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ABSTRACT

Code-coverage-based test data adequacy criteria typically
treat all code components as equal. In practice, however,
the probability that a test case can expose a fault in a code
component varies: some faults are more easily revealed than
others. Thus, researchers have suggested that if we could es-
timate the probability that a fault in a code component will
cause a failure, we could use this estimate to determine the
number of executions of a component that are required to
achieve a certain level of confidence in that component’s cor-
rectness. This estimate, in turn, could be used to improve
the fault-detection effectiveness of test suites. Although this
suggestion is intriguing, no empirical studies have directly
examined it. We therefore conducted an experiment to in-
vestigate the effects of incorporating an estimate of fault ex-
posure probability into the statement coverage test data ad-
equacy criterion. The results highlight several cost-benefits
tradeoffs with respect to the incorporation of the estimate.

1. INTRODUCTION

Test data adequacy criteria are measures used to evaluate
whether a set of test data is sufficient, and guide testers in
the generation of test cases. Code-coverage-based test data
adequacy criteria measure adequacy in terms of coverage of
source code components, such as statements, decisions, or
definition-use interactions, requiring that each component
be exercised by at least one test case. These criteria have
been the subject of a great deal of research and experimen-
tation (e.g. [1; 9; 14]).

Code-coverage-based test data adequacy criteria typically
treat all code components as equal: they assume that one
test case exercising each component is sufficient. In practice
this assumption is unrealistic. The probability that a test
case can expose a fault in a code component varies with
several factors, including whether the test case executes the
component, whether it causes the fault to create a change
in program state, and whether it causes that change in state
to propagate to output [4; 5; 11; 15; 17; 18].
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Several researchers have therefore conjectured that if we
could estimate the probability that a fault in a code com-
ponent will cause a failure, we could use this estimate to
improve the fault-detection effectiveness of code-coverage-
based testing [4; 5; 7; 16; 18]. For example, an estimate of
the probability that a fault in a component will cause a fail-
ure could be coupled with an overall “confidence” require-
ment to estimate the number of executions of the component
that are necessary to achieve a certain probability of that
component’s correctness [5; 7; 18].

This suggestion is intriguing; however, in our search of the
research literature, we could discover no empirical studies
that have directly assessed it. Voas [18] reports results of a
study assessing the correlation between PIE (propagation,
infection, and execution) analysis sensitivity estimates and
failures observed in random testing. Goradia [4] reports re-
sults of a study in which an estimate of fault propagation
probability is assessed for correlation with actual fault ex-
posure data. Neither of these studies, however, examined
the effects of directly incorporating such estimates into test
data adequacy criteria.

If the conjecture that fault exposure probability estimates
could be used to improve the fault-detection effectiveness of
code-coverage-based testing could be supported, this would
motivate further research on cost-effective techniques for ob-
taining such estimates, and on techniques for incorporating
such estimates into testing. If successful, such research could
help testers distribute testing resources more effectively and
improve the quality of testing.

We therefore conducted an experiment to investigate the ef-
fects of incorporating an estimate of fault exposure probabil-
ity (which we refer to as a fault exposure potential estimate)
into the statement coverage test data adequacy criterion.
Our results indicate that the incorporation of such an es-
timate into that criterion can improve the fault-detection
effectiveness of test suites that meet the criterion; however,
the effects of incorporating the estimate vary with the pro-
gram under test, the nature of the faults contained in the
program, and the level of confidence required of the test-
ing. Our results highlight several interesting cost-benefits
tradeoffs with respect to the incorporation of the estimate.



2. PRELIMINARIES
2.1 Fault Exposure and Test Adequacy

The related notions that some faults are more easily exposed
than others and that some source code components are more
easily tested than others have been frequently addressed in
the research literature. Several researchers (see e.g. [4; 5;
7; 11; 15; 17; 18]) have proposed or investigated models of
various aspects of fault-detection phenomena. These models
in general express the probability that a test case can expose
a fault in a code component, if that component contains a
fault, as a combination of three factors: (1) whether the
test case executes the component, (2) whether it causes the
fault to create a change in program state, and (3) whether
it causes that change in state to propagate to output.’

Estimates of these factors can be combined to estimate the
probability that a fault in a code component will cause a
failure under a particular input distribution [18]. Following
suggestions by Hamlet [7] and Voas [18], we can use such
an estimate to determine the number of test cases that are
needed to obtain a certain level of confidence in the cor-
rectness of a code component, as follows. Let x be a code
component, let p; be the estimated probability that a fault
in x will cause a failure, and let ¢ be the confidence that
the failure probablity of z is less than p;. In this case, the
number of test cases hn that must be executed through x
to obtain confidence level ¢ is given by the equation:

_ In(l—¢)
hn = m (1)

For practical purposes two special cases involving equation
(1) should be considered. First, p; may be estimated as 0 or
1, in which case the value of hn is undefined. In this case, a
prudent choice for hAn (since p; is an estimate) is 1. Second,
for values of p; between 0 and 1, hn may have a fractional
value. In this case hn may be a non-integer and, to retain
the required level of confidence, must be rounded up.

