¢(s,,.. ) is a regular local ring of dimension ¢.
Exercise. Let (R, m) be a local, Noetherian, commutative ring. Prove R is a regular local ring if and only if idrk < co.

Proof. For the forward direction, if R is a regular local ring of dimension n, then gl.dimR = n. By Auslander’s Theorem,
this says idg N < n for all modules N. In particular, idrk < oc.

For the backward direction, suppose idrk < co. Then Extzé(M, k) =0 for all i > n+ 1 and all R—modules M. Let F be
a minimal free resolution of k. Recall Extl(k, k) = H (Hom(F., k)). Thus 0 = H*(Hom(F., k)) for all i > n + 1. Now, recall

that k = Hompg(k, k) and thus we have the following naturally commutative diagram:

-+ —— Hom(F;, Homp(k, k)) ¥ Hom(F;_1,Homp(k,k)) — - -

; -

Hom(k ® Fy, k) ——— > Hom(k @ Fy_1, k)

Now, recall that if we have an exact sequence R™ 2, R"™ — k — 0 and we apply —®prk, we get that o ®1: R"®k — R"®k
is the 0 map. So k® F; — k ® F;_; is the zero map, which implies /' = 0 and thus ¢ = 0. Thus 0 = H;(Hom(F.,k)) =

Hom(Fy, k) = Hom(®% R, k) = @ Hom(R, k) = kP*) where 3;(k) = rankF;. Thus §;(k) = 0, which says F. is a finite
projective resolution of k. Thus pdrk < oo and so R is a regular local ring by Theorem 2.62. O



Exercise. Let ¢ : R — S be a ring homomorphism of commutative rings such that S is flat as an R—module. Prove

1. If M is a finitely presented left R—module, then Homgr(M,N)®r S =2 Homs(M ®r S, N ®g.S) for all left R—modules.

Proof. First note that Homg(R",N) @r S = (@& N)®r S = &I (N ®r S) = Homg(S",N ®g S), where the
isomorphisms are natural. Now, let R™ — R"™ — M — 0 be exact. Then 0 — Hompr(M,N) — Homgr(R",N) —
Hompg(R™, N) is exact. Now, if we apply — ®g S, we stay exact as S is flat. Thus, we have the following commutative

diagram with exact rows:

Homp(M,N)® S ——— Homg(R",N)® S —— Hompr(R™,N)® S

. 1} lz l:

——>0——>Homg(M ®r S,N @ S) —— Homg(S",N® S) — Homg(S",N ® S)

O=<——0O

By the exactness and the Five Lemma, done. O
2. If R is Noetherian, then (Ext% (M, N)) ®r S = Exty(M ®@p S, N ®r S) if M is finitely generated.
Proof. Let P. be a finitely generated projective resolution for M. Then

Extty(M,N)®r S = H'(Homgr(P,N))®grS
Hi{(Homg(P.,N)®g S)
Hi(Homg(P.S,N ® S)
Extiy(M ®r S,N ®r S) as P.® S is a projective resolution as S is flat O

Corollary 3.21. Let R be Noetherian, W a multiplicatively closed subset of R, M a finitely generated R—module. Then

Corollary 3.22. Let R be Noetherian, E an injective R—module. Then Eg is an injective Rg—module for all multiplicatively
closed subsets S of R.

Proof. Recall idgN = 0 if and only if Exth(R/I,N) = 0 for all I. Let Is be an ideal of Rg for an ideal I of R. Then
Exth(Rs/Is,Es) & (Exth(R/1,E))s = 0 as E is injective. Thus Eg is injective. O

Definition 3.23. Let (R, m) be a commutative, local, Noetherian ring. R is called Gorenstein if idgpR < cc.
Corollary 3.24. If (R, m) is Gorenstein, so is R, for any p € SpecR.

Proof. Say 0 - R — I° — -+ — " — 0 is exact. Then 0 — R, — IS — -+ — I — 0 is exact and I;) are injective. Thus
idgr, R, < 00. O

Corollary 3.25. Regular local rings are Gorenstein.

Proof. In a regular local ring, idgr M < oo for all modules M. O
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