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Simulation of ultrashort electron pulse generation from optical injection into wake-field
plasma waves

E. S. Dodd,* J. K. Kim, and D. Umstadter
Center for Ultrafast Optical Science, University of Michigan, Ann Arbor, Michigan 48109, USA

(Received 19 December 2003; revised manuscript received 13 July 2004; published 22 November 2004)

A laser-plasma-based source of relativistic electrons is described in detail, and analyzed in two dimensions
using theoretical and numeric techniques. Two laser beams are focused in a plasma, one exciting a wake-field
electron plasma wave while another locally alters some electron trajectories in such a way that they can be
trapped and accelerated by the wave. Previous analyses dealt only with one-dimensional models. In this paper
two-dimensional particle-in-cell simulations and analysis of single particle trajectories show that the radial
wake field plays an important role. The simulation results are interpreted to evaluate the accelerated electron
beam’s properties and compared with existing devices.

DOI: 10.1103/PhysRevE.70.056410 PACS number(s): 52.38.Kd, 41.75.Jv, 52.65.Rr, 29.25.Bx

I. INTRODUCTION

Nearly 20 years ago, the use of laser-induced plasma
waves to accelerate charged particles was proposed[1].
These wake-field accelerators seek to take advantage of the
ultra-high electron acceleration gradientss.10 GeV/md of
laser-driven plasma waves[2–4], which are made possible
due to the invention of compact, high-peak-power lasers[5].
The plasma-wave electric field gradients are three orders of
magnitude higher than those in conventional rf linacs, be-
cause they are not limited by dielectric breakdown. Nor-
mally, electrons oscillating in the plasma wave cannot be
accelerated by the wake field since they are out of phase with
it. Electrons that are not part of the plasma wave can become
trapped, or continuously accelerated by the wave, provided
that they are moving in the correct phase at nearly the phase
velocity of the wave[6]. Since this velocity is close to the
speed of light, it was generally thought that such preaccel-
eration can only be accomplished by external injection, such
as with a conventional linac. However, the low-field gradient
s,10 MeV/md [7] of a first-stage conventional linac pro-
longs the time during which beam emittance can grow before
the beam becomes relativistic; after this point, self-generated
magnetic fields can balance the effects of space charge. Gra-
dients on the order of 1 GeV/cm have been demonstrated
experimentally[8], and accelerate electron beams with trans-
verse emittances that rival current electron guns.

Acceleration of electrons by plasma waves requires first a
means to drive the wave, and second a method for electron
injection. In the former case, when an intense laser pulse
propagates through a plasma, its ponderomotive force dis-
places plasma electrons. Since this force is proportional to
the laser intensity gradient, it will be directed primarily in the
longitudinal direction, if the laser pulse length is much
shorter than its focal spot size. Because the ions remain sta-
tionary, due to their larger inertia, a residual charge imbal-
ance results after the laser pulse passes by. Thus, a large

amplitude plasma wave will be resonantly driven behind the
laser pulse if the pulse width approximately equals a plasma-
wave period. The resulting electrostatic wake field propa-
gates in the same direction, with a phase velocity equal to the
group velocity of the laser pulse. This wake becomes the
gradient for particle acceleration. In terms of a method for
electron injection, even with state-of-the-art electron guns,
the pulse width of the electron bunch can be considerably
longer than the plasma wave period of a second-stage laser-
plasma accelerator. It will thus fill multiple acceleration
phases uniformly, resulting in a large energy spread. Also, it
is difficult to position and focus the electron beam in the
plasma channel with micrometer accuracy, and synchronize
it with the plasma wave acceleration phase.

In previous work, we showed that all these problems
could simply be solved by making use of an additional laser
pulse[9,10]. This method also takes advantage of the excel-
lent emittance properties of plasma-based electron genera-
tion, while providing an easily built experimental setup[11].
The basic idea is that once a wake field is excited by the
longitudinal ponderomotive force of one laser pulse(the
pump pulse), the ponderomotive force of a second laser
pulse (the injection pulse) can then be used to locally alter
the trajectories of the plasma wave electrons such that they
are in phase with the wave’s electric field and accelerated to
the trapping velocity. The key is that electrons are dephased,
either directly by the laser pulse or by other means, which
will be discussed. As first described in a previous paper[9],
this device is referred to as laser injected laser accelerator, or
LILAC.

Since initial publication of the idea, a number of varia-
tions on optical injection have been proposed[12]. However,
none of these dealt with transverse effects of the plasma
waves, which can be significant, as pointed out in[13]. One
paper which did was[14]; however, their results show much
higher transverse emittance than the work presented here. To
properly understand the physics of the device, the analysis
was reworked in this paper to include transverse effects.
These calculations are then compared to the simulations to
show that two-dimensional effects are essential. With the
multidimensional simulations, the emittance, or quality of
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the beam, can be evaluated, along with the effect of the ra-
dial component to the wake field. Both numeric and theoret-
ical methods were used to evaluate the performance and pos-
sible uses for LILAC, as compared with conventional
accelerators.

This paper is organized as follows. In Sec. II, a simple
analysis is used to obtain an approximate expression for the
intensity threshold of the injection pulse in order to trap elec-
trons. We next present in Sec. III, the results from a more
realistic analysis of the motion of a single electron in the
combined wake field and the injection pulse. In Sec. IV, we
present the results of two-dimensional(2D) particle-in-cell
(PIC) code simulations, which include collective effects,
such as the perturbation caused by the wake of the injection
pulse, yielding details about the accelerated electron beam,
such as its pulse duration, emittances, current, and energy
spread. We conclude in Sec. V.

II. MODEL

The LILAC concept consists mainly of three different
stages. First, a large amplitude wake field is generated; sec-
ond, electrons are dephased; and then third, electrons are
trapped in the pump’s wake field from the dephasing. By
understanding each of the three parts involved, a description
of the injection process can be derived. The process of
dephasing and then trapping electrons with secondary laser
pulses is quite general. Just as there are myriad ways to drive
plasma waves, by means of either a single pulse, multiple
pulses, or beat waves, there are many ways to use lasers to
inject electrons. Several orientations of the laser pulses are
also possible: collinear, counterpropagating, or orthogonal.
Besides combining laser pulse characteristics, ionization or
density gradients are other possible means to dephase elec-
trons. This paper is useful in two respects: first, in detailing
one example of a laser-based electron gun, and second, by
providing an example framework for future work. In the
analysis that follows, the model will be used to study the
specific case of orthogonal geometry, shown in Fig. 1 and
discussed in the previous paper. The pump pulse and its
wake will be examined first, since they are independent of
the version of all-optical injection.

A. Background theory

Laser-plasma based accelerators utilize the electrostatic
field of a plasma wave to accelerate electrons, for which

there exist three main generation techniques. The laser wake-
field accelerator(LWFA) [1–4] uses a single pump pulse
with a pulse widthtp,2p /vp, wherevp is the plasma fre-
quency. Another technique, the beat-wave accelerator, uses
the beat of two longer pulses to generate a train of short
pulses[15]. Finally, the most efficient method is the resonant
laser-plasma accelerator[16], which uses a series of pump
pulses with increasing spacing between them and decreasing
pulse widths to compensate for the change in resonance as
the plasma wave grows andvp changes. Although any
pumping method is compatible with LILAC, for the sake of
simplicity, we will primarily consider the LWFA.

