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Introduction

The popularity of chromatographic processes in bio
separations has grown with advances in support mate
rials and their fabrication, resulting in increased resolu
tion in less time.1 Supports based on zirconia, particles 
with high density and excellent thermal and chemi
cal stability, can offer increased flexibility relative to sil
ica and polymeric phases when designing separations. 
While the surface chemistry of zirconia has been stud

ied in detail, the widespread applicability of zirconia 
particles in chromatography is precluded by the un
availability of zirconia particles with varying particle 
and pore sizes. Based on prior work, which has enabled 
the preparation of porous zirconia particles by polymer
induced colloid aggregation (PICA)2,3 and spray drying 
of colloidal zirconia suspension and has documented its 
use as a stable chromatographic support,4 the objective 
of this study is to further optimize the PICA process to 
produce particles and monoliths with varying sizes and 

Published in International Journal of Applied Ceramic Technology  8:1 (January/February 2011), pp. 94–111;  
doi: 10.1111/j.17447402.2009.02410.x   Copyright © 2009 American Ceramic Society; published by John Wiley & Sons.  
Used by permission.  http://onlinelibrary.wiley.com/doi/10.1111/j.17447402.2009.02410.x/abstract 

Published online August 3, 2009.

This work was supported through a grant from the National Science Foundation (CTS 0411632). 

Impact of Porogens on the Pore Characteristics 
of Zirconia Particles Made by Polymer-Induced 
Colloid Aggregation

Abhinandan Pattanayak and Anuradha Subramanian 

Department of Chemical and Biomolecular Engineering,  
University of NebraskaLincoln, Lincoln, Nebraska 68588 

Corresponding author — A. Pattanayak, email abhi.pattanayak@gmail.com  

Abstract
Zirconia particles were prepared from a 20% colloidal sol (ZrO2) by the polymerinduced colloid ag
gregation (PICA) process, both in the presence and absence of porogens. Specifically, porous zirco
nia particles having varying porosity were prepared by a twostep protocol wherein a porogen was 
first embedded during the particle synthesis, followed by its removal in a subsequent step. In this re
search study, the ability of four different types of porogens, viz. fumed silica, micronized high molecu
lar weight polyethylene emulsion ME09730, and microcrystalline waxes ME48040M2 and ME98040M1, 
to impact the pore size, porosity, and pore area were investigated. Particle morphology and porosity of 
the resultant particles were characterized by scanning electron microscopy, mercury intrusion–extru
sion porosimetry, and the nitrogen adsorption–desorption sorptometry. Optimal ratios of zirconia sol 
and porogen to yield the largest unimodal distribution of pores were determined. Porous zirconia par
ticles were obtained after the removal of porogen, followed by a calcination and sintering protocol. Par
ticle aggregates were typically 7–45 μm in diameter, with BET surface areas between 21 and 54 m2/g 
and pores ranging from 18 to 120 nm in diameter. The nitrogen sorptometry and mercury porosimetry 
data of these support particles were modeled to calculate surface fractal dimension, pore accessibility 
parameters, pore network, and pore geometry.
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a controlled and hierarchical pore architecture. Our re
sults have also highlighted the need to further optimize 
the surface area, pore size, and pore volume for the re
tention and separation of biologically relevant biomol
ecules, as we have found that the transport of biomole
cules in the zirconia particles with a pore size of 22 nm 
is limited by pore diffusion. In addition, calculations 
based on Renkin’s equation show that for separations 
of biomolecules of sizes ranging from 8 to 15 nm, sup
ports must have pore sizes in the range of 40–75 nm for 
optimal performance, that is the pore diameter must 
be greater or equal to five times the size of the mole
cules being transported. The next logical step is to pro
duce zirconia supports with particle diameters in the 
range of 50–200 μm and with pore sizes in the range of 
35–100 nm.

Wet chemistry techniques such as the sol–gel and 
surfactant emulsion processes have been combined 
with organic and inorganic templates to fabricate 
macro/mesoporous structures of oxides like silica, ti
tania, and zirconia. Successful and selective removal 
of these templates replaces the template sites with hol
lowness.5 In an attempt to control the pore diameters 
and pore volumes, the zirconia particles were first 
prepared by the sol–gel process6 and then incubated 
in a solution containing NaCl, the porogen,7,8 in or
der to prevent the collapse of the pore structure dur
ing the essential sintering step. Zirconia particles with 
a particle size of 1.3 ± .5 μm and pore size 20–35 nm 
were obtained. The literature cites the use of diverse 
templates such as latex,9 cellulose acetate, cellulose 
nitrate, polyamide, polyethersulfone, polypropyl
ene,10 acryl amide, glycidylmethacrylate,11 polysty
rene crosslinked with divinyl benzene (beads),12 
polymethylmethacrylate,13 and so forth. The over
all outcome of this category revealed particles of size 
0.1–2.5 μm, pore size 2.5–700 nm, and surface area 25–
600 m2/g, depending on the precursor and template 
being used. Significant progress has been made in un
derstanding and formulating routes to produce hol
low spheres (2–5 μm spheres, pore size 6–18 nm) of 
crystalline porous metal oxides by nanocasting with 
leachable mesoporous hollow shells.14,15 Furthermore, 
it was proposed that ultrasonic cavitation during sol–
gel reactions16 and high-frequency microwave sinter
ing17 improved the particle morphology. In addition, 
immense research has been conducted with popular 
surfactants like cationic dodecyltrimethylammonium
bromide and cetyltrimethylammoniumbromide, an
ionic sodium dodecylsulfate,18,19 nonionic polyethyl

ene oxide, and poly(ethylene oxide)–poly(propylene 
oxide)–poly(ethylene oxide) block copolymer.20,21 Zir
conia powders synthesized using macroemulsion and 
microemulsion techniques, involving mixing a Zr4+ 
emulsion with aqueous ammonia droplets to precip
itate ZrO2,22,23 produced 0.3–3 μm diameter particles.

In summary, our survey of the literature reveals few 
studies that address the synthesis of stable porous zir
conia particles in the size range of 10–200 μm with a 
controlled pore architecture. In this study, we have ju
diciously attempted to manipulate and optimize the 
pore architecture of zirconia particles by impregnat
ing them with a leachable porogen during the particle 
aggregation step. We hypothesize that the removal of 
these porogens in a subsequent step will produce par
ticles with larger pore diameters. We have used the 
PICA method for aggregating zirconia colloid, as the 
PICA method optimally produces particles of strict 
and distinct size ranges.2,3 We have used fumed silica, 
cationic polyethylene (ME09730), and nonionic micro
crystalline wax (MCW) emulsions (ME48040M2 and 
ME98040M1) as putative porogens. Zirconia particles 
produced by the PICA method have been character
ized by BET nitrogen porosimetry, mercury porosim
etry, and scanning electron microscopy (SEM). Also, 
this paper includes the application of a pore network 
model on the nitrogen sorption and mercury porosim
etry data in order to investigate several crucial pore 
geometryrelated parameters.
  
