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ANNALS OF PHYSICS 96, 286-302 (1976) 

Path Integrals with Arbitrary Generators and the 
Eigenfunction Problem 

W. B. CAMPBELL, P. FINKLER, C. E. JONES, * AND M. N. MISHELOFF* 

Behlen Laboratory of Physics, University of Nebraska, Linco/n, Nebraska 68508 

Received June 6, 1975 

We generalize the path integral formalism of quantum mechanics to include the use of 
arbitrary infinitesimal generators, thus providing explicit expressions for solutions of a 
wide class of differential equations. In particular, we develop a method of calculating the 
eigenfunctions of a large class of operators. 

1. INTRODUCTION 

As they are usually applied, path integral techniques are used to study the time 
development of both nonrelativistic and relativistic quantum-mechanical sys­
tems [1-3]. Several years ago, Gutzwiller [4] developed a technique to obtain the 
energy eigenvalues and eigenfunctions of bound states from the original path 
integral expressions for Green's functions. Path integral techniques also can be 
immediately generalized to provide explicit expressions for the matrix elements 
of an arbitrary infinitesimally generated unitary transformation. 

In this paper we show that path integral techniques can be used to study the 
effects of a much larger class of transformations. Our discussion is expressed in 
the language of differential operators. We do not restrict our considerations to 
transformations on a Hilbert space. Many of our results, therefore, cannot be 
given a quantum-mechanical interpretation; however, any of our results which 
can be given a meaning in a Hilbert space is quantum-mechanically correct. 
We use our generalization of path integral techniques to develop a method of 
direct calculation for the eigenfunctions of a large class of operators. Some of the 
results of this paper were discussed in a previous paper [5]. 

In Section 2, we show that a generalized path integral can be used to express 
the solution of a linear differential equation which has the interpretation of a 
function acted on by an infinitesimally generated transformation. In Section 3, 
we show that the path integral is an eigenfunction of the differential operator 

* Supported in part by NSF Grant GP-43907. 

286 
Copyright © 1976 by Academic Press, Inc. 
All rights of reproduction in any form reserved. 



GENERALIZED PATH INTEGRALS 287 

generated by this transformation. Thus, to find eigenfunctions for a specified 
operator, we need only find a suitable generator. In Section 4, we show that, 
apart from questions of ordering the differential operators q and -i(ojoq), finding 
a suitable generator is equivalent to solving a related problem in classical 
mechanics. In Section 5, we solve the problem of ordering the operators q and 
-i(8Ioq) for several special cases. In Section 6, we explicitly evaluate path integrals 
that have generators that are linear in either q or -i(oloq). In Section 7, we develop 
a general technique for finding a generator which generates a specified operator. 
In Section 8, we illustrate our techniques by obtaining the eigenfunctions of several 
simple operators. 

2. THE GENERAL PATH INTEGRAL 

In this section we show that a generalized path integral can be used to express 
the solution of a differential equation which has the quantum-mechanical inter­
pretation of a wavefunction acted on by an infinitesimally generated transforma­
tion. For simplicity and to illustrate the ideas involved, we work in one dimension; 
the general ideas are valid for an arbitrary number of degrees-of-freedom. 

The differential equation we solve is 

G (q, -i :q' s) K(q, s; qo) = i :s K(q, s; qo) (2.1) 

with the initial condition K(q, s = 0, qo) = S(q - %). The differential operator G, 
which we call the generator, effects a one-parameter transformation of the function 
K, with s the parameter of the transformation. A familiar example of Eq. (2.1) 
occurs when G is the Hamiltonian operator and the parameter s is the time. In this 
case, Eq. (2.1) is the Schrodinger equation and K is the Green's function; the 
infinitesimally generated transformation is time translation. Equation (2.1) is the 
general statement for a transformation by an arbitrary operator. 

