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Abstract

A helical tow model of on-line curing of thermoset composites in winding is developed and solved numerically.

Actual shape of tow in winding process is considered, and consequently, the modeling of the on-line curing process is

more realistic. A numerical grid generation method is developed for the complicated geometry. Transformations of

three-dimensional energy equation and its boundary conditions from physical domain to computational domain are

performed, which are crucial in numerical grid generation method when an anisotropic medium is involved. A set of

concise and regular equations is obtained. The numerical simulation results show that the helical tow model, in stead of

a simplified model, should be used when the ratio of the diameter of fiber-wound composite structure to the diameter

of tow is small.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Filament winding of thermoset composites are widely

used in manufactures of high pressure vessels, tubings,

and aerospace components. Traditional filament wind-

ing of thermoset composites is divided into two distinct

processes: the winding of tow onto the mandrel at room

temperature and the thermal processing of the whole

composite structure in an autoclave or oven at high

temperature so that the resin is cross linked via chemical

reaction [1]. The thermal process, especially for large

composite structures, in an autoclave or oven is time-

consuming. To overcome the disadvantages of the tra-

ditional manufacturing method of filament winding,

studies on on-line thermal processing of thermoset

composites in filament winding have been conducted in

recent years. Korotkov et al. [2] presented a one-

dimensional (radial direction) heat transfer model for

the simultaneous processes of filament winding and

curing of thermoset composites in which the surface of

the composite was heated by infrared irradiation and a

heated mandrel. Chern et al. [3] studied in situ curing for

thermoset, hoop-wound structures using infrared heat-

ing. A two-dimensional (radial and azimuthal) model for

infrared in situ curing was developed, in which the

physical domain was mapped into a rectangular com-

putational domain, neglecting the curvature of the sur-

face layers. Recently, several models to simulate on-line

curing of thermoset composites in filament winding have

been developed by Wang and Lou [4–9]. A scheme of the

on-site curing method of thermoset composite filament

winding depicted by these models is shown in Fig. 1. In

this method, the tow is locally heated by a radiative
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Nomenclature

a D=2þ R;m
~ai covariant base vector of curvilinear coordi-

nate system

~ai contravariant base vector of curvilinear

coordinate system

A scalar function

A1;A2;A3 constant in cure kinetics model

b p=2p;m
B constant in cure kinetics model

Bri;Bhi;Bsi coefficients in the transformed boundary
conditions in the ðr; h; sÞ coordinate system

c specific heat (J/kgK)

C0;C00 transformation matrix

d diameter of tow (m)

D diameter of fiber-wound composite structure

(m)

Dij coefficients in the transformed energy

equation

Eij coefficients in grid generation equation

gc heat generation produced by chemical

reaction (W/m3)

gij covariant metric tensor components

gr absorbed energy from heater radiation,

(W/m3)

gij contravariant metric tensor componentsffiffiffi
g

p
Jacobian of transformation

G degree of cure

h heat transfer coefficient (W/m2 K)

HR heat of reaction of matrix (J/kg)

k thermal conductivity (W/mK)

kij components of K

K;K0;K00 thermal conductivity tensor

K1;K2;K3 used in cure kinetics model

L1; L2; L3 length in physical model (m)
m mass fraction

~n normal unit vector

p pitch of helical line (centerline of tow) (m)

q heating intensity (W/m2)

ðq1; q2; q3Þ components of ~q
~q heat flux

ðr; h; sÞ cylindrical coordinate system in the com-

putational domain

r1; r2; rp radius used in numerical grid generation (m)

ðr0; h0; s0Þ cylindrical coordinate system of helical tow

in the physical domain

R radius of tow (m)

ðR; c; zÞ cylindrical coordinate system in the physical

domain

Rg gas constant (J/molK)

shel centerline length of helical tow in control

volume (m)

sstr centerline length of straight tow in control

volume (m)

S source term

t time (s)

T temperature (�C)
ðu; v;wÞ velocity components in the ðx; y; zÞ coordi-

nate system

ður; uh; usÞ velocity components in the ðr; h; sÞ coordi-
nate system

~u velocity vector in general differential equa-

tion

~ur velocity vector in the ðr; h; sÞ coordinate

system

ðU ; V ;W Þ velocity components in the ðn; g; fÞ coor-
dinate system

~U contravariant velocity vector in the ðn; g; fÞ
coordinate system

v volume fraction

Vt winding velocity (velocity of tow moving in

its axis direction) (m/s)

Vc velocity in the tangential direction of fiber-

wound composite structure (m/s)

ðx; y; zÞ Cartesian coordinate system in the physical

domain

Greek symbols

a absorptivity

b winding angle, (deg)

c angle in the x–y plane (starting from x-axis)
(deg)

Cij coefficients in the transformed energy

equation with the ðr; h; sÞ coordinate system
DEi activation energy used in cure kinetics

model (J/mol)

� emissivity

h coordinate (rad)

ðn; g; fÞ rectangular coordinate system in the com-

putational domain

q density (kg/m3)

r Stefan–Boltzmann constant (W/m2 K4)

x angular velocity of mandrel rotation (rad/s)

Subscripts

c point at the centerline of tow

f fiber

L longitudinal direction of tow

m matrix

T transverse direction of tow

w at the surface of fiber-wound composite

structure

1 ambient

Superscript

T transposition of matrix
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heater, such as infrared, when it is wound onto the

mandrel or the fiber-wound composite structure (here-

after simply referred as mandrel), so that the curing is

done during the winding of the tow. The method offers

many advantages over the traditional one, such as re-

duced residual stresses, easier production of composite

structures with thick cross section, significant energy

savings due to local heating, design flexibility, etc. [4]. In

all of the previous models, tow is considered as a straight

cylinder, neglecting the curvature of the mandrel. In

fact, in the filament winding process, tow is wound

helically as shown in Fig. 1. In this paper, the real shape

of helical tow is considered in the on-line curing process

and a numerical simulation of the three-dimensional

process is performed.