The application of equation (1) (with the two adaptions just
outlined) to a set of code components at a given level of
confidence defines a set of hit numbers, one for each compo-
nent. These hit numbers specify the number of executions of
each component that are necessary to achieve the required
confidence in the correctness of that component. A code-
coverage-based test data adequacy criterion incorporating
estimates of the probability that a fault in a code compo-
nent will cause a failure can be realized by requiring that
each component be exercised by a number of test cases equal
to or exceeding its hit number. In theory, such a criterion
could be defined in terms of various types of code compo-
nents, including statements, decisions, or data dependencies,
provided that (1) coverage of that component can be mea-
sured, (2) the notion of what it means for such a component
to contain a fault can be defined, and (3) appropriate esti-
mates of the probability that a fault in that component will
cause a failure can be obtained. In this work, we focus on the
use of individual program statements as components, due to
the relative simplicity of that approach and the availability
of tools and estimates that operate at that level.

' A related issue involves the probability that a component
contains a fault (e.g. [10]); we do not address that issue.
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Figure 1: Hit number versus confidence level for four
fault exposure probabilities.

To provide a sense of the requirements of such a test ad-
equacy criterion, Figure 1 depicts the relationship among
fault exposure probability estimates, confidence levels, and
hit numbers. The figure shows, for four fault exposure prob-
ability estimates (0.1, 0.2, 0.4, 0.8) the hit numbers required
to achieve various confidence levels. The figure indicates
that for a given fault exposure probability estimate, as con-
fidence level increases, hit number increases, and that the
rate of increase accelerates. In other words, at high levels of
confidence, obtaining an increase in confidence level requires
a much larger boost in hit numbers than is required to ob-
tain the same increase in confidence level at low levels of
confidence. The figure also shows that when fault exposure
probability is low, the hit number required to achieve high
confidence is much larger than when fault exposure proba-
bility is high.

2.2 Estimating Fault Exposing Potential
Having addressed the issues in defining code-coverage-based
test data adequacy criteria that incorporate estimates of the
probability that a fault will cause a failure, we now consider
the calculation of those estimates.

Voas [18] provides one method for performing such calcula-
tions, in the form of PIE (propagation, infection, and exe-
cution) analysis. PIE analysis assesses the probability that,
under a given input distribution, if a fault exists in code
component z, it will result in a failure. This probability,
termed the sensitivity of z, is estimated by combining inde-
pendent estimates of three probabilities: (1) the probability
that z is executed (ezecution probability), (2) the probabil-
ity that a change in x can cause a change in program state
(infection probability), and (3) the probability that a change
in state propagates to output (propagation probability). PIE
analysis uses various methods to obtain these estimates: (1)
simple code instrumentation to estimate execution proba-
bility; (2) a variant of weak mutation [8] in which syntactic
changes are applied to x and then the state after = is ex-
amined for affects to estimate infection probability; and (3)
state perturbation, in which the data state following =z is
altered and then program output is examined for differences
to estimate propagation probability.

Voas suggests that sensitivity estimates could be used in
Equation 1 to calculate the number of executions of a com-
ponent that are required to obtain a certain confidence in



that component’s correctness. For the purpose of calculating
hit numbers, however, this approach has two disadvantages.

First, by factoring in execution probabilities, sensitivity mea-
sures the probability that a fault will cause a failure relative
to an input distribution. In code-coverage-based testing,
however, we are interested in the probability that, if a test
case ezecutes a code component x containing a fault, that
fault will propagate to output. It is possible for x to have
very high [low] infection and propagation probabilities with
respect to the inputs that execute it, even though it has a
very low [high] execution probability relative to an input dis-
tribution. The incorporation of execution probabilities into
sensitivity estimates thus distorts the measure of the likeli-
hood that a given test case that reaches z will expose a fault
in . For code-coverage-based testing, a more appropriate
measure would consider only infection and propagation.

A second drawback of sensitivity in this context involves its
treatment of propagation and infection estimates. Sensitiv-
ity analysis separately calculates these estimates, and uses a
conservative approach to combine them. This approach can
overpredict the probability that an arbitrary input will ex-
pose a fault, and result in low estimates of that probability.
Such low estimates, utilized to determine hit numbers by
the process discussed in the preceding section, could yield
excessively high hit numbers.

Thus, in this work, we adopt a different estimate of the prob-
ability that a fault in code component x will cause a failure.
As in sensitivity analysis, we use mutation analysis [3; 6] to
create m mutations of . We then execute the program on a
universe of test inputs, and determine, for each test case ¢;
that executes z, the number n; of mutants exposed by that
test case. Suppose that there are k test cases that execute
z, and together, the sum of the n; (1 <1 < k) for the k test
cases equals ns. In this case the mutation analysis process
has caused x to be executed k X m times, We use this value
(k x m) to divide ns, obtaining an average value that indi-
cates, for each test case t; that executes x, the probability
that ¢; will reveal a mutant of z. We call the resulting value
the fault exposing potential (FEP) estimate for z, described
more formally by the following equation:

k
> ni

FEpP, = =L 2
mxk 2)

We call a test suite created, by the process outlined in the
preceding section to satisfy hit numbers calculated using
FEP estimates a fault-exposing-potential-coverage-adequate
(FEPC-adequate) test suite.