In order for electrons to be accelerated, they must become
trapped in the plasma wave. When electrons begin to
move with the wave, its potential appears to be a well, in-
stead of oscillatory; at this point trapping becomes similar to
the Kepler problem. There exists a minimum energy above
which the particle is trapped and accelerated, and below
which it oscillates in the background. The intensity of the
pump pulse defines both the accelerating gradient and the
threshold for trapping. The pump laser pulse is described by
a=aenvsz,tdeiv0t=eA' /mec

2, whereA' is the transverse vec-
tor potential andv0 is the frequency of the pump. Denoting
F andvg as the electrostatic potential and the group velocity
of the wake, respectively, the 1D governing equation for the
wake field, characterized by a plasma frequencyvp, is given
by

d2f

dz2 = kp
2gg

2FbgS1 −
1 + a2

gg
2s1 + f2dD

−1/2

− 1G , s1d

where z=z−ct, f=eF /mec
2, bg=vg/c<bf, gg

=s1−bg
2d−1/2<gf<v0/vp, and the plasma wave numberkp

=vp/c [17]. Given a properly optimized pump pulse width,
the largest normalized amplitude for the electric field of a
plasma wave, givena, is Emax given in [17]. The background
electrons experience an electric field of the wake which is
p /2 out of phase with their momentum in the plasma, and
thus none are trapped. However, if the amplitude of the
plasma wave’s electric field is very large, a small amount of
dephasing of the electron momentum with respect to the field
can result in trapping and acceleration of these electrons.

B. Longitudinal trapping

Now that the wake is defined, trapping may be described
for a given amplitude. For a particle’s longitudinal motion
this has already been derived in at least two different papers
[6]. Both papers define a threshold in the electron energy,
above which electrons move with the wave and are acceler-
ated. This threshold is defined in phase space by an orbit
called the separatrix, because it separates the region of
closed, trapped orbits from open ones. The separatrix is ob-
tained by equating the kinetic energy of electron with the
wave’s potential energy in the wave frame, and then trans-
forming back to the lab frame. The threshold injection en-
ergy of electrons is given for any value off, at phasez, if f
is a function ofz. Thus, from[6],

G = gfs1 + gfed ± gfbfhs1 + gfed2 − 1j1/2, s2d

FIG. 1. Schematic of the crossed-laser-plasma wave accelerator
concept.
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e = fszd − fsz0d, s3d

where G is the relativistic gamma factor for the electrons
kinetic energy. The separatrix results whenz0 is the phase for
the minimum potential. If the phase of the maximum poten-
tial, fmax−fmin, is substituted intoe then Eq.(2) gives the
minimum trapping energy. Thus for a given pump pulse, Eq.
(1) yields the amplitude of the wave, and Eq.(2) gives the
kinetic energy an electron needs to be trapped.

C. Transverse trapping

Equation (2) is limited to one dimension, since it uses
only the longitudinal velocity. Electrons will also have trans-
verse momentum, causing them to drift out of the wake to
one side, unless some sort of focusing, or transverse trap-
ping, guides them. However, the potential also has a trans-
verse dimension and as the particle moves transversely in the
wake potentialfsz ,rd, it can be turned back towards the
axis, if the field is strong enough. To stay trapped we assume
the particle oscillates about the axissr =0d and reaches a
maximum radial positionsr =rd where it turns back. At these
two points we definefsz0,0d=0 on axis, andfsz0,rd=Df
at the maximum radial position. On axis, the electron has
its maximum transverse momentum,py, besides the neces-
sary longitudinal momentum for trapping,pz1, for a total
initial energy of gi =Îpy

2+pz1
2 +1, where G1=Îpz1

2 +1 is
calculated from Eq.(2). At the maximum radius of a parti-
cle’s transverse motion the transverse component of its mo-
mentum ispy=0, and the longitudinal trapping momentum at
this point ispz2. This gives a final total energyg f =Îpz2

2 +1
=G2 that is just equal to the minimum longitudinal trapping
energy, atr =r. From basic physics, the change in kinetic
energy is equal and opposite to the change in potential en-
ergy, Df=−Dg. Therefore, the equation to be solved is

g f = gi − Df. s4d

Substituting in the initial and final energies, we arrive at the
final form

py
2sr = 0d = Dfs2G2 + Dfd + sG2

2 − G1
2d. s5d

The maximum transverse momentum on axis,py, that can
remain trapped in the wave is related to the depth of the
potential wellDf, and the change in minimum longitudinal
trapping as the electron moves off axis,G1 and G2. When
Df, G1, andG2 are measured from a PIC code, Eq.(5) gives
a condition for transverse motion in a wake that Eq.(2) had
previously given only for the longitudinal case. One may
estimatepy from the potential in simulation results, an ex-
ample of which is plotted in the inset of Fig. 8, which will be
discussed in Sec. IV B.

As an example assume a wave with phase velocitygf

=10 and wave amplitude ofe=0.7 on axis, then from Eq.(2)
G1=1.0243 andpz1=0.22. As the particle drifts off axis it
reaches some maximum radius, 3mm for example, before
turning back toward the center. At this point let the amplitude
have decreased toe=0.5 so thatG2=1.1350 andpz2=0.54. If
the potential difference between this point and the axis is
Df=0.3 then the maximum transverse momentum on axis

that can remain within the 3mm radius without escaping is
py=1.0 from Eq.(5). This equation will be used in Sec. IV to
evaluate the amount of focusing needed for LILAC, at which
point simulation data will be used. It should be pointed out
here that the same calculation was performed independently
in [14], with the result in a different form.

D. Injection mechanisms

The next step is to discuss ways to move electrons from
oscillating in the background across the separatrix and thus
accelerate them to any desired energy, Fig. 2. Previous dis-
cussions of laser based accelerators assumed that an electron
bunch would be injected from an external gun, however this
has the drawbacks mentioned in Sec. I. The oscillations of
electrons in large amplitude plasma waves take them very
close to the separatrix without becoming trapped, such that
only a small impulse is needed to make them cross it.
Dephasing may arise from a number of sources, such as den-
sity variations, ionization, interaction between multiple
waves, and the ponderomotive force of additional laser
pulses. If the density varies, so willvp, causing neighboring
electrons to oscillate at different frequencies. This form of
dephasing will be mentioned again in Sec. IV due to its
presence in simulations. In ionization, newly freed electrons
may appear at velocities different from older electrons at the
same phase, i.e., dephased. Also, the wave may interact with
other wake-fields, and the ponderomotive potentials of other
laser pulses, causing complicated orbits. These orbits may
cross the original separatrix, mixing phase space in any case.
The new orbits may be calculated if the combined potentials
are known. This situation has been studied for the specific
case of a wake field overlapped with the ponderomotive po-
tential of a second pulse[18]. The results show orbits that
connect background oscillation to accelerated forward mo-
tion for the duration of the second, or injection pulse. Re-
gardless of method, any possible injection scheme involves
Eqs.(1), (2), and(5). Having selected a trapping method, the
dephasing and effect on the wake field may be calculated
analytically or numerically. The specific case which follows
can be treated as an example of how to approach any injec-
tion scheme.

