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Infrared spectroscopic ellipsometry study of vinylidene fluoride
„70%…-trifluoroethylene „30%… copolymer Langmuir–Blodgett films

Mengjun Bai, Matt Poulsen, A. V. Sorokin,a) and Stephen Ducharmeb)

Department of Physics and Astronomy, Center for Materials Research and Analysis, University of Nebraska,
Lincoln, Nebraska 68588-0111

C. M. Herzinger
J. A. Woollam Company, 645 M St., Lincoln, Nebraska 68508

V. M. Fridkin
Institute of Crystallography, Russian Academy of Sciences, Moscow 117333, Russia

~Received 10 March 2003; accepted 8 April 2003!

We report the studies of the molecular conformation and chain orientations through characterization
of the vibrational modes in crystalline Langmuir–Blodgett films of the polyvinylidene fluoride/
trifluoroethylene copolymer. The infrared spectra obtained by polarized reflectometry and
ellipsometry showed that the ferroelectric phase has predominantly all-trans conformation and the
paraelectric phase has predominantly alternating trans-gauche conformation, as in solvent-formed
films of the same copolymer. The results showed that the polymer chains are predominantly parallel
to the film plane with a random in-plane orientation and most of the ferroelectric phase vibrational
mode behaviors are consistent with the published mode assignments. The ferroelectric phase optical
dispersion curves in the infrared range were extracted from the data analysis based on a uniaxial
model. © 2003 American Institute of Physics.@DOI: 10.1063/1.1578697#

I. INTRODUCTION

Polyvinylidene fluoride~PVDF! and its copolymers with
trifluoroethylene~TrFE! and tetrafluorethylene~TeFE! have
been studied for many years since the discovery of piezo-
electricity ~1969!1 and pyroelectricity~1971!2 in PVDF and
confirmation of ferroelectricity~1980! in the PVDF/TrFE
copolymers.3 For PVDF, molecular modeling and experi-
mental studies have identified several basic structures and
conformations.4–7 The main intrachain vibrational modes
range in frequency from about 400 to about 3000 cm21,
while the interchain crystal vibrational modes are below 100
cm21.8 The frequencies of many intrachain vibrational
modes of PVDF have been determined from molecular mod-
eling by several groups4,5 and are summarized by Tashiro.8

One difficulty with matching experimental and calculated
spectra is the polymorphous nature of the samples. Samples
prepared by the spin-coated, solution-cast, and vacuum-
evaporated methods and treated with different procedures
generally contained lamellar structures could have slightly
different physical properties. The PVDF/TrFE copolymers
have essentially the similar structure and conformation as
PVDF.8,9 Recently, high-quality Langmuir–Blodgett~LB!
films of the PVDF/TrFE copolymer have been made by our
group.10–12 X-ray diffraction studies13 showed that the films
in ferroelectric phase~b phase! with all-trans conformation
have ~110! orientation. Scanning tunneling microscopy,12

scanning electron microscopy,14 and atomic force micros-
copy results revealed no lamellar structures in the copolymer
LB films.

Vibrational spectroscopy is a powerful tool for determin-
ing molecular structure. The frequencies and intensities of
infrared ~IR! modes can be correlated to molecular confor-
mation and structure while the optical polarization of the
modes reveals molecular orientation from the direction of the
transition dipole. The molecular modeling calculations on the
all-trans conformation of PVDF identify seven strong
infrared-active modes in the range 600–1600 cm21. Some of
the modes, the ones locating in a single monomer, are gen-
erally insensitive to chain conformation, but they are useful
for determining chain orientation. For example, the CH2 and
CF2 wagging modes have the transition dipole moments par-
allel to the chain axis. Modes involving two or more mono-
mers are very sensitive to the conformation. For example, the
1290 cm21 mode is found only in the ferroelectric all-trans
conformation.15 When polarized light is incident on the film
surface, the intensity of the reflected light is determined by
the complex effective Fresnel coefficientsr s(n,u) and
r p(n,u), where the subscripts ‘‘s’’ and ‘‘ p’’ refer to the po-
larization component parallel and perpendicular to the plane
of incidence, respectively. In polarized reflectance spectros-
copy, the ratio of reflected to incident intensities is measured
with boths- andp-polarization, as a function of frequencyv
and angle of incidenceu ~measured from the surface nor-
mal!, yielding the reflectanceRss(n,u)5ur s(n,u)u2 and
Rpp(n,u)5ur p(n,u)u2. In spectroscopic ellipsometry,16 both
the incident and reflected polarization states are measured,
yielding the complex ratior(n,u)5tanc(n,u)exp iD(n,u)
5r s(n,u)/r p(n,u), where tanc(n,u) is the reflectance ratio
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and D(n,u) is the retardance. The measurable quantities
Rss(n,u) andRpp(n,u), c(n,u), andD(n,u) are related to
the film optical properties and thickness. In this work
we report the studies of the LB films made from the PVDF/
TrFE copolymer using polarized spectroscopic ellipsometry.

