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Non-sorbitol-fermenting, �-glucuronidase-negative Escherichia coli O157:H7 strains are regarded as a clone
complex, and populations from different geographical locations are believed to share a recent common
ancestor. Despite their relatedness, high-resolution genotyping methods can detect significant genome varia-
tion among different populations. Phylogenetic analysis of high-resolution genotyping data from these strains
has shown that subpopulations from geographically unlinked continents can be divided into two primary
phylogenetic lineages, termed lineage I and lineage II, and limited studies of the distribution of these lineages
suggest there could be differences in their propensity to cause disease in humans or to be transmitted to
humans. Because the genotyping methods necessary to discriminate the two lineages are tedious and subjec-
tive, these methods are not particularly suited for studying the large sets of strains that are required to
systematically evaluate the ecology and transmission characteristics of these lineages. To overcome this
limitation, we have developed a lineage-specific polymorphism assay (LSPA) that can readily distinguish
between the lineage I and lineage II subpopulations. In the studies reported here, we describe the development
of a six-marker test (LSPA-6) and its validation in a side-by-side comparison with octamer-based genome
scanning. Analysis of over 1,400 O157:H7 strains with the LSPA-6 demonstrated that five genotypes comprise
over 91% of the strains, suggesting that these subpopulations may be widespread.

The enterohemorrhagic Escherichia coli (EHEC) have
emerged as a leading cause of bloody diarrhea (hemorrhagic
colitis) in the United States and other countries (11). The
predominant serotype of EHEC in the United States, Canada,
Japan, and the United Kingdom is O157:H7; however, several
other serotypes, including O26:H11 and O111:H2, O111:H8,
and O111:H� are also common, particularly in continental
Europe and Australia (4, 26). Despite differences in serotypes
and genetic backgrounds, the three primary EHEC serotypes
share a common set of virulence genes which include the stx1
and stx2 genes encoding the Shiga toxins (19, 21), several genes
located within the locus of enterocyte effacement that encode
a specialized attachment system (6, 7), and the plasmid-borne
ehxA gene encoding a hemolysin (29, 30). Phylogenetic analy-
ses indicate that O157:H7 strains comprise a single phyloge-
netic lineage while O26:H11 and O111:H8 strains comprise a
second lineage (41) and that the two lineages evolved through
parallel pathways of virulence gene acquisition (25).

Phylogenetic analysis of EHEC O157:H7 and O157:H�
strains found worldwide has shown that they are highly related
and comprise a clone complex (9, 41). A stepwise evolutionary
model has been proposed on the basis of molecular genetic and

phylogenetic studies according to which the contemporary
�-glucuronidase negative, non-sorbitol-fermenting EHEC
O157:H7 clone descended from an O55:H7-like enteropatho-
genic E. coli ancestor (9). The sequence of events includes
lysogenization of the ancestor by Shiga toxin-converting
phages, a serotype switch conferred by acquisition of genes
within the gnd region, acquisition of the large pO157 plasmid,
and loss of the �-glucuronidase and sorbitol fermentation
characteristics (9, 38). Despite the relatedness of non-sorbitol-
fermenting, �-glucuronidase-negative O157:H7 strains, signif-
icant genome diversity can be observed among individual iso-
lates by methods such as pulse-field gel electrophoresis
(PFGE) (8, 10, 32). Indeed, genome sequencing analysis of two
different non-sorbitol-fermenting, �-glucuronidase-negative
strains demonstrated that substantial strain-level variation can
be detected in genome content, including differences in pro-
phage content and genomic islands (23, 24). Recent genome-
based studies also support the observation that variation in
prophage content accounts for significant diversity among pop-
ulations of O157:H7 (28, 31).

