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1. Introduction

Improvements in analytical detection methods for trace or-
ganic compounds over the past decade have allowed for the 
quantification of numerous contaminants, including pharma-
ceuticals, hormones, and personal-care products in various en-
vironmental media. One of the primary sources of these com-
pounds is effluent from wastewater treatment plants (WWTPs) 
(Glassmeyer et al., 2005; Lee and Rasmussen, 2006; Miao et al., 
2004). Although the presence of therapeutic pharmaceuti-
cals in WWTP effluent has been well established, there is lim-
ited published information available on the presence of illicit 
drugs in WWTP effluent. A small number of studies have re-
ported the presence of illicit drugs in WWTP effluents at ng/
L levels, including methamphetamine, MDMA (ecstasy), tetra-
hydrocannabinol (THC), and cocaine and cocaine metabolites 
(Bones et al., 2007; Jones-Lepp et al., 2004; Zuccato et al., 2005, 
2008). Analysis of illicit drugs in WWTP effluents has been 
proposed for use as a tool to estimate community-level con-
sumption of illicit drugs and abused pharmaceuticals (Daugh-
ton, 2001; Bones et al., 2007; Zuccato et al., 2005). There are 
also limited studies of the ecotoxicological impacts of chronic 
low-level exposures of therapeutic or illicit pharmaceuticals 

in aquatic systems (Fent et al., 2006; Pounds et al., 2008), how-
ever, a limited number of ecotoxicological impacts of pharma-
ceuticals have been reported at environmentally relevant con-
centrations (Raldua et al., 2008; Schreiber and Szewzyk, 2008). 
Because these compounds are biologically active, ecotoxico-
logical and human health impacts are of potential concern.

Although the occurrence and concentration of illicit and 
therapeutic pharmaceuticals are documented using discrete 
sampling events, there are fewer data available regarding the 
time-weighted average concentrations of these compounds in 
receiving waters downstream of WWTP outfalls. Traditional 
water sampling approaches, such as grab and composite sam-
pling, are shown to be effective for documenting the occur-
rence of pharmaceuticals, but these sampling techniques only 
capture information at the time of sample collection, and may 
miss events such as changes in the flow regime, chemical inputs 
and/or the influence of precipitation (MacLeod et al., 2007). In 
addition, continuous on-line sampling methods may be prohib-
itively expensive. One device that has been developed for use in 
sampling trace organic compounds is the Polar Organic Chem-
ical Integrative Sampler (POCIS). This sampling device is de-
signed to trap polar organic compounds from water. Its ease 
of use and apparent resistance to biofouling make it particu-
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Abstract
Passive samplers were used to develop semi-quantitative estimates of pharmaceutical concentrations in receiving waters influ-
enced by wastewater effluent. The occurrence and estimated concentration of twenty illicit and therapeutic pharmaceuticals and 
metabolites in surface waters influenced by wastewater treatment plant (WWTP) discharge and in wastewater effluents in Ne-
braska were determined using Polar Organic Chemical Integrative Samplers (POCIS). Samplers were installed in rivers upstream 
and downstream of treated WWTP discharge at four sites and in a discharge canal at a fifth location. Based on differences in es-
timated concentrations determined from pharmaceuticals recovered from POCIS, WWTP effluent was found to be a significant 
source of pharmaceutical loading to the receiving waters. Effluents from WWTPs with trickling filters or trickling filters in paral-
lel with activated sludge resulted in the highest observed in-stream pharmaceutical concentrations. Azithromycin, caffeine, 1,7-di-
methylzanthine, carbamazepine, cotinine, DEET, diphenhydramine, and sulfamethazine were detected at all locations. Metham-
phetamine, an illicit pharmaceutical, was detected at all but one of the sampling locations, representing only the second report of 
methamphetamine detected in WWTP effluent and in streams impacted by WWTP effluent.
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larly attractive for determining time-weighted average (TWA) 
concentrations of organic compounds in water (Alvarez et al., 
2004). POCIS have been used previously for both qualitative 
and quantitative evaluation of pharmaceuticals, pesticides and 
hormones in surface waters (Alvarez et al., 2004, 2007; Arditso-
glou and Voutsa, 2008; Harman et al., 2008; Jones-Lepp et al., 
2004; MacLeod et al., 2007; Zhang et al., 2008).