During the past years, some studies on helical pipe

flow problem have been conducted. Wang [10] intro-

duced a non-orthogonal helical coordinate system along

a spatial curve (the centerline of the helical pipe) in the

study of the flow in a helical pipe. Later, by rotating the

coordinate system introduced by Wang [10] around

the centerline of helical pipe, Germano [11,12] reported

an orthogonal helical coordinate system along the cen-

terline of helical pipe in his study on helical pipe flow.

The governing equations in the helical coordinate system

were given in Refs. [10–12]. Unfortunately, in the

methods used by Wang [10] and Germano [11,12],

governing equations (continuity equation, momentum

equations, energy equation, etc.) in the helical coordi-

nate system are too complicated to solve. On the other

hand, the incoming tow before the contact point be-

tween the incoming tow and the mandrel in the filament

winding process is straight instead of helical in shape,

and therefore, the methods provided by Wang [10] and

Germano [11] can not be used in the present study.

Thompson et al. [13] introduced a general method of

boundary-fitted coordinate system generation that can

easily treat the fields with complex boundaries. The basic

idea of the method is to make the boundaries to coincide

with coordinate lines. These curvilinear coordinates

coinciding with all boundaries are the solutions of an

elliptic partial differential system in the physical domain

with Dirichlet boundary conditions on all boundaries.

One coordinate is specified to be constant on one of the

boundaries, while a monotonic variation of the other

coordinates around the boundary is specified. Therefore,

each of the boundaries coincides with one of the coor-

dinate lines. Using this numerical grid generation

method, the problems with irregular geometries can be

solved through the finite difference method or the finite

volume method that has been widely used in numerical

computations in heat transfer and fluid flow.

In the present study, the numerical grid generation

method is successfully applied to the helical tow of

on-line thermal curing of thermoset composites in fila-

ment winding. The transformed three-dimensional en-

ergy equation as well as boundary conditions with

anisotropic thermal conductivities in the computational

y

L2

V

d

Tow

Contact point

Control volume

x

Heating

L3

L1

D

β
z

Mandrel Composite

t

ω

Fig. 1. Scheme of on-line thermal curing in filament winding.
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domain are derived and the transformed equation is

numerically solved using finite volume method.

2. Model analysis

2.1. Physical model

Fig. 1 depicts the on-line thermal curing process in a

Cartesian coordinate system ðx; y; zÞ. The resin-impreg-
nated tow, which is cylindrical shape with diameter d, is
fed with a velocity Vt in the longitudinal direction of the
tow onto the mandrel rotating at a speed x. The angle
between incoming tow and the axis of the mandrel is

defined as winding angle b. The strategy of on-line

curing of thermoset composite in filament winding is to

finish the curing of the tow during its winding process.

To realize this strategy, heat source, such as infrared, is

illuminated onto the region covering the portions of the

tow just before and after the contact point between the

incoming tow and the mandrel. A control volume that

covers the interested portions of the tow is indicated by

the dashed lines in Fig. 1 that is fixed relative to the

heating source. The length of the tow within the control

volume should be long enough to ensure that the curing

has matured when the tow leaves the control volume.

The temperature of the tow before entering the control

volume is considered at environmental temperature T1.
The z-axis of the Cartesian coordinate system ðx; y; zÞ is
placed along the centerline of mandrel and the x-axis
goes through the contact point, as shown in Fig. 1. In

this coordinate system, tow is spacially helical except the

portion before the contact point. The physical domain

of the helical tow model of the on-line curing is shown in

Fig. 2. The tow is represented by a thick solid line in Fig.

2(a) for simplicity. The position of tow surface is de-

picted in Fig. 2(b), which is explained in detail in Section

3.2. The tow is considered to be made of fiber and resin

that is uniformly distributed. The shape variation of the

tow and the displacement of the resin in the radial

direction of the tow during the filament winding process

are very small that can be neglected in the thermal model

[14]. The radiation energy from heat source is considered

to be absorbed uniformly by the tow.

2.2. Mathematical model

For a practical on-line curing of thermoset compos-

ites in filament winding, a complex heat transfer process

has to be considered. Several different heat transfer

modes occur simultaneously, such as radiation from the

heat source, heat conduction inside the tow and at the

interface between the tow and the mandrel, and con-

vective heat transfer between the surface of the tow and

the surrounding atmosphere. The thermal conductivity

of tow is orthotropic with respect to its principal axes.

Because of the motion of tow and the rotation of

mandrel, a velocity field has to be also counted. There-

fore, a three-dimensional energy equation for aniso-

tropic medium is considered, which is

c
oðqT Þ
ot

�
þ o

ox
ðquT Þ þ o

oy
ðqvT Þ þ o

oz
ðqwT Þ

�

¼ o

ox
k11

oT
ox

�
þ k12

oT
oy

þ k13
oT
oz

�

þ o

oy
k21

oT
ox

�
þ k22

oT
oy

þ k23
oT
oz

�

þ o

oz
k31

oT
ox

�
þ k32

oT
oy

þ k33
oT
oz

�
þ gc þ gr ð1Þ

where gc is the heat generation from chemical reaction

within resin, gr is the heat coming from radiation of heat

source, q is the density of the tow, c is the specific heat of
the tow, k is the thermal conductivity of the tow, and
ðu; v;wÞ are velocity components of the tow.