Studies to examine the phylogenetic relationships among
non-sorbitol-fermenting, �-glucuronidase-negative O157:H7
strains have determined that the strains comprise two highly
related but distinct populations that are globally spread (16,
17). Although the strain sets studied thus far have been rela-
tively small, a biased distribution of the two lineages among
human- and bovine-derived isolates was observed in one of the
studies (16), suggesting that the two lineages could have
unique transmissibility or virulence characteristics. Phenotypic
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studies of strains from human clinical samples and bovine
production environments are also consistent with the hypoth-
esis that O157:H7 strains may display differences in virulence
characteristics (1, 20).

Because animal models to test the virulence of O157:H7
strains are limited, systematic testing of the differential viru-
lence hypothesis requires the use of multiple approaches to
examine virulence characteristics and transmission patterns of
the different O157:H7 subpopulations. In order to study trans-
mission patterns, a high-throughput genotyping method is nec-
essary to allow large-scale analysis of strain sets from epide-
miological studies. In this report, we describe incorporation of
six of these markers into a multilocus genotyping assay, termed
lineage-specific polymorphism assay-6 (LSPA-6). We demon-
strate the validation of the assay and its capacity for high
throughput by analysis of a large strain set comprising 1,429
O157:H7 strains from human clinical samples and bovine pro-
duction environments.

MATERIALS AND METHODS

Bacterial strains and growth conditions. Characteristics of the E. coli
O157:H7 strains used in this study are reported online (http://foodsci.unl.edu
/homepage/faculty/strain%20sets.xls). The strains comprising the USA 40 set, the
Australian set (AU6 to AU1823), and the Francis set have been described
previously (16, 17). Strains from the downer set were derived from a study of
O157:H7 in downer cattle in the Midwestern United States (3). Additional
human clinical isolates (CDC241 to CDC265) were derived from the Centers for
Disease Control and Prevention (CDC; N. Strockbine). Strains in the Moxley 60,
Moxley 387, Moxley W00, Moxley W01, and Moxley S01 collections were isolated
from bovine feces and environmental sampling (rope) devices (35) in cross-
sectional and longitudinal studies of O157:H7 in Midwestern feedlots during the
periods of June to September 1999 (Moxley 00), February to March 2000 (Mox-
ley 60), May to November 2000 (Moxley 387), January to June 2001 (Moxley
W01), and May to July 2001 (Moxley S01) (15, 33). Human clinical isolates of
O157:H7 strains were derived from the Nebraska Public Health Laboratory
(NPHL). The NPHL strains were collected from sporadic cases and outbreaks in
Nebraska, and each represents a unique XbaI PFGE genotype. Included among
these genotypes are the XbaI PFGE genotypes most commonly reported in the
United States by the CDC. All strains were maintained as frozen stock prepa-
rations and were minimally propagated on Luria-Bertani broth.

Primer design. Primers for the LSPA-6 were designed to flank lineage-specific
polymorphisms by using the PRIME program of the Genetics Computer Group
package. Each primer combination consisted of a fluorescence-labeled forward
primer and an unlabeled reverse primer (Table 1). The LSPA-6 forward primers
were labeled with IRDye 700 (LI-COR Biosciences, Lincoln, Nebr.). The primer
sequences are shown in Table 1.

Multiplex assay. Multiplex PCR amplification of LSPA-6 primer combinations
was accomplished in single reaction mixtures. Template DNA was prepared from

overnight cultures that had been heated at 100°C for 10 min and centrifuged at
16,000 � g for 5 min. For each reaction, 1 �l of the boiled and centrifuged culture
supernatant (template DNA) was combined with 1� PCR buffer (20 mM Tris-
HCl [pH 8.4], 50 mM KCl; Invitrogen), a 200 �M concentration of each de-
oxynucleoside triphosphate (0.2 mM [each] dATP, dTTP, dCTP, and dGTP), 3
mM MgCl2, 1 U of Taq DNA Polymerase (Invitrogen), and a 0.3 nM concen-
tration of each forward and reverse primer for all six markers. PCR thermocycler
conditions were 1 cycle at 94°C for 4 min; 11 cycles of 94°C for 30 s, 50°C
(decreasing 1°C/cycle) for 45 s, and 72°C for 1 min; 20 cycles of 94°C for 30 s,
52°C for 45 s, and 72°C for 1 min; and 1 cycle at 72°C for 5 min. After completion
of the cycling, a one-half volume of loading dye (0.012% bromphenol blue–0.1
mM EDTA, [pH 8.0] in 100% formamide) was added, and the reactions were
denatured at 94°C for 3 min prior to electrophoresis on an NEN Global Edition
IR2 DNA Analyzer (LI-COR Biosciences). A portion (1 �l) of each reaction
mixture was loaded onto a 6.5% denaturing polyacrylamide gel (length, 25 cm).
Control reactions, derived from the K-12 strain MC1061 and the lineage I and
lineage II O157:H7 control strains (93-001 and FRIK2000, respectively), were
included on all gels.

