Optical and magneto-optical properties of MnPt3 films (abstract)

Kurt W. Wierman
Seagate Corporation, Pittsburgh, PA

J. N. Hilfiker
University of Nebraska - Lincoln

Renat F. Sabiryanov
University of Nebraska - Omaha, rsabirianov@mail.unomaha.edu

Sitaram Jaswal
University of Nebraska, sjaswal1@unl.edu

Roger D. Kirby
University of Nebraska-Lincoln, rkirby1@unl.edu

See next page for additional authors
Optical and magneto-optical properties of MnPt$_3$ films (abstract)

K. W. Wierman
Behlen Laboratory of Physics, University of Nebraska, Lincoln, Nebraska 68588

J. N. Hilfiker
Department of Electrical Engineering, University of Nebraska, Lincoln, Nebraska 68588

R. F. Sabiryanov, S. S. Jaswal, and R. D. Kirby
Behlen Laboratory of Physics, University of Nebraska, Lincoln, Nebraska 68588

J. A. Woollam
Department of Electrical Engineering, University of Nebraska, Lincoln, Nebraska 68588

Optically thick films of MnPt$_3$ were prepared by magnetron sputtering onto quartz substrates. Postdeposition annealing at 850 °C resulted in highly textured (111) films with the L_1_2 (Cu$_3$Au) structure. MnPt$_3$ films are ferromagnetic with a Curie temperature of 380 °C, and they show large magneto-optical effects in the visible.1,2 These films also show a high degree of long-range order. The diagonal components of the dielectric tensor were determined using variable angle spectroscopic ellipsometry measurements over the spectral range 1.2–2.4 eV. Magneto-optic Kerr rotation and ellipticity measurements were made at near normal incidence over the spectral range 1.4–3.6 eV to determine the off-diagonal components of the MnPt$_3$ dielectric tensor. First-principles electronic structure calculations were carried out for the ordered MnPt$_3$ structure, and from these the components of the dielectric tensor were calculated. We find excellent agreement between the measured and calculated diagonal components, but only fair agreement for the off-diagonal components. © 1997 American Institute of Physics.

Research sponsored by the NSF under Grant No. OSR-92355225 and by the Center for Materials Research and Analysis.

*Electronic mail: rdk@unlinfo.unl.edu