The boundary conditions of this model are very

complicated. For the incoming tow before the contact

point, the heater illuminates the portion L2 where the
surface of the tow undergoes radiation heat transfer and

convection heat transfer with surroundings, while the

portion L1 undergoes convection heat transfer with

surroundings only. For the tow after the contact point,

the heater illuminates the portion L3. The top surface
of the tow is under the conditions of radiation and

convection heat transfer with surroundings, while the

under surface of the tow that contacts intimately

with the surface of the mandrel is assumed as an iso-

thermal boundary. The centerline of the tow is not at

adiabatic due to the non-axisymmetric boundary con-

dition on the tow surface. Boundary condition at the

centerline of the tow needs to be specially treated. Here

an approximation method––energy balance within an

infinitesimally small unit around the centerline of the

tow is considered [4]. At the front end of the control

volume where the tow enters, the temperature of the tow

equals to environmental temperature. The temperature

at the other end of the control volume can be assumed to

be fully developed with zero temperature-gradient in the

axial direction of the tow because of the long enough

domain.

2.3. Cure kinetics model

The heat generation due to chemical reaction within

the resin during the curing process, gc, is given by

gc ¼ qmvm
dG
dt

� �
HR ð2Þ

where qm is the density of the matrix (i.e., resin) in the

tow, vm is the volume fraction of the matrix, G is degree

of cure, and HR is the heat of reaction in the matrix.

4810 X. Wang et al. / International Journal of Heat and Mass Transfer 47 (2004) 4807–4820



In the studies of curing of thermoset resin, a cure

kinetics model for Hercules 3501-6 resin developed by

Lee et al. [15] has been widely used in engineering

applications [1,3]. In this model, the heat release rate is

defined as a function of cure degree and temperature.

The cure degree is defined as the ratio of the exothermic

heat release up to a given time to the heat of reaction

that is the total heat release when all cross-linking

reactions are completed.

Accordingly,

dG
dt

¼ ðK1 þ K2GÞð1� GÞðB� GÞ for G6 0:3

dG
dt

¼ K3ð1� GÞ for G > 0:3

ð3Þ

β

0

x

z            z

xy

y

0
0Tow

(a)

θ

p
1

2

2r

D/2

y

x

0

R

P

r

r
r

z

Surface of fiberwound

Plane through axis
of mandrel and point P

Section of tow

composite structure

γ

γd

β

(b)

Fig. 2. Physical domain of helical tow model shown in the ðx; y; zÞ coordinate system: (a) projections on the different coordinate planes,
(b) diagram to determine the position of tow surface.
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with

K1 ¼ A1 expð�DE1=RgT Þ; K2 ¼ A2 expð�DE2=RgT Þ;
K3 ¼ A3 expð�DE3=RgT Þ

ð4Þ

where ðB;A1;A2;A3Þ are constants, DE is activation en-

ergy, and Rg is the gas constant. Applying the model to
the present study, the values of the relevant parameters

are given as: HR ¼ 473:6	 5:4 J/g, B ¼ 0:47	 0:07, A1 ¼
2:101
 109min�1; A2 ¼�2:014
 109min�1;A3 ¼ 1:960

105 min�1; DE1 ¼ 8:07
 104 J/mol, DE2 ¼ 7:78
 104 J/

mol, DE3 ¼ 5:66
 104 J/mol.

It is assumed that the incoming tow is uncured, i.e.,

G ¼ 0. During the curing process, the cure degree of the

resin increases gradually until it is completely cured.

2.4. Material properties and relevant parameters

The tow used in this study is Hercules AS/3501-6

prepreg in which fiber is carbon and resin is epoxy. The

physical properties of fiber and resin can be found in

Ref. [16]: resin density qm ¼ 1:26
 103 kg/m3, fiber

density qf ¼ 1:79
 103 kg/m3, resin specific heat

cm ¼ 1260 J/kgK, fiber specific heat cf ¼ 712 J/kgK,

resin thermal conductivity km ¼ 0:167 W/mK, fiber

thermal conductivity kf ¼ 26:0 W/mK. For the resin

impregnated fiber tow, properties are given for the

combination of those of both fiber and resin. Because

tow is made of unidirectional fiber and resin, its thermal

conductivity is orthotropic and the principal directions

are parallel and normal to the fiber, respectively.

According to Refs. [17,18], the relevant properties of the

tow are

the density q ¼ qmvm þ qfvf
the specific heat c ¼ cmmm þ cfmf

the thermal conductivities kL ¼ kmvm þ kfvf

kT ¼ kmkf
kmvf þ kfvm

ð5Þ

where subscripts L and T refer to thermal conductivities

in the directions parallel ðkLÞ and normal ðkTÞ to the

filament, respectively. The mass fraction of resin, defined

as the percentage of the mass of resin to the mass of tow,

and the mass fraction of fiber that is the percentage of

the mass of fiber to the mass of tow, can be obtained by

calculations using the following relations:

mf ¼
qfvf
q

; mm ¼ qmvm
q

ð6Þ

In the present study, absorptivity of the tow is conser-

vatively assumed to be 0.8, which is generally over 80%

[19,20]. According to existing practice, the relevant

parameters used in the calculation are: diameter of the

mandrel D ¼ 0:2 m, diameter of the tow d ¼ 0:002 m,

volume fraction of resin vm ¼ 0:2, volume fraction of

fiber vf ¼ 0:8, absorptivity a ¼ 0:8, emissivity � ¼ 0:8,
Stefan–Boltzmann constant r ¼ 5:675
 10�8 W/m2 K4.

Because the mandrel is always rotated during the fila-

ment winding process, the convective heat transfer

coefficient on the surface of the tow is evaluated using

the empirical correlation for an isothermal, rotating

cylinder in air [4,21].