Data analysis. Printed copies of images from the electrophoresis runs were
produced by an Alden Electronics 9315CTP photographic quality thermal
printer (Westborough, Mass.). Alleles shared with the lineage I control strain
were designated allele 1, and those common to the lineage II control strain were
designated allele 2. Unique alleles (those migrating faster or slower than allele 1
or allele 2) were designated allele 3. If no band was apparent, a zero character
state was given. Allele combinations were compiled in Microsoft Excel. Phylo-
genetic relationships were then assessed by using the unweighted pair group
method with arithmetic mean (UPGMA) in PAUP version 4.0 (37) with a weight
of 2 for the folD allele.

The nonrandom distribution of genotypes was tested by Z-test statistics and by
the index of association (IA) test of Smith et al. (36). The Z test was calculated
as

Z � �p � p0�/��p0*�1 � p0�/n�

where p is the measured frequency of one genotype, p0 is the expected frequency
of the genotype, assuming a random distribution of all alleles, and n is the
number of strains tested. The IA value, which measures the observed variance in
allele distributions versus that expected at randomness, was calculated in Mi-
crosoft Excel by using the method described by Smith et al. (36).

RESULTS

Marker identification. In order to identify candidate poly-
morphisms that could discriminate the lineages, lineage-spe-
cific genome alterations were identified from a large-scale
comparative genome analysis of 40 E. coli O157:H7 strains (20
lineage I strains and 20 lineage II strains) representing the
genetic diversity of the two lineages (16, 17). The polymor-
phisms were identified by high-density octamer-based genome
scanning (OBGS) analysis by using 174 different OBGS primer
combinations on each of the strains in independent reactions.
Polymorphic OBGS products that were specific to lineage I or
lineage II strains were identified by electrophoresis of the
labeled reaction products on automated DNA sequencers. A
total of 95 lineage-specific OBGS products were purified,
cloned, sequenced, and mapped onto the strain EDL933 (24)
and strain Sakai (23) genome sequences as previously de-
scribed (17). Each of the polymorphisms was confirmed by
PCR analysis across the corresponding genome segment and
DNA sequence analysis of the resulting cloned PCR product
from each lineage. Details of this analysis are to be published
elsewhere.

Candidate polymorphisms for development of the lineage-
specific genotyping test met the following criteria: (i) the poly-
morphisms are conserved or nearly conserved in members of a
lineage, (ii) the polymorphisms are derived from short inser-
tion or deletion events (1 to 100 nucleotides), (iii) the poly-

TABLE 1. PCR primers used in this study

Marker
name Primer Primer sequence Tm

a

(°C)

