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Spin Dynamics II Thomas Silva, Chairman

Activation entropy, activation energy, and magnetic viscosity
R. Skomski,a) R. D. Kirby, and D. J. Sellmyer
Center for Materials Research and Analysis and Behlen Laboratory of Physics, University of Nebraska,
Lincoln, Nebraska 68588-0113

Starting from an exact quantum-statistical description, the influence of the shape of the energy
landscape on the magnetic viscosity is investigated. Magnetic phase-space analysis based on
Kramers’ escape-rate theory of chemical reaction kinetics theory shows that the activation entropy
associated with thermally activated hopping modifies the magnetic viscosity by reducing the
attempt-frequency prefactor compared to an earlier prediction by Brown@W. F. Brown, Phys. Rev.
130, 1677~1963!#. Energetic contributions are analyzed in terms of a model applicable to a range
of coherent and noncoherent magnetization processes, and in the long-time limit deviations from the
linear logarithmic magnetic-viscosity law are found. ©1999 American Institute of Physics.
@S0021-8979~99!74808-5#

I. INTRODUCTION

Magnetic viscosity, that is, the time dependence of in-
trinsic properties such as magnetization and coercivity, is of
utmost importance in the areas of hard and semihard magne-
tism. For example, the stability of the information stored in
magnetic and magneto-optic recording media is largely de-
termined by thermally activated magnetization processes
~see, e.g., Ref. 1!. Magnetic viscosity is most pronounced for
small grain sizes, as envisaged in the context of ever-
increasing magnetic-recording storage densities, and the
question arises whether there are contributions going beyond
the well-known Arrhenius-type exponential relaxation. A
conceptually very simple Arrhenius approach is to consider
an ensemble of individual relaxation processes~index i! de-
scribed by relaxation timest i5toi exp(Eai /kBT), whereEai

andtoi are activation energies and inverse attempt frequen-
cies, respectively, so that the time dependence of the magne-
tization is an ensemble average. An alternative view is to
analyze the sweep-rate dependence of the coercivity in terms
of fluctuation fields,1 but it can be shown that that approach
does not yield essential new physics.

In any case, Fig. 1 shows that the energy barriersEai are
not the only consideration:~a! and~b! have the same activa-
tion energy, but the transition~b! is three times as likely as
~a!. This gives rise to anactivation entropy Sai defined by

t i5to exp
Eai2TSai

kBT
. ~1!

Essentially, activation entropy amounts to a renormalized in-
verse attempt frequencyt85to exp(2Sai /kB), althoughSia is
in general weakly temperature dependent. In the model illus-
trated in Fig. 1, the activation entropies areSai50 ~left! and

kB ln 3 ~right!. On the other hand, the question arises of how
the shape of the energy landscape affects the energetics of
magnetic viscosity.

This article consists of three parts. In Sec. II we summa-
rize the quantum-statistical background of magnetic viscos-
ity and show how the separation of relevant and irrelevant
degrees of freedom yields well-defined free-energy land-
scapes and expressions of the type of Eq.~1!. In Sec. III we
introduce a magnetic interpretation of Kramers’ escape-rate
theory of chemical reaction kinetics in terms of an
activation-entropy approach, and in Sec. IV we show that the
shape of the energy landscape affects not only the entropics
but also leads to nontrivial deviations from the famous linear
logarithmic magnetic-viscosity law.