In this study, we evaluated the occurrence and concentra-
tion of twenty pharmaceuticals (both illicit and therapeutic) 
and related metabolites in surface waters upstream and down-
stream of WWTP outfalls and in WWTP effluent in Nebraska. 
The treatment plants monitored serve populations ranging 
from 20,000 to approximately 420,000 and represent a variety 
of secondary treatment technologies, including trickling filter, 
activated sludge, trickling filters and activated sludge in paral-
lel, and biological nutrients. The purpose of this study was (1) 
to evaluate in-stream TWA concentrations of pharmaceuticals 
in surface waters impacted by WWTP effluents and in WWTP 
effluent in Nebraska; (2) to determine the impact of secondary 
treatment type on the occurrence and concentration of phar-
maceuticals in receiving waters; (3) to evaluate the use of PO-
CIS as a semi-quantitative tool for assessing organic com-
pound concentrations in surface waters; and (4) to document 
the presence of an illicit drug, methamphetamine, in WWTP 
effluents originating from rural municipalities.

2. Methods and materials

2.1. Sampling locations

Surface waters were sampled upstream and downstream of the WWTP dis-
charge structure at Lincoln, NE; Grand Island, NE; and Columbus, NE. In addi-
tion, samplers were installed downstream of the Hastings, NE WWTP. Samples 
were also obtained from the effluent channel just prior to discharge in the Mis-
souri River at the Omaha, NE WWTP due to the inaccessibility of the receiving 
water body at this location. See Table 1 for a summary of sampling locations. All 
samples were obtained between August and October 2006, during fall baseflow 
when ground water is a primary source of water to the stream sampled.

Additional information related to each WWTP including the community 
population, the average daily flow, and the secondary treatment technique em-
ployed at each facility is given in Table 1.

2.2. POCIS and sampling methodology

POCIS, holders and deployment canisters were obtained from Environmental 
Sampling Technologies (EST, Inc., St. Joseph, MO). Each stainless steel canister 
was fitted with three pharmaceutical POCIS filled with Oasis HLB sorbent (Wa-
ters Corporation, Milford, MA). Each POCIS device had a surface area of 41 cm2 
and contained 200 mg of sorbent medium. At each sampling location, canisters 
were deployed for a 7-day exposure period. At the Grand Island site, the down-
stream POCIS was recovered 4 weeks after deployment, ostensibly due to van-
dalism. At sites where upstream and downstream samples were obtained, POCIS 
devices were deployed at each location simultaneously. All sites were sampled 
between August and November 2006, when baseflow is a primary source of wa-
ter in the receiving water bodies. The sampling period was also outside of the re-
quired seasonal disinfection period, so no disinfection processes were ongoing 
at the time of sampling.

2.3. Solvents and internal standards

Reference materials, metabolites and labeled standards, including 13C3-caffeine 
and d9-methamphetamine, were obtained from Sigma–Aldrich (St. Louis, MO). 
Phenyl-13C8-sulfamethazine was purchased from Cambridge Isotopes (Andover, 
MA). Solvents used in sample preparation were high-purity grade (OPTIMA, 
Fisher Scientific, St. Louis, MO).

2.4. Extraction methodology

Handling and elution of POCIS followed procedures described previously (Al-
varez et al., 2004; Jones-Lepp et al., 2004). After the 7-day exposure, each indi-
vidual POCIS device was removed from its deployment canister, briefly rinsed 
with water if needed to remove debris and opened. The contents of the POCIS 
were transferred using approximately 20 mL of high-purity methanol directly 
into silane-treated vials. Vials containing the methanol and sorbent were held at 
−20 °C until they could be processed for analysis.

Target compounds were eluted by passing 50 mL of high-purity metha-
nol through silane-treated glass gravity flow chromatography columns into 
120 mL evaporation tubes (RapidVAP, Labconco, Kansas City, MO). Approxi-
mately 1 ng of d9-methamphetamine, 13C3-caffeine, and phenyl-13C8-sulfameth-
azine internal standards were added to the eluate and used for quantification. 
Extracts were evaporated under nitrogen to approximately 1 mL, and quantita-
tively transferred to autosampler vials for analysis by liquid chromatography–
tandem mass spectrometry (LC/MS/MS). Standards and spiking solutions were 
prepared from stock solutions (5 μg/μL) in methanol. Calibration solutions (2, 
5, 12.5, 25 and 50 pg/μL) were prepared in 50:50 methanol and water. All stan-
dards and extracts were stored in amber vials at −20 °C.