folD-sfmA Forward TACGTAGGTCGAAGGG 51.0
Reverse CCAGATTTACAACGCC 51.5

Z5935 Forward GTGTTCCCGGTATTTG 50.9
Reverse CTCACTGGCGTAACCT 50.3

yhcG Forward CTCTGCAAAAAACTTACGCC 50.3
Reverse CAGGTGGTTGATCAGCG 50.3

rbsB Forward AGTTTAATGTTCTTGCCAGCC 51.2
Reverse ATTCACCGCTTTTTCGCC 51.1

rtcB Forward GCGCCAGATCGATAAAGTAAG 51.3
Reverse GCCGTTGTAAACGTGATAAAG 50.3

arp-iclR Forward GCTCAATCTCATAATGCAGCC 51.7
Reverse CACGTATTACCGATGACCG 50.1

aTm, melting temperature.
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morphisms occur in noncoding regions or within apparently
nonessential genes or genes that would not be expected to
confer selectable phenotypes in intestinal environments, and
(iv) the polymorphisms are not within prophage, insertion se-
quences, or plasmid sequences. As shown in Table 2, six poly-
morphisms meeting these criteria were subsequently chosen
for development of the assay. The first marker corresponds to
a 9-base insertion in the intergenic region spanning the folD-
sfmA genes and has been described previously (17). The inser-
tion is found in all lineage II strains examined to date and
serves as a primary marker for lineage determination. The
other five markers are derived from alleles that are nearly
conserved in lineage II strains and serve to further subdivide
lineage II into several subpopulations. Relative to the EDL933
genome sequence (a lineage I strain), these markers include a
9-base insertion in the Z5935 coding region, a 78-base insertion
in the yhcG gene, a 9-base deletion in the rbsB gene, a 9-base
insertion in the rtcB gene, and an 18-base insertion in the
intergenic region spanning the arp-iclR genes.

Development of an LSPA. As shown in Table 3, primer
combinations were designed such that the amplicons from each
of the alleles from each lineage would be of unique but defined
length to allow multiplex amplification and subsequent resolu-
tion of amplicons from each of the corresponding loci regard-
less of the allele that is present. This assay is referred to as
LSPA-6. When tested on DNA extracted from representative
E. coli O157:H7 strains (Fig. 1), the six markers are efficiently

amplified under the PCR conditions used and the amplicons
are well resolved from one another, allowing unambiguous
scoring of allele number and assignment of genotype. As ex-
pected, all lineage I strains produced products that were iden-
tical in length to the alleles in the K-12 control strain at the
folD-sfmA, rbsB, rtcB, and arp-iclR1 loci. Only at the yhcG locus
did strains in lineage II and in K-12 share the same allele. At
the Z5935 locus, which is absent in K-12, no product was
observed from the K-12 control strain. Based on these obser-
vations, we therefore arbitrarily assigned the allele at this locus
from the lineage I strain 93-001 as allele 1 and those from the
lineage 2 strain FRIK 2000 as allele 2 to serve as controls.
Additional alleles are designated allele 3, and so on as new
alleles are identified.

Validation of the LSPA-6. To validate the phylogeny in-
ferred from LSPA-6 versus OBGS analysis, a total of 167 E.
coli O157 isolates were tested by both LSPA-6 and OBGS. The
strain sets included the USA 40 set, Australian set, Francis set,
and the Moxley 60 set. The assignment of lineage from the
OBGS data was performed by cluster analysis by the neighbor-
joining method as previously described (16). Control strains,
which had previously been assigned to a lineage by OBGS
analysis, were included in the strain set to facilitate assignment
from the OBGS data. The assignment of lineages from the
LSPA-6 data was performed by using cluster analysis. For the
analysis, the K-12 genotype of 110112 (folD-sfmA, rbsB, Z5935,
rtcB, arp-iclR1, and yhcG) was used as an outgroup, and the
data were clustered by using the UPGMA algorithm. Because
the folD1 and folD2 alleles are conserved in every lineage I and
lineage II strain, respectively, tested to date and because the
other loci are only partially conserved in lineage II, the folD
locus is weighted 2 relative to the other markers in the distance
calculation to facilitate clustering. Lineage assignment pre-
dicted from OBGS analysis was then superimposed onto the
phenogram. As shown in Fig. 2, the phenogram resulting from
UPGMA analysis of the LSPA-6 data revealed two main clus-
ters corresponding to the two OBGS lineages. All strains typ-
ing lineage I by OBGS comprised a single cluster of LSPA-6
genotype 111111, while all of the other LSPA-6 genotypes
comprised a second cluster consistent with assignment to lin-
eage II by OBGS, indicating that the two methods provide
highly concordant data. Given the simplicity of the LSPA-6
and the excellent degree of correlation with OBGS results, we
propose that the LSPA-6 can be implemented broadly as a
simple tool for monitoring transmission patterns of O157:H7
subpopulations.