II. QUANTUM-STATISTICAL BACKGROUND

The evolution of a quantum-mechanical system is de-
scribed by the time-dependent Schro¨dinger equation
i\]uC&/]t5HuC& or, alternatively, by theLiouville–von
Neumannequation

i\ dr̂/dt 5Hr̂2 r̂H, ~2!

a!Electronic mail: rskomski@unlinfo.unl.edu
FIG. 1. Activation energyEa(sI ), activation entropy, and the number of
phase-space paths in a two-dimensional phase space.
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wherer̂(t)5uC(t)&^C(t)u is thedensity operator. Equation
~2! can be used to predict the evolution of any physical sys-
tem, but from the time dependence of the entropy

dS/dt 52 ~kB/ i\! Tr~ ln r̂Hr̂2 ln r̂ r̂H!50, ~3!

we see that this method is not feasible in practice. The reason
is the deterministic character of the many-body Schro¨dinger
and Liouville–von Neumann equations, whereas irreversibil-
ity is associated with the transition from the complete Hamil-
tonian to a ‘‘coarse-grained’’ Hamiltonian describing the rel-
evant magnetic degrees of freedom, such as the position of a
domain wall, whereas the irrelevant degrees of freedom, such
as lattice vibrations and magnons, act as a heat bath.

Irrelevant degrees of freedom are eliminated by intro-
ducing projection operators so thatr̂ rel5Pr̂ and r̂85(1
2P) r̂5Qr̂ are the relevant and irrelevant components of
the density operator, respectively.2,3 Writing Eq. ~2! as
i\]r̂/]t5L r̂, whereL is the Liouville superoperator, yields
the coupled equationsi\]r̂ rel /]t5PLr̂ rel1PLr̂8 and
i\]r̂8/]t5QL r̂ rel1QL r̂8. The second equation describes
the heat bath. Solving it and substituting into the first equa-
tion yields a closed equation forr̂ rel(t)

i\
]r̂ rel

]t
5PLr̂ rel2

i

\ E
0

t

PL expS 2
i ~ t2t8!

\
QL D

3QL r̂ rel~ t2t8!dt81PL expS 2
i t

\
QL D r̂8~0!. ~4!

In this exact but formal master equation, the termPLr̂ rel

reflects the deterministic quantum-mechanical motion of the
relevant degrees of freedom, whereas the second and third
terms on the right-hand side of Eq.~4! describe relaxation
processes and random thermal forces associated with the heat
bath, respectively.

Equation ~4! contains difficult-to-handle operator ex-
pressions, but it provides a sound basis for the derivation of
approximations. For example, the Landau–Lifshitz equation
includes the precession of the magnetization and the viscous
rotation of M towards an effective field Heff5
2dE(M )/d(moM ), but it is unable to explain thermally ac-
tivated transitions~jumps! over energy barriers. A more ap-
propriate approach to magnetic viscosity is theLangevin
equation

]s

]t
52

Go

kBT

]E

]sI
1A2GojI ~ t !, ~5!

where sI is a magnetic phase-space vector,Go51/to , and
jI (t) is a delta-correlated random force. Strictly speaking, the
number of components ofsI is infinite, because foruM (r )u
5Ms(r ) the magnetizationM ~r ! has two degrees of freedom
u andf per volume elementdr , but it is common to consider
suitably projected low-dimensional phase spaces. For ex-
ample, considering the position of a domain wall establishes
a one-dimensional phase space. The probability distribution
P(sI ,t) obeys the magneticFokker–Planck equation

to

]P

]t
5

1

kBT

]

]sI S P
]E

]sI D1
]2P

]sI2 , ~6!

which can be interpreted as a generalized diffusion equation
~see, e.g., Ref. 4, and references therein!, and both Eqs.~5!
and ~6! can be derived from a phenomenological master or
rate equation

]P~sI !

]t
5E @W~sI ,sI 8!P~sI8!2W~sI8,sI !P~sI !#dsI8, ~7!

where the W(sI ,sI 8)5W(sI 8→sI ) are appropriately chosen
transition rates. In equilibrium, Eqs.~5!, ~6!, and ~7! all re-
produce the Boltzmann distributionP(sI )5(1/Z)exp
(2E(sI)/kBT), whereas in nonequilibrium they yield expres-
sions of the type of Eq.~1!. Note that fast heat-bath motions
determine, for example, the spontaneous magnetization
Ms(T), so thatE(sI ) is a temperature-dependent quasiequi-
librium magnetic free energy.