An issue in implementing the foregoing process involves the
handling of equivalent mutants: mutants that cannot be ex-
posed by any input to the program. In principal, we should
eliminate such mutants from consideration, because they do
not represent exposable faults; however, in practice, this is a
difficult task. Thus, another approach is to make no attempt
to distinguish the equivalent mutants, instead, treating all
mutants as faults that could potentially be exposed. FEP
estimates gathered by this approach are underestimates of
the FEP estimates that would be calculated given knowledge
of mutant equivalence. In our experimentation we deal with

over 150,000 mutants, and equivalent mutant identification
is not feasible; thus, we take this second approach.

The results of our empirical study are undoubtedly influ-
enced by our adoption of this particular estimate of the
probability that a fault will cause a failure, and in a nar-
row context, our results reflect the efficacy of this estimate.
In a wider context, however, it is important to note that
other estimates do or could exist. Goradia [4] presents one
such approach, in which impact graphs are analyzed to es-
timate propagation probabilities. Alternatively, one could
adopt Voas’ sensitivity estimate, despite the drawbacks we
have suggested of it. Another approach might make use
of constrained mutation [12], which utilizes a subset of the
full set of mutation operators. Our primary interest in this
work is not the particular estimate that we adopt, but the
question whether given such an estimate, we could use it to
create test suites that are more effective than those created
by simple code coverage criteria.

3. THE EXPERIMENT

The research questions we wished to investigate can be in-
formally stated as follows:

RQ1: Can incorporation of FEP estimates into a statement-
coverage test data adequacy criterion improve the fault-
detection effectiveness of test suites?

RQ2: How does the fault-detection effectiveness of FEPC-
adequate test suites change as confidence changes?

RQ3: How does the size of FEPC-adequate test suites change
as confidence level changes?

RQ4: Do differences in programs affect the fault-detection
effectiveness of FEPC-adequate test suites?

RQ5: Do differences in faults affect the fault-detection ef-
fectiveness of FEPC-adequate test suites?

3.1 Measures

To address our research questions we require measures of
the fault-detection effectiveness of a test suite and of test
suite size. To measure test suite size, we focus simply on
the number of test cases in the test suite.

Measuring fault-detection effectiveness is not quite as sim-
ple. Given a program and a fault set for that program, we
define the fault-detection effectiveness of a test suite for that
program as the percentage of faults in the fault set that can
be detected by that test suite. We refer to this measure of
a test suite’s effectiveness as the test suite’s efficacy. More
formally, given program P and fault set F' for P, where F
contains |F| faults, and given test suite 7', if the execution
of T on P reveals |F,| of the faults in F, the efficacy of T

for P and F is given by |‘F;‘| * 100%.

This method of measuring fault-detection effectiveness cal-
culates effectiveness relative to a fixed set of faults. This
approach also assumes that faults have equal importance,
an assumption that typically does not hold in practice. The
approach also does not differentiate between test suites that
detect faults multiple times (i.e. more than one test case in
the test suite detects the fault) and test suites that detect a
fault a single time.



Mutant Test Pool Fault
Program LOCs | Pool Size Size Pool Size
print_tokens 402 4030 4130 7
print_tokens2 483 4346 4115 10
replace 516 9622 5542 32
schedule 299 2153 2650 9
schedule2 297 2828 2710 10
tcas 138 2876 1608 41
tot_info 346 5898 1052 23
space 6218 132163 13585 38

Table 1: Experiment subjects.
3.2 Experiment Instrumentation

3.2.1 Programs

We used eight C programs as subjects (see Table 1). The
first seven programs were collected initially by researchers
at Siemens corporation for use in experiments with dataflow
and control-flow based test adequacy criteria [9]; we call
them the Siemens programs. The Siemens programs perform
a variety of tasks: tcas is an aircraft collision avoidance
system, schedule and schedule2 are priority schedulers,
tot_info computes statistics given input data, print_tokens
and print_tokens2 are lexical analyzers, and replace per-
forms pattern matching and substitution. The eighth pro-
gram, space, is an interpreter for an array definition lan-
guage (ADL) used within a large aerospace application.

3.2.2 Testpoolandtesthistory

For each of the seven Siemens programs the Siemens re-
searchers created a test pools of black-box test cases using
the category partition method and the Siemens Test Speci-
fication Language tool [13]. They then augmented this set
with manually created white-box test cases to ensure that
each exercisable statement, edge, and definition-use pair in
the base program or its control flow graph was exercised by
at least 30 test cases. This process produced test pools of
the sizes shown in Table 1.

Space has a test pool of 13,585 test cases. The first 10,000
test cases were randomly generated by Vokolos and Frankl
[19], the remaining test cases were added by authors of this
study so that most executable branches in the program?
were exercised by at least 30 test cases.

For our experiment, we considered each program P with
test pool U, we recorded, for each test case in U and each
statement in P, whether not that statement was exercised
by that test case. This information was used to create indi-
vidual test suites for the programs, as described below.

3.2.3 Mutantpool and FEP matrix

We used the Proteum mutation system [2] to obtain mu-
tant versions of our subject programs; this process produced
between several and several dozen mutations of each exe-
cutable statement in each subject program. We treat the
set of mutants for each program as the mutant pool for that
program; Figure 1 lists the size of these mutant pools. For
each program, we used its mutant pool and test pool to eval-
uate the fault exposure potential of each statement in the
program, as described in Section 2. We thereby generated
an FEP matriz for each program, which records the FEP
estimates for each executable statement in that program.