  
Materials and Methods
    
Materials 

All reagents obtained from commercial sources 
were of analytical grades or better, and were used 
without further purification unless otherwise men
tioned. Sodium hydroxide pellets, isopropyl alco
hol, nitric acid, hydrochloric acid, formaldehyde 
(37%), and granulated urea were purchased from 
Fisher Scientific (Hanover Park, IL). Aqueous zirconia 
sol (pH=3.0), containing 20 wt% of 100 nm colloid of 
ZrO2, was purchased from Nyacol Products (Ashland, 
MA). Untreated fumed silica (CABOSIL) was ob
tained from Cabot (Tuscola, IL). Ethylene glycol (99%) 
was purchased from Acros Organics (Morris Plains, 
NJ), and nonionic MCW emulsions (ME48040M2 and 
ME98040M1) and micronized cationic polyethylene 
emulsion (ME09730) were generous gifts from Michel
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man (Cincinnati, OH). Potassium bromide (KBr) FT-
IR grade (>99% purity) was purchased from SigmaAl
drich (St. Louis, MO).

Methods 
  

Preparation of Particles by the PICA Method: Zir
conia particles were prepared by the PICA method 
as detailed elsewhere.2,24 Briefly, 50 mL of presoni
cated zirconia sol, at a pH of 1.5, was mixed well with 
3.75 g urea. 6.25 mL of 37% formaldehyde solution 
was added and mixed for an additional minute.25 Af
ter 2 h of polymerization, the reaction was quenched 
with 300 mL or a sixfold amount of DI water.25 The mi
crometer scale aggregates of colloids were separated 
by batch centrifugation at 1500 rpm for 12 min. Pre
cipitated aggregates were resuspended in 2propanol, 
collected, and dried in a vacuum oven at 90°C/12 h 
and 175°C/16 h. Further heat treatment was com
prised of calcination and sintering in a muffle furnace 
at 375°C/2 h, 750°C/6 h, and 900°C/3 h. A 20°C/min 
ramp was used between 375°C and 750°C, while 40°C/
min was used to reach 900°C. The final product was 
cooled to room temperature, weighed, and stored in 
airtight plastic sample containers.

PICA Particles with Porogens: Experiments were de
signed to synthesize zirconia particles using a vari
ety of porogens (Table I) and at various porogen load
ings. Table I lists the physical and chemical properties 
and nomenclatures used for easy referencing of these 
porogens.

PICA Particles with Fumed Silica: The commercially 
available sol, which is nominally at 20%, was concen
trated by centrifugation to obtain a 40% sol. When us
ing fumed silica as a porogen, an acidic solution of 
fumed silica was added to a 40% zirconia sol. For ex
ample, for producing a 4:1 molar ratio of zirconia to 
fumed silica, 2.97 g of fumed silica was dispersed in 
50 mL (pH = 1.5) of acidulated DI water for 30 min. The 

resulting fumed silica solution was mixed vigorously 
with the 50 mL of presonicated 40% zirconia sol. 7.5 g 
urea and 12.5 mL formaldehyde were then added, and 
the remainder of the particle separation steps and the 
calcination were followed, similar to the general PICA 
described earlier. Fumed, silica laden, sintered PICA 
particles were added to a 3M NaOH solution, and the 
mixture was either stirred on a heatercumstirrer plate 
with the temperature set at 80°C or heated in a muffle 
furnace at 95°C for 8–10 h26 with intermittent mechan
ical agitation or ultrasonication. The leaching pro
cess was repeated three times with a fresh volume of 
NaOH. In the final step, the particles were extensively 
washed with DI water, recovered by centrifugation, re
suspended in 2propanol, collected in shallow dishes, 
and subjected to heating, as described earlier.

PICA Particles with MCW and Polyethylene Emul-
sion: Porous zirconia particles were prepared with 
ME48040M2, ME98040M1, and ME09730 as porogens 
for zirconia:porogen molar ratios of 4:1, 2:1, and 1:1. 
Porogen amounts were calculated assuming an aver
age of 590 g/mol and 40% (w/w) of nonvolatile com
ponents. In each of these experiments, 50 mL of 20% 
sol at pH 1.5 was taken in a 500 mL beaker and soni
cated for 10 min. A 9.7 ml emulsion (corresponding to 
a 4:1 ratio) was then added to the sol and the pH was 
readjusted to 1.5 using concentrated nitric acid. After 
stirring vigorously for 15–20 minutes, 4.5g of urea was 
added and the mixture was stirred for 30 minutes to 
allow nucleation. Finally, 7.3 ml of 37% formaldehyde 
was added and the solution was stirred for an addi
tional minute. The remaining steps of reaction quench
ing, processing, and separation of the aggregates were 
followed similar to the basic PICA particle making 
protocols. The molar concentrations of urea and form
aldehyde in the overall solution were independent of 
the total volume of zirconia and wax emulsion mixture 
and were always maintained at 1.25 and 2.4M. The 
waxbased porogens were removed by heating. The 

Table I. Porogen Nomenclature and Physical/Chemical Characteristics 

                                 Physical                  Melting                      Chemical                               pH                     Particle 
Symbol Name                         state                point (°C)                  nature                                 stability           diameter (nm)

P1 Fumed silica Solid powder — Inorganic <6 (2.3 iep) ~150–175
P2 ME48040M2 Liquid 80–85 Organic/synthetic 1–12 300
P3 ME98040M1 Liquid 80–85 Organic/synthetic 2–12 700
P4 ME09730 Liquid 130–145 Organic/synthetic <7 150
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PICA heat treatment protocol was modified slightly by 
allowing a slower rate of increase of the temperature 
to 375°C, with 10°C/min as the ramp between 175°C 
and 375°C, and 5°C/min over reaching to 175°C from 
100°C.

Material Characterization
    
FTIR Spectrometry 

FTIR grade (>99% purity) KBr was used to pre
pare the pellets. IR spectra analysis was performed 
on a Nicolet 510P FTIR spectrometer (Nicolet Instru
ment, Madison, WI) equipped with dry air at 10 psi, 
for wavenumbers from 400 to 4000 cm, with a resolu
tion of 4 cm. The percentage of average transmittance 
was recorded for 32 scans for each sample tested.
    
SEM Imaging 

SEM imaging was carried out with a Hitachi S7400 
(Tokyo, Japan) on all the PICA samples (electron mi
croscopy facility, University of NebraskaLincoln) for 
accelerating voltages between 10 and 25 kV. Photo
graphs were taken of a representative sample of each 
powder by sparingly sprinkling the powder onto dou
blesided sticky carbon conductive tape (Ted Pella, 
Redding, CA) that was attached to an SEM stub. The 
particles were then coated with a chromium film of the 
thickness 0.2 nm by DC sputtering at 125 mA for 60 s. 
The backscattered electron images of the particles pro
duced at the accelerating field were acquired as gray-
scale images.
    