We now write the solution K(s) as a sequence of N small transformations on 
K(O). From Eq. (2.1) we see that 

and setting € = siN, we have by iteration 

K(s) = »~ lJi [1 - i ~ G (q, -i :q' (k ~I) s )J( K(O) 

== U(s) K(O), 

(2.2) 

(2.3) 
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where the product in Eq. (2.3) is written with index k decreasing from left to 
right. We point out that the operator U(s), which is defined in Eq. (2.3), cannot 
necessarily be defined as a quantum-mechanical operator which has a Hilbert 
space of functions as its domain and range; however, it can defined as an operator 
with a larger domain and range. We now demonstrate that K(s) can be written 
as a path integral. 

The conversion of Eq. (2.3) to a path integral formula is based on an identity 
for an operator function F(q, -i(8j8q)) acting on a general function g(q). To 
derive the appropriate identity, we note that g(q) can be written as 

g(q) = lim J dq' dp eiP(Q-q'l-<p2g(q'). 
HO 277 (2.4) 

By doing the p-integration in Eq. (2.4) first, one can use thus identity for functions 
g(q), which diverge at infinite q2 as badly as eM' for any positive 0:. This ability to 
deal with badly divergent functions in the path integral generalization which we 
derive provides useful flexibility in applications. From Eq. (2.4), we derive the 
identity 

F (q, -i~) g(q) = lim J dq' dp F(q, p) eiP(Q-Q'l-e p2g(q'). (2, .5) 
8q <->0 277 

The formula given by Eq. (2.5) assumes that the derivatives 8j8q in the function 
F do not act on the q-dependence of F. This is not the case in general. For many 
applications it is sufficient to assume that F is a sum of symmetrized functions of 
q and -i(8j8q) of the form 

F (q, -i ~) = t ~ [h(q) gi (-i :q) + gi (-i 8~) h(q)]. (2.6) 

For an F of the form (2.6) we find 

F (q, -i ~) g(q) = ~ lj]} J dq' ;~ [F(q, p) + F(q', p)] eiP(Q-q')-eP'g(q'). (2.7) 

The path integral technique is a method for expressing Eq. (2.3) without the 
use of operators and by using ordinary functions of q and p. The identity given by 
Eq. (2.5) is the device employed to replace operators by functions. Inserting 
Eq. (2.5) N times into Eq. (2.3) we obtain 

K(q, s; qo) = »!!J, fI J dqk-l r: eiPk(Qk-qk-l) [1 - i ~ G (qk , Pk, (k ~ 1) s )] 
k~l 

x K(%, 0). (2.8) 
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For N large we can write 

(2.9) 

and we can rewrite Eq. (2.8) in the form 

X exp ji ktl [piqk - qk-l) - ~ G (qk' Pk, (k - 1) ~ )]l· 
(2.lO) 

Equation (2.10) is the path integral formula for K(q, s; qo) in terms of the generating 
function G. If we generalize G to operators of the form (2.6) we obtain 

N-l N dp. 
K(q, s; qo) = lim J n dqi 11 r 

N-)oo i=l j=1 7T 

(2.11) 

The standard shorthand notation for Eq. (2.11) is given by 

K(q, s; qo) = J [dq] [ ~~ ] 

X exp ! i r ds' [p(s') d~~') - G(q(s'), pes'), s,)]!. (2.12) 

We close this section by emphasizing that in the derivation ofEq. (2.11), nowhere 
was it assumed that G is a hermitian operator, nor does K(q, s; qo) have to be 
square integrable-in fact, it may diverge as e"q2 as q2 -+ 00. 