2We allowed 17 edges reachable only on malloc failures to
remain unexercised.

3.2.4 Confidencéevels

To address our research questions, we required FEPC-adequate
test suites at several confidence levels. Since confidence level
is a continuous variable, for our experiment we must sample
confidence level. Given the relationship depicted in Figure
1 in Section 2, we judged it sufficient to sample infrequently
for low confidence levels, but more frequently for higher con-
fidence levels; this led us to select confidence levels 0.1, 0.4,
0.6, 0.8, 0.9, 0.95, and 0.995.

3.2.5 Testsuites

To address our research questions we need to be able to
compare the efficacies of FEPC-adequate test suites with
the efficacies of some control group of test suites that do
not incorporate FEP estimates. However, we must be care-
ful in choosing a candidate for such a comparison, because
there are many factors that can affect a test suite’s efficacy.
To assess the effects of incorporating an estimate of fault
exposure probability into the statement-coverage adequacy
criterion, we must strictly control for those factors. Thus,
we considered three different control groups of test inputs.

Group 1: statement-coverage-adequate test suites. It
is natural to consider statement-coverage-adequate test suites
as a comparison candidate because both FEPC and statement-
coverage adequacy focus on statement execution; moreover,
FEPC adequacy yields, by definition, a statement-coverage-
adequate test suite. A problem with this approach, however,
involves test suite size. Obviously, test suite size can affect
fault-detection effectiveness, and if two test suites have dif-
ferent sizes, it is difficult to determine whether differences in
the efficacy of those test suites are due to the coverage they
obtain, or simply to their differing sizes. To assess whether
differences in efficacy are due to the use of FEPC adequacy,
we must control for size.

Group 2: random test suites. A second option involves
comparing the efficacies of FEPC-adequate test suites to the
efficacies of equivalently sized random test suites. This ap-
proach controls for the size of the test suites, and thus lets
us assess efficacy independent of test suite size. A prob-
lem with this approach, however, involves code coverage ef-
fects. FEPC-adequate test suites necessarily execute each
executable statement at least once; thus, they are statement-
coverage-adequate. Randomly selected test suites, of course,
may not be statement-coverage-adequate. Thus, if a com-
parison of FEPC-adequate to randomly selected test suites
reveals differences in efficacy, we will not be able to distin-
guish gains that might be yielded by FEPC adequacy from
those that are due simply to achieving statement coverage.

Group 3: augmented statement-coverage-adequate test
suites. Since FEPC-adequate test suites are statement-
cover-age-adequate, we can construct an FEPC-adequate
test suite by first constructing a minimal statement-coverage-
adequate test suite T,® and then greedily selecting test cases
from the test pool, adding them to the suites if they cover
additional hit number requirements, until the hit number

3Use of minimal test suites eliminates another threat to
validity: the initial statement-coverage-adequate test suite
might itself be an “over-qualified” FEPC-adequate test
suite. In that case, our comparison would not let us judge
whether FEPC adequacy affects efficacy.



requirements of every executable statement (for the confi-
dence level of interest) are satisfied. We can then construct
a second, control test suite, by beginning with T%, and ran-
domly adding test cases to Ty without thought for cover-
age until it attains the same size as the FEPC-adequate
suite. This approach creates a control group of augmented
statement-coverage (ASC) test suites that are statement-
coverage-adequate, yet of the same sizes as their correspond-
ing FEPC-adequate test suites. The approach thus controls
for both the effects of test suite size, and statement cov-
erage adequacy. Using these ASC test suites as a control
group in our experiments, together with appropriate statis-
tical comparison techniques, we can be much more certain
that differences in efficacy, if found, are attributable to the
use of fault exposure probability estimates. Thus, in these
experiments, we employ ASC test suites.

In our experiments we refer to an FEPC-adequate test suite
T and its corresponding ASC suite (the suite created from
the same statement-adequate base as T%) as a test suite pair.
For each program and each confidence level, we generated
1000 (FEPC-adequate, ASC) test suite pairs. Given our
eight programs and seven confidence levels, this entailed the
generation of 8 x 7 x 1000 = 56,000 test suite pairs.

3.2.6 Faultsets

To measure test suite efficacy we required fault sets. For
each program we considered three such sets.

Original fault sets. The Siemens researchers seeded the
Siemens programs with faults; these faults were intended to
be as “realistic” as possible, based on the researchers’ expe-
rience with real programs. In contrast, space has 38 faults,
including 33 faults discovered during its development and 5
discovered subsequently by the authors of this paper. The
number of faults in the original fault set for each program
is given in Table 1 in the rightmost column.

Mutation fault sets. Although the original fault sets con-
tained a selection of both real and “realistic” faults, the sets
of faults are somewhat small. To enlarge our focus, we con-
sidered a second fault set constructed from the mutations
created by Proteum. We obtained this set by randomly se-
lecting, for each program, 200 mutants from the mutant pool
for that program. We restricted our selection to mutants
that were known to be non-equivalent: that is, mutants for
which there existed at least one test case, in the test pool
for the program, that exposed that mutant.