2.5. Liquid chromatography–tandem mass spectrometry

POCIS extracts were analyzed for twenty pharmaceuticals and metabolites, as 
listed in Table 2. Standards and extracts were analyzed on a Quattro Micro tri-
ple quadrupole with a Waters 2695 high pressure liquid chromatograph (HPLC) 
and autosampler. Electrospray ionization in positive ion mode was used for the 
detection of target compounds by multiple reaction monitoring (MRM) with ar-
gon collision gas. A Thermo (Bellefonte, PA) Betabasic-18 column (250 × 2.1 mm, 
5 μm, 50 °C) was used for separation at a flow rate of 0.2 ml/min with a gradi-
ent of methanol with 0.1% formic acid in water. Mass spectrometer operational 
parameters were optimized by infusing each compound separately (Table 2). 
The source conditions were: capillary 2.5 kV, extractor 2 V, RF lens 0.8 V, source 
temp 90 °C, desolvation temp 400 °C, cone gas flow at 30 L/h, and desolvation 
gas flow at 700 L/h. Compound retention times, ionization modes and MRM 
transitions are listed in Table 2. A five-point internal standard calibration curve 
was used for quantification of each analyte. Methamphetamine-d3 was used as 
the internal standard for methamphetamine and d(extro)-amphetamine, phenyl-
13C8-sulfamethazine was used for sulfa antibiotics and 13C3-caffeine was used as 
the internal standard for all other target compounds. Based on the variability 
of the lowest standard (2 pg/μL), the estimated detection limits for most com-
pounds are less than 1 pg/μL, corresponding to 1 ng recovered from the PO-
CIS. Recovery of target compounds was checked by analysis of fortified blanks 
spiked with known amounts of each compound and averaged 123 ± 30%. Two 
laboratory reagent blanks were processed with the POCIS samples, with all com-
pounds below instrument detection limits listed in Table 1.

2.6. Calculation of POCIS uptake rakes

In order to use POCIS as a quantitative tool, an uptake rate must be determined 
for each compound of interest. Compound uptake by POCIS is controlled by the 
aqueous boundary layer (Alvarez et al., 2004), therefore, the sampling rate, Rs, 
(L/d) is:

Rs = (Dw/Lw) * A                                                         (1)

where Dw is the aqueous diffusion coefficient of the compound, Lw is the thick-
ness of the stagnant film layer, and A is the surface area of the sampler. Based on 

Table 1. Wastewater treatment facilities sampled in Nebraska

Facility location	 Receiving 	 Sampling locations	 Community population 	 Secondary treatment                Average daily 
	 water body   		  (year 2006)   	 technique                                       flow (MGD)

Columbus, NE	 Loup River	 Upstream and downstream 	 20,909	 Activated sludge	 3.4 
		     of discharge
Hastings, NE	 West Fork of the 	 Downstream of discharge	 25,437	 Trickling filter	 3.6 
	    Big Blue River
Grand Island, NE	 Wood River	 Upstream and downstream 	 44,546	 Biological nutrients	 12 
		     of discharge
Lincoln, NE	 Salt Creek	 Upstream and downstream 	 241,167	 Activated sludge and trickling filter	 18 
		     of discharge
Omaha, NE	 Missouri River	 Effluent	 419,545	 Trickling filter	 27.2
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a linear uptake rake, the water concentration of the compound of interest can be 
calculated as:

Cw = CsMs/Rst                                                                (2)
where Cw and Cs are the concentrations of the compound in the aqueous and sor-
bent phases, respectively, Ms is the mass of sorbent, and t is the exposure time.

