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Spin Dynamics I Thomas Silva, Chairman

Activation entropy, activation energy, and magnetic viscosity

R. Skomski,? R. D. Kirby, and D. J. Sellmyer
Center for Materials Research and Analysis and Behlen Laboratory of Physics, University of Nebraska,
Lincoln, Nebraska 68588-0113

Starting from an exact quantum-statistical description, the influence of the shape of the energy
landscape on the magnetic viscosity is investigated. Magnetic phase-space analysis based on
Kramers’ escape-rate theory of chemical reaction kinetics theory shows that the activation entropy
associated with thermally activated hopping modifies the magnetic viscosity by reducing the
attempt-frequency prefactor compared to an earlier prediction by Bf@wi. Brown, Phys. Rev.

130 1677(1963]. Energetic contributions are analyzed in terms of a model applicable to a range
of coherent and noncoherent magnetization processes, and in the long-time limit deviations from the
linear logarithmic magnetic-viscosity law are found. I®99 American Institute of Physics.
[S0021-897€09)74808-3

I. INTRODUCTION kg In 3 (right). On the other hand, the question arises of how

L . . . . the shape of the energy landscape affects the energetics of
Magnetic viscosity, that is, the time dependence of m'Pwagnetic viscosity.

trinsic properties such as magnetization and coercivity, Is 0 This article consists of three parts. In Sec. Il we summa-

utmost importance in the areas of hard and semihard magne- L T
. i . ) " Tize the quantum-statistical background of magnetic viscos-
tism. For example, the stability of the information stored in

. . . o ity and show how the separation of relevant and irrelevant
magnetic and magneto-optic recording media is largely de- . '
. . o degrees of freedom yields well-defined free-energy land-
termined by thermally activated magnetization processes .
o o Scapes and expressions of the type of @g. In Sec. Ill we

(see, e.g., Ref.)1Magnetic viscosity is most pronounced for . L . ;
small arain sizes. as envisaged in the context of eVermtroduce a magnetic interpretation of Kramers' escape-rate
9 ' 9 theory of chemical reaction kinetics in terms of an

Increasing .magneuc-recordmg storagg d§n3|t|e§, and the tivation-entropy approach, and in Sec. IV we show that the
guestion arises whether there are contributions going beyonaq:

the well-known Arrhenius-type exponential relaxation. A shape of the energy landscape affects not only the entropics

: : ) .~ but also leads to nontrivial deviations from the famous linear
conceptually very simple Arrhenius approach is to con5|de\f

an ensemble of individual relaxation proceséesexi) de- ogarithmic magnetic-viscosity law.

scribed by relaxation times; = 7,; eXpE,i/KsT), whereE,;

and 7,; are activation energies and inverse attempt frequen-

cies, respectively, so that the time dependence of the magné- QUANTUM-STATISTICAL BACKGROUND

tization is an ensemble average. An alternative view is to ) i i

analyze the sweep-rate dependence of the coercivity in terms 1€ évolution of a quantum-mechanical system is de-

of fluctuation fields’ but it can be shown that that approach §cr|bed by the t|me-dependent Sodhngfar _equatlon

does not yield essential new physics. |ha|\1f)/&t=H|\_I’> or, alternatively, by theliouville—von
In any case, Fig. 1 shows that the energy barfiggsare ~ Veumannequation

not the only consideratior{a) and(b) have the same activa- i dp/dt=Hp—pH, )

tion energy, but the transitiofb) is three times as likely as

(8. This gives rise to amctivation entropy g defined by

s oEa TS L |
Ti= To exp?. (1) 1 = 7 7= |i
° A "4t / JE
t
Essentially, activation entropy amounts to a renormalized in-
verse attempt frequeney = 7, exp(—S,i/kg), althoughS, is
in general weakly temperature dependent. In the model illus- (@) low ®) high
trated in Fig. 1, the activation entropies &g=0 (left) and activation entropy activation entropy

FIG. 1. Activation energyE,(s), activation entropy, and the number of
3E|ectronic mail: rskomski@unlinfo.unl.edu phase-space paths in a two-dimensional phase space.
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wherep(t) =|W¥(t) (¥ (t)| is thedensity operatarEquation
(2) can be used to predict the evolution of any physical sys-
tem, but from the time dependence of the entropy E

dS/dt = — (kg/i%) Tr(In pHp—In ppH) =0, 3)

we see that this method is not feasible in practice. The reason
is the deterministic character of the many-body Sdhrger
and Liouville—von Neumann equations, whereas irreversibil- or
ity is associated with the transition from the complete Hamil-
tonian to a “coarse-grained” Hamiltonian describing the rel-
evant magnetic degrees of freedom, such as the position ofFdG. 2. Model potential illustrating the process of magnetic viscosity; the
domain wall, whereas the irrelevant degrees of freedom, Sucfﬂled arrow shows the_ net probability flux. This model describes, fo_r ex-
. . . ample, a Barkhausen jump of a plane domain wall from the wall positon

as lattice vibrations and magnons, act as a heat bath. o the wall positiors, .