Tough fault sets. Pilot studies suggested that FEPC-
adequate test suites might attain greater efficacy when ap-
plied to faults that are difficult to detect. Thus, in our exper-
iments, we utilized a third group of tough fault sets, consist-
ing of relatively difficult to detect faults. We obtained this
set by randomly selecting mutants, from the mutant pool,
that had FEP estimates less than 0.2, but greater than 0.0
(and thus not equivalent).? We selected tough fault sets of
size 200 for each program except schedule, for which there
were only 90 qualified mutants.

4We define the FEP estimate for a mutant as the number of
times the mutant is exposed by test cases in the test pool,
divided by the number of test cases in the test pool that
execute the statement containing the mutant.

3.3 Experiment Design
3.3.1 \ariables

The experiment manipulated three independent variables:

1. The subject program (8 programs).
2. The confidence level (7 different confidence levels).
3. The fault set (3 different fault sets for each program).

‘We measured 2 dependent variables:

1. Fault-detection effectiveness (efficacy measure).
2. Test suite size.

3.3.2 Design

The experiment used an 8 x 7 x 3 factorial design with 1000
paired efficacy measures per cell; the three categorical fac-
tors were program, confidence level, and fault set. For each
program P and confidence level ¢, we ran our 1000 test suite
pairs on each fault set. This yielded 168,000 paired efficacy
measures; these formed the data set for our analysis.

3.4 Analysisand Results

The three subsections that follow analyze the data obtained
using each of the different fault set types. Section 4 presents
further discussion of these results and further observations.

3.4.1 Original Fault Sets

Figure 2 depicts average efficacy values of the paired FEPC-
adequate and ASC test suites measured against the Original
Fault Sets over the seven confidence levels. Each graph de-
picts results for one subject program. In the graphs, each
plotted point represents the mean of the 1000 efficacy values
collected at a given confidence level for the FEPC adequate
test suites (filled diamond plot symbol) and ASC adequate
test suites (hollow circle plot symbol). The graphs depict the
differences in fault-detection effectiveness between FEPC-
adequate and ASC test suites.

As the graphs show, the average efficacy of FEPC-adequate
suites and ASC suites increases as confidence level increases.
This increase occurs for all programs, albeit at different
rates. For print_tokens2, schedule2, tcas, and tot_info,
the average efficacy values of the FEPC-adequate suites are
noticeably larger than those of the ASC suites as confi-
dence level ranges from 0.4 to 0.995. For print_tokens and
schedule, the average efficacy values of the FEPC-adequate
suites are somewhat larger than those of the ASC suites as
confidence level ranges from 0.6 to 0.95. For the larger pro-
gram space, the average efficacy values of FEPC-adequate
suites are larger than those of the ASC suites at all con-
fidence levels. For replace, the average efficacy values of
FEPC-adequate suites appear to be either smaller than or
equal to those of the ASC suites.

Our hypothesis is that the fault-detection effectiveness of
FEPC-adequate suites will be better than the fault-detection
effectiveness of ASC suites. Consequently we expect to find
positive mean differences (that is, the difference between
the average efficacies of the FEPC-adequate suites and ASC
suites) from our data. To formally assess which mean dif-
ferences are statistically significant, paired ¢-tests were run.
Mean differences where the t-test p (rho) value is less than
or equal to 0.05 are deemed statistically significant.
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Figure 2: Average efficacy values of FEPC-adequate and ASC test suites, per program, run against the Original Fault
Sets. Efficacy is shown along the vertical axis and confidence level along the horizontal axis.

Table 2: Mean differences between FEPC-adequate and ASC test efficacies for Original Fault Sets.

cl=0.1 cl=0.4 cl=0.6 cl=0.8 cl=0.9 cl=0.95 | cl=0.995 total
program m.d.(%) | m.d(%) | m.d.(%) | md.(%) | md (%) | m.d.(%) | md.(%) | m.d.(%)
print_tokens 0.0 -0.1 0.5 1.1 3.8 2.1 2.7 1.5
print_tokens2 0.04 2.0 3.9 4.8 4.2 3.8 3.6 3.2
replace -0.5 -3.9 -2.4 -2.6 -2.8 -2.3 -1.6 -2.3
schedule 0.0 0.0 0.2 1.4 0.5 0.5 0.1 0.4
schedule2 0.2 5.9 10.3 9.2 8.0 8.4 5.2 6.7
tcas 0.3 2.9 3.2 3.1 3.4 3.2 1.2 2.5
tot_info 0.0 1.2 4.0 5.3 5.4 3.5 2.9 3.2
space 0.7 1.9 1.6 1.3 1.0 0.8 0.4 1.1
total 0.1 1.3 2.7 2.9 2.9 2.5 1.8 2.0

are not statistically significant (a = .05).

Table 2 displays the mean differences in efficacy values (as
percentages) between FEPC-adequate and ASC test suites,
by program, with an all programs total. The three classes of
table entries are distinguished by different type styles. Bold-
faced entries indicate statistically significant results support-
ing our hypothesis (mean difference > 0, with p < 0.05).
Entries in standard type indicate results that are contrary
to the hypothesis (mean difference < 0, with p < 0.05).
Italicized entries indicate results that are statistically not
significant (p > 0.05) and hence inconclusive.