3. THE EIGENFUNCTION. EQUATION 

In this section, we prove that K(q, s; qo) is not only a solution to the differential 
equation (2.1), but K is also the solution of another differential equation 
which shows that K is an eigenfunction of a particular differential operator. 
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Specifically, we prove that K(q, s; qo) is a solution of the equation 

Q (q, -i :q' s) K(q, s; qo) = qoK(q, s; qo), 

where Q is the operator satisfying the differential equation 

(3.1) 

fs Q (q, -i o~' s) = i [Q (q, -i o~' s), G (q, -i o~' s)], (3.2) 

with the initial condition Q(q, -i(%q), s = 0) = q. 
The proof of Eq. (3.1) is accomplished by demonstrating that the solution of 

Eq. (3.2) can be written as 

Q(s) = U(s) qU-l(S), (3.3) 

where U(s) is defined in Eq. (2.3). From Eqs. (2.3) and (2.1), we conclude that the 
operator U(s) satisfies the same differential equation as K: 

G(s) U(s) = i :s U(s). (3.4) 

By using Eq. (3.4) and the identity dU-l/ds = -U-l(dU/ds) U-I, one can easily 
show that Eq. (3.3) is the solution of Eq. (3.2). 

The importance of the eigenfunction equation (3.1) lies in the possibility of 
finding a generator G which will lead (at some value of s, say, s = 1) to a quantum 
operator Q(s = 1) of physical interest. For example, if G can be selected such that 
Q(s = 1) is the Hamiltonian operator, then Eq. (2.12) becomes a path integral 
representation for energy eigenfunctions; furthermore, the fact that more than 
one G can lead to the same Q(s = 1) implies a large amount of flexibility in practical 
calculations. We shall develop a general technique for finding operators G which 
lead to a specified operator Q(s = 1). This general technique is developed on the 
basis of a close analogy with a related classical problem which we discuss in the 
next section. 

4. THE CLASSICAL PROBLEM 

In this section, we show that finding a generator G such that the solution of 
Eq. (3.2) at s = 1 is a specified function of q and -i(%q) is essentially equivalent 
to solving a similar problem in classical mechanics. 

We define a classical "action" S as 

S = r ds' [pes') d~~') - C(q(s'),p(s'),s')], (4.1) 
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where C is an arbitrary function of q(s'), pes'), and s'. The requirement that S be 
stationary with respect to small variations of q(s') and pes'), subject to the con­
straints oq(s) = oq(O) = 0, leads to the following "Hamilton's" equations for 
q(s') and pes') 

and 

dq(s') = 8C ( (') (') ') ds' 8p q s ,p s ,s 

dp(s') = 8G ( (') (') ') ---;JT= -Tq qs ,ps ,s . 

These equations can be written in Poisson bracket notation as follows: 

dq(s')jds' = {q(s'), C(q(s'),p(s'), s')} 

and 
dp(s')jds' = {pes'), C(q(s'), pes'), s')}. 

(4.2a) 

(4.2b) 

(4.3a) 

(4.3b) 

If G is not explicitly s-dependent, the classical analog of the quantum equa­
tion (3.2) is given by Eq. (4.3a) with C = -G. (The minus sign is a result of the 
fact that Eq. (3.2) differs by a minus sign from the usual "Heisenberg" dynamical 
operator equation.) If Gis s-dependent, care must be taken in comparing Eq. (4.3a) 
with Eq. (3.2). The important point is that the q and p operators appearing as 
arguments of G in Eq. (3.2) are evaluated at s = 0, whereas the classical quantities 
appearing as arguments of Gin Eq. (4.3a) are evaluated at s'. 

As shown in the appendix, if the solutions of Eqs. (4.2) are such that 
q(l) = f[q(O), p(O)], then the solution at s = 1 ofEq. (3.2) with G(q, -i(8j8q), s) = 
-C(q, -i(8j8q), 1 - s) is given by 

Q (q, -i 88q , s = 1) =f[q, -i :q] 

However, if q(s') and pes') are solutions of Eq. (4.2), then q(s') = q(I - s') and 
pes') = p(I - s') are solutions of the equations 

and 

dq(s') 8G ( (') (') ') ---;JT=-ap qs ,ps ,s, 

dp(s') 8G (. (') (') ') ---;JT= -Tq qs ,ps ,s, 

(4.4a) 

(4.4b) 

where G(q, p, s) = -C(q, p, 1 - s). Thus, the classical generator G(q, p, s) effects 
a transformation that is the inverse of the transformation effected by the quantum 
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generator G(q, -i(o(oq), s) in the sense that, if Q(q, -i(ojoq), s = 1) is the solution 
ofEq. (3.2), then the solutions ofEq. (4.4) are such that q(O) = Q(q(1), p(1), s = 1). 