PSD/TSD from N2 Sorption 

PSD/TSD from nitrogen adsorption and desorption 
isotherm data at 77 K were obtained using a Micromer
itics ASAP 2010 sorptometer (Norcross, GA). About 
250 mg of each sample was analyzed at 42 different 
P/P0 (relative pressure) points on both the adsorption 
and desorption branches. The relative pressure points 
of analysis were deliberately sparsely spaced at lower 
P/P0 values and densely populated at higher values to 
enable a detailed PSD curve for the larger pore size re
gime. The isotherms obtained from a plot of volume 
adsorbed (cm3/g STP) versus relative pressure (P/
P0) were compared against the following: (1) a Type

IV isotherm with an H1 hysteresis loop (indicates the 
presence of “cylindrical” pores), (2) a TypeIV iso
therm with an H2 hysteresis loop (indicates the pres
ence of “inkbottle shaped” pores), and (3) a TypeIV 
isotherm with an intermediate-type H1–H2 hysteresis 
loop (indicates a combination of “inkbottle shaped” 
and “cylindrical” pores).7,8

    
PSD/TSD from Mercury Porosimetry 

Mercury porosimetry was performed for select sam
ples presented in this paper. All the samples were sent 
for analysis to the Particle Engineering Research Cen
ter at the University of Florida. A Quantachrome Auto
scan 60 Mercury Porosimeter (Boynton Beach, FL) was 
used to analyze the samples. Quantachrome Autoscan 
Poro2PC (Version 3.0) software was used to generate 
pore-related data. Each analysis required about 1 cm3 
of sample, and the pore size calculations and surface 
areas were based on a contact angle of 140°.

  
Results and Discussion

Our research indicates that the performance of the 
first generation of zirconia particles produced by the 
PICA process, which yielded a particle size of 1–3 μm 
and a pore size of 18–24 nm, or the spray drying pro
cess, which yielded a particle size of 25–38 μm and 
pore size of 18–24 nm, is limited by pore diffusion.27–30 
Such findings have also been observed in previous 
work with porous supports.6,31,32 An examination of 
the relationship between the size of the colloid and the 
pore size obtained in aggregates obtained by the spray 
drying process, the PICA process, or the oilemulsion 
process reveals that when a colloidal solution (with 
the colloid particle size of 100 nm (1000 Å)) was used 
in any of the aggregation processes listed, a pore size 
in the range of 1827 nm was often obtained.3,33–35 In 
the absence of porogen or any binder molecule, we 
hypothesize that the most viable arrangement of col
loid particles is one in which three colloid particles are 
held in the cluster. The resultant pore diameter ob
tained equals the equivalent diameter of the interstitial 
void space between colloid particles. Mathematically, 
this can now be approximated as follows: Dp=0.227Dc, 
where Dp is the effective pore diameter obtained, and 
Dc is the diameter of the colloid particle. We have used 
a colloid in which the particles are 100 nm in diame
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ter; thus, the theoretical pore size one could obtain 
in the absence of a porogen is 22.7 nm. We have con
firmed this by experimentation, and thus it is not sur
prising that both the PICA and SD methods resulted 
in similar pore sizes, as they both used a 100 nm col
loid. An alternative to the current approach, which 
uses a 100 nm colloid, would be to use colloidal zir
conia with larger sizes (i.e., 200–400 nm) to generate 
particles with greater pore sizes. However, it is worth 
noting that current techniques to produce zirconia col
loid with larger sizes are tedious, cumbersome, uneco
nomical, and larger size colloidal zirconia is not com
mercially available. In addition, attempts to generate 
2000 Å (200 nm) and 4000 Å (400 nm) zirconia colloid 
were unsuccessful (A. Subramanian and P. W. Carr, 
unpublished results). Thus, in this report, leachable 
porogens were included in the colloid before the initia
tion of the particle aggregation step, and we have used 
porogens with similar or larger dimensions to the fi
nal desired pore sizes, 50–100 nm. We have repeated 
all the experiments in triplicate for each molar ratio of 
zirconia sol and porogen pertaining to different poro
gen categories. BET was obtained for all the samples. 
BETs for a particular ratio were similar, and only the 
representative BET has been reported.
  

FTIR Spectrometry 

Figure 1 shows a comparative study of infrared 
spectra of six samples, viz (A) pure zirconia calcined 
at 900°C for 3 h, (B) pure fumed silica, (C) PICA parti
cles prepared from a 4:1 molar ratio of zirconia sol and 
fumed silica, (D) the PICA particles treated thrice with 
a 3M NaOH solution, (E) the PICA particles treated 
with a 4.95% HF solution, and (F) the PICA particles 
treated with an ethylene–glycol–NaOH solution, re
spectively. As is evident from spectrum B, the typical 
band of pure fumed silica at 800 cm was ascribed to the 
symmetric stretching of oxygen in the Si–O–Si group. 
The broad band at 1100 cm is also evident, which was 
assigned to the νas(Si–O–Si) asymmetric stretching of 
the siloxane group. In addition, a band around 450, 
477 cm to be precise, was also detected, which was as
cribed to the rocking vibrations of the Si–O–Si group. 
In consonance with the literature,36 the strongest 
modes, as a result of asymmetric stretching in transnu
clear siloxane rings, occurred in the frequency range of 
950–1250 cm. However, in the calcined sample, spec
trum C, only the silica bands at 1100 and 477 cm were 
present. The frequencies characteristic of fumed silica 
were absent in spectra D, E, and F, confirming its com
plete removal after the specific treatments.
  
Microscopy 
  

PICA Particles Made Using Fumed Silica: In Figure 
2, typical SEM images of (a) PICA particles prepared 
with zirconia and porogen P1 (fumed silica), and (b) 
particles after the porogenleaching step have been 
shown. It was observed that at low porogen loading, 
the primary particles were uniform spheres, with di
ameters ranging from 1.5 to 2.5 μm, which subse
quently reduced in size at higher loading. The sec
ondary particles were orderly arranged clusters of 
the primary spheres of sizes 20–35 μm. Orderliness 
was disrupted at a higher fumed silica concentration, 
and the aggregates were nebulous. Particle sphericity 
was completely lost for the aggregates that contained 
higher amounts of fumed silica. The morphology after 
the removal of the porogen presented a complicated 
arrangement of the zirconia colloids.

