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Numerical study of a high-order quasiconserved quantity in the Henon-Hei&es prob(em

Paul Finkler and C. Edward Jones
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Glenn A. Sowell
Department ofPhysics, Uniuersity ofNebraska at Omaha, Omaha, Nebraska 68182-0266
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Recent efforts to derive and study a quasiconserved quantity E in the Henon-Heiles problem in terms
of a single set of variables are discussed. Numerical results are given, showing how the value of such a
quantity varies with time and order in a power-series expansion for E in terms of monomials of the coor-
dinates and velocities. The lowest order in the power series for K corresponds to n =4 and the highest
order to n =27, so that 24 orders are included in the series. The results are compared with an earlier
study by the authors [Phys. Rev. A 42, 1931 (1990)] that included an expansion for IC for orders n =4 to
n =15. In general, even in regions where the earlier study suggested that the series for E might be con-
verging, our more recent results [Phys. Rev. A 44, 925 (1991)],involving twice as many orders, suggest
that the series diverges.

PACS number(s): 05.45.+b, 03.20.+ i, 46.10.+z, 95.10.Ce

I. INTRODUCTION

This paper updates an ongoing study [1,2] of a quasi-
conserved quantity E(in addition 'to the energy) in the
well-known two-dimensional Henon-Heiles problem [3].
The quality K is expressed as a formal power series in the
x and y coordinates and velocities. The original work by
Gustavson [4] on this subject provided a method for
determining such a K using canonical transformations
and normal forms. Truncating the series after five orders
(n =4—8), Gustavson showed numerically that surfaces
of constant K approximated the one-dimensional curves
in the Poincare sections characteristic of nonchaotic
motion. Subsequently, Shirts and Reinhardt [5] calculat-
ed ten orders in the series for X using the Gustavson
technique [4] and then converted the expression into a
Pade approximant, which appeared to have poles corre-
sponding to points in phase space where trajectories were
chaotic.

The present authors' interest in studying E centers
around its use as a possible tool in understanding the ap-
proach to chaos. As mentioned above, surfaces of con-
stant IC (obtained by truncating the formal power series)
produce Poincare sections which approximate those cal-
culated directly for nonchaotic trajectories. We had de-
vised a method [1,2] for determining the formal series for
E without the cumbersome and repeated use of canonical
transformations (we refer to Ref. [1]as FJS1 and Ref. [2]
as FJS2). The goal was to develop a method where one

could generate many orders in the expansion of K in

hopes of gaining insight from numerical studies about the
convergence properties of the power-series expansion for
K. Does the series offer any tell-tale signs when going
from regions where the motion is nonchaotic to regions
where it is chaotic? Could it be convergent at any points
in phase space?

In FJS1, a method was developed for determining E
using a single set of variables without employing canoni-
cal transformations and a total of 12 orders (n =4—15)
were calculated for K. It was evaluated numerica11y for a
number of trajectories and plotted as a function of time,
truncating the series at various orders to gain some feel-

ing for the convergence and constancy in time of the
series. These results are summarized in Figs. 1 —5 of
FJS1. For certain trajectories at lower energies, K ap-
pears to be converging and is reasonably constant over
the time interval selected of 100 s. At higher energies in

regions where the trajectories are known to be chaotic,
the series appears neither to converge nor to be constant.

In FJS2, a more powerful and streamlined technique
was introduced for determining a power series for K,
again using a single set of variables. Using this method,
we have determined E to 24 orders or twice as many as
considered in FJS1. %'e discuss here how these extra
terms modify the results given in FJS1 and further clarify
the apparent convergence properties of the series for K.

In Sec. II, we briefly review the technique of FJS2 for
generating the series for K. In Sec. III, we give graphs of
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K(13,v*8,P')= X K. ~

n=n 0

L versus time t for the same trajectories used in FJS1
which show the effect of including twice as many orders
in the K expansion.

(2.7)

where K„ is an nth-order term in the P variables and
n =4. The detailed procedure for determining E„ is0
given in FJS2 and consists of solving iteratively the
differential equations

II. SERIES FOR X

The Henon-Heiles problem involves motion in two di-
mensions with the following kinetic energy T and poten-
tial energy U: (2.8)DOT„=O,

DOT„+ ) =D )K„, (2.9)(2.1)T= ,'(x +y—),
where Do and D& are differential operators derived and
discussed in FJS2. If (2.8) and (2.9) are satisfied, K in
(2.7) is formally a conserved quantity.

