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Cooperative freezing in spin glasses and magnetic nanostructures
Ralph Skomskia) and D. Leslie-Pelecky
Department of Physics and Astronomy and Center for Materials Research and Analysis,
University of Nebraska, Lincoln, Nebraska 68588

Relaxation processes in disordered nanostructures and spin glasses are investigated by examining
the role of the magnetic anisotropy. To abstract from freezing processes associated with phase
transitions, the consideration is restricted to a one-dimensional bond-disordered Ising spin glass.
Using a Mattis-type gauge transformation, the spin glass is mapped onto a disordered ferromagnet.
Based on the behavior of the spin chain we argue that spin-glass freezing is not necessarily related
to a phase transition. The magnetic anisotropy, which is largely ignored in the Glauber approach to
Ising dynamics, gives rise to cooperative deviations from the Arrhenius behavior and mimics
Vogel–Fulcher relaxation. ©2001 American Institute of Physics.@DOI: 10.1063/1.1358337#

I. INTRODUCTION

For decades, relaxation processes in structural and mag-
netic glasses materials have attracted much attention in sci-
ence and technology. A key problem is to express typical
relaxation ratesG51/t as a function of temperature. In the
early 1930s, it was recognized that the exponential Arrhenius
law G5G0 exp(2Ea /kBT) is of limited validity. An expres-
sion widely used in the field of structural glasses1–6 and spin
glasses5,7 is the phenomenological Vogel–Fulcher–Tamman
~VFT! law

G5G0 expS 2
Ea

kB~T2T`! D . ~1!

Here, Ea is an activation energy andT` is a temperature
which, to some extent, epitomizes our knowledge about
glasses. However, it remains an open question as to whether
Eq. ~1! describes a true phase transition.

The main aim of this article is to interpret magnetic re-
laxation processes in terms of the VFT equation. First, we
discuss the effect of the magnetic anisotropy, and then we
use a one-dimensional model to derive an explicit relaxation-
rate expression.

II. SPIN-GLASS DYNAMICS AND ANISOTROPY

A key problem is to what extent nonequilibrium ap-
proaches such as Glauber dynamics are able to provide an
realistic description of magnetic materials. Glauber
dynamics8 is defined by the master-equation transition rate

W~si→2si !5
G0

2 S 12si tanh
hi1SkJiksk

kBT D , ~2!

wherehi1SkJiksk is the interaction field acting on thei -th
spin. It important to keep in mind that this expression is not
able to account for the magnetic anisotropy of the glass: in a
strict sense, the anisotropy of the Ising model is infinite, and
the Glauber ansatz Eq.~2! overcomes this problem by intro-
ducing anisotropy-independent transition rates.

Figure 1 illustrates the freezing of the magnetization for

a disorderedferromagnet. Regions characterized by strong
interatomic exchange couplingJik ~dark areas! block at com-
paratively high temperatures and remain largely immobile
upon further cooling. The numberN of atoms per frozen
block increases with decreasing temperature, and the energy
barrier which needs to be overcome to reverse the magneti-
zation scales of the block asNK, whereK is the anisotropy
energy per atom. In terms of Eq.~1!, this energy-barrier in-
crease amounts to a VFT-like modification of the relaxation-
rate exponent. A three-dimensional example is ball-milled
Sm2Fe17N3 magnets. These nanostructures are random-
anisotropy magnets and do not possess a ferromagnetic
ground state, but their coercivity exceeds that of hard mag-
netic steels by more than two orders of magnitude,9 and equi-
librium is not achieved for laboratory time scales.

III. FREEZING

To model the freezing process, we consider a one-
dimensional bond-disordered nearest-neighbor Ising spin
glass~Edwards–Anderson spin glass!10–13where the nearest-
neighbor exchange constantsJi j obey ^Ji j &50 and ^Ji j

2&

a!Electronic mail: rskomski@unlserve.unl.edu

FIG. 1. Droplet picture of a disordered magnet. The darker the region, the
stronger the local exchange. In the case of spin glasses, some of the bonds
are frustrated~inset!.
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5J0
2. To avoid the interference of finite-temperature phase

transitions, we restrict the explicit calculations to a one-
dimensional model. First, we use a Mattis-type gauge
transformation14 to transform the spin glass into a disordered
ferromagnet. The transformation consists of multiplying each
Ising spin variablesi561 by a variablee i561 so that
si85e isi , Ji j sisj5Ji j 8si8sj8, and Ji j 85Ji j e ie j.0. Choos-
ing e i521 transforms an antiferromagnetic bond into a fer-
romagnetic bond. The procedure, which is exact in one di-
mension, is illustrated in Fig. 2.