PICA Particles Made Using Polymeric Porogens: The 
addition of polymeric porogens (P2, P3, and P4) re
vealed a different class of morphology, where surface 
imaging alone posed a difficulty in understanding the 
effects of increasing porogen content in the starting  

Figure 1.    FTIR spectra of (A) pure zirconia, (B) pure fumed 
silica, (C) polymerinduced colloid aggregation (PICA) parti
cles containing fumed silica in the zirconia:fumed silica mo
lar ratio of 4:1, (D) the PICA particles treated thrice with 3M 
NaOH solution, (E) the PICA particles treated with 4.95% HF 
solution, and (F) the PICA particles treated with ethylene–gly
col–NaOH solution. 
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zirconia sol mixture on the final sintered particles. 
Combined SEM images of this genre of particles at var
ious magnifications have been shown in Figures 3a–
d. At very low ratios of zirconia and porogen (8:1 and 
6:1), the aggregates showed evidence of the formation 
of distorted spherical particles (SEM not shown in the 
results), which is a characteristic of PICA experiments. 
However, for higher ratios like 4:1, 2:1, and 1:1, SEM 
imaging was not very effective in distinguishing the 
changes in the morphologies. In general, all the higher 
porogen ratios showed sintered aggregates with sizes 
ranging from four to several hundred micrometers. 
There was random distribution of both the shape and 
the size of these particles. The surface of the second
ary aggregates frequently showed a continuous dis
tribution of deep recesses and surface cracks. In addi

tion, subsurface tunnels and their interconnectedness 
were evident, as shown in some of the images taken at 
higher magnifications. Often, the widths of the surface 
recesses were observed to have dimensions similar to 
those of the porogens.

Effect of Porogens and their Concentrations 
  

Zirconia with Porogen P1, Fumed Silica: Figure 4 
shows a plot of nitrogen sorption isotherms for po
rous aggregates prepared with porogen P1 (fumed sil
ica) in varying ratios with zirconia sol. It is clear that 
the addition of porogen led to an increase in the to
tal available volume of pores in the material. The 
heights of the isotherms showed an increasing trend 
with an increase in porogen content, although the ra
tio 4:1 was an exception, where the height of the iso
therm was higher than the 2:1 ratio. The isotherms de
pict a Type-IV system with loops intermediate of H1 
and H3, indicating that the pore paths might not be cy
lindrical in shape. The abrupt increase in adsorbed ni
trogen volume toward the higher partial pressure in
dicates that the pores were large. This is confirmed by 
the pore size distribution, where the curves were in
complete due to the experimental measurement limi
tations of the sorption mechanism. Interestingly, irre
spective of the increase of the height of the isotherms, 
that is the increase in the adsorbed volume of nitrogen, 
the psd did not show a shift of curves toward larger 
pore sizes for an increased porogen content. Even the 
throat size distribution was similar for the different ra
tios. This can only be possible when there is minimal 
intraporogen association to form larger porogen bod
ies, around which the zirconia colloid may associate 
and construct the pore wall. In this case, the porogens 
were distributed as individual entities and thereby of
fered a greater number of pores of the same size range 
throughout the sample.
  

Zirconia with Porogen P2, ME48040M2: Figure 5 
shows the effect of concentration of the porogen P2 on 
sorption isotherms and pore/throat size distributions. 
It is clearly seen that increased porogen led to an in
crease in the height of the adsorption/desorption iso
therms systematically, although there was not a sig
nificant difference among the peaks. In addition, the 
width of the hysteresis loop, which is predominantly 
Type-IV H1–H3, decreased and the isotherms shifted 
toward the higher partial pressure. This behavior sig
nifies that the pores have been enlarged. The inset psd 

Figure 2.    Representative scanning electron microscopic im
ages of zirconia aggregates prepared from porogen P1 (fumed 
silica) with 40% zirconia sol. (a) Shows aggregate morphology 
after porogen addition; (b) shows morphology after leaching 
of fumed silica using 3M NaOH. 
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and tsd plots also confirm the increase in sizes of pores 
and throats. The heights of pore and throat peaks have 
continuously decreased for the increasing porogen 
content. Distinctively, the pore and throat peaks have 
shifted toward the right, with pore peaks at 45, 75, and 

90 nm and throat peaks at 30, 37, and 42 nm. Theoret
ically, the shifting trend may be attributed to an in
traporogen association, around which colloid particles 
associate, and pore wall thinning, which were quite 
absent for the case with fumed silica.

Figure 3. Scanning electron microscopic images a–d, at various magnifications, showing the typical genre of sintered zirconia ag
gregates prepared using polymeric porogens P2 (ME48040M2), P3 (ME98040M1), and P4 (ME09730). 

Figure 4. Adsorption/desorption isotherms and pore/throat 
volume distributions for sintered zirconia particles made us
ing porogen P1 (fumed silica). Each ratio was repeated in trip
licate. BETs for a ratio were similar, and a representative BET 
has been shown. 

Figure 5. Adsorption/desorption isotherms and pore/throat 
volume distributions for sintered zirconia particles made us
ing porogen P2 (ME48040M2). Each ratio was repeated in trip
licate. BETs for a ratio were similar, and a representative BET 
has been shown.
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Zirconia with Porogen P3, ME98040M1: Figure 6 
shows nitrogen sorption results for zirconia particles 
prepared with porogen P3. The observations about the 
isotherms and the shift in pore and throat dimensions 
toward the higher range with increasing porogen load
ing may be explained in a similar manner as above, for 
porogen P2. The pore distribution curves calculated 
from the adsorption branch showed incomplete curves 
for pore sizes beyond 100 nm, indicating the possibil
ity of larger pores.

Zirconia with Porogen P4, ME09730: Figure 7 shows 
adsorption/desorption isotherms and the calculated 
pore and throat size distributions for zirconia with 
porogen P4. The height of the isotherms increased 
with an increase in porogen loading. However, com
pared with the heights obtained for porogens P1, P2, 
and P3, these isotherms are significantly lower. This 
indicates that the contribution of pores in the range 
10–100 nm was less. The isotherms are TypeIV, with 
abrupt termination at the higher partial pressure. 
The pore size distribution obtained from the adsorp
tion isotherm is very broad and incomplete at the 
higher size range. The distributions also show that 
within the 10–100 nm range, the height of the curve 
increased with an increase in porogen loading, which 
signifies that although the basic pore size has not in
creased, the number of pores in that size class has 
increased.
 
Comparative Analysis of the Porogens—N2 Sorption 

Figure 8 shows a comparative study of sorption 
isotherms and PSDs/TSDs. The samples selected for 
study had the optimum zirconia to porogen ratios for 
the respective porogens. Each of these ratios produced 
the highest isotherm in its porogen category. The iso
therms suggest that porogen P1 had the highest peak 
with the possibility of micropores. The pore distribu
tion was broad, starting from the 10 nm range. Poro
gen P4 produced the shortest isotherm. It had a broad 
and flatter pore size distribution in the 10–100 nm 

Figure 6. Adsorption/desorption isotherms and pore/throat 
volume distributions for sintered zirconia particles made us
ing porogen P3 (ME98040M1). Each ratio was repeated in trip
licate. BETs for a ratio were similar, and a representative BET 
has been shown. 