We assume that electrons interact with the injection pulse
through the ponderomotive force, the same force used in

FIG. 2. Basic profile for LWFA. The pump pulse creates a
plasma wave to accelerate electrons. To be accelerated, electrons
must cross inside the separatrix.
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deriving Eq. (1). The pulse will dephase electrons via this
potential, distorting the plasma wave and separatrix, causing
some electrons to enter the separatrix and become trapped,
Fig. 3. The phase space area with trapped electrons defines
the emittance of the beam, and is shaded in the figure. Emit-
tance will be discussed in Sec. IV. It is now necessary to
calculate the ponderomotive force due to the injection pulse
in order to describe trapping. In the specific case of trans-
versely oriented pulses, the injection pulse is given a Gauss-
ian temporal and spatial profile, described by the pulse width
t, and the beam radius at the focal pointr0, as well as the
amplitudeb0. The normalized vector potential for the injec-
tion pulse,b, can then be written as

b = benvsr,tdeivt, s6d

where benvsr ,td=b0 expf−sr / r0d2gexph−4fst− tcd /tg2j is the
pulse profile,tc is the time the peak of the injection pulse
crosses thez axis, andv is the laser frequency. Hereb0 takes
the place ofa0 to distinguish the pump from injection pulse,
however they have the same meaning. The focal point of the
injection pulse is atz=0 andy=0. In this specific case,r of
the injection pulse is in thez direction. The time averaged
relativistic ponderomotive force of the injection pulse is de-
fined by [19]

Fpond= −
1

s1 + b2d1/2

mec
2

4
= b2. s7d

Reference[19] and the following calculation assume that any
plasma response to the injection pulse can be neglected. We
feel this is reasonable since the conclusions of this paper are
based on: one, numerical solutions to single particle motion
that give similar results in Sec. III; and two, PIC simulation
results that contain the full plasma response in Sec. IV. The
results of this section are meant as a guide for the correct
order of magnitude. A more complete calculation would need
a ponderomotive force containing the full plasma response,
and Ref.[20] contains such a calculation, though for a dif-
ferent problem. The ponderomotive force, Eq.(7), is in both
the positive and negativez directions, producing bidirec-
tional drift motion of the electrons in the plasma wave.
Those electrons that acquire a ponderomotive drift velocity

in the same direction as the pump pulse, arevelocity
dephased with respect to, and injected into, the wake field,
and will be trapped if inside the separatrix. The local pertur-
bation of the injection pulse can also disrupt the phase of the
wake field, disabling LILAC operation in the third stage.
However, the propagation velocity of this disturbance is
much less than the phase velocity of the plasma wave. This
means that once electrons are injected into the plasma wave,
the disturbance will not affect the ongoing acceleration.

A condition for trapping based on the intensities of the
pump and injection pulses is necessary. In what follows, we
have developed an analytic theory which provides a simple,
intuitive model for trapping in one dimension. An electron
receives a drift velocity from the transverse ponderomotive
force of a laser pulse. If this velocity exceeds the calculated
threshold at an injection point in the plasma wave, then the
electron will be trapped. We first start with the relativistic
ponderomotive force exerted on an electron, undergoing a
series of plasma oscillations initiated by the pump. Plugging
Eq. (6) into Eq. (7), we get

uFpondu =
b0

2

s1 + b0
2/2d2

mec
2

r0
2 Fz expS− 2

z2

r0
2DG

3FexpS− 8
st − tcd2

t2 DG . s8d

Since, for a propagating pulse,z depends ont, in order to
determine the ponderomotive force, we should solve the
equation of motion and findzstd. The equation of motion for
electron’s trajectory is

d

dt
sgmevd = qEepw+ Fpond, s9d

whereEepw is the electric field of the plasma wave in thez
direction. Noting that the scheme relies on alteration of the
electron velocity distribution, and hence alters the wake
field, solving this problem exactly is nontrivial. To avoid this
difficulty, we first solve the system with the assumption that
the wake field is a function ofz only, meaning that the pon-
deromotive force does not affect the wake, in the simplest
case. Further we assume that the electron drifts a negligible
distance during dephasing, so that we need not computezstd.
Thus it is straightforward to get an approximate functional
form for the change of the dimensionless relativistic momen-
tum Dsgbd. Using an electron whose plasma oscillation cen-
ter is r0/2 away from z=0 along the positivez axis, the
ponderomotive force assumes positive maximum value. For
a beam diameter of the injection pulse equal to the plasma
wavelength 2r0=lp=vpec, the injection pulse produces

Dsgbd = Dsgbd0dst − tcd, s10d

Dsgbd0 =
b0

2

s1 + b0
2/2d1/2Îp

8
exps− 1/2d. s11d

Equation(11) represents the impulse an electron receives by
drifting out of the injection pulse, with thed function being a
short impulsive kick. Alone this equation only describes test
electrons with no space charge, or interaction with the wake.

FIG. 3. Basic profile for optical injection. The injection pulse
dephases electrons in the plasma wave, distorting it and the separa-
trix. Electrons cross the separatrix, into the accelerating bucket.
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With an idea of which electrons are being dephased, the
proper combination of trapping threshold and injection pulse
intensity will lead to the desired trapping threshold.

E. Injection threshold

In order to calculate the injection point in the plasma
wave, it is first necessary to define the background plasma-
wave electron motion. We can simply write down the non-
linear oscillatory motion of the electron as follows:

gb = − sgbd0pstd, s12d

z= z0pst + p/vpd, s13d

f = f0pst − z/cd, s14d

wheresgbd0 andz0 refer to the amplitude of the motion, and
pstd represents the form of the plasma wave. For a low-
amplitude linear wavepstd can have a sine or cosine shape.
In the nonlinear regime it takes a form that is solved for
numerically[16]; nevertheless, it is always a periodic func-
tion. Due to thed function in Eq.(11), the momentum of the
electron experiences a discontinuity att= tc and is dephased
with respect to other background plasma wave electrons,

sgbdstcd = − sgbd0pstcd + Dsgbd0. s15d

Combining Eq.(11) for the dephasing with Eq.(2) for the
minimum trapping velocity, we can getbth, the threshold
value for b0, which is required in order to trap the electron
for a givenfsa0d,

bth =
S

2
f1 + s1 + 16/S2d1/2g1/2, s16d

where

S=Î 8

p
exps1/2dfsG2 − 1d1/2 + sgbd0pstcdg. s17d

For example, withgf=10 anda0=1, which corresponds to
e=0.7, Eq.(16) predictsbth<0.8. Even though this model
illustrates the essential physics of the LILAC, it is a simpli-
fied description because the injection of electrons is assumed
to occur at the maximum off where the injection is optimal,
i.e., perfect phase matching. Thus it reveals little information
about the threshold’s dependence on the temporal separation
between the injection and pump pulses, described bytc. Yet
tc significantly affectsbth since it provides the synchroniza-
tion between the accelerating phase of the electric field of the
plasma wave and the ponderomotive push by the injection
pulse.