3. Numerical grid generation

The geometry of the physical domain of the above-

mentioned physical model is too complicated to handle

directly by the finite difference method or the finite

volume method. In order to apply the finite volume

method to the present study, the numerical grid gener-

ation method is used to transform the physical domain

of irregular geometry into a computational domain of

regular geometry. All calculations can be carried out in

the computational domain. Details of the transforma-

tion and the numerical calculation method can be found

in Ref. [4].

3.1. Partial differential equations of grid generation

Generally, a computational domain of simple regular

geometry should be chosen in the numerical grid gen-

eration method. Accordingly, the tow of the helical

cylinder in filament winding is considered as a straight

cylinder in the computational domain. Correspondingly,

a rectangular coordinate system ðn; g; fÞ is established
first. Coordinates n and g are in the cross section of the
straight cylinder, and f is along the axial direction of the
straight cylinder. Because a cylindrical coordinate sys-

tem is preferred in numerical calculations for the cylin-

der, the cylindrical coordinate system ðr; h; sÞ is chosen
as the final coordinate system in the computational do-

main, where r is in the radial direction, h is in the azi-
muthal direction, and s follows the axial direction of the
straight cylinder. The actual coordinate transformation

is from ðx; y; zÞ to ðn; g; fÞ, and then from ðn; g; fÞ to
ðr; h; sÞ. The transformation from the Cartesian coordi-

nates ðx; y; zÞ in the physical domain to the Cartesian

coordinates ðn; g; fÞ in the computational domain is

performed using the numerical grid generation method.

In the computational domain, the transformation from

the Cartesian coordinates ðn; g; fÞ to the cylindrical

coordinates ðr; h; sÞ can be realized through an algebraic
transformation. The basic algebraic relationships be-

tween the two coordinate systems ðn; g; fÞ and ðr; h; sÞ
are

n ¼ r cos h; g ¼ r sin h; f ¼ s ð7Þ

Being the function in r; h, and s, the covariant base
vectors are

4812 X. Wang et al. / International Journal of Heat and Mass Transfer 47 (2004) 4807–4820



~a1 ¼ xn~iþ yn~jþ zn~k

¼ xr cos h
��

� xh
sin h
r

�
cos h þ yr cos h

�

� yh
sin h
r

�
sin h

�
~er þ

��
� xr cos h þ xh

sin h
r

�
sin h

þ yr cos h
�

� yh
sin h
r

�
cos h

�
~eh

þ zr cos h
�

� zh
sin h
r

�
~es ð8Þ

~a2 ¼ xg~iþ yg~jþ zg~k

¼ xr sin h

��
þ xh

cos h
r

�
cos h þ yr sin h

�

þ yh
cos h
r

�
sin h

�
~er þ

��
� xr sin h � xh

cos h
r

�
sin h

þ yr sin h

�
þ yh

cos h
r

�
cos h

�
~eh

þ zr sin h

�
þ zh

cos h
r

�
~es ð9Þ

~a3 ¼ xf~iþ yf~jþ zf~k

¼ ½xs cos h þ ys sin h�~er þ ½�xs sin h þ ys cos h�~eh þ ½zs�~es
ð10Þ

To overcome the singularity at r ¼ 0, the L’Hospital’s

rule is used. The covariant metric tensor is

gij ¼~ai 
~aj ¼ gji ði ¼ 1; 2; 3Þ; ðj ¼ 1; 2; 3Þ ð11Þ

and the Jacobian of the transformation is

ffiffiffi
g

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det jgijj

q
¼~a1 
 ð~a2 
~a3Þ ð12Þ

The contravariant base vectors are

~ai ¼ rni ¼ 1ffiffiffi
g

p ~aj 
~ak ði ¼ 1; 2; 3Þ; ði; j; kÞ cyclic

ð13Þ

The contravariant metric tensor is

gij ¼~ai 
~aj ¼ gji ði ¼ 1; 2; 3Þ; ðj ¼ 1; 2; 3Þ ð14Þ

For numerical grid generation, the coordinates are

solutions of the chosen partial differential equations. As

well known, elliptic type differential equations are gen-

erally used because of their smoothing effect in spreading

out the boundary slope irregularities [22]. On the other

hand, the Laplace system is preferred for its simplicity.