Figure 7. Adsorption/desorption isotherms and pore/throat 
volume distributions for sintered zirconia particles made us
ing porogen P4 (ME09730). Each ratio was repeated in tripli
cate. BETs for a ratio were similar, and a representative BET 
has been shown.

Figure 8.    Comparative adsorption/desorption isotherms and 
pore/throat volume distributions for zirconia particles pre
pared from the four different porogens for some optimum ra
tios of zirconia sol and porogen.
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range. However, the throat size distribution was nar
row. The other two porogens, P2 and P3, had charac
teristics intermediate of those obtained in the cases of 
P1 and P4. All four pore distribution curves were in
complete beyond the 110 nm size limit, indicating the 
presence of larger pore chambers, undetected by the 
present gas sorption mechanism. Table II presents var
ious results from the N2 sorptometry and mercury po
rosimetry of the samples.

Comparative Analysis of the Porogens—Mercury 
Porosimetry 

The incomplete pore size distributions obtained 
from the adsorption isotherms necessitated further 
analysis of the aboveselected samples through mer
cury porosimetry. As is customary, the mercury in
trusion process analogously depicts the nitrogen de
sorption, and the extrusion process resembles the 
adsorption process. Figures 9a and b respectively show 

the mercury extrusion and intrusion pictures. The in
trusion process showed that all the samples had throat 
sizes between 20 and 90 nm, except for the sample 
made using P4, which showed a bimodal distribution. 
The second peak occurred between 100 and 1000 nm, 
with a peak at around 600 nm. The extrusion process 
revealed that porogen P1 produced a closespaced bi
modal chamber size distribution with peaks, respec
tively, at 90 and 104 nm. Porogens P2 and P3 both gave 
narrow unimodal pore size distributions with peaks 
at 110 and 150 nm, respectively. The porogen P4 pro
duced a bimodal distribution having a narrow peak 
at 110 nm and a broad distribution between 600 and 
3500 nm, with a peak at 1070 nm. Furthermore, it was 
observed that while porogen P1 predominantly pro
duced smaller pores and throats, the porogens P2 and 
P3 produced larger ones, probably owing to the differ
ent sizes of these porogens. And finally, porogen P4 
produced a hierarchical network having, distinctively, 
two size classes. The apparent shift of peaks toward  

Table II. Nitrogen Sorptometry and Mercury Porosimetry Data of PICA Samples 

Sample                      SBET              VTotal, BET          DBET(A)              DBET(D)          DBJH(A)         DBJH(D)          STotal, Hg          VTotal, Hg

                                 (m2/g)               (mL/g)              (nm)                 (nm)             (nm)             (nm)              (m2/g)            (mL/g)

PICA method 

  ZrO2 (20% sol) 32.73 0.2139 24.56 24.79 27.79 22.20 — —

PICA with P1 

  ZrO2:P1=4:1 32.82 0.2165 17.46 23.71 29.99 29.41 — —

  ZrO2:P1=2:1 20.52 0.1377 14.55 22.31 30.84 31.79 — —

  ZrO2:P1=1:1 51.03 0.4266 16.54 31.62 31.43 33.52 50.84 0.5146

PICA with P2 

  ZrO2:P2=4:1 31.51 0.2600 24.77 31.54 35.87 30.13 — —

  ZrO2:P2=2:1 33.50 0.2644 21.20 33.53 37.66 35.75 34.15 0.3493

  ZrO2:P2=1:1 33.04 0.3104 16.53 34.43 39.35 39.76 35.59 0.4259

PICA with P3 

  ZrO2:P3=4:1 34.25 0.2780 26.05 31.03 36.31 29.65 — —

  ZrO2:P3=2:1 31.97 0.2700 19.59 30.57 36.54 35.22 34.78 0.3627

  ZrO2:P3=1:1 32.01 0.2553 16.92 28.63 34.41 36.09 31.76 0.4630

PICA with P4 

  ZrO2:P4=4:1 25.46 0.1644 19.13 23.75 29.53 27.47 — —

  ZrO2:P4=2:1 26.33 0.1834 17.04 25.87 30.42 28.45 24.42 0.5049

S BET, multipoint BET surface area by nitrogen sorptometry; VTotal,BET, single point total pore volume of pores at P/Po ≈ 0.995; DBET(A), average ad-
sorption pore diameter calculated by the BET method at P/P0 ≈ 0.975; DBET(D), average desorption pore diameter calculated by the BET method at 
P/P0 ≈ 0.975; DBJH(A), BJH method adsorption pore diameter; DBJH(D), BJH method desorption pore diameter; STotal, Hg, mercury intrusion surface 
area; VTotal, Hg, mercury intrusion volume; PICA, polymer-induced colloid aggregation. 
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higher sizes may be correlated with the size of the po
rogen used. While P1, P2, and P3 had nominal sizes of 
175, 300, and 700 nm, the shift in peaks can be substan
tiated based on the porogen size. However, the appli
cability of this thumbrule breaks down while com
paring the distributions for porogen P4, which has a 
particle diameter of just 150 nm. Thus, other physical 
phenomena may have to be considered, for instance 
the intraporogen association around which colloids ag
gregate, pore structural deformation and pore body 
enlargement during porogen removal, and so forth. In 
addition, it may be hypothesized with confidence that 
the physicochemical properties of the porogens also 
played a crucial part in imparting the final structure. 

For instance, with reference to Table I, the very low 
melting points of porogens P2 and P3 made them ame
nable to structural deformation within, and also to the 
zirconia colloids surrounding them, at the very onset 
of the heat treatment. Any positive effects of intrapor
ogen association were thus subdued and the pore sizes 
remained low. However, porogen P3 was at the advan
tage, owing to its higher melting point, and it provided 
enough support to the damp colloid structure during 
the initial drying phases.

Model-Predicted Parameters 

The following subsections discuss the parameters 
obtained from the modeling of nitrogen adsorption/
desorption and mercury porosimetry data. All the 
parametric values and sample identifiers have been re
ported in Table III. Appendix A presents the rationale 
and application of the model in brief.

  Sample A, PICA-20%: Figure 10 shows experimental 
and model convergence curves for N2 adsorption/de
sorption data for PICA particles made from only 20% 
sol. From Table III, it is obvious that
• The high CBET (= 268) value indicates a significant 

presence of micropores; however, the Ds (2.0277) 
value close to 2 suggests a rather homogeneous ma
terial construction. The s value calculated by the re
lation 3/(3 − Ds) is 3.0854.

• The sizes of throats (μb=3.9 nm) are clearly greater 
than the pores (μs = 3.1 nm), and the aspect ratio 
(μs/μb = 0.7843) indicates that the pore pathways 
are conical, or rather, inkbottle shaped.