As we will see in the following sections, it suffices to
predict the needed order of magnitude of the laser pulse in-
tensities. A more complicated version must be solved for
numerically. Also, since this same process may be followed
for any given laser injection configuration, dephasing can be
compared with the trapping threshold to determine if injec-
tion will occur. In our simple model we have added the drift
velocity from the injection pulse to a single electron, how-

ever we can think of it in more general terms: the change to
the wake’s potential is essentially equal to the original wake
plus the ponderomotive potential. So in this section we have
provided a trapping threshold for a specific injection scheme,
while trying to use a general prescription for analyzing the
dephasing of electrons due to a second laser pulse. In order
to test the concept fully, the threshold will be analyzed via
simulation in the following sections.

III. ANALYSIS OF MOTION OF A SINGLE ELECTRON

The concept is first tested by studying the relativistic
equation of motion for a single electron. The test particle
moves within the plasma wave’s two dimensional electric
field governed by the numerical integration of Eq.(9). The
electron is allowed to move in they-z plane to properly
describe the interaction between the electron and the injec-
tion pulse. Thus Eq.(9) is decomposed into they and z
components:

d

dt
sgmebyd =

q

c
bzEinj , s18d

d

dt
sgmebzd =

q

c
hs1 − bydEinj + Eepwj. s19d

We assume the following: the group velocity of the wakevg
is approximately equal toc and is a constant; the quasistatic
approximation; a linear polarization for the injection pulse
along thez axis; no wake is produced by the injection pulse;
and the plasma channel is one dimensional. The plasma wake
field is generated by solving one-dimensional fluid equations
numerically and imported toEepw.

First, we verified the validity of the code by comparing it
with analytic expressions for(1) the final drift velocity and
(2) the threshold trapping energy. For the calculation of the
final drift velocity, good agreements are made whenb0 is
smaller than 1.3; the deviation starts to occur due to the fact
that the amplitude of the ponderomotive force in the curve is
always calculated atz=r0/2. With largeb0, the displacement
zstd of the electron becomes important and the assumption of
maximum ponderomotive force no longer holds. Trapping
threshold of electrons in the plasma wave agrees with Eq.(2)
for any e. After the validity check, simulations with both
pump and injection pulse were then performed. Even though
this analysis cannot provide us with information about the
number and energy spread of the accelerated electrons, it is
still useful to determine the optimal time delay between the
pump and the injection pulse as well as the threshold inten-
sity for the injection pulse when the amplitude for the pump
pulse is given.

In order to follow the motion of an electron in the plasma
wave, we first assume the plasma channel is one dimensional
in the z direction. This can be justified by using a spot size
for the pump much larger than for the injection pulse. Thus,
the transit time in which the injection pulse crosses the chan-
nel is much larger than a plasma periodsttransit@tpd. Further-
more, the plasma wave is assumed to be free of Landau
damping and any perturbation by the injection pulse. In
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short, the pump solely determines the behavior of the plasma
wave.

A single electron, with initial conditions for velocity and
position consistent with other background electrons in the
plasma wave, is allowed to undergo plasma oscillations
along thez axis. Since the excursion distance is on the order
of lp/2p without injection, the motion can be approximated
by a harmonic oscillator system. In Fig. 4, the motion of this
background electron is shown, from a pump pulse witha0
=1 having generated the plasma wave. The ratio between the
laser frequency and the plasma frequency was 10:1, the same
as the relativistic factor for the plasma wave,gf. The phase
space trajectory in Fig. 4(b) is that of a harmonic oscillator,
including the Stokes drift of the particle due to the wave’s
finite phase velocity[21].

The electron trajectory drastically changes when the in-
jection pulse is applied. The peak of the injection pulse ar-
rives atz=0 on thez axis at timet= tc. Again, the pump and
injection pulse laser frequencies were equal. A value oftc
=2.5tp was used, corresponding to the negative maximum of
the potential. Alsoa0=1 andb0=1.7 were used respectively
for the pump and injection pulse. As seen in Fig. 5(a), the
electron was clearly injected into the plasma wave, but be-

cause of the poor synchronization between the plasma wave
field and the ponderomotive force from the injection pulse,
the electron could not obtain the required thrust from the
plasma wave field to remain in the same “bucket” of plasma
wave and thus was not trapped. Figure 5(b) shows this
bucket-to-bucket transition of the electron in phase space tra-
jectory. Thus optimization oftc is crucial in order to mini-
mize b0 for threshold operation of LILAC.

Next, keeping the other parameters fixed, the same simu-
lation was done except withtc=1.85tp, which approxi-
mately corresponds to the maximum of the potential when
the peak of the injection pulse crosses thez axis. Figure 6
shows that electron trapping occurred given this value ofb0.
The plasma wave phase velocity was 0.995c and the electron
was observed to pass the trapping threshold velocity and
continued to be accelerated up to 21 MeV within 40tp, cor-
responding to an energy gain of 50 keV per micron. The
angular distance produced by the longitudinal ponderomo-
tive force of the injection pulse was approximately 0.025 rad
after 40tp (corresponding to a distance of 10mm off the z
axis alongy or a distance oflp). The ratio between they and
z directional velocities was 0.6%. In order to obtain the

FIG. 4. A particle oscillating in the background plasma wave.
(a) is bz vs t. (b) is bz vs z. Note the Stokes drift in(b).

FIG. 5. A particle oscillating in the background with injection.
The injection pulse changes the motion of the electron. The phase is
incorrect and the particle is not trapped in the wave.(a) is bzvs t.
(b) is bz vs z.

DODD, KIM, AND UMSTADTER PHYSICAL REVIEW E 70, 056410(2004)

056410-6



maximum acceleration, the electron must remain in the
plasma channel in the transverse dimension. Although the
electron in the above calculation did remain in a 1D plasma
channel(repw@lp whererepw is the waist size of the plasma
wave), this effect could be a limitation on the maximum
acceleration. However, it can be readily removed by the use
of two colliding counterpropagating injection pulses right at
the center of plasma channel. Given proper temporal and
spatial synchronization, their longitudinal ponderomotive
drifts cancel each other, adding constructively only to a
transverse ponderomotive drift. Alternatively, the radial wake
can be used. To move transversely out of the wake the elec-
tron needs to overcome the trapping potential, provided the
kinetic energy of the electron is large enough for escape.
Therefore a finite transverse profile helps to keep the beam
aligned with the axis, if the radial wake has a high enough
amplitude.