III. ACTIVATION ENTROPY AND KRAMER’S ESCAPE-
RATE THEORY

A simplified master equation,]P1 /]t5W12P22W21P1

and ]P2 /]t52W12P21W21P1 , describing net transitions
between two global or local energy minima, is illustrated in
Fig. 2. Kramers’ escape-rate theory,5 originally used to de-
scribe chemical reaction kinetics, uses Eq.~6! to show that
the transition ratesW12 and W21 are proportional to exp
(2Ea /kBT) but also contain a prefactor which depends on the
curvature of the energy extrema. In our approach, we can
define entropy asS5kB ln V, whereV(E) is the available
phase-space volume~Fig. 2!. A small phase-space volume at
the bottom of the metastable energy minimum (E!Ea) is
entropically favorable, becauseSa5kB@ ln V(Ea)2ln V(E)# is
large. Quadratic potentialsE'k(s2so)2, whereV;1/Ak,
yield, therefore, prefactors proportional toAk. This interest-

FIG. 2. Model potential illustrating the process of magnetic viscosity; the
filled arrow shows the net probability flux. This model describes, for ex-
ample, a Barkhausen jump of a plane domain wall from the wall positions1

to the wall positions2 .

FIG. 3. Two-dimensional energy landscape. The activation entropy is deter-
mined by the curvatures at the saddle-point and at the bottom of the initial
minimum ~left!.
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ing result is equivalent to Kramers’ approach, where a direct
probability-flux integration was used to calculate the reaction
rate. Note that 1/k is proportional to the reversible suscepti-
bility x rev, so that magnetic viscosity increases with decreas-
ing x rev.

In general, magnetization processes are multidimen-
sional phenomena, characterized by two or more relevant
degrees of freedom~Fig. 3!. For a given energy landscape
E(sI ), which can be determined by several methods,6,7 the
rate prefactor can be obtained by solving Eq.~6!, as known
from reaction-rate theory.8 The important result is

Go5co

P iAkiAukau

P jAkj8
. ~8!

Here, the ki ( i 51,...,N) are the curvature~inverse-
susceptibility! eigenvalues of the metastable energy mini-
mum, thekj8 ( j 51,...,N21) are the positive curvature eigen-
values of the saddle point, andka is the negative saddle-point
eigenvalue responsible for the bottleneck~Fig. 3!.

A notable deviation from Eq.~8! is the magnetic reversal
in ideal Stoner–Wohlfarth particles, which involves a degen-
erate saddle point atu5p/2. Due to the high symmetry of
the problem, Eq.~6! can be solved explicitly, and one obtains
a prefactor proportional to 1/AT.9 However, in reality this
symmetry is broken, for example, by magnetostatic interac-
tions with neighboring grains, andGo is reduced with respect
to Brown’s prediction. For grains of radius 10 nm, this sym-
metry breaking reduces the the room-temperature magnetic
viscosity by a factor of order 50.

IV. THE LOGARITHMIC LAW

As a rule, slow relaxation processes such as the famous
logarithmic law^M (t)&5^M (to)&2Svisc ln(t/to) are based on
energy-barrier distributions,10 although there is an equivalent
logarithmic dependence of the coercivity on the sweep-rate
dH/dt,11 Trivially, the logarithmic law is unphysical not
only in the short-time limit, where spin precession is impor-
tant, but also for extremely long times, where^M &52Ms

rather than̂ M &52`. The main reason for the trivial long-
time deviations is the large butfinite width of the energy-
barrier distribution.10 A more adequate expression is12

M ~ t !52Ms~ t/to!2kBT/Eo2Ms , ~9!

but since (xe21)5e ln x for small exponents, the deviations
from the logarithmic law are of minor interest in the present
context.