• The pores do not represent capillaries (βs=1.64), 
and may be a slit type of high angular porosity 
(ns=3.77).

• Very narrow pore (σs/μs = 0.08) and throat (σb/μb = 
0.04) size distributions exist.

• The pore network is moderately connected (qbc0 = 
0.1778, λbc0=3.5736), and the Bethe coordination 
number is small (ZBethe = 6.6).

  
Sample B, PICA-P1-1:1: Figures 11a and b show con

vergence curves for PICAP11:1. The pore and throat 
size distributions (see Figures 4 or 8 and 9) are uni
modal, and no secondary drainage/desorption curves 
are present. The material is inhomogeneous, bearing 
rough surfaces and micropores. Throats are smaller 
than the pores, with narrow pore and throat size dis
tributions. The pores do not represent capillaries and 

Figure 9. (a, b) Mercury intrusion/extrusion results for poly
merinduced colloid aggregation particles made from four dif
ferent porogens.
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may be slit or platetype of a highpore angular
ity. Figures 4 and 8 support this fact, as the isotherms 
abruptly increase at the higher partial pressure range. 
A moderately connected pore network and a small 
Bethe coordination number is found.

Sample C, PICA-P2-1:1: Figures 12a and b show con
vergence curves for PICAP21:1. The psd and tsd (see 
Figures 5 or 8 and 9) are unimodal. Micropores are 
present; the material is inhomogeneous in construc
tion; throat sizes are smaller than the pores, with nar
row pore and throat size distributions; a moderately 

connected pore network with a low coordination num
ber and a comparatively large Bethe coordination 
number is found.

Sample D, PICA-P3-1:1: Figures 13a and b show con
vergence curves for PICAP31:1. The psd and tsd (see 
Figures 6 or 8 and 9) are unimodal. A large quantity of 
micropores are present in a rather homogeneous struc
ture (Ds = 2.0597). The aspect ratio of pores to throats is 
>1; the throat radius distribution is very narrow com
pared with that of the pores; the pore network is mod
erately connected, with low coordination numbers.

Table III.  Model-Predicted Parameter Values and Sample Identifiers 

Parameter                    Sample A                   Sample B          Sample C                Sample D          Sample E

CBET  267.94 284.97 283.10 275.02 294.39

Ds  2.0277 2.2414 2.4437 2.0597 2.0287

s  3.0854 3.9546 5.3927 3.1905 3.0886

μS (nm) 3.1006 3.0668 3.1351 3.3186 1.6850

σS (nm) 0.2664 0.7293 0.6466 0.5674 0.9961

σS/μS 0.0859 0.2378 0.2062 0.1708 0.5911

ns  3.7781 4.0565 5.5807 4.6375 7.8500

βs 1.6359 1.5738 1.6349 1.5918 1.6929

μb (nm) 3.9530 2.7297 2.4405 4.5179 2.7447

σb (nm) 0.1726 0.6826 0.7113 0.1117 12.0025

σb/μb 0.0436 0.2501 0.2915 0.0247 4.3729

ai      0.0983

bi      0.7379

qbci      0.2646

λbci     0.7852

a0  16.6217 21.799 −0.7828 15.1430 171.687

b0  0.8502 0.8914 0.1461 1.2497 4.5324

qbc0  0.1778 0.1773 0.1016 0.2444 0.4362

λbc0 3.5736 3.8401 1.1065 2.3170 1.6812

μS/μb 0.7843 1.1235 1.2846 0.7345 0.6139

ZBethe  6.62 6.64 10.84 5.09 3.29

Sample identifiers
Sample# A: PICA-20% (Without porogens)

Sample# B: PICA-P1-1:1 P1=Fumed silica

Sample# C: PICA-P2-1:1 P2=ME48040M2

Sample# D: PICA-P3-1:1 P3=ME98040M1

Sample# E: PICA-P4-2:1 P4=ME09730

PICA, polymer-induced colloid aggregation. 
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Sample E, PICA-P4-2:1: Figures 14a and b show con
vergence curves for PICAP42:1. The psd and tsd (see 
Figures 7 or 8 and 9) are bimodal (secondary drainage 

curves are present). However, for simplicity in calcu
lations, the pores were modeled using a unimodal size 
distribution function. The sample is homogeneous in 
structure, having probably the largest quantity of mi
cropores. The aspect ratio of pores to throats is less 
than one, with a narrow pore radius distribution and 
a very broad throat radius distribution, a moderately 
connected pore network, no strong c–ttype correlation 
(λbc0 = 1.6812, λbci = 0.7852), and a low Bethe coordina
tion number (ZBethe = 3.2).

Discrepancy between Actual and Model-Predicted 
Values 

The present method produces narrower pore and 
throatradius distributions with lower mean values 
compared with pore (or throat) size estimates avail
able from the classical tubebundle model. The rea
sons established for this discrepancy are as follows: 
(1) The volume of the pore or throat does not include 

Figure 10. Experimental and modelpredicted adsorption/de
sorption curves for Sample A, polymerinduced colloid aggre
gation particles made from 20% zirconia sol.

Figure 11. Experimental and modelpredicted curves for Sam
ple B, polymerinduced colloid aggregation (PICA) particles 
made with fumed silica in the ratio of 1:1 (PICAP11:1). (a) 
Adsorption/desorption; (b) mercury intrusion.

Figure 12. Experimental and modelpredicted curves for Sam
ple C, polymerinduced colloid aggregation (PICA) parti
cles made with microcrystalline wax–ME48040M2 in the ratio 
of 1:1 (PICAP21:1): (a) Adsorption/desorption; (b) mercury 
intrusion. 
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the volume contained in the pore cusps; thus a signif
icant portion of pore or throat volume remains unac
counted for in the calculation of pore or throat sizes. 
To illustrate this situation better, a closer look at the 
pore or throat chamber construction might be help
ful (Figures 15a and b). In Figure 15a, if the inside of 
the chamber can be described well by a regular poly
gon, then the effective chamber radius calculated by 
the present methodology is equal to the radius of the 
inscribed circle in the polygon. A major volume (rep
resented by shaded area in the figure) remains disre
garded in model calculations. However, as was true 
with most of the samples analyzed in this report, the 
porenetwork system was predominantly constituted 
of slit- or plate-shaped channels βs < 2) (Figures 15c–e 
for types of pores). The crosssection of such a chan
nel might look similar to Figure 15b. The volume en
compassed by such a system might be enormous, as 
determined by the classical tubebundle model; how

ever, the true radius calculated from the present model 
is significantly smaller (represented by the inscribed 
blank circle). This radius signifies the size of the largest 
particle of regular dimension that can pass through the 
channel unhindered. Interestingly, in Figure 15b, two 
such blank circles may be fitted side-by-side within 
the pore or throat crosssection. Nevertheless, the ef
fective radius of the pore system will remain unaf
fected, signifying that the mass flux through the cross-
section may be higher in Figure 15b as compared with 
Figure 15a, and only objects smaller than this radius 
can pass through. (2) For samples that revealed sorp
tion isotherms of Type-IV and intermediate of H1 and 
H3, the abrupt volume change toward the higher par
tial pressure gave rise to model incompatibility, and 
therefore, the simulation was not free from unambig
uous results. Additionally, the adsorption branch often 
led to smaller pore values compared with the desorp
tion branch. This defect was apparent for materials 

Figure 14. (a) Experimental and modelpredicted curves for 
Sample E, polymerinduced colloid aggregation (PICA) par
ticles made with microcrystalline wax–ME09730 in the ratio 
of 2:1 (PICAP42:1): (a) adsorption/desorption; (b) mercury 
intrusion.