The bottom-right entry of the table contains a statistically
significant positive mean difference derived from analyzing
all 56,000 efficacy measure pairs as one data set. The result
supports the hypothesis; this suggests that overall, the fault
detection effectiveness of FEPC-adequate suites was better
than that of their corresponding ASC suites.

The entries in the right-most column of the table contain the
mean differences calculated from the 7000 efficacy measure
pairs collected (across all seven confidence levels) on that

Italicized entries

program. The results indicate support for the hypothesis
on seven of the eight programs. The results on replace,
however, are contrary to the hypothesis.

The bottom row of the confidence level columns contain
the mean differences calculated from the 8000 efficacy mea-
sure pairs collected (across all eight programs) at that level.
Overall, each entry indicates supportive results: at each con-
fidence level, FEPC-adequate suites outperform ASC suites.
The mean difference values in this row, from left to right,
form a single-peak curve, increasing to confidence levels 0.8
and 0.9, and declining thereafter.

The other (interior) entries in the table present the results
from the 1,000 paired efficacy measures collected for each
program at each specified confidence level. Of these 56 re-
sults, 43 entries (77%) are supportive, 12 entries are con-
trary, and one is not statistically significant. Replace ex-
hibits contrary or insignificant results at every confidence
level. Five of the eight programs exhibit contrary or in-
significant results at confidence level 0.1.
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Figure 3: Average efficacy values of FEPC-adequate and ASC test suites, per program, run against the Mutant Fault
Sets. Efficacy is shown along the vertical axis and confidence level along the horizontal axis.

cl=0.1 cl=0.4 cl=0.6 cl=0.8 cl=0.9 cl=0.95 | cl=0.995 total
program m.d. (%) | m.d.(%) | m.d.(%) | m.d.(%) | m.d.(%) | m.d.(%) | m.d.(%) | m.d.(%)
print_tokens 0.0 0.03 0.3 0.2 0.5 0.5 0.4 0.3
print_tokens2 0.01 0.3 0.6 0.4 0.3 0.3 0.2 0.3
replace -0.7 -1.1 -0.02 0.4 0.6 0.6 0.4 0.01
schedule 0.0 0.0 0.1 0.5 0.2 0.3 0.03 0.2
schedule2 0.3 0.6 1.0 0.8 0.8 0.7 0.4 0.7
tcas 0.0 0.5 0.8 1.2 1.1 0.8 0.7 0.7
tot_info 0.0 0.4 0.8 0.9 1.0 1.0 0.8 0.7
space 3.1 1.6 1.2 0.7 0.6 0.4 0.1 1.1
total 0.3 0.3 0.6 0.6 0.6 0.6 0.4 0.5

Table 3: Mean differences between FEPC-adequate and ASC test efficacies for Mutation Fault Sets.

are not statistically significant (a = .05).

3.4.2 MutationFault Sets

Figure 3 depicts average efficacy values of FEPC-adequate
and ASC test suites measured against the Mutation Fault
Sets. Comparing Figures 2 and 3 it appears that the same
general trends in efficacy occur as confidence level changes.
However, for all programs, the average efficacy values of
FEPC-adequate and ASC test suites are larger for the Mu-
tation Fault Sets than for the Original Fault Sets: partic-
ularly in the cases of print_tokens, replace, schedule,
schedule2, and tcas. The difference suggests that faults
in the Mutation Fault Sets are easier to detect than those in
the Original Fault Sets.

The mean differences obtained against the Mutation Fault
Sets are shown in Table 3 (using the same type style con-
ventions used in Table 2.) At the overall level (bottom-right
table entry), results continue to support our hypothesis, but
at a mean difference lower than that observed against the
Original Fault Sets (0.5% as opposed to 2.0%).

At the overall program level (right column), results support
our hypothesis on seven of the eight programs, with results

Italicized entries

on replace showing no significant differences. On all of the
programs, however, the mean differences are closer to 0.

At the overall confidence level (bottom row), all entries con-
tinue to indicate supportive results. For all but one entry
(el = 0.1), however, the mean differences observed are lower
than those observed with the Original Fault Set, suggesting
less gain in fault-detection as a result of employing FEPC-
adequacy with these fault sets.

The individual table entries, for the most part, reflect the
same movement toward 0.0 difference typically exhibited at
the overall program and overall confidence levels.

3.4.3 ToughFault Sets

Figure 4 depicts average efficacy values of FEPC-adequate
and ASC test suites measured against the Tough Fault Sets.
The graphs again exhibit efficacy trends across confidence
levels similar to those observed on the other fault sets. In
general, however, the mean differences in efficacy values are
higher than those displayed in Figure 3, presumably reflect-
ing the differences in fault difficulty between these fault sets.
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Figure 4: Average efficacy values of FEPC-adequate and ASC test suites, per program, run against the Tough Fault
Sets. Efficacy is shown along the vertical axis and confidence level along the horizontal axis.