Linkage disequilibrium. Given that the LSPA-6 markers
were not arbitrarily chosen, we next evaluated linkage disequi-
librium among the markers to formally test whether they may
have undergone independent assortment during divergence of

TABLE 2. Polymorphisms used in the LSPAa

Lineage folD-sfmA Z5935 yhcG rbsB rtcB arp-iclR

I WT WT WT WT WT WT
II 9-base insertion

(�129 of folD)
9-base insertion

(�1546)
78-base insertion

(�339)
9-base deletion

(�661–669)
9-base insertion

(�492)
18-base insertion

(�200 of arp)

a Wild-type (WT) allele corresponds to allele present in the EDL933 genome sequence (24). Residue numbers of insertions and deletions are given in parentheses.

TABLE 3. Allele sizes of lineage-specific polymorphisms in
the LSPA-6

Allele

Size (bp)

O157:H7
lineage

Ia

O157:H7
lineage

IIa
K-12b MG1655 CFT073 UPECb

folD-sfmA1 161 161 Absent
folD-sfmA2 170
Z5935-1 133 Absent Absent
Z5935-2 142
yhcG1 394 Absent
yhcG2 472 472
rbsB1 218 218 218
rbsB2 209
rbsB3 214c

rtcB1 270 270 270
rtcB2 279
arp-iclR1 315 315 Absent
arp-iclR2 333
arp-iclR3 324c

a Size based on sequence analysis of polymorphic OBGS product or LSPA-6
product.

b Size based on genome sequence (2, 40). UPEC, uropathogenic E. coli.
c Length estimated from electrophoretic migration.
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the different subpopulations. Assuming the simplest case of
two possible alleles at each locus (binary character state at
each locus), 64 different allele combinations are possible in the
LSPA-6 analysis. Among the LSPA-6 genotypes derived from
the 167-strain validation study, the genotypes could be divided
into 20 of the 64 different possible genotypes. Four of the 20
genotypes that were observed were predominant (111111,
211111, 212111, and 222222), accounting for 93% of the sam-
ples, while 5 genotypes accounted for 92% of the strains from
the larger collection of 1,429 human and bovine isolates de-
scribed below. Z-test statistics indicate that the observed dis-
tribution of these genotypes deviates significantly from that
expected if the alleles were distributed randomly (P � 0.05).
As shown in Table 4, calculation of the IA value of Smith et al.
(36), which compares the observed variance in allele combina-
tions in a population with the variance that is predicted if
randomized through recombination, shows that the IA ratio
from the entire data set or the IA ratios from different subsets
are all significant, indicating that the loci display strong linkage
disequilibrium. Thus, similar to IA calculations on OBGS data
(16), the LSPA-6 data also demonstrate significant linkage of
the markers, suggesting that although genome diversity is sig-
nificant, the multilocus linkages remain intact.

Identification of common genotypes in bovine- and human-
derived O157:H7 strains. Comparison of the LSPA-6 geno-

types among the strains in the validation study showed that
four genotypes accounted for most of the strains, with the most
frequent genotype being 111111 (Fig. 2). Because this group of
strains is quite diverse in temporal and spatial origin, this
finding suggests that these genotypes could be the most com-
mon in bovine production environments and in human clinical
samples. To test this hypothesis, a larger set of human- and
bovine-derived isolates was tested. The strain sets were derived
from several different studies and geographies. The human
isolates comprised previously examined strains from the
United States and Australia (16, 17) as well as strains from
sporadic cases and outbreaks collected by the CDC, the
NPHL, and the University of Wisconsin (10). The bovine-
derived isolates originated from previous studies of dairy herds
(8, 10, 17, 18, 32), as well as longitudinal studies of production
feedlots (15). Collectively, the strains comprise a set of 1,429
isolates, each of which was tested by LSPA-6. As shown in
Table 5, nearly 92% of the strains comprised only five different
genotypes, including the four that were the most prevalent in
the validation study.