Therefore, elliptic grid generation method with Laplace

system is adopted in the present study. The Laplace grid

generation equations to be solved are

r2A ¼ 0 ð15Þ

where A represents x; y, and z. The expression for r2A is
given by

ffiffiffi
g

p r2A ¼ o

on
ffiffiffi
g

p
g11

oA
on

� �
þ o

on
ffiffiffi
g

p
g12

oA
og

� �

þ o

on
ffiffiffi
g

p
g13

oA
of

� �
þ o

og
ffiffiffi
g

p
g21

oA
on

� �

þ o

og
ffiffiffi
g

p
g22

oA
og

� �
þ o

og
ffiffiffi
g

p
g23

oA
of

� �

þ o

of
ffiffiffi
g

p
g31

oA
on

� �
þ o

of
ffiffiffi
g

p
g32

oA
og

� �

þ o

of
ffiffiffi
g

p
g33

oA
of

� �
ð16Þ

In the cylindrical coordinate system ðr; h; sÞ, it becomes
ffiffiffi
g

p r2A ¼ 1

r
o

or
rE11

oA
or

� �
þ 1

r
o

or
rE12

1

r
oA
oh

� �

þ 1

r
o

or
rE13

oA
os

� �
þ 1

r
o

oh
E21

oA
or

� �

þ 1

r
o

oh
E22

1

r
oA
oh

� �
þ 1

r
o

oh
E23

oA
os

� �

þ o

os
E31

oA
or

� �
þ o

os
E32

1

r
oA
oh

� �
þ o

os
E33

oA
os

� �
ð17Þ

where

E11 ¼
ffiffiffi
g

p
g11 cos2 h þ ffiffiffi

g
p

g12 sin 2h þ ffiffiffi
g

p
g22 sin2 h

E12 ¼ E21 ¼ � ffiffiffi
g

p
g11 sin h cos h

þ ffiffiffi
g

p
g12 cos 2h þ ffiffiffi

g
p

g22 sin h cos h

E13 ¼ E31 ¼
ffiffiffi
g

p
g13 cos h þ ffiffiffi

g
p

g23 sin h

ð18Þ

E22 ¼
ffiffiffi
g

p
g11 sin2 h � ffiffiffi

g
p

g12 sin 2h þ ffiffiffi
g

p
g22 cos2 h

E23 ¼ E32 ¼ � ffiffiffi
g

p
g13 sin h þ ffiffiffi

g
p

g23 cos h

E33 ¼
ffiffiffi
g

p
g33

ð19Þ

3.2. Boundary conditions for grid generation equations

The coordinate values of points on the boundary of

each cross section of the helical tow can be obtained

based on the coordinate value of its center point P , as
shown in Fig. 2(b). Let a be the radius of point P , c be
the angle of point P in x–y plane starting from x-axis,
and p be the pitch of helical line, then

a ¼ D
2
þ R; p ¼ 2pa cotb; b ¼ p

2p
;

c ¼ shelffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
ð20Þ

where shel is the centerline length of the helical tow in the
control volume. The relevant parameters shown in Fig.

2(b) are

r1 ¼ aþ R cos h; r2 ¼ R sin h cos b;

rp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r21 þ r22

q
; tanðdcÞ ¼ r2

r1

ð21Þ
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The coordinate values of point P at the centerline of the
helical tow are

xc ¼ a cos
shelffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p ; yc ¼ a sin
shelffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p ;

zc ¼
bshelffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 þ b2

p
ð22Þ

For the straight tow before the contact point, the

coordinate values of point P can be easily determined as

xc ¼ a; yc ¼ sstr sin b; zc ¼ sstr cos b ð23Þ

The coordinate values of points on the surface of the

helical tow are

x ¼ rp cosðc þ dcÞ; y ¼ rp sinðc þ dcÞ;
z ¼ zc � R sin h sinb

ð24Þ

while the surface of the straight tow before the contact

point is described by

x ¼ xc þ R cos h; y ¼ yc þ R sin h cos b;

z ¼ zc � R sin h sinb
ð25Þ

4. Solution of grid generation equations and transforma-

tion of energy equation

The grid generation equations, Eq. (15), are solved

numerically using a successive over- relaxation (SOR)

iterative method. For the derivatives of x; y; z with re-
spect to the coordinates r; h; s the central difference

scheme is used for the middle points and the second

order forward or backward three-point difference

scheme are used for the boundary points.

The transformation of governing equations from the

physical domain to the computational domain is essen-

tial to the numerical grid generation method. The energy

equation in tensor form is given by

c
oðqT Þ
ot

�
þr 
 ðqT~uÞ

�
¼ �r 
~qþ S ð26Þ

or, in the Cartesian coordinate system ðx; y; zÞ

c
oðqT Þ
ot

�
þ o

ox
ðquT Þ þ o

oy
ðqvT Þ þ o

oz
ðqwT Þ

�

¼ o

ox
k11

oT
ox

�
þ k12

oT
oy

þ k13
oT
oz

�

þ o

oy
k21

oT
ox

�
þ k22

oT
oy

þ k23
oT
oz

�

þ o

oz
k31

oT
ox

�
þ k32

oT
oy

þ k33
oT
oz

�
þ S ð27Þ

where source term S represents all heat generations.

After the energy equation is transformed to the com-

putational domain in ðn; g; fÞ coordinate system, it be-
comes

c
oðqT Þ
ot

"
þ 1ffiffiffi

g
p

X3
i¼1

ð ffiffiffi
g

p
qT~ai 
~uÞni

#

¼ � 1ffiffiffi
g

p
X3
i¼1

ð ffiffiffi
g

p
~ai 
~qÞni þ S ð28Þ

where ni represents n; g; f when i ¼ 1; 2; 3, respectively.
For anisotropic medium, the heat flux is