Since the gauge transformation does not change the bond
strength, the resulting magnet is a spin chain with random
ferromagnetic bonds. This situation corresponds to the drop-
let picture shown in Fig. 1. Let us assume that the magnitude
of the exchange constantsJ5uJi j u obeys the exponential dis-
tribution

P~J!5
1

J0
expS 2

J

J0
D . ~3!

On cooling the material from a very high temperature, the
freezing process starts by strongly correlated spins in ‘‘dark’’
regions whereJ is large. Figure 3 shows a realization of Eq.
~3!. At high temperatures, only the dark regions are coupled,

but at low temperatures the spins form big droplets. Of
course, the droplets do not exhibit ferromagnetism in a true
sense: the magnetism of the spin glass is essentially super-
paramagnetic. However, the approach towards the superpara-
magnetic equilibrium may be very slow. For example, the
block (B) in Fig. 3 is only loosely exchange coupled to its
neighborhood, but to realize the reversal it is necessary to
switch 7 spins in a cooperative manner. This enhances the
anisotropy energy, which must be overcome during reversal,
by a factor of 7.

To discuss this process in the Arrhenius diagram, we
assume that all bondsJ.T are frozen and all bondsJ,T are
free ~easily broken by thermal excitation!. For the distribu-
tion Eq. ~2!, the probabilityp of encountering a free bond is
then 12exp(2kBT/J). On the other hand, the block size~the
activation volume! V5La2 is equal to 1/p, so that the VFT
term

Veff5
V

12T0 /T
, ~4!

must be replaced by

Veff5
V

12exp~2kBT/J!
. ~5!

The asymptotics of Eq.~5! differ from that of Eq.~4!, but for
not-too-large time windows it is very difficult to distinguish
between the two predictions. Figure 4 compares Eqs.~4! and
~5! for J53T0 . We see that the two curves exhibit a pro-
nounced deviation from the noncooperative Arrhenius be-
havior and are difficult to distinguish. It is interesting to note
that the choice of the distributionP(J), Eq. ~3!, is not very
critical. For example, Gaussian and rectangular bond distri-
butions yield results very similar to Fig. 4, although Eq.~5!
is in general more complicated.

IV. DISCUSSION AND CONCLUSIONS

Equation~5! shows that the cooperative deviations from
the Arrhenius behavior do not necessarily correspond to a
phase transition. The one-dimensional character of the spin-
glass model is of secondary importance in the present con-

FIG. 2. Mattis-type gauge transformation for a spin chain. Open arrows
indicate gauge-transformed spins.

FIG. 3. Nearest-neighbor bond distribution. This is a one-dimensional ana-
log to Fig. 1.

FIG. 4. Arrhenius plot of the relaxation rate.
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text, although the existence of related exact solutions13,15en-
courages further research in this direction. Note that the
gauge-transformed superparamagnetic droplets are difficult
to polarize by a homogeneous magnetic field: they are most
easily polarized by a random fieldhi85e ihi .14,16 In a sense,
the present approach is loosely related to the droplet ap-
proach by Fisher and Huse,17 although that theory starts from
low temperatures.

Of course, the freezing mechanism investigated in this
article is not the only mechanism giving rise to non-
Arrhenius relaxation: second-order phase transitions are ac-
companied by a critical slowing down (G50 at Tc) and a
negative curvature in the Arrhenius diagram. However,
finite-temperature phase transitions are restricted to two or
more dimensions, and it is not possible to associate the co-
operative behavior shown in Fig. 4 with a phase transition.
Phase transitions are likely to enhance the non-Arrhenius
character of the relaxation, as frustration in two- and multi-
dimensional spin glasses may modify the relaxation behav-
ior, but neither phase transitions nor frustration invalidate the
disorder-related VFT mechanism introduced and examined
in this work.

A challenge to future research is to provide a description
going beyond the approximate result Eq.~5!. In particular,
for homogeneous materials, the dynamics has to reproduce
results such as the ‘‘25kBT’’ magnetic-viscosity law for ther-
mally activated magnetic reversal.18 This includes the exact
dependence ofEa on the anisotropy constant.~Here we have
made the fair assumption thatEa5K).

In conclusion, we have developed a one-dimensional
model which shows that exchange inhomogenities give rise
to a cooperative glass transition at a temperature well above

the ~trivial! phase-transition temperatureTc50. Our glass-
transition picture is as follows. On cooling, gauge-
transformed ferromagnetic droplets start to develop in re-
gions with strong exchange, independently of whether the
exchange is ferromagnetic or antiferromagnetic in real space
and the corresponding freezing is a cooperative effect, in-
volving the anisotropy energy of the interacting droplets.
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