II. EXPERIMENT

The films were made by the horizontal~Schaefer! varia-
tion of the Langmuir–Blodgett technique using a NIMA
model 622C automated LB trough filled with ultra-pure
~.18 MV cm! water. Substrates used in this work were
electronic-grade Si~100! or ~111! wafers. The copolymer of
polyvinylidene fluoride/trifluoroethylene~70/30 molar ratio!
was dissolved in dimethyl sulfoxide at 80 °C to form a 0.1%
solution~by weight!. Approximately 5 mL of the solution at
room temperature was dispersed on the surface of the water,
which was kept at 20 °C. The surface film was compressed
slowly to a surface pressure of 5 mN/m to form a uniform
monomolecular layer~ML ! or Langmuir film, and the pres-
sure was kept constant during film transfer. Films of different
thickness were prepared by repeated transfer.17 The films
were prepared on doped Si wafers~with native oxide layer!,
because they are opaque to infrared in the measurement
range, so we do not need to account for the reflection from
the back of the substrate. All the samples were annealed at
either 120 or 130 °C for one hour followed by cooling at a
rate of 1 °C/min to room temperature.

The infrared spectra of the ellipsometric parameters
c(n,u) andD(n,u) and the polarized reflectancesRss(n,u)
andRpp(n,u) were obtained at multiple incident angles with
an Infrared Variable Angle Spectroscopic Ellipsometry sys-
tem ~IR-VASE®!. The system consists of a Fourier-
transform infrared spectrometer coupled with a rotating-
analyzer variable-angle ellipsometer and is capable of
precise determination of the optical constants of thin films
over the frequency range 200–7000 cm21 with a resolution
of 2 cm21 or better.

III. RESULTS AND DISCUSSION

A. Conformation and vibrational mode orientation

The absorption intensity of the vibrational modes de-
pends on the matrix elementsI;(@mj (v)•Ei #

2, so it is sen-
sitive to the angle between the electric fieldEi of the light
and the transition dipolemj (v). Light polarization state de-
pendence of the absorption coefficients can be used to deter-
mine the orientation of the transition dipoles. The IR spectra
of the reflectance were recorded from a 115-ML LB film
annealed at 120 °C. The cross-sectional area of the beam was
about 100 mm2. Figure 1 shows the reflectance spectraRss as
a function of azimuthal rotation angle about the film normal,
with a fixed incident angleu530° ~The overall reflectance
fluctuated by about65% due to alignment drift as the
sample was rotated.!. As the angle of incidenceu increased,
the in-plane reflectanceRss increased and the out-of-plane
reflectanceRpp. decreased according to the Fresnel law of
reflectance. Figure 2 shows the normalized reflectance
Rss andRpp. The raw data of the reflectanceRss andRpp are
divided by the reflectance values at 1000 cm21, where no
vibrational mode is registered. Table I lists theRss andRpp

values at 1000 cm21 before normalization. Figure 3 shows
the spectraRpp at low-incident angle~u530°! and high-
incident angle~u570°! separately for clarity. The spectra
shown in Figs. 1–3 are similar to theb phase spectra ob-
tained from the copolymer solution-cast films18 and vacuum-
evaporated films.15 Seven main peaks are evident at 1428,
1403, 1290, 1182, 1070, 886, and 850 cm21.

FIG. 1. The IR spectra of the reflectanceRss as a function of azimuthal
angle from a 115-ML sample deposited on Si~100! and annealed at 120 °C
for one hour. The incident angle was fixed atu530°.