One limitation of POCIS is the need to determine the uptake rates for the 
compounds of interest for qualitative analysis. To date, uptake rates have been 
calculated for a limited number of hormones, pharmaceuticals and personal-care 
products (Alvarez et al., 2004; Jones-Lepp et al., 2004; MacLeod et al., 2007; To-
gola and Budzinski, 2007). In this study, we calculated theoretical uptake rates 
for the pharmaceuticals of interest, and used these values in Equation (2) to de-
termine aqueous concentrations. Based on the uptake rate data collected under 
turbulent conditions reported by MacLeod et al. (2007) for POCIS containing the 
Oasis HLB sorbent, and using Dw values estimated at 25 °C using the Hayduk–
Laudie model (Lyman et al., 1982), an average Lw value of 0.025 ± 0.002 cm was 
determined. Based on this value and calculated Dw values, Rs values for the com-
pounds of interest were calculated for the twenty pharmaceutical compounds 
measured in this study. Table 3 provides the calculated Rs values, as well as a 
comparison to previously published laboratory values, when available. With the 
exception of azithromycin, calculated Rs values are within a factor of 2–3 times 
the Rs values reported from laboratory calibration. It should also be noted that 
Rs values have been shown to vary significantly with environmental condi-
tions including temperature and salinity (Togola and Budzinski, 2007). Variabil-
ity within a factor of 2–3 is consistent with variability in contaminant concentra-
tions observed in the field based on continuous monitoring over an extended 
period (Togola and Budzinski, 2007).

3. Results and discussion

Estimated aqueous concentrations of contaminants recovered 
from POCIS at each sampling location are presented in Table 
4. Of the twenty pharmaceutical compounds and metabolites, 
17 were detected at no less than one of the sampling sites. d-
Amphetamine, virginiamycin and sulfathiazole were not de-
tected in any of the POCIS residues. At all sampling locations, 
there were more occurrences of prescription and non-prescrip-
tion drugs and human antibiotics than veterinary antibiotics, 
which were expected based on the municipal source of the dis-
charge. For most of the pharmaceuticals investigated, the re-
covered mass and estimated concentration of a given com-
pound in the downstream sample was significantly higher 
than in the sample upstream from the WWTP discharge struc-

ture. This result indicates that WWTP effluent is a significant 
source of pharmaceutical loading to the receiving waters, a 
finding in agreement with other studies which have also dem-
onstrated WWTP effluent to be a significant source of phar-
maceutical loading to the environment (Batt et al., 2006; Kim 
et al., 2007; Lee and Rasmussen, 2006; Roberts and Thomas, 
2006). The pharmaceuticals that were detected in all sampling 
locations (upstream of discharge structure, downstream of 
discharge structure, and effluent) were caffeine; 1,7-dimethyl-
xanthine, a caffeine metabolite; cotinine, a nicotine metabolite; 
DEET, and diphenhydramine. The estimated concentration of 
these compounds ranged from 1.9 ng/L to 30.3 ng/L in the 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Table 2. Pharmaceuticals evaluated and LC–MS parameters

Compound                                Use                                                                    CAS No.          Mol. weight   Retention               MRM             Collision         Cone              IDL 
                                                                                                                                                             (g/mol)      time (min)                                    energy (eV)   voltage (V)      (ng)

Non-prescription drugs
Acetaminophen	 Analgesic/antipyretic pain reliever	 103-90-2	 151.16	 10.73	 152 > 110	 14	 30	 1.58
Caffeine	 Stimulant	 58-08-2	 194.19	 11.94	 195 > 138	 18	 32	 0.33
1,7-Dimethylxanthine	 Caffeine metabolite	 611-59-6	 180.16	 11.25	 181 > 124	 20	 32	 0.61
Cotinine	 Nicotine metabolite	 486-56-6	 176.22	 10.30	 177 > 78	 20	 35	 0.28
d-Amphetamine	 Stimulant	 51-64-9	 135.21	 10.90	 136 > 91	 16	 18	 0.70
DEET	 Insect repellent	 134-62-3	 191.27	 16.70	 192 > 119	 15	 25	 0.66
Diphenhydramine	 Antihistamine	 58-73-1	 255.35	 12.89	 256 > 167	 14	 25	 0.35
Methamphetamine	 Stimulant	 537-46-2	 149.23	 10.99	 150 > 91	 20	 20	 0.43

Prescription drugs
Carbamazepine	 Anticonvulsive	 298-46-4	 236.27	 15.66	 237 > 194	 22	 32	 0.71