Because the sets of strains comprised human and bovine
strains, we next compared the distribution of these five geno-
types among human- and bovine-derived isolates. As shown in
Fig. 3, when the genotypes were categorized into six groups,
three of the five most common genotypes represented nearly

FIG. 1. Electrophoretic separation of LSPA-6 reaction products. E. coli O157:H7 strains from OBGS lineage I and lineage II and E. coli K-12
were subjected to LSPA-6. The reaction products were resolved on a LI-COR 4200 global analysis system by using a 25-cm gel. The positions of
the products from the folD-sfmA, Z5395, yhcG, rtcB, rbsB, and iclR-arp loci are indicated on the left side of the image. Molecular size markers are
loaded in the first, middle, and last lanes; sizes are indicated on the right-hand side of the image, and strain designations are indicated at the bottom
of the image. H, strains derived from human clinical samples; C, strains derived from cattle.
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identical proportions of the isolates. Only genotypes 111111
and 22222 showed any statistically significant difference in fre-
quency. Chi-square analysis of the distribution of the six groups
shows a significant difference between the bovine and human
isolates, primarily due to biased distribution of the 111111 and
22222 genotypes. However, because this strain collection in-
cludes large numbers of bovine strains derived from longitu-
dinal studies—and therefore collected from repeated sampling
of the same pens and the same cattle over time—the impor-
tance of the chi-square statistic is uncertain. Nonetheless, the
approach demonstrated here allows us to begin developing the

sampling design and statistical approaches for testing the hy-
pothesis of a nonhomogenous distribution of the genotypes
between human- and bovine-derived strains.

DISCUSSION

At least three different studies have provided some geno-
typic or phenotypic evidence to support the hypothesis that
different O157:H7 populations display distinct virulence or
transmissibility characteristics (1, 16, 20). Testing this hypoth-
esis is difficult due to the absence of a good animal model and

FIG. 2. Comparison of LSPA-6- and OBGS-derived phylogenies. The phenogram was produced by UPGMA analysis of LSPA-6 data from 168
strains by using PAUP version 4.0 (tree length with six markers, 17 steps; consistency index, 0.5882; homoplasy index, 0.4118; retention index,
0.9711). The tree was rooted with E. coli MC1061 (a K-12 derivative [5]). Branches containing the predominant genotypes are shaded in different
colors, and the allele combination is indicated to the right of the cluster in the corresponding cluster (allele order is folD, Z5935, yhcG, rtcB, rbsB,
and arp-iclR). Strain MC1061 has the genotype 102111 relative to the six markers since it lacks the Z5935 gene. Strain sets include the USA 40
set, Australian set, Francis set, and the Moxley 60 set (strain information and data set are available from http://foodsci.unl.edu/homepage
/faculty/strain%20sets.xls).
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the effort that is necessary to discriminate the O157:H7 pop-
ulations. Although OBGS and amplified fragment length poly-
morphism analysis provide excellent discriminatory power (12,
14, 34, 42), they suffer from low throughput and difficulty with

gel-to-gel comparisons. PFGE, the standard for epidemiolog-
ical analyses, suffers from the fact that meaningful phyloge-
netic relationships are difficult to predict from the data. This
problem arises because relatively small events can cause sub-
stantial changes in the pattern, and these events can occur
rapidly on the evolutionary time scale. Another high-through-
put method, multilocus sequence typing, recently was shown to
be unable to readily distinguish O157:H7 strains from one
another (22). Thus, a method is needed to provide accurate,
reliable, standardizable, and high-throughput discrimination of
the populations identified by OBGS.