cl=0.1 cl=0.4 cl=0.6 cl=0.8 cl=0.9 cl=0.95 | cl=0.995 total
program m.d.(%) | m.d.(%) | m.d.(%) | m.d.(%) | m.d.(%) | m.d.(%) | m.d.(%) | m.d.(%)
print_tokens 0.0 0.6 0.7 1.1 2.7 2.6 1.9 1.2
print_tokens2 0.02 1.4 2.6 2.0 1.8 1.6 1.1 1.5
replace -1.0 -0.9 1.3 2.3 2.1 2.0 1.4 1.0
schedule 0.0 0.0 0.1 0.1 0.003 0.2 0.02 0.1
schedule2 0.2 5.3 8.5 8.2 7.0 7.5 4.7 5.9
tcas 0.4 2.4 1.2 -0.3 -0.1 -0.9 -0.8 0.3
tot_info 0.0 1.9 5.3 6.8 5.9 4.4 2.9 3.9
space 2.3 1.7 1.2 1.0 1.0 0.9 0.6 1.2
total 0.2 1.4 2.6 2.6 2.5 2.3 1.5 1.9

Table 4: Mean differences between FEPC-adequate and ASC test efficacies for Tough Fault Sets. Italicized entries are

not statistically significant (o = .05).

The mean differences obtained against the Tough Fault Sets
are shown in Table 4. The mean difference values at the
overall program level indicate that on seven programs, FEPC-
adequate suites yielded better efficacies against the Tough
Foult Sets than against the Mutation Fault Sets, while for
tcas results were slightly worse. The results in the last row
of Table 4 show that at the overall confidence level, for all
levels except 0.1, the mean differences in efficacies measured
against the Tough Fault Sets were better than those mea-
sured against the Mutation Fault Sets.

3.4.4 TestSuiteSizes

As expected, our experiment showed that an increase in
confidence level resulted in an increase in the size of cor-
responding FEPC-adequate test suites. Moreover, the rate
of increase becomes larger as confidence level increases.

Figure 5 depicts test suite sizes for all eight programs at all
seven confidence levels. The individual boxplots show the
distribution of test suite sizes for each confidence level. To
produce this view of the data it was necessary to normalize
the test suite sizes, which varied widely between programs.
For each program P we noted the size n of its largest test

suite under any confidence level; we then normalized the
size of each test suite T for P by calculating the value T'/n.
Figure 5 plots the distributions of these normalized values
within each confidence level.
growth trends reminiscent of the curves of Figure 1.

The data shows quadratic
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Figure 5: Test suite sizes.



3.5 Threatsto Validity

Threats to internal validity are factors that can affect the
dependent variables and are out of strict control in the ex-
periment. In this study, we have two major concerns. First,
differences among program subjects and in the composition
of the test pools may affect results beyond our understand-
ing and ability to control. For example, our test pools are
not operational distributions. (2) Second, our method for
calculating FEP estimates provides one approach for ap-
proximating and using fault exposure probabilities; however,
there may be more accurate approaches.

Threats to external validity limit our effectiveness to gener-
alize our results. There are two primary threats to external
validity for this study: First, the subject programs are of
small and medium size. Complex industrial programs with
different characteristics may be subject to different cost-
benefit tradeoffs. Second, we used three varieties of fault
sets in the experiment; each variety has drawbacks in terms
of representativeness. Only the faults for space actually oc-
curred in practice, and mutations represent only a relatively
small set of the types of possible faults. Also, each fault was
considered as the only fault in the program while test cases
were running against it. In practice, programs have much
more complex error patterns, including faults that interact.

Threats to construct validity arise when measurement in-
struments do not adequately capture the concepts they are
supposed to measure. There are two primary issues to con-
sider. First, efficacy is not the only possible measure of
test suite effectiveness. For example, our measures assign
no value to subsequent test cases that detect a fault already
detected; such inputs may, however, help software engineers
isolate the fault, and for that reason might be worth mea-
suring. Second, our efficacy measure does not account for
the possibility that faults may have different costs.

4. DISCUSSION

Our results show that the incorporation of fault exposure
probability estimates (in the form of FEP estimates) into
statement-coverage-adequate test suites can indeed improve
the fault detection effectiveness (measured as efficacy) of

those test suites. However, these results bear further scrutiny.

First, efficacy results varied widely among the different pro-
grams and fault sets; in some cases, results contradicted the
suggestion that FEPC-adequate test suites would be more
effective than their corresponding ASC suites; in other cases,
results showed no significant differences between the suites.
On all programs other than replace, FEPC-adequate suites
were more effective than ASC suites for all three fault sets.
On replace, in contrast, FEPC-adequate suites were less
effective overall than ASC suites for two of the three fault
sets. Schedule is an interesting case: from the efficacy
graphs and paired t-test results for schedule, we can see
that schedule’s FEPC-adequate test suites and ASC suites
often failed to differ or differed little in efficacy, irrespective
of confidence level and fault set.

We believe that there are many factors that may account
for these performance differences. One such factor is the
range of FEP estimates for the program under test. For ex-
ample, the test suites for schedule, in contrast to those for

other programs, are relatively small across confidence levels.
Even at confidence level 0.995, the average test suite size for
schedule is only 17. Checking the hit number requirements
for schedule under confidence level 0.995, we discovered
that most of these were small: only nine of the 281 state-
ments for which hit numbers are calculated possessed hit
numbers over five. It seems likely that in such cases, most
ASC suites can also satisfy, or nearly satisfy, most hit num-
ber requirements, and thus provide efficacy nearly equivalent
to that of the corresponding FEPC-adequate suites.