Irrelevant degrees of freedom are eliminated by intro-
ducing projection operators so that,=Pp and p’=(1
—P)p=Qp are the relevant and irrelevant components ofwhich can be interpreted as a generalized diffusion equation
the density operator, respectivély. Writing Eq. (2) as  (see, e.g., Ref. 4, and references thereamd both Eqs(5)
ihdplot=Lp, whereL is the Liouville superoperator, yields and (6) can be derived from a phenomenological master or
the coupled equationsifidp/dt=PLp,+PLp" and rate equation
ifidp'[ot=QLp+QLp'. The second equation describes (s)
the heat bath. Solving it and substituting into the first equa- —‘:f [W(s,s")P(s’)—W(s',s)P(s)]ds’, (7)
tion yields a closed equation f@r(t) Jt

STATE 2 STATE 1

A - (t—t where the W(s,s')=W(s'—s) are appropriately chosen
i% &pfe':pL;)rel_ '_f PL ex;{ _X )QL) transition rates. In equilibrium, Eq$5), (6), and(7) all re-
at hJo h produce the Boltzmann distributionP(s) = (1/Z)exp
it (—E(9)/kgT), whereas in nonequilibrium they yield expres-
X QL pre(t—t")dt’ +PL exp( ——QL);B’(O). (4)  sions of the type of Eq(1). Note that fast heat-bath motions
h determine, for example, the spontaneous magnetization
M¢(T), so thatE(s) is a temperature-dependent quasiequi-
éibrium magnetic free energy.

In this exact but formal master equation, the tePhp,
reflects the deterministic quantum-mechanical motion of th
relevant degrees of freedom, whereas the second and third
terms on the right-hand side of E(#) describe relaxation lll. ACTIVATION ENTROPY AND KRAMER'S ESCAFE-
processes and random thermal forces associated with the hgg@TE THEORY
bath, respectively. A simplified master equatiomP,/dt=W,P,—W,,P
Equation (4) contains difficult-to-handle operator ex- and dP,/dt=—W;,P,+W,,P;, describing net transitions
pressions, but it provides a sound basis for the derivation dbetween two global or local energy minima, is illustrated in
approximations. For example, the Landau—Lifshitz equatiorFig. 2. Kramers’ escape-rate thedrgriginally used to de-
includes the precession of the magnetization and the viscousribe chemical reaction kinetics, uses Eg). to show that
rotation of M towards an effective field Heg= the transition ratesV,;, and W,, are proportional to exp
—8E(M)/8(oM), but it is unable to explain thermally ac- (—E,/kgT) but also contain a prefactor which depends on the
tivated transitiongjumps over energy barriers. A more ap- curvature of the energy extrema. In our approach, we can
propriate approach to magnetic viscosity is thangevin  define entropy aS=kgInQ, where Q) (E) is the available

equation phase-space volun{€ig. 2). A small phase-space volume at
the bottom of the metastable energy minimul<{E,) is
os_ T, dE Jr- entropically favorable, becausa= ke[ In Q(E,)—In Q(E)] is
+ V2L (1), 5 _ ! )
at kgT ds large. Quadratic potentialE~k(s—s,)2, whereQ~1/\k,

wheress is a magnetic phase-space vectB=1/r,, and yield, therefore, prefactors proportional {&. This interest-
S - a o

£(1) is a delta-correlated random force. Strictly speaking, the
number of components o is infinite, because fofM (r)|
=My(r) the magnetizatioM (r) has two degrees of freedom

6 and ¢ per volume elemerdr, but it is common to consider
suitably projected low-dimensional phase spaces. For ex-
ample, considering the position of a domain wall establishes
a one-dimensional phase space. The probability distribution
P(s,t) obeys the magnetiEokkerPlanck equation