Veterinary and human antibiotics
Azithromycin	 Antibiotic	 83905-01-5	 748.98	 12.63	 750 > 592	 25	 40	 2.79
Sulfachloropyridazine	 Antibiotic	 280-32-0	 284.72	 12.20	 285 > 156	 15	 24	 0.60
Sulfamethazine	 Antibiotic	 57-68-1	 278.33	 12.03	 279 > 156	 18	 30	 0.43
Sulfadimethoxine	 Antibiotic	 122-11-2	 310.33	 13.24	 311 > 156	 20	 28	 0.76
Sulfamethiazole	 Antibiotic	 144-82-1	 270.33	 11.68	 271 > 156	 13	 24	 0.17
Sulfamethoxazole	 Antibiotic	 723-46-6	 253.28	 12.20	 254 > 156	 15	 23	 0.34
Sulfamerazine	 Antibiotic	 127-79-7	 264.30	 11.51	 265 > 156	 16	 28	 0.24
Sulfathiazole	 Antibiotic	 72-14-0	 255.32	 10.99	 256 > 156	 14	 25	 0.46
Thiabendazole	 Anthelmintic	 148-79-8	 201.25	 12.38	 202 > 175	 24	 35	 0.17
Virginiamycin	 Antibiotic	 21411-53-0	 525.59	 16.35	 526 > 355	 16	 25	 0.78

Internal standards
Phenyl-13C6-sulfamethazine		  57-68-1	 284.1	 11.95	 285 > 124	 25	 30	
d9-Methamphetamine		  537-46-2	 158.1	 10.99	 159 > 93	 18	 20	
13C3-caffeine		  58-08-2	 197.1	 11.87	 198 > 140	 18	 32

Table 3. Calculated Rs values and comparisons to literature data

Compound                             Calculated    Experimental 	 Source 
                                                    flowing           flowing  
                                                                         Rs (L/d)          Rs (L/d)a

Acetaminophen	 0.30		
Caffeine	 0.27	 0.1	 Togola and 
			     Budzinski (2007)
1,7-Dimethylxanthine	 0.33		
Cotinine	 0.24		
d-Amphetamine	 0.26		
DEET	 0.19		
Diphenhydramine	 0.15		
Methamphetamine	 0.22	 0.089	 Alvarez et al. (2007)
Carbamazepine	 0.20	 0.31, 0.3	 MacLeod et al. (2007)  
			     and Togola and  
			     Budzinski (2007)
Azithromycin	 0.06	 0.27	 Alvarez et al. (2007)
Sulfachloropyridazine	 0.20		
Sulfamethazine	 0.18	 0.10	 MacLeod et al. (2007)
Sulfadimethoxine	 0.17		
Sulfamethiazole	 0.21		
Sulfamethoxazole	 0.21		
Sulfamerazine	 0.20		
Sulfathiazole	 0.22		
Thiabendazole	 0.27		
Virginiamycin	 0.09		

a Values represent experimental data reported for 41 cm2 POCIS under flowing 
(turbulent) conditions.
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upstream samples and 2.3 ng/L to approximately 1600 ng/L in 
the downstream samples. It should be noted that caffeine was 
detected upstream of the Lincoln, NE WWTP at a concentra-
tion of 216 ng/L, which is significantly higher than the down-
stream concentration observed at this site. The presence of these 
compounds in the upstream samples indicates that they may 
be persistent in the environment or that surface run-off is a sig-
nificant source of these contaminants. Acetaminophen, azithro-
mycin and carbamazepine were also detected at a large num-
ber of the sampling locations. Acetaminophen was detected at 
all sampling locations with the exception of the upstream sam-
ple at Grand Island, NE; the downstream sample at Colum-
bus, NE; and the effluent sample at Omaha, NE. Azithromycin 
was not detected in any of the upstream samples, but was de-
tected in all downstream and effluent samples and carbamaze-
pine was detected in all sampling locations with the exception 
of the upstream samples at Columbus, NE and Lincoln, NE. The 
presence of azithromycin and carbamazepine in all of the efflu-
ent and downstream samples, but not in the upstream samples, 
suggests that surface run-off is not a significant source of these 
compounds or that they may be more readily degraded in sur-
face waters or preferentially sorbed to sediments.

The WWTPs sampled represent a variety of secondary treat-
ment types, including activated sludge, trickling filter, trickling 
filter and activated sludge in parallel, and biological nutrients. 
Although concentrations of pharmaceuticals in the raw sew-
age at each location were not monitored, it is expected that they 
would be similar as municipal sources are the primary source 
of wastewater to each of these WWTPs. Therefore, evaluation 
of the in-stream pharmaceutical concentrations downstream of 
the discharge structure at each WWTP should provide some 
qualitative information about the relative performance of each 
treatment technology for removal of pharmaceuticals in waste-
water. As seen in Figure 1, for the 13 compounds measured in 
common at each of the four WWTPs where in-stream measure-
ments were taken, the activated sludge treatment results in the 
lowest pharmaceutical concentration for all compounds with 
the exception of cotinine. Pharmaceutical concentrations in the 
streams impacted by effluents from WWTPs with trickling fil-
ters or trickling filters in parallel with activated sludge resulted 
in the highest observed in-stream pharmaceutical concentra-
tions. This result is in agreement with previous studies that 
have determined that trickling filter secondary treatment sys-
tems yield larger organic wastewater contaminant concentra-
tions when compared with activated sludge processes (Carbella 
et al., 2004; Lee and Rasmussen, 2006).