Our studies presented here demonstrate that the LSPA-6
provides a simple and reliable multilocus assay with very high
throughput. Our results show strong correlation between the
phylogenetic assignments inferred from either LSPA-6 or
OBGS data. Since the LSPA-6 is based on allele sizes relative
to a set of lineage I and lineage II control strains, the assay can
be standardized easily, even in laboratories that use different
types of automated sequencers. Moreover, the data can be
easily reported, compiled, and analyzed by several indepen-
dent laboratories or teams. This will allow several independent
laboratories to compare data and to participate in large-scale
collaborative or independent studies to examine the distribu-
tion of the LSPA genotypes in different environments.

Stability of LSPA-6 markers. PFGE analyses have consis-
tently shown that substantial diversity can be detected in the
genome of O157:H7 strains, even when they are derived from
limited geographic regions (8, 32). Genome sequence analysis
(13, 16, 23, 24), genotyping studies (16, 17, 27), and studies of
phages isolated from O157:H7 strains (28, 39) all indicate that
diversity in phage content, and perhaps in phage-mediated
genome events, contributes substantially to the diversity that
can be observed. Genome sequences also show that a substan-
tial number of insertion elements and transposons exist in the
genome as well. Based on these studies, it seems reasonable
that the vast majority of the instances of diversity that are
observed among O157:H7 strains can be accounted for by
integration, excision, and recombination among different pro-
phage or cryptic prophage within the genome and by move-
ment of insertion elements and transposons. Although this
characteristic is desirable in terms of trace-back studies, such
diversity can obscure true phylogenetic relationships and im-
pede the interpretation of broad geographic transmission pat-
terns or ecological characteristics of populations.

TABLE 4. Measures of association between loci in E. coli O157

Strain set No. of
strains

No. of
loci

Mean genetic
distance
between
strainsa

Expected value of
the variance of

distance between
two strainsb

Observed value of
the variance of

distance between
two strainsc

IA
d

USA 40, Moxley 60, CDC, Francis,
Australia, Downer

215 6 2.22 1.36 4.23 2.10

Moxley summer 00 360 6 0.81 0.58 1.39 1.41
Moxley summer 01 � winter 01 714 6 1.31 0.88 2.20 1.49
NPHL human 140 6 0.88 0.61 1.26 1.05
All strains 1429 6 1.33 0.92 2.58 1.78

a The mean number of loci at which the strains differ.
b The variance of distance between the two strains assuming no independent assortment of the markers (e.g., no linkage disequilibrium).
c Calculated variance of distance between two strains from the data.
d Ratio of the observed variance to the variance expected if loci are independently assorting.

TABLE 5. E. coli O157 LSPA-6 genotypes observeda

Genotype No. of isolates

111111........................................................................................... 776
111121........................................................................................... 1
111211........................................................................................... 1
112111........................................................................................... 44
113113........................................................................................... 1
113131........................................................................................... 1
113311........................................................................................... 1
121111........................................................................................... 1
122111........................................................................................... 4
122211........................................................................................... 8
122212........................................................................................... 1
133311........................................................................................... 1
133331........................................................................................... 1
211111........................................................................................... 341
211131........................................................................................... 1
212111........................................................................................... 108
212112........................................................................................... 1
212212........................................................................................... 1
212222........................................................................................... 2
213111........................................................................................... 3
221111........................................................................................... 21
221212........................................................................................... 4
221213........................................................................................... 2
221222........................................................................................... 4
222111........................................................................................... 15
222211........................................................................................... 1
222212........................................................................................... 17
222213........................................................................................... 6
222222........................................................................................... 43
222223........................................................................................... 3
222312........................................................................................... 1
222322........................................................................................... 2
223111........................................................................................... 1
223213........................................................................................... 3
231111........................................................................................... 2
231233........................................................................................... 1
232111........................................................................................... 1
232221........................................................................................... 1
232222........................................................................................... 1
232233........................................................................................... 1
232312........................................................................................... 1

a The character string in the genotype indicates the allele number at the folD,
Z5935, yhcG, rtcB, rbsB, and arp-iclR loci. Total number of isolates, 1,429.