FIG. 2. IR spectra of the reflectance~a! Rss and~b! Rpp at several angles of
incidenceu for s- and p-polarized incident light recorded from the same
115-ML sample used for Fig. 1. The spectra are all normalized to the reflec-
tance at 1000 cm21.
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From Figs. 1–3, we can obtain useful information about
the orientation of the transition dipole moments. The in-
plane reflectanceRss spectra did not change significantly
with the azimuthal angle, as shown in Fig. 1, or with the
incident angle, as shown in Fig. 2~a!. From these observa-
tions, we can conclude that the film is optically isotropic in
the film plane, indicating that the crystals have random in-
plane orientation. From the reflectance spectraRpp shown in
Fig. 2~b!, we can see that the intensities of the peaks at 850,
886, 1290, and 1428 cm21 increase with the increasing inci-
dent angles~up to 70°!, indicating that the transition dipoles
of these modes have predominantly out-of-plane orientation.
The intensity of the peak at 1182 cm21 does not increase as
fast as the one at 1290 cm21, indicating that the transition
dipoles of this mode also have some out-of-plane orientation
but are not completely normal to the film. Also from Figs.
2~b! and 3, we can see that the in-plane intensity of the peak
at 1403 cm21 is greater than the out-of-plane intensity and
decreases in intensity with the increasing incident angle, in-
dicating that the transition dipole of this mode is predomi-
nantly in the film plane. According to Tashiro8 and Tashiro,
Takano, and Kobayashi18 this mode combines the CC out-of-
phase symmetrical stretching and CH2 wagging motions,

which are along the chain direction (B1) for the b phase
all-trans conformation, so we can conclude that the polymer
chains of the LB films are mostly parallel to the film plane,
with a random in-plane orientation.

The polarization anisotropy of the vibrational modes is
calculated as follows. We assume the film is isotropic about
an axis perpendicular to the film. The reflectanceRpp of a
mode mj (v) is obtained by averaging about the azimuthal
angle. Figure 4 shows the azimuthally averaged reflectance
versus internal~refracted! angleu8 for the transition dipoles
oriented at 0°, 30°, 60°, and 90° from the film normal and the
experimental reflectanceRpp of the three peaks at 1290,
1182, and 886 cm21 from Fig. 2~b!. The internal angles are
obtained by assuming the averaged refractive index is 1.42
for the entire spectral range. From the optical constants ob-
tained by analyzing the VASE data in the following section,
we find this is a very good approximation. From Fig. 4, we
conclude that the transition dipole moments of these three
modes are predominantly out-of-plane, and therefore have
more A1 character thanB2 character. The experimental
curves showed an increasing trend with larger incident
angles, while the theoretical prediction showed a similar
trend for the angles 0° and 30°, even though the experimental
data are the combination of the optical absorption and dis-
persion as well as the substrate contribution. But with the
present data, we cannot quantitatively distinguish the modes
with its orientation normal to the film~0°! or 30° from the
normal. The other two out-of-plane modes at 850 and 1428
cm21 also showed the increasing trend with increasing inci-
dent angle.

From the above analysis of the reflectance data and the
mode symmetries, we find good correspondence for the peak
positions and some of the mode orientations between the
stronger IR peaks and the published mode assignments,4,8 as
summarized in Table II. However, two peaks at 886 and 1182
cm21 did not follow the B2 mode behaviors as expected.
Because the relative intensity of the peak at 886 cm21 in-

FIG. 3. The low-angle~u530°! and high-angle~u570°! reflectance for
p-polarizationRpp from the 115-ML sample.

FIG. 4. Dependence of the intensities of three peaks of thep-polarized
reflectanceRpp vs internal angle for the 115-ML film, from the data shown
in Fig. 2. The solid lines show the expected dependence of the absorption
coefficient for transition dipoles tilted by anglesu50°, 30°, 60°, and 90°
from the film normal.

TABLE I. The experimental values ofRss and Rpp at 1000 cm21 before
normalizing at several incident angles, obeying the Fresnel law of reflec-
tance.