Therefore, to find a quantum generator G(q, -i(ojoq), s) which gives 
Q(q, -i(ojoq), s = 1) as a specified function of q and -i(ojoq), one finds a classical 
generator G(q, p, s) which gives q(O) as the same function of q(1) and p(1); such 
a classical generator can always be found, as explained in Section 7. The classical 
generator is inserted directly into the path integral given by Eq. (2.12). There 
remains, of course, the question of how to order position and momentum operators 
in going from the classical to the quantum problem; we discuss this question in 
the next section. 

5. THE ORDERING OF THE OPERATORS 

In this section, we show that the problem of ordering the position and momen­
tum operators in going from the classical to the quantum generator G is particularly 
simple in two cases: (1) G depends linearly on either q or p; (2) G depends qua­
dratically on q and p. 

The solution of Eq. (3.2) can be written as an infinite sum of iterated commuta­
tors. This expression is given by 

Q (q, -i : ,s) = q + i IS dS1 [q, G (q, -i 00 ,Sl)] 
q 0 q 

+ i2 ( dS1 (' dS2 [[q, G (q, -i :q' S2)]' G (q, -i :q' Sl)] 
+ ... . (5.1) 

We first consider the case in which G is linear in q. We assume G to be sym­
metized, i.e., 

In this case, each term in Eq. (5.1) is linear in q and symmetrized with respect to 
-i(ojoq). The operator Q(q, -i(ojoq), s = 1) can thus be deduced from the 
solution of the classical equations (4.4), which will be linear in q(1). One simply 
inserts operators for the classical quantities and symmetrizes. 

In the case that G is a linear function of p, each term in Eq. (5.1) will be a func­
tion of q only. In the case where G is a quadratic function of both q and -i(ojoq), 
each term in Eq. (5.1) is linear in q and -i(ojoq). In both these cases, no question 
of ordering can arise and the operator Q(q, -i(ojoq), s = 1) is obtained by 
straightforward solution of the classical equations (4.4). 
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More complicated G's must be studied separately, but a fairly simple relation 
between the quantum and classical operators may presumably be anticipated 
whenever G is a polynomial. Fortunately, even the restriction of G to linear and 
quadratic functions of q and -i(ojoq) permits the solution of some problems of 
interest. 

6. EVALUATION OF PATH INTEGRALS WITH LINEAR GENERATORS 

[n the case where G is linear in either p or q, the path integral can be reduced 
to a particularly simple form. 

We first assume that G is of the form 

G (q, -i :q' s) = ~ qf(-i o~' s) + ~f( -i :q' s) q. (6.1) 

The corresponding classical generator G(q, p, s) = qf(p, s) yields the following 
equations for q(s) and pes) 

dq of 
ds = q(s) op (p(s), s), (6.2) 

and 

dp 
ds = -f(p(s), s). (6.3) 

We note that the solution of Eq. (6.3) is completely determined by the value of 
pes = 1). We also note that the solution of Eq. (6.2) is given by 

q(s) = q(1) exp [f ds' :; (p(s'), Sf)] = q(l) h(s; pes = 1)). (6.4) 

At s = 1, the path integral for the generator given by Eq. (6.1) becomes 

. N-l N dP1 
K(q, s = 1; qo) = hm f TI dqi TI 2 

N-4OC i=l j=! 7T. 
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Each of the qi integrations in Eq. (6.2) yields a delta-function 

N-l [ 1 ( k ) 1 ( k - 1 )] 
X n 8 Pk - PHI - 2N 1 PHI' N - 2N 1 Pk, N ' (~.6) 

k=1 

where 

rx(PN, q,Pl' qo) = PNq - PlqO - 2~ [ql(PN, 1 - ~) + qO/(Pl, 0)]. 