VOL. 70, 2004 LSPA-6 GENOTYPING OF EHEC O157:H7 STRAINS 6851



In order to provide stable markers for the LSPA-6, the
target polymorphisms were chosen on the basis of their poten-
tial for stability and their conservation within a lineage. Ac-
cordingly, the majority of the strains we have tested carry one
of the two primary alleles (allele 1 or allele 2) at each of the
loci. We have only observed rare instances (less than 0.1% of
strains tested) where no signal is generated from a given strain
at any one of these loci. Moreover, serial passage of strains (up
to 10 times) in the laboratory did not lead to loss or detectable
change in any of the LSPA-6 markers. Thus, the markers
appear to be stably maintained in the populations and are,
therefore, reliable population markers.

Origin of the LSPA-6 polymorphisms. Although the nature
of the LSPA-6 polymorphisms themselves is not informative
about the evolutionary pathways of the different subpopula-
tions, comparison of the alleles at the LSPA-6 loci to other E.
coli strains does provide additional insight into the relative
evolutionary relationship of lineage I and lineage II. Compar-
ison of the LSPA-6 alleles from lineage I and II O157:H7
strains to the K-12 strain MG1655 (2) and the uropathogenic
E. coli strain CFT073 (40) genome sequences (Table 3) showed
that most alleles from lineage I are likely to be ancestral.

Relative to the K-12 strain MG1655, which is believed to have
last shared a common ancestor with the O157:H7 lineage 4 to
5 million years ago (25), the alleles found in four of the loci of
lineage I O157:H7 strains are conserved in the K-12 genome.
The exceptions are the Z5395 gene, which is unique to O157:
H7, and the yhcG locus, where both K-12 and the O157:H7
OBGS lineage II strains carry the same 78-base insertion at
nucleotide 339 of the yhcG coding region relative to the lineage
I EDL933 O157:H7 genome sequence. The fact that OBGS
lineage I O157:H7 strains share alleles at four of the five loci
with K-12 implies that the alleles in lineage II strains are
derived states. Relative to the CFT073 uropathogenic E. coli
genome, only two of the six marker genes are present; how-
ever, the alleles in these two genes (rtcB and rbsB) are also
conserved among lineage I O157:H7 strains and the K-12
strain. Collectively, these findings are consistent with our pre-
vious hypothesis that lineage I is ancestral and lineage II com-
prises derived populations (17).

As shown in Table 5, the most common LSPA-6 genotype in
our strain set is 111111, which carries a lineage I allele at all
loci. If lineage I is, indeed, the ancestral state, then one expla-
nation for its predominance in the strain collections examined

FIG. 3. Comparison of LSPA-6 genotype frequencies among bovine-derived and human clinical EHEC O157:H7 and O157:H� strains. The
LSPA-6 genotypes from human clinical and bovine strains were grouped into six different categories according to the five most common LSPA-6
genotypes (111111, 211111, 212111, 222222, and 112111, with the allele order folD, Z5935, yhcG, rtcB, rbsB, and arp-iclR) and a sixth category that
includes all other genotypes. The percentage of strains from each genotypic category was calculated from strains of bovine or human origin. The
genotypes corresponding to the different color bars are indicated to the right of the graph. Strain information and data sets are available from
http://foodsci.unl.edu/homepage/faculty/benson.htm.
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could be due to the founder effect, whereby a newly evolved
population spreads rapidly in a new niche prior to substantial
genetic differentiation. Moreover, its frequency in human-de-
rived samples further implies that the ancestral state was vir-
ulent and that the underrepresented genotypes among human-
derived strains would be indicative of a loss of virulence
characteristics. Clearly, these speculations must be tempered
because the strain sets in our studies were from temporally and
geographically limited regional collections, and in some cases
the isolates were from studies designed with repeated obser-
vations of animal and place. Nonetheless, broad application of
the LSPA-6 genotyping method will now provide a convenient
means for testing hypotheses about distribution of the geno-
types among various types of samples and different types of
environments.
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