From Kramers’ theory, that is, neglecting nanosecond
corrections, it follows that the individual relaxation pro-
cesses obeyMi(t)52Ms12Ms exp(2t/ti). This yields the
average magnetization

^M ~ t !&52Ms12MsE
2`

`

P~E!e2Got exp~2E/kBT!dE, ~10!

where P(E) is the energy-barrier distribution. SinceE
@kBT for most activation energies we can restrict ourselves
to the vicinity of the individual switching fields~coercivities!
Hs . Consider, for simplicity, the energy expression

E5 m0MSV0HC
12m~Hs2H !m, ~11!

whereVo is a physical, Barkhausen-type volume andHc is
needed for dimensional reasons. Since there is equilibrium
on a local scale~Sec. II!, the parameters in Eq.~11! exhibit a
secondary temperature dependence. Equation~11! describes
various coherent and incoherent magnetization processes
~compare, e.g., Ref. 13!: it applies to energy barriers of the
typesH2Ho and 1/H21/Ho (m51), but it can also be used
to describe strong domain-wall pinning (m53/2), oriented
fine particles (m52), and misaligned fine particles (m
53/2). In Eq. ~10!, the energy-barrier distributionP(E)
arises from the randomness ofHs , that is, from the
switching-field distribution of orderMs /x irr , whereas the
prefactor is assumed to be constant. After some calculation
we obtain from Eqs.~10! and ~11!

^M ~ t !&5^M ~to!&2S kBTHc
m21 ln~ t/to!

moMsVo
D 1/m

x irr . ~12!

For m.1, this equation differs from the popular
‘‘logarithmic-law’’ time-dependence ln(t/to), where to is a
reference time. For small ratiost/to it is possible to linearize
Eq. ~12! with respect to ln(t/to), which resurrects the familiar
linear dependence on ln(t/to) and involves the well-known
expression ln(to /to)'25. However, the validity of this linear-
ization implies that ln(t/to)!25, rather than, e.g.,kBT!E.
This criterion is fairly well satisfied for laboratory-scale mea-
surements with time scales ranging from a few seconds to a
few hours, so that ln(t/to)'8, but it is violated when long-
time data storage is considered, where ln(t/to)'20. In this
case, there are pronounced deviations from the linear loga-
rithmic law which depend on details of the energy landscape.

V. CONCLUSIONS

We have investigated how the shape of the energy land-
scape affects magnetic viscosity. For a given energy-barrier
height, there are both entropic and energetic corrections to
the magnetic viscosity. The concept of activation entropy is
used to show that the curvature of the energy landscape, and
reduces the prefactorGo compared to Brown’s prediction,
whereas the energetic contribution yields deviations from the
simple logarithmic law in the limit of long-time data storage.

ACKNOWLEDGMENT

This work was supported by NSF Grant No. DMR-
9623992, AFOSR-F Grant No. 496209810098, ARO/
DARPA Grant No. DAAG55-98-1-0268, and CMRA.

1D. J. Sellmyer, M. Yu, R. A. Thomas, Y. Liu, and R. D. Kirby, Phys.
Low-Dimens. Semicond. Struct.1-2, 155 ~1998!.

2R. Zwanzig, Phys. Rev.124, 983 ~1961!.
3H. Mori, Prog. Theor. Phys.33, 423 ~1965!.
4R. Skomski, J. Appl. Phys.83, 6503~1998!.
5H. A. Kramers, Physica~Amsterdam! 7, 284 ~1940!.
6W.-J. Chen, Sh.-F. Zhang, and H. N. Bertram, J. Appl. Phys.71, 5579
~1992!.

7D. V. Berkov, J. Appl. Phys.83, 7390~1998!.
8P. Hänggi, P. Talkner, and M. Borkovec, Rev. Mod. Phys.62, 251
~1990!.

9W. F. Brown, Phys. Rev.130, 1677~1963!.
10R. Becker and W. Do¨ring, Ferromagnetismus~Springer, Berlin, 1939!.
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