Incident angle 30° 40° 50° 60° 65° 70°

Rss 0.3737 0.4081 0.4631 0.4989 0.5185 0.5229
Rpp 0.2562 0.2056 0.1449 0.0725 0.0383 0.0171
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creases monotonically with incident angle~see Figs. 2 and 3!
like the one at 1290 cm21, and the relative intensity of the
peak at 1182 cm21 also increased with increasing incident
angle but it decreased at external incident angle 70°. It is
possible that these two peaks are both involved in two or
more vibrational modes, one part is associated with a single
monomer molecular conformation and the others to two or
more monomers. On the other hand, comparing to the IR
spectra in the ferroelectric and paraelectric phases shown in
Fig. 5, we can see that the peaks at 850 and 1290 cm21 are
much stronger in the ferroelectric phase than in the paraelec-
tric phase, so they probably involve cooperative motion of
two or more monomers. Some of the peaks are sensitive to
the conformation, such as the peaks at 886 and 1182 cm21,
because their intensities changed between phases, and may
involve both single and multiple monomer modes. Other
peaks are not sensitive to the conformation~they correspond
to modes located in a single monomer!, such as the one at
1428 cm21, and so do not change between phases. The CH2

wagging mode at 1403 cm21 ~Fig. 5! in the ferroelectric
phase softens to 1396 cm21 with the reduced backbone stiff-

ness of the trans-gauche~TG! conformation in the paraelec-
tric phase, and the ellipsometric phase of this mode reverses
from down~in the paraelectric phase! to up ~in the ferroelec-
tric phase! because of the larger corresponding change in the
refractive index. In the paraelectric phase, the broadening of
the peak at the 1250 cm21 is possibly due to the overlap of
several modes in this range.4,8 Similar IR spectral changes
induced by the conformation change were also observed in
the solvent-formed copolymer films.15

Earlier molecular modeling by Kobayashi, Tashiro, and
Tadokoro~1975!19 initially assigned the mode at 886 cm21 to
be asA1 and the mode at 1182 cm21 to be asB2 and later
assigned both toB2 characters.20 The calculations from
Karasawa & Goddard in 19924 gave the modesA1 and B2

characters, respectively. As mentioned earlier, the PVDF/
TrFE copolymers have similar structure and conformation as
PVDF. Experimental studies on the PVDF/TrFE~73/27! co-
polymer by Tashiro and Kobayashi in 199415 showed that
poling the film increased the normal component of the 850,
1290, and 1428 cm21 modes, showingA1 character, and de-
creased the normal component of the 886 and 1182 cm21

modes, showingB2 character for these two modes.15,18There
are several reasons that the poling data might have been mis-
leading. First, recall that these two peaks could come from
three crystalline phases as well as amorphous material in the
solvent-formed films.8,15 Since both peaks decrease in inten-
sity in the paraelectric phase~Fig. 5!, they must involve mul-
tiple monomers and are therefore sensitive to the proportion
and orientation of theb phase. Second, poling the films
should orient allCF2 dipoles toward the film normal. For
highly crystalline films, contributions from the boundaries
and noncrystalline region are not significant. But, this con-
tribution could not be neglected, even after poling, for the
films with lower crystallinity~The copolymer films made by
different methods could have crystalline domains embedded
in an amorphous matrix with the dominant phase and the
crystallinity depending on the preparation procedures and the
processing methods.8,9!. More specifically, for the copolymer
films in the ferroelectricb phase, poling the films may en-
large the domain sizes slightly by reducing the number of TG
bond sequences. So if the peaks do not correspond to a single

FIG. 5. IR-VASE spectra at incident angleu555° recorded from a 50-ML
sample at 100 °C~paraelectric phase!, 60 °C, and 25 °C~ferroelectric
phase!. The sample was heated to 120 °C for 30 min to ensure it was entirely
in the paraelectric phase then cooled down slowly at the rate of 1 °C/min.

TABLE II. List of some dominant vibrational modes in the ferroelectric phase, including the measured fre-
quencies, sensitivity to the conformation, transition dipole orientation~TDO! relative to the chain, the calcu-
lated frequencies, and mode assignments.

Observed
mode
frequencya

~cm21!
Sensitivity to
conformationa

TDO
relative to
film planea

Dominant
mode

charactera

~cm21!

Observed
mode

frequencyb

~cm21!

Calculated
mode

frequencyc

~cm21!

Calculated
mode

frequencyd

~cm21!