~q ¼ q1~iþ q2~jþ q3~k ð29Þ

where

qi ¼ �
X3
j¼1

kij
oT
oxj

ð30Þ

After transformation

qi ¼ �
X3
j¼1

kij
X3
k¼1

Tnk ðn
kÞxj

" #
ð31Þ

Then, the energy equation in the computational domain

using the coordinate system ðn; g; fÞ becomes

c
oð ffiffiffi

g
p

qT Þ
oT

�
þ o

on
ð ffiffiffi
g

p
qUT Þ þ o

og
ð ffiffiffi
g

p
qVT Þ þ o

of
ð ffiffiffi
g

p
qWT Þ

�

¼ o

on
ffiffiffi
g

p
D11

oT
on

� �
þ o

on
ffiffiffi
g

p
D12

oT
og

� �

þ o

on
ffiffiffi
g

p
D13

oT
of

� �
þ o

og
ffiffiffi
g

p
D21

oT
on

� �

þ o

og
ffiffiffi
g

p
D22

oT
og

� �
þ o

og
ffiffiffi
g

p
D23

oT
of

� �

þ o

of
ffiffiffi
g

p
D31

oT
on

� �
þ o

of
ffiffiffi
g

p
D32

oT
og

� �

þ o

of
ffiffiffi
g

p
D33

oT
of

� �
þ ffiffiffi

g
p

S ð32Þ

where

D11 ¼ k11nxnx þ k12nynx þ k13nznx þ k21nxny

þ k22nyny þ k23nzny þ k31nxnz þ k32nynz

þ k33nznz ð33Þ

D12 ¼ D21

¼ k11gxnx þ k12gynx þ k13gznx þ k21gxny

þ k22gyny þ k23gzny þ k31gxnz þ k32gynz

þ k33gznz ð34Þ
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D13 ¼ D31

¼ k11fxnx þ k12fynx þ k13fznx þ k21fxny

þ k22fyny þ k23fzny þ k31fxnz þ k32fynz

þ k33fznz ð35Þ

D22 ¼ k11gxgx þ k12gygx þ k13gzgx þ k21gxgy

þ k22gygy þ k23gzgy þ k31gxgz þ k32gygz

þ k33gzgz ð36Þ

D23 ¼ D32

¼ k11fxgx þ k12fygx þ k13fzgx þ k21fxgy

þ k22fygy þ k23fzgy þ k31fxgz þ k32fygz

þ k33fzgz ð37Þ

D33 ¼ k11fxfx þ k12fyfx þ k13fzfx þ k21fxfy þ k22fyfy

þ k23fzfy þ k31fxfz þ k32fyfz þ k33fzfz ð38Þ

As mentioned above, the governing equations (mo-

mentum equations, energy equation, etc.) are very

complicated in the method introduced by Wang [10] and

Germano [11,12]. There are too many additional differ-

ential terms in the governing equations to handle.

Additionally, when applying the numerical grid gener-

ation method to an anisotropic medium, the trans-

formed two-dimensional energy equation is very

complex and contains too many differential terms to be

solved [22–24]. It also should be noted that most studies

on the fluid flow problems have not considered any

anisotropic property. Contrastedly, Eq. (32) is three-

dimensional with a tidy format for an anisotropic

medium, and very suitable for the finite volume method.

Obviously, the transformed three-dimensional energy

equation for an anisotropic medium developed in the

present study is very significant and meaningful.

Finally, the transformed energy equation in the

cylindrical coordinate system ðr; h; sÞ is given by

c
oð ffiffiffi

g
p

qT Þ
ot

�
þ 1

r
o

or
ðr ffiffiffi

g
p

qurT Þ þ
1

r
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oh
ð ffiffiffi
g

p
quhT Þ

þ o

os
ð ffiffiffi
g

p
qusT Þ

�
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r
o

or
r

ffiffiffi
g

p
C11

oT
or

� �
þ 1

r
o

or
r

ffiffiffi
g

p
C12

1

r
oT
oh

� �

þ 1

r
o

or
r

ffiffiffi
g

p
C13

oT
os

� �
þ 1

r
o

oh
ffiffiffi
g

p
C21

oT
or

� �

þ 1

r
o

oh
ffiffiffi
g

p
C22

1

r
oT
oh

� �
þ 1

r
o

oh
ffiffiffi
g

p
C23

oT
os

� �

þ o

os
ffiffiffi
g

p
C31

oT
or

� �
þ o

os
ffiffiffi
g

p
C32

1

r
oT
oh

� �

þ o

os
ffiffiffi
g

p
C33

oT
os

� �
þ ffiffiffi

g
p

S ð39Þ

where

C11 ¼ D11 cos
2 h þ D12 sin 2h þ D22 sin

2 h

C12 ¼ C21 ¼ �D11 sin h cos h þ D12 cos 2h þ D22 sin h cos h

ð40Þ

C13 ¼ C31 ¼ D13 cos h þ D23 sin h

C22 ¼ D11 sin
2 h � D12 sin 2h þ D22 cos

2 h

C23 ¼ C32 ¼ �D13 sin h þ D23 cos h

C33 ¼ D33

ð41Þ

The velocity field in the coordinate system ðr; h; sÞ is
~ur ¼ ur~er þ uh~eh þ us~es ð42Þ

where

ur ¼ U cos h þ V sin h;

uh ¼ �U sin h þ V cos h; us ¼ W
ð43Þ

4.1. Determination of velocity field

In energy equation Eq. (27), convection terms ac-

count for the motion of the tow in filament winding.

If the moving speed of tow in its axial direction is

given as Vt, then the angular velocity of mandrel rota-
tion is

x ¼ Vt sin b
a

ð44Þ

Subsequently, the velocity in the tangential direction of

the fiber-wound composite structure is

Vc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ y2

p
x ð45Þ

If the velocity vector of the tow in the ðx; y; zÞ coordinate
system is

~u ¼ u~iþ v~jþ w~k ð46Þ

the velocity components of the helical tow are

u ¼ �Vc sin c; v ¼ Vc cos c; w ¼ Vt cos b ð47Þ

The velocity components of the straight tow are

u ¼ 0; v ¼ Vt sinb; w ¼ Vt cos b ð48Þ

The contravariant velocity field in the ðn; g; fÞ coordi-
nate system is

~U ¼ U~iþ V~jþ W~k ð49Þ

where

Ui ¼~ai 
~u ði ¼ 1; 2; 3Þ ð50Þ
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or

U ¼ 1ffiffiffi
g

p ½uðygzf � zgyfÞ þ vðzgxf � xgzfÞ þ wðxgyf � ygxfÞ�

V ¼ 1ffiffiffi
g

p ½uðyfzn � zfynÞ þ vðzfxn � xfznÞ þ wðxfyn � yfxnÞ�

W ¼ 1ffiffiffi
g

p ½uðynzg � znygÞ þ vðznxg � xnzgÞ þ wðxnyg � ynxgÞ�

ð51Þ

4.2. Determination of thermal conductivity matrix

The thermal conductivity tensor of helical tow in the

cylindrical coordinate system ðr0; h0; s0Þ is

½K0� ¼
kT 0 0

0 kT 0

0 0 kL

2
4

3
5 ð52Þ

In order to obtain the thermal conductivity tensor in the

ðx; y; zÞ coordinate system, a transformation of thermal
conductivity tensor K0 from the ðr0; h0; s0Þ coordinate

system into the cylindrical coordinate system ðR; c; zÞ,
symbolized as K00, is conducted first. These two coordi-

nate systems are displayed in Fig. 3. In the coordinate

system ðr0; h0; s0Þ, r0 is the radial direction of the tow, h0 is

the angle in the azimuthal direction of the tow, and s0 is
the axis of the tow. In the coordinate system ðR; c; zÞ, R
is the radial direction of the mandrel, c is the angle in the
azimuthal direction, and z is the axis of the mandrel. The
tensor K00 is given by