In the limit N -+ 00, the vanishing of the arguments of the delta-functions in 
Eq. (6.6) can be expressed as 

-dp - tds[f(p(s), s) + j(p(s + cis), s + cis)] = O. (6.7) 

To first order in cis, Eq. (6.7) is identical to Eq. (6.3); this fact simplifies the evalua­
tion of the p-integrations. Integrating over PIP2 ... Pn-l in Eq. (6.6), we obtain 
(including the Jacobian for each integration) 

. 1 . N-l I 1 01 k - 1 1-1 
K(q, s = 1; %) = »~ 217 I dPN e'" IT 1 - 2N op (Pk , N ) , (6.8) 

where Pk is the value of pes = kiN) on the classical trajectory determined by 
pes = 1) = PN' As N -+ 00 the terms proportional to liN in rx vanish and the 
Jacobian in Eq. (6.8) can be written in exponential form. We obtain the final 
result 

K(q, s = 1; qo) 

= 2~ I dPN exp (iqPN - iqop(s = 0) + ~ f ds Re :~ (p(s), s») 

(6.9) 

where h is defined in Eq. (6.4). The region of integration in Eq. (6.9) is the set of 
values of PN for which pes = 0) is real. We note that K(q, s --: 1, qo) depends only 
upon the classical equations relating q(O) and p(O) to q(l) and p(l). 

We now assume that G is of the form 

G (q, -i ~, s) = ~ [-i o~f(q, s) - V(q, s) o~]' (6.10) 
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The corresponding classical generator G(q, p, s) = pJ(q, s) yields the following 
equations for q(s) and pes): 

dq(ds = J(q(s), s), (6.11) 

and 
dp oj 
ds = -pes) oq (q(s),s). (6.12) 

The solution of Eq. (6.11) is completely determined by the value of q(s = I) and 
the solution of Eq. (6.12) is given by 

pes) = p(l) exp [- r j'(q(s'), s') ds'] - p(l) Ti(s; q(l». 
1 

(6.13) 

The evaluation of the path integral for the generator given by Eq. (6.10) is 
similar to the evaluation of the path integral for the case in which G is linear in q. 
The final result is given by 

K(q, s = I; qo) = exp ( - ~ r ds Re :~ (q(s), s») o(qo - q(s = 0», (6.14) 

where q(s = 0) is evaluated on the classical trajectory determined by q(s = I) = q. 
We note that K(q, s = I; %) depends only upon the classical equations relating 
q(O) and p(O) to q(l) and p(l). 

7. A GENERAL TECHNIQUE FOR FINDING THE GENERATOR 

In order to make practical use of Eq. (3.1) as an eigenfunction equation, a 
technique is needed for finding a generator G which will generate a desired operator 
Q(q, -i(%q), s). Because of the close analogy between the quantum and classical 
problems, it is possible to use the classical theory as an aid to discovering the 
desired G. Instead of working directly with the equations of motion (4.4), it is 
useful to appeal to the general theory of canonical transformations. Thus, we 
regard q(s) and pes) as related to q(l) and p(l) by means of an infinitesimally 
generated canonical transformation. The validity of the view stems from Eqs. (4.4), 
which are just the equations for an infinitesimally generated canonical trans­
formation. 