1428 Very weak ' A1 1428(A1) 1434(A1) 1426(A1)
1403 Strong i B1 or B2 1398(B1) 1408(B1) 1399(B1)
1290 Strong ' A1 1273(A1) 1283(A1) 1273(A1)
1182 Medium ' A1 1177(B2) 1177(B2) 1164(B2)
886 Medium ' A1 880(B2) 883(B2) 882(A1)
850 Strong ' A1 840(A1) 844(A1) 843(B2)

aThis work, using LB films of the 70:30 copolymer.
bFrom Tashiro8 using spun films of the 70:30 copolymer.
cFrom Tashiro8 molecular modeling of PVDF.
dFrom Karasawa and Goddard4 molecular modeling of PVDF.
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mode, the intensity change due to poling is more compli-
cated, depending on the predominant mode contribution to
the intensity, and so it is sensitive to the film treatment pro-
cedures and crystallinity. If a peak is a mixture of theA1

mode and a mode from the predominant TG sequences, the
intensity may decrease after poling due to the reduction in
the number of the TG sequences. If a peak is a mixture ofB2

and a mode from the TG sequences, there will be similar
spectral changes. Comparing to the polarized IR reflectance
from the copolymer LB films without poling~u570°, see
Fig. 3! and the data from solution-cast films~u584°! after
poling,8,15 and the similarity of the spectra and the stronger
intensity of the peak at 1290 cm21 for the LB films, we may
conclude that the CF2 dipoles are more highly aligned in the
LB films. The observed inconsistency in the normalized re-
flected intensity of the peaks at 886 and 1182 cm21 in the LB
films can be explained reasonably by the mixed-modes as-
sumption.

Previous results obtained by the x-ray13,21 and neutron22

diffraction studies of the LB films in theb phase showed a
sharp peak corresponding to thed-spacing 4.5 Å, similar to
the solvent-formed films,8,9 indicating that theb phase~110!
crystal orientation was predominant in the LB films, which
would put the static dipole polarization at about630° from
the normal according to the standard C2v crystal symmetry.
However, photoemission23 electron energy studies imply that
the dipoles are mostly out of the film plane. Whether this
inconsistency is due to mosaic randomization in the LB films
or incorrect crystal structure assignment is not clear. Mean-
while, the complex sample structure containing Si substrate,
Si oxide, and the copolymer LB films effectively prevents a
quantitative determination of the optical properties from the
polarized reflectance data. For that, we turn to spectroscopic
ellipsometry.

B. Variable angle spectroscopic ellipsometry „VASE…

data analysis

In order to extract the optical properties of the film, the
VASE data can be analyzed by using a parametric model that
is adjusted to fit the measurement data.24 The crystalline co-
polymer is fundamentally biaxial, and anisotropic films of
high crystallinity with in-plane orientation of the polymer
chains have been made by the thermal-mechanical process-
ing methods.25,26 The LB films may also consist of a poly-
crystalline mosaic that renders the optical properties isotro-
pic within the film plane. Previous studies of the LB
copolymer films11–13,21,22,27showed that the surface layer fre-
quently has parallel chain alignment over regions on the
scale of 1 mm2. The polarized light reflectance studies de-
scribed in the previous section show that the chains are par-
allel to the film surface with the CF2 dipoles oriented nearly
normal for the thicker samples, but did not reveal significant
in-plane anisotropy, consistent with a crystalline mosaic. So
a uniaxial model is used to represent both in-plane and out-
of-plane optical properties for the VASE data analysis. The
model consists of several Lorentz oscillators with the
form «(v)5«1(v)1 i«2(v)5( Ak /(vk

22v22 iBkv)5$n(v)
1 ik(v)%2, where «1(v) and «2(v) are the real part and

imaginary part of the dielectric constant tensors,n(v) and
k(v) are the refractive index and attenuation constant ten-
sors,Ak is the amplitude of the absorption oscillator,vk is
the absorption oscillator frequency center,Bk is the absorp-
tion oscillator band width, andv is the absorption oscillator
frequency.