To show the crucial dependence ofbth on tc, tc was varied
within the range of one plasma wavelength in multiple simu-
lations. A value ofa0=1 and a value ofb0=1.6, were used to

determine the optimal value fortc in Fig. 7 (inset). Figure 6
shows the resulting trajectory of these simulations. Because
of the periodicity of the plasma wave, the optimum value for
tc also has periodtp. Since the variation oftc in the simula-
tion was withintp, the periodicity oftc is implicitly assumed
hereafter. The optimal value was found to betc=1.85tp. The
electron was not trapped sinceb0=1.6 was short ofb0=1.7,
the optimized threshold value. However, it is clear thattc
=1.85tp is optimal with an injection pulse ofb0=1.6. Since
the plasma channel has a finite waist size,tc is a linear func-
tion of y in the channel. This implies that only neary=0 will
a given value oftc be optimal.

Figure 7 compares the calculation of Sec. II and numeri-
cal simulation of Sec. III. The threshold value forb0 is plot-
ted versus the amplitude of the plasma wave. The solid line
represents Eq.(9) with gf=10 and the dashed line results
from Eq.(16), including consideration oftc. For a wave with
a higher phase velocity, e.g., a value ofgf=100, this theory
predicts a larger thresholdbth, since then an electron needs a
stronger boost from the injection pulse in order to be trapped
in the faster plasma wave.

Note the distinct discrepancy between curves atf=0.9,
where the dashed line goes to zero while the threshold points
from Eq. (9) remain aboveb0=1.3. In arriving at Eq.(16),
optimal injection(perfect phase matching) of a test electron
is implicitly assumed. Accordingly, the final drift velocity of
the electron from the injection pulse is independent of the
amplitude and phase of the wake. An electron with zero ini-
tial velocity injected at maximumf can be self-trapped
(without an injection pulse). On the other hand, when Eq.(9)
is solved, the injected background electron has a phase dif-
ference relative to that of the wake, determined by the delay
parametertc. Self-trapping no longer occurs(at least not in a
cold plasma for wave amplitudes below wave breaking).

bth becomes independent off asf approaches 1 because
while it becomes easier to trap an electron it also becomes
harder to dephase one. These two effects begin to balance
each other. The electron is easier to trap because of the larger

FIG. 6. (a) Velocity of an injected and trapped electron in
LILAC, predicted by Eq.(9), is plotted versus time. The optimized
time delay between the pump and injection pulse,tc=1.85tp, was
used. With the same parameters as Fig. 5 excepttc, the electron was
trapped and remained in the same bucket until the end of simula-
tion. (b) The phase space trajectory was plotted,bz vs z.

FIG. 7. The trapping thresholdbth plotted versus the plasma-
wave amplitudef. The dashed line represents the results of Eq.
(16) and the solid one, Eq.(9). The trapping region is above the
curves. The results of PIC simulations are shown by the two points;
the error bars are from finite temperature effects. Inset:sgbdz vs tc,
valid only alongy=0.
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f, decreasing the required injection threshold velocity. In
contrast, it becomes harder to dephase an electron oscillating
in a large amplitude plasma wave because the required
change in momentum becomes larger.

IV. PARTICLE-IN-CELL SIMULATIONS

To test the principle of optical injection, including the
effect of the injection pulse’s wake, particle-in-cell simula-
tions were performed. Previously, 1D simulations of LILAC
were performed[9], as well as initial 2D runs[10]. In
this section, the results of a two dimensional code will
be detailed and compared with the previous data. In all simu-
lations, the pump pulse has a wavelength of 1mm, and a
pulse length 10mm, or 33 fs, giving electron densities of
,1019 cm−3 and tp,tl, wheretl is the laser pulse length.
Therefore, the one and two dimensional simulations may be
compared directly. The pump pulse used a Gaussian spatial
profile with a spot size arrived through simulation, as will be
discussed. The spatial domain size for the simulation was
5 lp in 2D, using a grid of 102431024 cells with 53106

particles. The PIC code, calledTRISTAN [22], is based on the
same relativistic and electromagnetic algorithm in both one
and two dimensions. It is fully self-consistent so the vector
potential satisfies,= ·A =0, for Gaussian laser pulses. Two
changes in the code have been made: a shifting routine was
written to remain in the moving frame of the laser pulse, and
the two dimensional code was moved to a parallel machine,
IBM SP2, using a domain decomposition algorithm. The ba-
sic simulation code was unchanged, parallelism was added
with Message Passing Interface(MPI) and all interprocessor
communication was hidden inside separate routines.

A. Parameters studied

To determine the importance of two-dimensional effects
and to study geometries that do not require the one-
dimensional approximation, three simulation sets were run
(see Table I). The first varies the pump pulse’s parameters,
the second studies LILAC, and the third tests LILAC without
transverse focusing. This paper primarily concerns itself with
the results of the second set, where the two pulses start over-
lapped, and then the delay between them is increased. As
before, we use the LWFA with the pump pulse resonant to
the plasma frequency. The specific pump pulse parameters
used area0=1.6, r0=8 mm, andtp=10ll /c, wherell is the
laser’s wavelength. Given the spot size, the Rayleigh range
was 180mm for 2D. For the injection pulse we uset=2tp
and b0=2.0 with a spot size ofr0=5 mm. In Sec. IV B we

present the electron phase space resulting from the simula-
tions described.

The pump parameters detailed above resulted from the
first set of simulations. The various spot sizes of the pump
were r0=5, 6.5, and 8mm; the intensity was varied from
a0=1.6 to 2.2; and the pulse length was 16.7 or 33 fs, giving
phase velocities ofgf=5 and 10. The previously published
2D simulations usedgf=5 [10]; however, background
trapping obscured the trapping threshold, though injection
was observed. Therefore background reduction was needed.
For this reason, the phase velocity of the wave was raised
to gf=10, thus the need for such a large simulation grid. In
the case ofa0ù2, there was some self trapping of electrons
from the background, leading to the choice ofa0=1.6. Also
as discussed in the model section, transverse trapping, or
focusing of the electrons is necessary in order for trapping
to occur, therefore the spot size was varied to find the mini-
mum required:r0=8 mm. The third set of simulations, with
a0=2.0 and r0=5 mm, failed to trap injected electrons
since they drifted out of the wake after only a few microns
of acceleration. Set one will not be discussed in greater de-
tail, but was included for completeness.

Another effect looked at briefly was trapping due to
edge effects. A sharp boundary in the simulation caused the
plasma frequency to change abruptly, going from zero in
vacuum to full density in a few microns. Oscillating particles
will see two frequencies as they move into the vacuum and
return, causing them to be dephased, and possibly trapped.
This was studied previously by two other groups[23]. We
chose to use the solution of Bonnaudet al. to remove this
problem from the code, and moved the particle boundary
accordingly. This was tested in set one, and removed almost
all background trapping from the simulation. Physical
boundaries this sharp are difficult to achieve experimentally.