Figure 13. (a) Experimental and modelpredicted curves for 
Sample D, polymerinduced colloid aggregation (PICA) parti
cles made with microcrystalline wax–ME98040M1 in the ratio 
of 1:1 (PICAP31:1): (a) adsorption/desorption; (b) mercury 
intrusion. 
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having mesopores, as the nitrogen sorption method 
works well only for pore or throat diameters <100 nm. 
The PSDs for these samples revealed that the distri
butions were abruptly incomplete beyond the highest 
peak of the distribution curves (pore diameters beyond 
100 nm). (3) For the calculation of pore sizes, only the 
adsorption branch was de-convoluted. However, most 
of the samples had pore dimensions that were beyond 
the range of determination by sorption, and some sam
ples had a bimodal distribution, too. The correspond
ing mercury extrusion curves showed the true picture 
of poresize distribution. Thus, the estimated pore val
ues were smaller than the probable true values. (4) The 
discrepancy observed over the lowpressure region of 
mercury intrusion, where the experimental curve did 
not merge with the modelpredicted one, can be at
tributed to surface pores that were accessible through 
large throats. The entire pore structure may be hetero
geneous, consisting of a uniform network of fine pores 
surrounded by a thin layer of large pores. Therefore, a 
bimodal pore or throat size distribution and a compos
ite accessibility function might have helped in better 
estimating the parameters.37 However, because of the 
complex nature of the present model, where the num
ber of unknown variables is large, the introduction of 
a bimodal function in the model would have involved 

additional variables, and parameter estimation would 
have become more complicated. To maintain the user
friendliness of this model, all samples were assumed 
to be unimodal. (5) The present model is very sensitive 
to the choice of initial values for the variables and also 
to the degree of accuracy of values desired. The SSR 
minimization produces more than one set of optimum 
parameter values; thus, the selection of initial values is 
crucial. Finally, inherent limitations of any simple geo
metric pore model restrict the precise determination of 
complex pore structures.

  
Summary

Our present study suggests that the optimum ra
tio of zirconia and porogen is largely decided by the 
hydrodynamic size of the porogen, the physical and 
chemical properties of the porogens, the selfassocia
tive properties of the porogens, the concentration of 
the sol, and the concentrations of urea and formalde
hyde. Also, it is revealed that the shapes of pores for 
all the experiments in this study were nearcylindrical 
or slit types, debarring a few exceptions, in which ei
ther the zirconia sol content was too low or the poro
gen loading was too high. While porogens fumed sil

Figure 15. (a) Equivalent chamber radius in a cylindrical pore or throat; (b) Equivalent chamber radius in a slit- or plate-type 
channel; Types of pores: (c) cylindrical, (d) conical/inkbottleshaped, (e) slit or platetype.
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ica and MCW could only produce pores in the range 
of 100–200 nm, the polyethylene emulsion avoided this 
limitation and produced distinct, hierarchically sized 
pores in the ranges 10–110 and 600–3000 nm, owing 
to its higher melting point and irrespective of its small 
porogen size. Thus, depending on the pore size re
quirement, a suitable porogen may be chosen for syn
thesizing porous zirconia supports.
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Appendix A
  
I Pore Network Modeling—Mathematical Preliminaries 

A modeling exercise was performed on some select 
samples based on the application of a recently formulated 

porenetwork modeling methodology37–39 to produce only 
one set of geometrical and topological parameters. This 
model suitably applies to porous systems comprised of 
sintered materials, palletized materials, and agglomerates 
that exhibit cusps rather than microroughness along pore 
walls. The original work was done by Tsakiroglou et al.38 
in an ATHENA visual workbench software environment, 
which involved a rigorous iterative simulation on experi
mental sorption and porosimetry data in order to match 
experimental curves with analytical curves derived from 
the model. This report performs a similar modeling in a 
MATLAB 6 environment. In addition, the present study 
also takes into account the effect of surface fractal dimen
sion on the shape determination of sorption isotherms 
(s, a key shape-determining factor in the Frenkel–Hals
ley–Hill (FHH) equation), something that was consid
ered constant (s = 2) in the previous work. The model was 
evaluated assuming uncorrelated and c–tcorrelated net
works only. The foregoing sections briefly discuss the var
ious parameters involved in the model and their physical 
significance.

  
Surface Fractal Dimension (Ds ): The fractal dimension de

scribes how an object fills its space,40 or measures the sur
face roughness,41,42 and heterogeneity or irregularity.42 Ac
cording to Eucledian geometry, Ds = 0 represents a point;  
Ds = 1 represents a curve; Ds = 2 represents a surface; and  
Ds = 3 represents a volume. A higher Ds value corresponds 
to a rougher surface. Generally, fractal dimension values 
lie between 2 and 3. Usually, Ds is determined from the 
adsorption data by FHH, the Pfeifer–Avnir or the thermo
dynamic method proposed by Neimark,43 or from mer
cury intrusion data.44 This report uses the Neimark’s ther
modynamic method. The average fractal dimension in the 
pore size range of 2–60 nm (region of linearity) was found 
for all the samples. The main equation of this method is 
S(P/P0) ∝ ac(P/P0)2 – Ds, where S(P/P0) is the surface area 
for a given value of relative pressure (P/P0), P0 the nitro
gen saturation pressure, and ac the mean curvature radius 
at P/P0. The surface area of the film is calculated using 
the Kiselev integral equation,40 S(P/P0) = (RT/γ) ∫V