The VASE data were fit with a regression technique to
determine the optical constants, absorption coefficients, and
the film thickness. This is done by minimizing the mean
square error function for a set of Lorentz oscillators and as-
suming uniaxial symmetry.28 For a single sample, even data
acquisition at multiple incident angles is insufficient to
uniquely determine the optical constants and thickness of an
optically thin film because of correlations among fitting
parameters.16 But if we have several samples with different
thicknesses, and assume their optical constants are indepen-
dent of the thickness, a powerful multisample data analysis
technique can be used to get the results more accurately by
greatly reducing the correlation among the fitting
parameters.28

The IR-VASE spectra of all four films of PVDF/TrFE
~70/30! copolymer of nominal thickness 55, 65, 80, and 100
ML and annealed at 120 °C and a reference substrate from
the same batch were recorded in the ranges 200–7000 cm21.
The optical properties of the substrate are also very impor-
tant, so they are independently characterized by the ellipsom-
etry before the LB film deposition. The four spectra were
simultaneously fit using multisample analysis to a multi-
layer uniaxial model with following features. The model
consists of doped Si substrate, silicon oxide layer, and
uniaxial polymer film with 16 oscillators, 8 with dipole mo-
ment perpendicular to the film and 8 parallel. Figure 6 shows
the data and the model fit for one representative spectra, for
the 100 ML film at an angle of incidenceu565°. The fits for
the other spectra were similarly accurate. The dispersion at
low wave number~see Fig. 6! was entirely due to the sub-
strate. Figure 7 shows both in-plane and out-of-plane com-
ponents of the refractive indicesni andn' and the attenua-
tion constantski andk' . Most of the absorption peaks show
up in bothki and k' with similar positions and shapes but
different magnitudes. The exception is the mode at 1403
cm21, which corresponds to the in-chain CC out-of-phase

FIG. 6. IR-VASE data at the angle of incidenceu565° recorded from a
100-ML sample and the Lorentz model fit in the range 600–1600 cm21.
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symmetrical stretching and CH2 wagging mode and therefore
is much stronger inki .

The results are consistent with the polarized reflectance
measurements, which showed that the chains lay predomi-
nantly in the film plane with a random azimuthal distribution
while the A1 and B2 modes are active both in-plane and
out-of-plane ~Figs. 1–3!. Other unidentified modes may
overlap some of the all-transb phase modes as mentioned
above and also contribute to the attenuation constants and the
optical refractive indices. The weaker change of the in-plane
refractive indexni and the stronger change of the out-of-
plane refractive indexn' are also consistent with the random
in-plane distribution of the transition dipoles.

IV. CONCLUSIONS

The vibrational mode frequencies and orientations in the
ferroelectric phase of the PVDF/TrFE copolymer LB films
were determined by a combination of polarized reflectance
spectroscopy and spectroscopic ellipsometry. The results
showed that the polymer chains are predominantly parallel to
the film plane with random in-plane orientation. The results
also confirmed that the all-trans conformation was predomi-
nant in the ferroelectric phase and trans-gauche conformation
was predominant in the paraelectric phases. The ferroelectric
phase optical dispersion in the infrared range was extracted
from the data analysis based on a uniaxial model.
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26J. K. Krüger, B. Heydt, C. Fischer, J. Baller, R. Jime´nez, K.-P. Bohn, B.

Servet, P. Galtier, M. Pavel, B. Ploss, M. Beghi, and C. Bottani, Phys.
Rev. B55, 3497~1997!.

27S. Palto, L. Blinov, E. Dubovik, V. Fridkin, N. Petukhova, A. Sorokin, K.
Verkhovskaya, S. Yudin, and A. Zlatkin, Europhys. Lett.34, 465 ~1996!.

28C. M. Herzinger, H. Yao, P. G. Snyder, F. G. Celii, Y. C. Kao, B. Johs, and
J. A. Woollam, J. Appl. Phys.77, 4677~1995!.

FIG. 7. The in-plane~i! and out-of-plane~'! optical properties of the LB
films obtained from the IR-VASE data analysis.~a! The attenuation con-
stantski andk' and ~b! the refractive indicesni andn' .

200 J. Appl. Phys., Vol. 94, No. 1, 1 July 2003 Bai et al.

Downloaded 09 Oct 2006 to 129.93.16.206. Redistribution subject to AIP license or copyright, see http://jap.aip.org/jap/copyright.jsp


	Infrared spectroscopic ellipsometry study of vinylidene fluoride (70%)-trifluoroethylene (30%) copolymer Langmuir-Blodgett films
	
	Authors

	tmp.1160420614.pdf.6NY9w