½K00� ¼ ½C0�½K0�½C0�T

¼
kT 0 0

0 kT cos2 b þ kL sin
2 b ðkL � kTÞ sin b cos b

0 ðkL � kTÞ sin b cos b kT sin
2 b þ kL cos2 b

2
4

3
5

ð53Þ

where ½C0� is a transformation matrix

½C0� ¼
1 0 0
0 cos b sinb
0 � sin b cos b

2
4

3
5 ð54Þ

Subsequently, the tensor K00 in the cylindrical coordinate

system ðR; c; zÞ is transformed into the thermal conduc-
tivity tensor K in the Cartesian coordinate system

ðx; y; zÞ. This transformation is pretty easy:

½K� ¼ ½C00�½K00�½C00�T ¼
k11 k12 k13
k21 k22 k23
k31 k32 k33

2
4

3
5 ð55Þ

where

½C00� ¼
cos c � sin c 0

sin c cos c 0

0 0 1

2
4

3
5 ð56Þ

The components of the tensor K for the helical tow are

k11 ¼ kT cos2 c þ ðkT cos2 b þ kL sin
2 bÞ sin2 c

k12 ¼ k21 ¼ ðkT � kLÞ sin2 b sin c cos c

k13 ¼ k31 ¼ ðkT � kLÞ sin b cos b sin c

ð57Þ

k22 ¼ kT sin
2 c þ ðkT cos2 b þ kL sin

2 bÞ cos2 c

k23 ¼ k32 ¼ ðkL � kTÞ sin b cos b cos c

k33 ¼ kT sin
2 b þ kL cos2 b

ð58Þ

The components of the thermal conductivity tensor K

for the straight tow before the contact point are

k11 ¼ kT

k12 ¼ k21 ¼ 0

k13 ¼ k31 ¼ 0

ð59Þ

r’

’

s’
γe

e R e

e

β Tow

e

ze

θ

Fiber–wound composite structure

Fig. 3. Transformation of the thermal conductivity tensor of the tow in the cylindrical coordinates ðr0; h0; s0Þ into that in the cylindrical
coordinates ðR; c; zÞ for the mandrel or fiber-wound composite structure.
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k22 ¼ kT cos2 b þ kL sin
2 b

k23 ¼ k32 ¼ ðkL � kTÞ sin b cos b

k33 ¼ kT sin
2 b þ kL cos2 b

ð60Þ

4.3. Transformation of boundary conditions

In the numerical grid generation method, transfor-

mation of boundary conditions from the physical do-

main to the computational domain is also required. As

well known, the first kind of boundary condition will

maintain the same after the transformation while the

second kind of boundary condition is a special case of

the third kind of boundary condition. Therefore, only

the transformation of the third kind of boundary con-

dition is needed. The third kind of boundary condition is

given by

~n 
~q ¼ hðT � T1Þ ð61Þ

Here, the expression of unit vector normal to the surface

of ni ¼ constant is

~n ¼ ~ai

j~aij ð62Þ

and the heat flux in an anisotropic medium, ~q, is ex-
pressed by Eq. (29). The transformed third kind of

boundary condition in the coordinate system ðn; g; fÞ of
the computational domain for ni ¼ constant is

� 1ffiffiffiffiffi
gii

p
X3
j¼1

Dij
oT

onj
¼ hðT � T1Þ ði ¼ 1; 2; 3Þ ð63Þ

In the ðr; h; sÞ coordinate system, the transformed third
kind of boundary conditions are: for r ¼ constant,

� ðBr1 cos h þ Br2 sin hÞ oT
or

� ðBh1 cos h þ Bh2 sin hÞ 1
r
oT
oh

� ðBs1 cos h þ Bs2 sin hÞ oT
os

¼ hðT � T1Þ ð64Þ

for h ¼ constant,

ðBr1 sin h � Br2 cos hÞ
oT
or

þ ðBh1 sin h � Bh2 cos hÞ
1

r
oT
oh

þ ðBs1 sin h � Bs2 cos hÞ
oT
os

¼ hðT � T1Þ ð65Þ

for s ¼ constant,

�Br3
oT
or

� Bh3
1

r
oT
oh

� Bs3
oT
os

¼ hðT � T1Þ ð66Þ

where

Br1 ¼
1ffiffiffiffiffiffi
g11

p ðD11 cos h þ D12 sin hÞ

Br2 ¼
1ffiffiffiffiffiffi
g22

p ðD21 cos h þ D22 sin hÞ

Br3 ¼
1ffiffiffiffiffiffi
g33

p ðD31 cos h þ D32 sin hÞ

ð67Þ

Bh1 ¼
1ffiffiffiffiffiffi
g11

p ð�D11 sin h þ D12 cos hÞ

Bh2 ¼
1ffiffiffiffiffiffi
g22

p ð�D21 sin h þ D22 cos hÞ

Bh3 ¼
1ffiffiffiffiffiffi
g33

p ð�D31 sin h þ D32 cos hÞ

ð68Þ

Bs1 ¼
1ffiffiffiffiffiffi
g11

p D13; Bs2 ¼
1ffiffiffiffiffiffi
g22

p D23;

Bs3 ¼
1ffiffiffiffiffiffi
g33

p D33 ð69Þ

4.4. Grid generation results

Fig. 4(a) and (b) exhibit the grids in the physical

domain and the computational domain, respectively.