We define a so-called generating function Fl(q(S), q(l), s) for the canonical 
transformation in terms of the solutions of Eqs. (4.4) by 

Fl(q(S), q(l), s) = f ds' [pes') d~~~') - G(q(s'),p(s'), s')]. (7.1) 
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The generating function Fl depends only upon endpoint values of q, i.e., q(s) 
and q(l) because the classical path (q(s') and pes'»~ is completely determined by 
q(s) and q(l). The canonical transformation {q(l),p(l)} ~ {q(s),p(s)} is obtained 
by differentiating Fl with respect to its arguments as follows: 

pes) = -BFl/Bq(s), (7.2) 

The generator G can be recovered from Fl through the equation 

(7.3) 

For applications it is somewhat more convenient to define another generating 
function F2(q(1), pes), s) written as a function of q(l), pes) and s and related to Fl by 

F2(q(1), pes), s) = Fl(q(S), q(l), s) + pes) q(s). (7.4) 

From Eq. (7.4), we can deduce that 

pel) = BF2/Bq(I), q(s) = BF2/Bp(s), (7.5) 

and 

(7.6) 

The generating function F2 has the useful property that 

Fl = q(1) pes) (7.7) 

gives rise to the identity transformation. In general, it is simple to determine the 
generator G by means of Eq. (7.6) from an appropriate F2 • It should be noted 
that Eqs. (7.5) can be used to determine q(s) and pes) as functions of q(l), p(1), 
and s. Then q(s) and pes) will satisfy Eq. (6.4) with G given by Eq. (7.3). 

To determine an appropriate generator G, we first find a function F l(q(O), q(l») 
such that if we invert the equation 

(7.8) 

to express q(O) in terms of q(1) and p(l), then q(O) is the classical quantity corre­
sponding to the desired quantum mechanical operator Q(q, -i(B/Bq), s = 1). We 
then invert the equation 

to express q(O) in terms of q(l) and p(O) 

q(O) = h(q(1),p(O» 
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We then define a related function .F2(q(l), p(O)) by 

.Flq(l), p(O)) = .F1[h(q(l), p(O)), p(O)] + p(O) h(q(I), p(O)). (7.10) 

Finally, we form the desired generating function Flq(l), pes), s) as follows: 

F2(q(I), pes), s) = sq(l) pes) + (I - s).F2(q(l), pes)). (7. II) 

The particular construction of Eq. (7.II) guarantees that the transformation 
will be the identity for s = 1 and the desired transformation for s = O. The 
generator G is obtained from Eq. (7.6). The resulting G is clearly not unique. 

8. EXAMPLES 

In this section, we illustrate our techniques by using them to find eigenfunctions 
of several simple operators. 

A. The Momentum Operator, -i(8/8q) 

For this case, we can instantaneously determine a suitable classical generator 
given by 

G(q, p, s) = -(7T/4)(q2 + p2). (8.1) 

When this generator is inserted into the right-hand side of Eq. (2.11), the resulting 
path integral is gaussian and can be evaluated by well-known techniques. The 
result is given by 

(8.2) 

The fact that Eq. (8.2) is correctly (continuum) normalized is a consequence of 
the reality of the generator. 

B. The Operator Q = f(q) 

A suitable classical.F 2 for this case is given by 

.F2(q(I),p(O)) = p(O)f(q(l))· 

The equations relating p(O) and q(O) to pel) and q(l) are given by 

p(l) = 8.F2/8q(l) = p(O)!'(q(l)), 
and 

q(O) = 8.F2/8p(O) = f(q(l)). 

(8.3) 

(8.4) 

(8.5) 

Since.F2 is a linear function of p(O), the generator G(q, p, s) which can be obtained 
from.F2 by the techniques of Section 7 is guaranteed to be linear in p. The path 
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integral can therefore be evaluated using the techniques of Section 6. The result 
is given by 

K(q, s = 1; qo) = I j'(q)11/2 o[qo - f(q)]. (8.6) 

We note that we did not need to explicitly find G(q, p, s) in order to arrive at 
Eq. (8.6). 

More generally, we may take F2 to be 

F2(q(I),p(0» = p(O)f(q(l» + g(q(l» (8.7) 

where g(q) is an arbitrary function. The only effect of the extra term in Eq. (8.7) 
upon the resulting path integral is to multiply the right-hand side of Eq. (8.6) by 
a q-dependent factor: 

K(q, s = 1; qo) = e-ig(q) I j'(q)ll/2 0[% - f(q)]. (8.8) 

We have thus obtained the most general eigenfunction of the operator f(q). We 
believe that this example illustrates a general property of our technique, i.e., that 
the arbitrariness in the choice of the generator (or the generating function) can be 
exploited to obtain the most general solution of Eq. (3.1). 