U= —,'(x +y )+x y —
—,'y (2.2)

In FJS2, the following four complex variables are intro-
duced:

III. NUMERiCAL RESULTS FOR EC(2.3)P=(x +iy)+i(x+iy ),
P*=(x iy )—+i (x iy ),—
P=(x +iy ) i(x—+iy ),
/3* = (x —iy) i (x —iy ), —

We have determined the terms in the series (2.7) for K
for n =4—27, a total of 24 orders, using a computer alge-
bra system [6]. We then evaluated K along the same
representative trajectories as in FJS1, truncating the
series at various orders so as to compare with the numeri-
cal results of the earlier paper. Although the procedure
for developing the K series in FJS1 is somewhat different
than in FJS2 (including having diff'erent n =4 lowest-

(2.4)

(2.5)

(2.6)

One assumes a constant of the motion K (independent
of the energy), which has a power-series expansion in
terms of the variables just defined, as follows:
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FIG. 1. Graphs of the series K. The energy is E=0.05 with the initia1 conditions x —y —,y = —. , g
~ ~ = ' =0 = —0. 15 and x ne ative. (a) Graph

of the series K through 11th and 15th orders. (b) Graph of the series K through 15th, 17th, and 19th orders. (c) Graph of the series E
through 19th, 21st, and 23rd orders. (d) Graph of the series K through 23rd, 25th, and 27th orders.
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E4=PP*PP* . (3.1)

In Fig. 1, we show the results for 100 s for the trajecto-
ry with energy E=0.05 and initial conditions x =y =0,
y = —0. 15, and x (whose magnitude is fixed by the other
quantities) taken to be negative. This trajectory corre-
sponds to one considered in FJS1 in Fig. 1 of that paper.
Here Fig. 1(a) gives E vs t when the series is truncated
after order n = 11 and 15 (i.e., the K series summed from
n =4—ll and n =4—15). This graph can be compared
directly to Figs. 1(b) and 1(c) of FJS1. Although the
value of K is different (due to a different construction al-
gorithm and starting point for the series), we see that the
convergence properties are very similar. The Poincare
section given in Fig. 1(a) of FJS1 suggests that this is a
nonchaotic trajectory. And, indeed, the graphs are con-
sistent with a converging series for K.

In Figs. 1(b), 1(c), and 1(d), the curve of K vs t is shown
with the K series truncated after orders n = 15, 17, and
19, after orders n =19, 21, and 23 and after orders

order terms in the two cases), this, as we expected, does
not change the apparent structure of the convergence of
the series through a given order in the two cases as we
shall see. For the lowest-order term in (2.7) in the
present calculation, we have taken the simple and sym-
metric term

n =23,25, 27, respectively. Figure 1(b) is still consistent
with the idea of a convergent K series but Figs. 1(c) and
1(d) show a developing tendency for the series to diverge.

In Fig. 2, we examine the corresponding trajectory to
that in Fig. 2 of FJS1. Here the energy is E=0.08 and
the other initial conditions are the same as before
(x =y =0, y = —0. 15, and x negative). Figure 2(a) shows
K vs t for 100 s truncated after orders n =7, 11, and 15
and Figures. 2(b), 2(c), and 2(d) follow the same pattern as
for the previous trajectory. We see that Fig. 2(a) is very
similar to Figs. 2(b) and 2(c) of FJS1, showing a possible
convergent series. Figures 2(b), 2(c), and 2(d), on the oth-
er hand, show a growing divergence as more terms are
added to the series. When all orders are included
through n =27 [see Fig. 1(d)], K shows large fiuctuations
as a function of t and actually changes sign.

rV. DISCUSSIOX

The results in Figs. 1 and 2 appear to indicate that as
more terms are kept in the expansion for K, the series
will probably diverge even in regions of phase space
where the trajectory may not be chaotic. Of course, we
know from Gustavson's work that surfaces of constant K
reproduce approximately the Poincare section curves, so
the series for E clearly contains some physical informa-
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FIG. 2. Graphs of the series K. The energy is E =0.08 with the initial conditions x =y =0, y = —0. 15, and x negative. (a) Graph
of the series ~ through 11th and 15th orders. (b) Graph of the series K through 15th, 17th, and 19th orders. (c) Graph of the series K
through 19th, 21st, and 23rd orders. (d) Graph of the series K through 23rd, 25th, and 27th orders.
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tion, even though it may not, as indicated here, be con-
vergent. It is of interest to ask whether the series for K
might be an asymptotic one and also whether there are
any points in phase space where it converges. Some in-
sight on these questions can be obtained by transforming
the series into Pade approximants as was first done by
Shirts and Reinhardt [5]. Such approximants can, in

some cases, provide expressions that are more accurate
than the original power series, while using the same infor-
mation. Using the information from such series with our
24 terms will enable us to extend the work of Shirts and
Reinhardt [5] and provide more insight into its conver-
gence properties. This work will be reported on else-
where.
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