For the tow of diameter 2 mm on the surface of a fiber-

wound composite structure of diameter 0.1 m, the tow is

relatively too small to be seen in details for grids.

Therefore, here the grids for a tow of diameter 40 mm

and b ¼ 80� on the surface of fiber-wound composite

structure of diameter 0.1 m are generated and demon-

strated. Only the grids on the surface of the tow are

shown for clearness.

5. Numerical method in computational domain

Finite volume method [25] is applied to the numerical

calculation in computational domain. Fully implicit

time-marching and power-law schemes are employed in

the discretization of the governing equation. To obtain

the solution of the discretization equations, ADI itera-

tive method is applied for the whole computational

domain. For the solution of each point at each grid line,

the standard TDMA is applied in the r and s directions.
A CTDMA (Cyclic TDMA) [26,27] that is effective for

periodic problems, in which the beginning and the end

of the computational domain are the same, is applied in

the h direction. Because the source term and boundary

condition are functions of temperature, they are calcu-

lated at each iteration step to obtain new values. The

tolerance of iteration is 10�4. According to the cure

kinetics model, strong nonlinearity occurs in the energy

equation. Since the curing of resin is an integral process,
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with the moving of the tow the increase of cure degree

for each point of the tow within a small time step is

calculated based on its cure degree at the previous time

step.

6. Results and discussion

The on-line thermal curing process of thermoset

composites in filament winding is investigated using the

helical tow model and numerical grid generation method.

A three-dimensional computer code is developed. At

the beginning of numerical calculation, a comparison

between the present numerical results and the existing

data [3] is made. Chern et al. [3] studied in situ thermal

curing of hoop-wound thermoset structure with infrared

lamp. The prepreg tape with thickness of 0.132 mm is

made of Hercules AS/3501-6. The surface of the struc-

ture is in convection with the ambient. Although the two

models are different, a comparison of the results for the

thermal curing processes can be made. The winding

velocity (Vt ¼ 0:2 m/s) and the diameter of the fiber-

wound composite structure (D ¼ 0:2 m) used in the

present study for numerical result comparison are the

same as those given in Ref. [3]. The comparison of

the results are shown in Fig. 5. The temperature and

cure degree profiles in the present study are at the cen-

terline of the tow and those in Ref. [3] are at the middle

of each layer of tape. It is seen that the present numerical

results agree well with Chern’s data.

The temperature and cure degree profiles under the

conditions of Vt ¼ 0:1 m/s, d ¼ 0:002 m, b ¼ 85�, L1 ¼
10d, L2 ¼ 10d, L3 ¼ 175d, Tw ¼ 120 �C, q ¼ 0:35
 106

W/m2, and different ratio of the diameter of fiber-wound

composite structure to the diameter of tow are shown in

Figs. 6 and 7, in which the results from the simplified
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Fig. 4. Grids of the helical tow under the conditions of D ¼ 0:1

m, d ¼ 0:04 m, and b ¼ 80� (only grids on the surface of the
tow): (a) in the physical domain, (b) in the computational do-
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Fig. 5. Comparison of profiles of temperature and degree of

cure: (a) temperature profiles, (b) cure degree profiles.
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physical model (straight tow) [4,5,9] are also shown for

comparison. It is seen that the results obtained from

both models coincide with each other very well when the

ratio of the diameter of fiber-wound composite structure

to the diameter of tow ðD=dÞ is larger than 100. How-
ever, when the ratio is small, says 10 or 5, the differences

between the temperature and cure degree results ob-

tained from both models become obvious and increase

with time. Because the actual shape of the tow in fila-

ment winding process is considered in the helical tow

model, results from this model are more accuracy than

those from straight tow model. It is expected that the

modeling of on-line thermal curing of thermoset com-

posites in filament winding by the simplified physical

model is only acceptable at large ratio. However, for the

small ratio, the helical tow model should be used to

obtain more accuracy results.

7. Conclusions

A complicated physical model–helical tow model for

the actual tow and the corresponding numerical method

are presented, which successfully simulate the on-line

thermal curing of thermoset composites in filament

winding. A concise and regular transformed three-

dimensional energy equation and transformed boundary

conditions for an anisotropic medium are derived, which

are very suitable for numerical computation using the

finite volume method. The results are compared to those

obtained from the simplified physical model in which the

curvature of the mandrel or the fiber-wound composite

structure and tow is neglected. Obviously, the simplified

physical model is acceptable only for the ratio of the

diameter of fiber-wound composite structure to the
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Fig. 6. Temperature and cure degree profiles at the centerline

and several points on the surface of the tow under the condi-

tions of Vt ¼ 0:1 m/s, d ¼ 0:002 m, b ¼ 85�, L1 ¼ 10d, L2 ¼ 10d,
L3 ¼ 175d, Tw ¼ 120 �C, and q ¼ 0:35
 106 W/m2: (a) tem-

perature profiles, (b) cure degree profiles.
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Fig. 7. Temperature and cure degree profiles at several points

along the radial direction of the tow under the conditions of

Vt ¼ 0:1 m/s, d ¼ 0:002 m, b ¼ 85�, L1 ¼ 10d, L2 ¼ 10d,
L3 ¼ 175d, Tw ¼ 120 �C, and q ¼ 0:35
 106 W/m2: (a) tem-

perature profiles, (b) cure degree profiles.
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diameter of tow is large. When the ratio is small, the

helical tow model should be used.
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