B. Simulation analysis

Figures 8 and 9 are the longitudinal phase spacespz/mecd
by z of two different simulations. First, Fig. 8, is a pump
pulse alone without injection, using the previously men-
tioned parameters. Electrons oscillating in the background,
but not trapped in the wake, can be seen. The wake’s elec-
trostatic field is plotted also, with a strength of about 70% of
wave breaking. The dashed lines represent the separatrix,
calculated from the simulated wake’s potential using Eq.(2).
For trapping, electrons must have been moved by the injec-
tion pulse from their initial positions, to a point lying within
the dashed lines. The ponderomotive drift received by the
electrons from the injection pulse exceeds the predicted trap-
ping threshold, so that many electrons should be trapped.

TABLE I. A summary of the different simulation sets used in the study of LILAC. Three sets of simu-
lations were performed, each containing seven to ten simulations.

Set Purpose Varied

1 Find optimum wake a0,r0,gf

2 Test LILAC, findbth Timing between injection pulse and pump

3 Test lack of focusing on trapping Usedr0=5 mm for pump
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Similarly to the longitudinal separatrix, one can take a trans-
verse slice of the potential and substitute it into Eq.(5), thus
yielding the maximum radial momentum for an electron to
remain trapped in the wave. This is plotted in the inset of
Fig. 8. To stay within the wake field, given a laser spot size
of 8 mm about the central axis at 38mm, an electron can
have at mostupy/mecuø6.0 on axis.

The action of the injection pulse on the wake is shown in
Fig. 9. Two sets of particles appear: those in the background
and those trapped in the wave. For analysis, trapping was
defined by two characteristics, first if the particles had the
necessary forward velocity, and secondly we artificially
picked only those particles in the bucket of interest for analy-
sis, which allowed us to calculate the properties of a single
micro-bunch. In the particular simulation plotted, the injec-
tion pulse filled only buckets after it passed. The reason for

this will be discussed later with individual particle trajecto-
ries. A cross marks where the peak of the injection pulse
crossed the pump’s axis, corresponding to a cross in Fig. 8.
As the injection pulse was scanned through the different
phases of the wave, electrons were injected into every bucket
within the simulation domain, shown in Fig. 9. The first three
buckets were analyzed for every run. A correlation between
momentum and position is visible, a characteristic observed
in the previous one dimensional simulations mentioned. This
chirp in the bunch comes from the electrons having been
injected over a finite period of time. A large area of phase
space was covered as the wave advanced through different
phases, subjecting the particles to remarkably different accel-
eration gradients. Therefore after some acceleration, the cor-
relation between momentum and position appeared. This
chirp opens the possibility of compressing the already short
electron bunch by use of conventional electron-bunch com-
pression techniques[24,25].

Motion in the transverse direction also affects trapping as
previously mentioned. The injection pulse traveled in the
positive y-axis direction, and kicked the electrons trans-
versely, as well as collinear to the pump pulse axis. This was
compensated by use of the transverse wake field. Plotted in
Fig. 10 is the transverse momentumpy/mec versuspz/mec,
for the same simulation plotted previously. Around the point
(0,0), we see a set of points in the shape of a parabola(not
the solid line), these are electrons oscillating in the back-
ground. It can be seen that the trapped particles had a much
smaller transverse velocity than in the longitudinal direction,
with pz/mec.10 andupy/mecuø4. Set three gave different
results, longitudinally trapped particles drifted out one side
of the wake field, havingpy.pz. In 2D the separatrix
changes with radius due to the wake profile, so particles
within the separatrix on axis may leave it through transverse
motion, but not longitudinally, even after the laser pulse has
passed. Since the wake is in the two-dimensional instead of
the one-dimensional limit the amplitude depends on the spot
size,r0, as well as the pump pulse’s amplitude,a0. Therefore,
by making the pump pulse wider in set two, the wake field’s

FIG. 8. LWFA only without injection. Shown are the electrons
oscillating in the background(points), the normalized electrostatic
field (solid line), and separatrix(dotted line). The inset shows the
transverse trapping, with the maximumpy/mec=6.0, with larger
momenta drifting out sideways. The crosses mark the position
where the injection pulse intersects the pump pulses’ axis in each
simulation of the set discussed.

FIG. 9. LWFA with an injection pulse. Electrons trapped and
accelerated in the wake may now be seen. Note that buckets after
the one intended for injection are filled due to partially dephased
electrons bouncing in the wake, and falling behind. Note the cross,
reflecting the relative position of the injection pulse.

FIG. 10. This figure shows the transverse momentumpy/mec
plotted as a function of the longitudinal momentumpz/mec. Elec-
trons are plotted as points, diamonds for trapped. The lines mark the
region for electron trapping due to both longitudinal and transverse
trapping.
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potential well deepens. Enough so that particles no longer
drifted transversely out of the wake, which had decreased the
number of electrons in the accelerated bunch. During trap-
ping the electrons have a maximum radius of about 7mm.
The maximum transverse momentum that can be constrained
to this radius is plotted with the two horizontal dashed lines
in Fig. 10 at upy/mecuù4.5. So the momentum ofupy/mecu
ù6.0, calculated earlier using the 8mm spot size, is larger
than needed to keep particles close to the axis. The parabolic
solid line is the minimum longitudinal momentum from Eq.
(2) at a given radius, plotted versus the maximum transverse
momentum from Eq.(5) at the same radius, and depicts the
absolute minimum trapping. It should be noted that the beam
emittance, calculated later in this section, directly relates to
the velocity spread inside the lines. We therefore conclude
that particles will not drift transversely out of the wake field
if the minimum focusing field is applied. The bunches were
made up of electrons trapped transversely, as well as longi-
tudinally.

Since individual particles in the bunch were identifiable,
the simulation was rerun to trace trapped particles through
their entire motion. This was done for 20 particles each, in
the first two buckets filled in each simulation. The paths of
these electrons are shown in Fig. 11, with the particles oscil-
lating in Y as they accelerate in theZ direction. The oscilla-
tion’s maximum extent is plotted with the dotted line, giving
rmax=7.0 mm, previously used to find the maximum trans-
verse velocity trapped. Figure 12 shows the longitudinal mo-
mentum versus time for two different electrons in the first
two bunches of the simulation shown in Fig. 9. Figure 12(a)
is an electron in the first bunch, and Fig. 12(b) in the second.
The electron in Fig. 12(a) clearly oscillated in the pump
pulse, and then the injection pulse superimposed on the
background oscillation, after which it was trapped and accel-
erated. The second plot shows a similar scene, except the
electron was not trapped in the first bucket, but bounced once
and fell back a bucket as it moved radially through the
changing separatrix. This bounce centered around a forward
momentum of aboutpz/mec+1, meaning the electron re-
ceived a forward kick, but was still outside the separatrix for

the first bucket. The longitudinal momentum is also plotted
in Fig. 13, but now versusz. The dotted vertical line at
30 mm is the center of the injection pulse, showing the
trapped electron initially pushed in the negativez direction.
Figure 13(a) shows the particle from the first bucket starting
near the ponderomotive force maximum at 27.5mm, while
the particle that slips a bucket, Fig. 13(b), comes from a
region of lesser force. The orbits can actually be calculated
by looking at how the ponderomotive potential effects the
wave[18]. These pictures match reasonably well with Fig. 5
and Fig. 6 from the previous section, showing that all meth-
ods of analysis match each other.