IP 1 9 JE 2P FIG. 3. Two-dimensional energy landscape. The activation entropy is deter-
—_— — |+ — (6) mined by the curvatures at the saddle-point and at the bottom of the initial
°gt  kgT ds\ ds Js°’ minimum (left).
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ing result is equivalent to Kramers’ approach, where a direct E= MoMsVoHé_ M(Hg—H)™, (11)
probability-flux integration was used to calculate the reaction hereV. i hvsical. Barkh i | aid |
rate. Note that X is proportional to the reversible suscepti- whereV, is a physical, Barkhausen-type volume arigl is

bility xev, SO that magnetic viscosity increases with decreasl'e€ded for dimensional reasons. Since there is equ_lllbnum
ing x on a local scalé€Sec. I)), the parameters in E¢l1) exhibit a
rev-

In general, magnetization processes are muItidimen-seccmd"’lry temperature dependence. Equdfithdescribes

sional phenomena, characterized by two or more relevan\farious coherent and .incohgrent magnetizatiqn processes
degrees of freedonFig. 3. For a given energy landscape (compare, e.g., Ref. 13it applies to energy barriers of the

E(s), which can be determined by several methbshe typdesH _.EO atnd lHd_ 1H, (mi 1), butit ca;r;zalso be l:sgd
rate prefactor can be obtained by solving B, as known [ describe strong domain-wall pinningn¢=3/2), oriente

: - : fine particles (n=2), and misaligned fine particlesm(
- . tant It . o
from reaction-rate theoryThe important result is =3/2). In Eq. (10), the energy-barrier distributio?(E)

IT ki VI ks arises from the randomness ¢, that is, from the
Iﬂo:CoW 8 switching-field distribution of ordeMg/y;,, whereas the
A prefactor is assumed to be constant. After some calculation
Here, the k; (i=1,..N) are the curvature(inverse- we obtain from Eqs(10) and(11)

susceptibility eigenvalues of the metastable energy mini- KeTH™ L In(t/ 7o) ™

mum, thekj’ (j=1,...N—1) are the positive curvature eigen- (M(1))=(M(75))— B ¢ ° ) Xir- (12
values of the saddle point, aig is the negative saddle-point HoMsVo

eigenvalue responsible for the bottlend&kg. 3). For m>1, this equation differs from the popular

A notable deviation from Eq8) is the magnetic reversal ‘“logarithmic-law” time-dependence Itf,), wheret, is a

in ideal Stoner—Wohlfarth particles, which involves a degen+eference time. For small ratidé, it is possible to linearize

erate saddle point &= 7/2. Due to the high symmetry of Eq.(12) with respect to In{t,), which resurrects the familiar

the problem, Eq(6) can be solved explicitly, and one obtains linear dependence on W) and involves the well-known

a prefactor proportional to {T.° However, in reality this  expression It /z,)~25. However, the validity of this linear-

symmetry is broken, for example, by magnetostatic interacization implies that Ingt,)<25, rather than, e.gkgT<E.

tions with neighboring grains, arld, is reduced with respect This criterion is fairly well satisfied for laboratory-scale mea-

to Brown'’s prediction. For grains of radius 10 nm, this sym-surements with time scales ranging from a few seconds to a

metry breaking reduces the the room-temperature magnetfew hours, so that Inf,)~8, but it is violated when long-

viscosity by a factor of order 50. time data storage is considered, where/lg)&20. In this
case, there are pronounced deviations from the linear loga-
rithmic law which depend on details of the energy landscape.

V. CONCLUSIONS

As a rule, slow relaxation processes such as the famous We have investigated how the shape of the energy land-
logarithmic law(M (t))=(M(t,)) — S,iscIN(t/t,) are based on scape affects magnetic viscosity. For a given energy-barrier
energy-barrier distribution, although there is an equivalent height, there are both entropic and energetic corrections to
logarithmic dependence of the coercivity on the sweep-ratéhe magnetic viscosity. The concept of activation entropy is
dH/dt, Trivially, the logarithmic law is unphysical not used to show that the curvature of the energy landscape, and
only in the short-time limit, where spin precession is impor-reduces the prefactdr, compared to Brown’s prediction,
tant, but also for extremely long times, whefll)=—Mg  whereas the energetic contribution yields deviations from the
rather than{M) = —o. The main reason for the trivial long- simple logarithmic law in the limit of long-time data storage.
time deviations is the large biiinite width of the energy-

IV. THE LOGARITHMIC LAW
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