Confidence level also affects results. Under confidence lev-
els 0.1 and 0.4, the efficacies of ASC and FEPC-adequate
suites often do not significantly differ, or differ only slightly.
However, at these confidence levels, most hit number re-
quirements are small, and minimized statement coverage
test suites may themselves be nearly FEPC-adequate. As
confidence levels increase, the hit number requirements for
many statements increase dramatically, reducing the likeli-
hood that random augmentation of test suites will possess
the “extra intelligence” inherent in adding test cases that
focus on statements where faults are more likely to hide.

Results also vary with type of faults. On all programs except
schedule and tcas, the efficacy benefits for FEPC-adequate
suites are greater for harder-to-detect faults than for easier-
to-detect faults. This result supports the theory underlying
FEPC-adequacy: probabilistically, hard-to-detect faults are
expected to be located in statements that have low FEP esti-
mates and, consequently, high hit numbers; FEPC-adequate
suites should be more effective than ASC suites at exercising
these statements. Our observations suggest then, that our
estimate of fault exposing potential has had been somewhat
successful at capturing the underlying probabilities.

We expect that factors such as program, confidence level,
and fault type interact in complex fashions. For practical
purposes, we would like to better understand these factors
and their interaction, so that we could predict whether and
when the incorporation of estimates of fault exposing poten-
tial would be useful. Future study in this area is necessary.

Perhaps our most interesting observation, however, concerns
cost-benefits tradeoffs involving FEPC-adequate test suites.
Consider the graph of efficacy results for schedule2 in Fig-
ure 4. In this case, at confidence level 0.6, the mean efficacy
of the ASC suites is 52.5% and the mean efficacy of the
FEPC-adequate suites is 61%. However, it is clear from the
graph that ASC suites for (approximately) confidence level
0.8 achieve the same efficacy as FEPC-adequate suites at
level 0.6. This example illustrates a more general observa-
tion: for any FEPC-adequate test suite T', there exists some
ASC suite (some statement adequate test suite to which n
test cases have been randomly added), that achieves the
same average efficacy as T'.

Since the cost of obtaining FEPC-adequate test suites may
be high, the fact that test suites of equivalent efficacy can be
generated by random addition of a sufficient number of test
cases is significant. In this case, the relative cost-benefits
of the two types of test suites depend on both (1) the cost
of the analysis necessary to obtain the FEPC-adequate test
suites, and (2) the costs of running test cases. If test case



execution is sufficiently inexpensive, randomly augmented
ASC suites would be more cost-effective; however, if test
case execution is sufficiently expensive, incurring the anal-
ysis costs necessary to obtain smaller, FEPC-adequate test
suites would be more cost-effective.

This observation should be further qualified. Our examina-
tions of test suite size show that as confidence level increases,
the size of FEPC-adequate test suites increases dramatically.
At higher confidence levels, the number of test cases that
must be randomly added to an ASC suite to achieve the ef-
ficacy of some FEPC-adequate suite is much higher than at
lower levels. Therefore, when higher confidence is required,
there is greater potential for FEPC-adequate suites to be
more cost-effective (depending on the relative costs of test
execution and FEP estimation analysis) than ASC suites.

Finally, whether the efficacy gains that may be achieved by
FEPC-adequate test suites are worthwhile is also a matter
of cost-benefits tradeoffs involving several factors, including
(1) the relative costs of analysis and test execution, (2) the
costs of failing to detect faults, and (3) the relative gains
that could be achieved by employing resources on other val-
idation activities. Consider the results for the most realistic
program utilized in our studies, space, against the set of
real faults for that program. In this case, FEPC-adequate
suites detected only 1.1% more faults than their correspond-
ing ASC suites. A 1.1% increase in fault-detection for a word
processing system whose test cases are relatively inexpen-
sive to execute, obtained through expensive analysis, would
most likely not be cost-effective. A 1.1% increase in fault-
detection in software that will operate in a satellite, whose
test cases may be relatively expensive to execute, may be
cost-effective despite expensive analysis.

5. CONCLUSIONS

Although several researchers have hypothesized that the in-
corporation of fault exposure probability estimates into test
data adequacy criteria could improve the fault-detection ef-
fectiveness of test suites, this suggestion has not previously
been empirically investigated. This paper has presented the
first formal experiment directed at this hypothesis.

The particular technique that we have used to estimate fault
exposure probabilities in this experiment is expensive due to
its reliance on mutation analysis and would be impractical
for most real applications. However the goal of our experi-
ment was not to evaluate a technique, but rather, to answer
the important initial question of whether, if an effective tech-
nique existed, it could be cost-effective.

Our results suggest that benefits can indeed accrue from the
incorporation of fault exposure potential estimates into test
adequacy criteria, depending on the relative costs of estima-
tion, test execution, and undetected faults. However, the
potential benefits also vary with several other factors in-
cluding program, required confidence level, and fault type.
Further, the overall improvements in fault-detection effec-
tiveness that we observed under our particular approach are
not as large as we might wish. We hope that by further study
of the factors that influence fault exposure potential, and by
considering other sources of estimates of that potential (as
discussed in Section 2.2) and improving those estimates, we
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can further improve the effectiveness of FEPC-adequate test
suites and the range of applications in which they are cost-
effective. This work provides impetus for that research.
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