Finally Figs. 14 and 15 deal with transverse motion dur-
ing the trapping process. Earlier we saw particles oscillate
around the pump pulse’s axis due to their transverse velocity.
This motion can again be seen in Figs. 14(a) and 14(b),
showing the same particles as in Fig. 12, with a dashed line
for the pump pulse’s axis. Figure 15 diagrams the changing
longitudinal trapping threshold as the particles move off
axis. The solid line is the separatrix on axis from Fig. 8,
while the dashed line is the separatrix atr =7 mm. Off axis

FIG. 11. Injection and acceleration process traced by 40 indi-
vidual electrons in two buckets. The line with long dashes is the
plasma boundary, and the dotted line shows the maximum extent of
the beam oscillations in the trapping potential.

FIG. 12. Motion of a single electron. The longitudinal momen-
tum pz/mec plotted as a function of time. A particle trapped in the
first bucket is shown in(a), with one from the second in(b).

FIG. 13. The same electrons as in Fig. 12; here longitudinal
momentumpz/mec is plotted as a function of positionZ. (a) has the
electron trapped in the first bucket with(b) showing the particle that
bounces before becoming trapped.
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the minimum trapping momentum ispz/mec=2.5 instead
of 0.5 so an electron needs 1 MeV more energy to be trapped
at r =7 mm than on axis. The particles most strongly inter-
acted with the injection pulse at a time oft=3.7tp in both
Figs. 14(a) and 14(b) were knocked off axis and then sub-
jected to the higher trapping threshold in Fig. 15, the dashed
line. Both particles can be seen to bounce back toward the
center in Fig. 14, and the lower trapping threshold of the
solid line in Fig. 15. However, the particle in Fig. 14(b) was
overtaken by the wave and slipped back a bucket before
being trapped. To be trapped, the particle’s phase needed to
be at the minimum of the separatrix, and also on axis at the
deepest part of the well. If both criteria are not met, then no
trapping occurs.

C. Summary and comparison

Now that it has been shown that an electron beam can be
injected, it is relevant to compare the beam with existing

electron sources. First, the trapped particles mentioned pre-
viously in Sec. IV B can be converted to a number of real
electrons in each bunch. Next, the bunch can be statistically
analyzed for the average and standard deviation of the quan-
tities: z,y,pz,py. Bunch spot size and length are thenr0=sy

and l =2sz, respectively. The average energy for each bunch
is taken frompz, with an energy spread ofspz

/pz and Dpy

=spy
for the divergence. Figure 16 shows characteristics for

the beam as a function of pulse timing, with each point cor-
responding to a cross in Fig. 8. To do this, we used the
emittance, a common quantity used to examine a particle
beam’s quality, with both longitudinal and transverse emit-
tances in two dimensions. Basically, they represent the vol-
ume of phase space occupied by the beam. In this paper, the
values reported are the rms emittances, given the method of
statistical analysis.

In the transverse direction, thepy-y plane, this volume
determines the angular spread of the beam, and the spot size.
In the transverse case we calculated the normalized emit-
tance by

«'n = pgb2r0
Dpy

pz
, s20d

where r0 is the spot size of the beam, andpy and pz are
the transverse and longitudinal normalized momenta,p/mc.
In the 2D simulation presented, this quantity had a value
of 1–2p mm mrad, and was found to be constant over
the simulation. The best rf guns have a value of
,1 p mm mrad, on the same order of magnitude[25].

FIG. 14. The same electrons as in Fig. 12 are plotted; here
transverse positionY is plotted as a function of time.(a) has the
electron trapped in the first bucket with(b) showing the particle that
bounces before becoming trapped. The dashed line represents the
axis of propagation for the pump pulse.

FIG. 15. The minimum trapping threshold, or separatrix. The
solid line reflects the minimum momentum needed to trap an elec-
tron on axis with the pump pulse. The dashed line is the threshold
for the electrons at a radius ofrmax=2.5 mm from the axis.

FIG. 16. Beam characteristics as a function of delay between the
pump and injection pulses. Shown are(a) number of electrons in the
bunch,(b) average energy of the bunch,(c) longitudinal emittance,
and (d) transverse emittance. The first bucket is diamonds, second
triangles, and third squares.
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The previous set of simulations in[10] had «'n
=0.3 p mm mrad due to smaller volumes and larger acceler-
ating fields.

The bunch had about 33107 electrons in it, fewer than in
1D [9]. The spot size of the electron bunch turned out to be
smaller than the pump pulse due to the need to keep the
electrons near the pump’s axis. This change accounts for the
difference between the 1D and 2D simulations. At the latest
point in time of the simulation the electrons had an average
energy of 20–25 MeV, and a relative energy spread of about
20%. This spread in the energies is consistent with the afore-
mentioned change in the accelerating gradient over the
bunch length. If the electrons are accelerated to higher ener-
gies this value will decrease, for instance at 100 MeV it
would be only 4–5% sinceDE is roughly constant. We will
represent the longitudinal emittance by the integral

«i =R dpz dz. s21d

This quantity represents the volume of phase space filled
longitudinally by the beam, representing the energy spread as
well as the bunch length. It was also observed to have been a
constant of the motion, with a value from the simulation of
s1–2d310−9 eV s. The longitudinal emittance is again the
same or better than current devices. This is partly to do with
the bunch length on the order of 3mm s9 fsd. Even with a
large energy spread, the area in phase space will be small
with such a short bunch length. It should be noted that as the
number of particles fell off when the timing between pulses
was increased, the other bunch characteristics remained
roughly constant. At the largest spacing between pulses the
injection pulse began to overlap the plasma vacuum bound-
ary, and once again created trapping from the boundary,
therefore the last two points in Fig. 16 diverge drastically,
and should be ignored.

Table II summarizes the typical characteristics in the
simulations, and compares them with two other sources. One
is based on a current experiment using an instability to gen-
erate electrons[8], the self-modulated laser wake-field accel-
erator(SMLWFA). The other comparison is a compilation of

the references in[25]. Looking at these values it can be seen
that LILAC compares well, with the exception of bunch
number. However, the peak currents are comparable since
the pulse duration is so short. The parameters for this simu-
lation were chosen to match initial experiments, not optimal
electron gun performance. If beam charges of less than 10
pC are undesirable, then other parameters may be explored
for LILAC’s pulses. Additionally there are many applications
where ultrashort bunches are advantageous, such in high-
energy physics, free-electron lasers, and ultrafast science.
The two dimensional simulations again show that LILAC
works in theory, and produces a beam of excellent quality.