Trace levels of the illicit drug methamphetamine were de-
tected at most sampling locations. The other illicit pharmaceu-
tical and methamphetamine metabolite, d-amphetamine, was 
not detected in any of the POCIS. These data represent only 
the second report of methamphetamine detected in WWTP ef-
fluent and in streams impacted by WWTP effluent. Previously, 
Jones-Lepp et al. (2004) reported estimated methamphet-
amine concentrations of 1.3 ng/L and 0.8 ng/L from POCIS 
in WWTP effluent and in-stream samples, respectively. These 
samples were obtained at a WWTP located in Las Vegas, Ne-
vada, a large metropolitan area. In this study, estimated meth-
amphetamine concentrations in about half of the samples were 
comparable to those reported from Las Vegas, while estimated 
levels in the WWTP effluent and downstream samples from 
three sites were 350 ng/L (effluent) and 2.3–62.6 ng/L (down-
stream). The effluent sample was obtained from Omaha, NE, 
which has a population of 491,000, while the downstream 
samples were obtained from municipalities with populations 
ranging from 20,000 to 240,000. The differences between data 
obtained from these locations and previously reported results 
may reflect differences in drug use, wastewater treatment 
practices and timing of sample collection. The prevalence of 
trace levels of methamphetamine, caffeine, 1,7-dimethylzan-
thine, and several other pharmaceuticals may also suggest the 
presence of positive interferences for these compounds. Al-
though LC–tandem mass spectrometry is among the most sen-
sitive and selective methods available for the detection of po-
lar organic compounds, it is not immune from false positives 
(Pozo et al., 2006). The use of isotope-labeled analogues as in-
ternal standards for selected target analytes (caffeine, metham-
phetamine, and sulfamethanzine) increases the selectivity of 
the analysis for these compounds.

The use of passive samplers which can develop informa-
tion on time-weighted average concentrations of contaminants 
in water samples can be used effectively for semi-quantitative 
analysis of polar compounds such as pesticides, pharmaceuti-
cals, and hormones. As stated previously, the limitation of PO-
CISs is the need to perform laboratory calibration experiments 
to determine contaminant uptake rates. As demonstrated by 
Togola and Budinski (2007), the magnitude of the uptake rate 
can be influenced by the environmental conditions of the wa-
ter matrix, including salinity and temperature. Based on the 
results from this study, the theoretical uptake rates calculated 
based on the calculated stagnant film layer and water diffu-
sion coefficient are reasonable when compared to uptake rates 
calculated from laboratory calibration experiments. The use 

Figure 1. Estimated in-stream pharmaceutical concentrations downstream from WWTP discharge structure as a function of secondary treatment type.
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of calculated uptake rates to predict aqueous concentrations 
makes the POCIS more attractive for use in experimental stud-
ies when quantitative or semi-quantitative data are required 
and uptake rates determined from laboratory calibration are 
not available. Further research is needed to fully characterize 
how different environmental variables influence contaminant 
uptake rates for POCIS to fully assess whether calculated up-
take rates can be used to quantify POCIS results.

4. Conclusions

POCIS were deployed in receiving waters upstream and 
downstream of wastewater treatment plant discharge struc-
tures and in one wastewater effluent channel. Calculated up-
take rates were reasonable when compared with previously 
published uptake rates determined by laboratory experiments, 
and were used to determine estimated aqueous concentrations 
of nineteen pharmaceutical compounds and metabolites. Con-
centrations upstream and downstream of the WWTP discharge 
structure indicate that wastewater is a significant contributor 
to pharmaceutical loadings in receiving waters. Trace concen-
trations of methamphetamine, an illicit pharmaceutical, were 
present in all but one sampling location at higher concentra-
tions than have been previously reported for this compound.
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