C. The Free Particle Hamiltonian 

We may combine the results of the previous two subsections to obtain the 
eigenfunctions of the free particle Hamiltonian 
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H = - 2m oq2' 

Specifically, we choose the classical generator to be 

G(q, p, s) = B(s - t) GM, p, s) + B(t - s) G2(q, p, s), 

(8.9) 

(8.10) 

where B(x) is the Heaviside step-function, G1(q, p, s) is a classical generator which 
effects a transformation for which q(t) = pel), and G2(q, p, s) is a classical generator 
which effects a transformation for which q(O) = (lj2m)[q(t)]2. The resultant path 
integral is the convolution of two intermediate path integrals each of which can 
be explicitly evaluated by a simple variation of the results of the previous sub­
sections. The result is given by 

K(q, s = 1; qo) = f dq' [( 2~ (2 eiQq'][e-ig(q') I ~~ 10 (qo - i:)] 
. 1/2 

= ( 2~ ) [exp(i(2mqo)1/2 q - ig[(2mqo)1/2]) 

+ exp(-i(2mqo)1/2 q - ig[ -(2mqo)1/2]), (8.11) 

where g(x) is an arbitrary function. 
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D. The Operator Q = (1/2) qf( -i(8/8q» + (l/2)f( -i(8/8q» q 

A suitable classical F 2 for this case is given by 

F2(q(l),p(0» = q(l)y[p(O)], 

where y(x) satisfies the equation 

_ JY(X) dw 
x - few) . 

The following differential equation can be derived from Eq. (8.13): 

dy/dx = f[y(x)]. 

The equations relating p(O) and q(O) to p( I) and q(l) are given by 

p(l) = 8F2/8q(l) = y[p(O)], 

and 

q(O) = 8F2/8p(0) = q(I)(dy/dx)lx~p(o) . 

We can use Eqs. (8.14) and (8.15) to rewrite Eq. (8.16) as 

q(O) = q(1)f(p(I»: 
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(8.12) 

(8.13) 

(8.14) 

(8.15) 

(8.16) 

(8.17) 

The generator which is obtained from F 2 by the techniques of Section 7 is linear 
in q: 

C(q, p, s) = q[p - y(p)][s + (1 - s) y'(p)]-l. (8.18) 

Therefore the resultant path integral can be evaluated by using the techniques 
of Section 6; the result is given by 

K(q, s = 1; qo) = 2~ J dp 1 f(p) 1-112 eiqp-iqoz(P), (8.19) 

where 

Jp dw 
z(p) = few) . (8.20) 

As an example, we choose few) = w. For this example, z(p) = Inp and the 
path integral is given by 

(8.21) 
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E. The Harmonic Oscillator Hamiltonian 

A convient choice for the classical generator is given by 

G(q, p, s) = e (s -~) : (12 + AjJ2) + e (~ - s) G(q, p, s), (8.22) 

where A is an arbitrary parameter and G(q, p, s) is a classical generator which 
effects a transformation for which q(O) = q(l) pel). The classical generator 
(7Tf4)«q2fA) + Ap2) effects a transformation for which 

q (~) = ~2 [q(l) - Ap(l)] and p (~) = ~2 [~q(l) + p(1)]' 

Thus, the generator given by Eq. (8.22) generates a canonical transformation for 
which 

(8.23) 

Furthermore, by using the results of Section 5, we can easily check that when 
the G given by Eq. (8.22) is inserted into (2.11), the resultant path integral is an 
eigenfunction of the operator 

Q ( . 0 _ 1) _ 1 (\ 02 1 2) 
q, -l oq' S - -:2 1\ oq2 + "X q . (8.24) 

For A = ±i, the right-hand side of Eq. (8.24) is a multiple of the Hamiltonian 
operator for a harmonic oscillator with unit mass and spring constant. 