N
(
m
P
a
/ 
x 
P0) 

ln(P/P0)dN where Nmax denotes the amount of adsorbate 
when P/P0 tends toward unity and γ is the surface tension 
of the liquid adsorbate (nitrogen), R the gas constant, and 
T the temperature (in Kelvin). The Kelvin equation is used 
to calculate the mean radius at a partial pressure ac(P/P0) 
= (2γVm)/{RT ln(P/P0)}, where Vm is the molecular vol
ume of the adsorbate. The plot of log S(P/P0) vs. log ac(P/
P0) is a straight line in the fractal region with a 2 − Ds slope 
value, from which the Ds was finally calculated by mini
mizing the sum square error of the surface area.
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  The FHH exponent, s: The FHH equation is considered as 
a shapecharacterizing parameter for sorption isotherms 
in the multilayer region, similar to the CBET constant in 
the monolayer region. For flat surfaces, the FHH equation 
reads as  θ ∝ [ln(P0/P)]–1/s, where θ is the adsorbed quan
tity. The generalized version of the fractal FHH equation 
proposed by Pfeifer is  θ ∝ [ln(P0/P)]–1/m, where m = s/(3 
− Ds). When s = 3, this equation is called the fractal FHH 
equation and it is valid only at the early stages of the mul
tilayer formation, where nonretarded van der Walls inter
actions hold valid. The literature45–47 cites exhaustive dis
cussions on the regimes of applicability of the generalized 
FHH equation, case studies for different values of m, the 
dependence of m on surface fractal property, and the mi
croporosity and the chemical nature of the adsorbent. As 
a fact, mesoporosity decreases the FHH exponent, and mi
croporosity increases it. For adsorption dominated by cap
illary condensation in materials devoid of micropores, m is 
calculated as m = 1/(3−Ds). When solid–gas potential con
trols adsorption, m is derived as m =  s/(3−Ds). The high 
CBET for all the samples necessitated the consideration of 
the effect of the presence of micropores. CBET is a constant 
reflecting the overall free energy of adsorption and the 
chemical affinity of the adsorbate for the adsorbent.47 For 
the sake of simplicity and uniformity in the analysis of all 
the samples, the s was assumed to be equal to 3. The origi
nal FHH parameter s in the determination of the thickness 
of the adsorbed layer,38 tc = σ[{b/b/ ln(1/x)}](1/s), was re
placed with m, where m = (s = 3)/(3−Ds).
  

The Pore (Chamber or Site) and Throat (Bond) Size Dis-
tributions: The very first assumption of this model is that 
the pores and throats are distributed randomly (uncorre
lated networks) or nonrandomly (correlated networks) as 
a probabilistic function of the lognormal distribution of the 
forms for sites and bonds, respectively, as 

and  

where r is the critical chamber radius at a given saturation 
pressure.

μs, μb is the mean value of the pore/throat size distri
bution. It indicates where the peak of the density occurs; 
σs,σb is the standard deviation of the pore/throat size dis
tribution. It indicates the girth or spread of the probabil
ity distribution curve; μs/μb is the mean aspect ratio of the 
poretothroat radius. An aspect ratio of 1 may mean cy
lindrical or parallelepiped pores; (σs/μs), (σb/μb) measures 

the narrowness or broadness of the pore (or throat) radius 
distribution.

  
Pore and Throat Volumes: The throats are narrow con

strictions without any volume, and the entire chamber vol
ume is estimated by Vs(r) ∝ rβs, where βs is the pore vol
ume exponent or the volume shape factor. Necessarily, βs 
≥ 0. βs = 2.0 represents long capillaries of identical shape, 
whereas βs = 3.0 indicates pores formed between intercon
necting spherical particles. Importantly, for all the samples 
analyzed in this report, βs values were in the range 1.55–
1.70, which may be indicative of slit or platetype pores. 
This conclusion is corroborated by the nature of the nitro
gen adsorption/desorption curves, which were TypeIV 
but intermediate-type H1 and H3. As a first hand guess, βs 
was set to 2 for the model.

  
Pore wall Geometry: Theoretically, the pore walls may 

be modeled with an imaginary highorder regular poly
gon having ns sides, where each side may be considered 
a tangent to the constituting adjacent particles. It is re
garded as a measure of the pore wall angularity (or frac
tion of porosity belonging to pore edges) rather than as 
an accurate geometrical representation of the pore shape. 
From a geometrical point of view, three sides are neces
sary to construct a polygon, so ns ≥ 3 is a physical con
straint. A value of ns close to 3 indicates a high angular 
porosity. At an infinite value of ns, the pore wall cross
section is circular.
  

The N2 Adsorption/Desorption Models: The Kelvin equa
tion estimates the curvature radius of the vapor/liquid me
nisci of the condensate, rc, rc = (2VL

0 γLG)/{RT ln(1/x)}. Fi
nally, the liquid nitrogen saturation in the pore network as 
a function of relative vapor pressure is expressed in the in
tegral form as 

  
The Mercury Intrusion Model: Mercury imbibition into 

pores is analogous to drainage from capillaries due to 
evaporation, and is controlled by throat sizes. This process 
is similar to primary desorption, such that qsi = 0. The criti
cal radius of curvature of mercury intrusion at a given cap
illary pressure (Pc) is rc = γHg/Pc . The mercury saturation 
in pore networks as a function of capillary pressures is ex
pressed in the integral form as 
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The Accessibility Function: The accessibility function be
low, which represents a sigmoid curve, includes pore–
space topology and spatial pore–size correlation informa
tion for the primary drainage Ys0 and secondary desorption 
Ysi.

where q0
si = 0 is the initial fraction of sites occupied by the 

nonwetting phase. For the model, it has been assumed that 
q0

si = 0 for primary drainage and desorption, and q0
si =  qsi  

for secondary desorption, initiating before the completion 
of adsorption.

ai , a0 is the proexponential factor involved in the acces
sibility function. Subscript “0” denotes the case with pri
mary drainage or imbibition, and “i” for secondary; bi, b0 
is the exponent involved in secondary/primary accessibil
ity function.

The accessibility function also gives quantitative mea
sures of two parameters: (1) the percolation threshold, qb = 
qbci, which corresponds to the inflection point of the curve 
(d 2Ysi/dq2

b)qb = qbci
 = 0; and (2) the slope of the accessibility 

function at the percolation threshold, λbci. These two pa
rameters are obtained from the simultaneous numeri
cal solution of the following three relations: 

qbc0, qbci is the bond percolation threshold in sec
ondary or primary drainage. It is the smallest value at 
which spanning paths suddenly emerge and transform 
a random disconnected network to a connected one. 
Values of qbc0 (or qbci) close to 0 may be interpreted as 
indicative of wellconnected pores. Additionally, the 
qbc0 (or qbci) value is further used to estimate the coor
dination number (ZBethe) in a Bethe lattice48 as qbc0 = 1/
(ZBethe − 1).

λbc0, λbci is the slope of the primary/secondary ac
cessibility function at the percolation threshold. A high 
value indicates a high mean coordination number of 
throats to pores.

Interconnectedness of a0 , b0 , qbc0 , λbc0 : For a system 
of parallel pores of infinite connectivity, qbc0 tends to 0 
and λbc0 tends to infinity (or a0 tends to −1 and b0 tends 
to 0).37 A similar interpretation also holds for the sec
ondary desorption parameters of ai, bi, qbci, and λbci.
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