V. CONCLUSION

Using both analysis and simulations, we have fully ana-
lyzed a concept for linear acceleration of electrons, in which
a laser optically injects electrons into a wake-field plasma
wave. Starting with a general analysis of the processes in-
volved, one particular geometry was studied. The analysis
was then compared to two different simulation techniques
that returned similar results. In this way, a single ultrashort
s9 fsd electron bunch can be trapped and accelerated up to
multi-MeV energies in a millimeter distance, a particularly
attractive attribute for use in many applications. By permit-
ting femtosecond synchronization and micrometer spatial
overlap between the phase of the plasma wave and the injec-
tion pulse, this technique obviates the problems associated
with the alternative, attempting to combine conventional and
laser-plasma accelerators. From PIC simulations we are able
to conclude that this short bunch has characteristics compa-
rable to current technology and may possibly be compress-
ible to very short lengths. Also we have come to the conclu-
sion that, in the case of orthogonal beams, the radial wake is
a necessary part of trapping. Though this particular geometry
of injection pulse may seem to create a large transverse emit-
tance in the accelerated bunch, the predicted beam quality is
competitive with photocathode rf guns under development.
Parameters consistent with currently existing lasers have
been used in the analysis.

TABLE II. Typical parameters for an electron bunch created with LILAC. The numbers for LILAC
represent three microbunches clustered together.

Photoinjectors from[25] SMLWFA LILAC

Energy 10 MeV 1–100 MeV 20 MeV

Spread 0.2-0.5 % 100 % 20 %

Bunch length 1–10 ps ø2 ps 10 fs

Total charge 1–3 nC 1 nC ø10 pC

Rep. rate ,102 Hz 10 Hz 10 Hz

Accel. field .100 keV/cm 2 GeV/cm 2.3 GeV/cm

Accel. length .1 m 800mm 400mm

«'n=pgb2r0spy/pzd s1–5dp mm mrad 1.1p mm mrad ,2p mm mrad

Peak current ,1 kA 500 A 200 A

Avg. current ,100 nA 2 pA 100 pA

Norm. bright. 231013 A/m2 rad2 431013 A/m2 rad2 531012 A/m2 rad2

DODD, KIM, AND UMSTADTER PHYSICAL REVIEW E 70, 056410(2004)

056410-12



ACKNOWLEDGMENTS

We would like to acknowledge the support of the NSF
and to thank Torsten Neubert and Gerard Mourou for many
valuable discussions. Computing services were provided by
the University of Michigan Center for Parallel Computing,
which is partially funded by NSF Grant No. CDA-92-14296.

D.U. wishes to thank the Chemical Sciences, Geosciences
and Biosciences Division of the Office of Basic Energy Sci-
ences, Office of Science, U.S. Department of Energy. E.S.D.
wishes to thank the U.S. Department of Energy through the
University of California, Los Alamos National Laboratory
under Contract No. W-7405-END-36.

[1] T. Tajima and J. M. Dawson, Phys. Rev. Lett.43, 267 (1979).
[2] P. Sprangleet al., Appl. Phys. Lett.53, 2146(1988).
[3] L. M. Gorbunov and V. I. Kirsanov, Sov. Phys. JETP66, 290

(1987); H. Hamsteret al., Phys. Rev. Lett.71, 2725 (1993);
K. Nakajimaet al., ibid. 74, 4428(1995).

[4] See, e.g.,Advanced Accelerator Concepts, edited by P.
Schoessow, AIP Conf. Proc. No. 335(AIP, Woodbury, NY,
1995), and references cited therein.

[5] P. Maineet al., IEEE J. Quantum Electron.24, 398 (1988);
G. Mourou and D. Umstadter, Phys. Fluids B4, 2315(1992);
M. D. Perry and G. Mourou, Science264, 917 (1994).

[6] E. Esarey and M. Pilloff, Phys. Plasmas2, 1432 (1995);
T. Katsouleaset al., in Laser Acceleration of Particles, edited
by C. Joshi and T. C. Katsouleas, AIP Conf. Proc. 130(AIP,
New York, 1985).

[7] S. Humphries, Jr.,Principles of Charged Particle Accelerators
(Wiley, New York, 1986).

[8] R. Wagner et al., Phys. Rev. Lett. 78, 3125 (1997);
C. I. Moore et al., ibid. 79, 3909 (1997); D. Gordonet al.,
ibid. 80, 2133(1998).

[9] D. Umstadter, J. K. Kim, and E. Dodd, Phys. Rev. Lett.76,
2073 (1996).

[10] E. Dodd, J. K. Kim, and D. Umstadter, inAdvanced Accelera-
tor Concepts, edited by S. Chattopadhyay, J. McCullough, and
P. Dahl, AIP Conf. Proc. No. 398(AIP, Woodbury, NY, 1997).

[11] A. W. Chao, R. Pitthan, T. Tajima, and D. Yeremian, Phys.
Rev. ST Accel. Beams6, 024201(2003).

[12] B. Rau, T. Tajima, and H. Hojo, Phys. Rev. Lett.78, 3310
(1997); E. Esareyet al., ibid. 79, 2682(1997).

[13] S. V. Bulanovet al., Phys. Rev. Lett.78, 4205(1997).
[14] R. G. Hemkeret al., Phys. Rev. E57, 5920(1998).
[15] C. Joshiet al., Nature(London) 311, 525 (1984).
[16] D. Umstadter, E. Esarey, and J. Kim, Phys. Rev. Lett.72,

1224 (1994); D. Umstadteret al., Phys. Rev. E51, 3484
(1995).

[17] P. Sprangle and E. Esarey, Phys. Fluids B4, 2241(1992).
[18] J. L. Bobin, inAdvanced Accelerator Concepts(Ref. [10]).
[19] E. L. Lindman and M. A. Stroscio, Nucl. Fusion3, 619

(1977).
[20] P. Mora and T. M. Antonsen, Phys. Plasmas4, 217 (1997).
[21] G. G. Stokes, Trans. Cambridge Philos. Soc.8, 441 (1847);

A. D. D. Craik, Wave Interactions and Fluid Flows(Cam-
bridge University Press, Cambridge, U.K., 1985).

[22] O. Buneman, T. Neubert, and K. Nishikawa, IEEE Trans.
Plasma Sci.20, 810 (1992); J. Villasenor and O. Buneman,
Comput. Phys. Commun.69, 306 (1992).

[23] G. Bonnaud, D. Teychenne, and J. L. Bobin, Europhys. Lett.
26, 91 (1994); S. V. Bulanovet al., Sov. J. Plasma Phys.16,
444 (1990).

[24] M. Uesakaet al., Phys. Rev. E50, 3068(1994); M. Uesakaet
al., Nucl. Instrum. Methods Phys. Res. A345, 219 (1994).

[25] X. J. Wanget al., Nucl. Instrum. Methods Phys. Res. A375,
82 (1996); C. Pellegriniet al., ibid. 341, 326 (1994); R. L.
Sheffieldet al., ibid. 341, 371 (1994).

SIMULATION OF ULTRASHORT ELECTRON PULSE… PHYSICAL REVIEW E 70, 056410(2004)

056410-13


	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	11-22-2004

	Simulation of ultrashort electron pulse generation from optical injection into wake-field plasma waves
	D.S. Dodd
	J.K. Kim
	Donald P. Umstadter