The resultant path integral K(q, s = 1, qo) is the convolution of two simple 
intermediate path integrals of which one is gaussian and the other is given by 
Eq. (8.21). The overall result is given by 

J+OO I [i ( 2+ '2 )]! K(q, s = 1; qo) = -00 dq' 1«27Ti)I/2 A)-1/2 exp T q 2 q - v2 qq' I 

(8.25) 

We may carry out the intermediate q' integration to obtain 

K(q, s = 1; qo) = 2:/4 Loo dp p-1/2-iQo exp ! - 2~ q2 + i v2 qp - 4 AP21. (8.26) 

In deriving Eq. (8.26) we have assumed that A is in the lower half-plane and qo 
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is real. However, we may analytically continue K into the entire qo and ..\ planes 
by writing it in the form 

(8.27) 

where the contour circles the singularity at zero and goes to infinity within the 
wedge 

7T..\ ..\ - 2 - arg :2 < arg p < -arg - :2 . 

In the complex qo-plane, K(q, s = 1, qo) has poles at the points qo = -in - t 
(n = 0, 1,2, ... ). At these points the contour integral appearing in Eq. (8.27) can 
be expressed in terms of Hermite polynomials. The residues at the poles in 
K(q, s = 1, qo) are given by 

ljm [qo + i(n + t)] K(q, s = 1; qo) 
qo->-,( n+l/2) 

1 (i )n/2 2-3 / 4 . 2 [ q ] 
= - n! 2..\ ----:;;:- e-(,/"2)q Hn (i..\)1/2 . (8.28) 

For ..\ = i, the differential operator 

1 (82 1) :2 ..\ 8q2 + -X q2 

is equal to - iH, where H is the harmonic oscillator Hamiltonian. Identifying qo 
with -iE, we recognize that the right-hand side of Eq. (8.28) gives the correct 
(unnormalized) harmonic oscillator eigenstates in the case ..\ = i. However, for 
values of qo away from the pole position in the case ..\ = +i, and for all values 
of qo in the case ..\ = -i, K(q, s = 1, qo) cannot be interpreted as a harmonic 
oscillator energy eigenstate because it diverges too rapidly as q approaches infinity. 

ApPENDIX 

In this appendix, we prove the result quoted in Section 4, that -G(q, -i(8j8q), 
1 - s) is the appropriate quantum operator for Eq. (3.2). To establish this result 
we consider the following equations for operators F(s) and F(s): 

d~~) = i [F(s), G (q, -i :q' s)], (A.l) 
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where from Section 3 we know that the solution to (A.I) can be written 

F(s) = U(s)F(O) U-l(S), U(O) = I, 
with 

G(s) U(s) = i(%s) U(s); 

pes) satisfies the related equation 

dP(s)/ds = i[P(s), G(Q(s), pes), 1 - s)] 
where 

F(s) = V-l(S) P(O) V(s), V(O) = I 

G(Q(s), pes), 1- s)= V-l(S) G (q, -i :q' 1 - s) V(s), 

and 

G (q, -i ~ , 1 - s) V(s) = -i o~ V(s). 

From (A.5) and (A.3) we can conclude that 

V(s) = U(I - s) U-l(I) 

is a solution to (A.6). 

(A.2) 

(A. 3) 

(A.4) 

(A.5) 

(A.6) 

(A.7) 

Now we see that for the finite transformation (s = 1) we have the result from 
(A.7) that 

P(s = 1) = F(s = 1) if P(s = 0) = F(s = 0). (A.S) . 

Thus, if we are interested in the finite transformation to s = 1 given by the solution 
to (4.4) we can equally well see (A.4) setting pes) = Q(s). However, (A.4) has the 
corresponding classical equation: 

dq(s) oG -;rs = - op (q(s), pes), 1 - s), (A.9) 

which corresponds to the result we wished to prove. 
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