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separate, opposite regulation in response to stress also suggests they may carry out 

distinct functions within the cell.     

Neither CrUBC9 nor CrUBC3 cannot functionally substitute for ScUBC9 in S. 

cerevisiae  

The possibility that two distinct proteins might code for SUMO E2 conjugase 

enzymes in C. reinhardtii is intriguing, as the presence of two unqiue SUMO E2 

conjugases in the same organism has not been previously reported.  CrUBC3 was 

identified as the likeliest possible candidate for a second E2 conjugase in C. reinhardtii 

(see above), and the functionality of this enzyme as a SUMO E2 conjugase was 

investigated by testing its expression in S. cerevisiae.  A temperature-sensitive mutant of 

the ScUBC9 gene in yeast, Y0174 (ubc9), fails to grow at 37ºC, and complementation of 

this phenotype by the heterologous expression of UBC9 homologs from other organisms 

has been used to identify functional SUMO E2 conjugase enzymes  (Yasugi and Howley, 

1996; Ohsako and Takamatsu, 1999).  In an attempt to confirm the SUMO E2 conjugase 

activity of both CrUBC9 and CrUBC3, the ability of these proteins to complement the 

temperature-sensitive defect of Y0174 was tested.  Expression of either CrUBC9 or 

CrUBC3 failed to complement the 37ºC growth defect in Y0174 (data not shown).  

Because normal growth temperature for S. cerevisiae cells is 30ºC, a method to test the 

ability of the putative SUMO E2 conjugases from C. reinhardtii to functionally substitute 

for ScUbc9 at this lower temperature was designed.  CrUBC9 and CrUBC3 cDNAs under 

the control of the yeast GPD promoter were introduced into wild-type yeast on 

autonomously replicating plasmids.  After introduction of either 6XHIS-tagged CrUBC9 

or 6XHIS-tagged CrUBC3, disruption of the endogenous ScUBC9 gene was attempted 
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using the LEU2 selectable marker flanked by sequence homologous to the endogenous 

gene. Since ScUBC9 is an essential gene in yeast (Seufert et al., 1995), knockout should 

only be feasible when another functional SUMO E2 conjugase is expressed.  As shown in 

Figure 3-4, introduction of 6XHIS-CrUBC9 appeared to allow the endogenous ScUBC9 

gene to be disrupted.  The disruption of the ScUBC9 gene by homologous recombination 

with an LEU2 marker was demonstrated by PCR with primers that flanked either side of 

the LEU2 insertion site into the yeast ScUBC9 gene.  Each set of primers (HR PCR#1 

and #2) included one primer that annealed upstream or downstream of the ScUBC9 gene 

and a corresponding primer in the reverse orientation that annealed within the LEU2 

marker.  True disruption lines should show PCR products of 1.2kb and 1.3kb for the 

upstream and downstream primer sets, respectively (Figure 3-4, middle and lower 

panels).  A control PCR of the endogenous ScUBC9 gene (from start codon to stop 

codon) was performed to look for the absence of the endogenous ScUBC9 gene (Figure 

3-4, upper panel).  When 6XHIS-CrUBC9 was expressed in Y0002 cells, a disruption 

line with apparently no detectable endogenous ScUBC9 gene was identified, and the 

corresponding PCR products for the homologous recombination event were amplified, 

suggesting that the ScUBC9 gene had, indeed been knocked out (Figure 3-4, left panels).  

It should be noted that this line was identified in a screen of dozens of transformants, 

suggesting that if successful homologous recombination occurred, it was with very low 

frequency.  When 6XHIS-CrUBC3 was expressed in Y0002 cells, lines that amplified 

PCR products consistent with homologous recombination that would disrupt the ScUBC9 

gene could be identified (Figure 3-4, right panels).  However, a product for the 

endogenous ScUBC9 could still be detected as well.  As these cells should be haploid, the  
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Figure 3-4.  PCR analysis of possible ScUBC9 disruptions.  DNA isolated from 

potential disruption lines as well as wild-type cells and parental Y0002 lines expressing 

either 6XHIS-CrUBC9 or 6XHIS-CrUBC3 was used as template for PCR reactions using 

primers designed to amplify either the endogenous ScUBC9 gene (upper panels), the left 

border after homologous recombination between the LEU2 marker and ScUBC9 genomic 

DNA (middle panels), or the right border after homologous recombination between the 

LEU2 marker and ScUBC9 genomic DNA (lower panels).   
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DNA giving rise to this product cannot be in its endogenous location, as the PCR results 

using primers to detect homologous recombination clearly demonstrate that the LEU2 

marker inserted into the genome at the ScUBC9 gene (Figure 3-4, right panel).  

Therefore, the disruption of ScUBC9 could not be confirmed in these lines.  As neither 

CrUBC9 nor CrUBC3 could complement the temperature-sensitive ubc9 mutant in 

Y0174, it was hypothesized that disruption lines would be incapable of growth at 37ºC.  

To that end, 1:4 dilutions of potential disruptions were spotted on YPD plates and 

incubated at 25, 30, or 37ºC to assess their ability to grow.  The ScUBC9 disruption line 

in which 6XHIS-CrUBC9 was expressed (6XHIS-CrUBC9:∆ubc9) showed similar 

growth at 25ºC and 30ºC, but failed to grow at 37ºC, consistent with our hypothesis 

(Figure 3-5).  Interestingly, the ScUBC9 disruption lines generated when 6XHIS-

CrUBC3 was expressed, which still show an amplification product consistent with the 

ScUBC9 gene, also fail to grow at 37ºC.  In order to confirm whether or not true 

disruption lines were achieved, Southern Blot analysis of disruption lines was carried out 

after digesting genomic DNA of wild-type, parental, and disruption lines with enzymes 

that should produce a unique pattern of bands for the endogenous ScUBC9 gene and the 

ScUBC9 gene after disruption with the LEU2 marker when probed with ScUBC9 cDNA 

(Figure 3-6).  Surprisingly, Southern analysis indicated that not only was a fragment of 

DNA consistent with the endogenous ScUBC9 gene present in potential disruption lines 

expressing CrUBC3, DNA consistent with the endogenous ScUBC9 gene was also 

present in the potential disruption line expressing CrUBC9.  Specifically, digestion of 

genomic DNA with the enzyme KpnI should produce a band of size 3069 bp that 

hybridizes to ScUBC9 cDNA probe after homologous recombination to disrupt the  
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Figure 3-5.  Growth tests of potential ScUBC9 disruption lines.  Yeast cells were 

spotted in a 1:4 dilution series on YPD plates and incubated at 25, 30, or 37ºC to assess 

their ability to grow at these temperatures.  
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Figure 3-6.  Southern analysis of potential ScUBC9 disruption lines.  (A) The 

predicted cut sites relative to the endogenous wild-type gene or post-homologous 

recombination event (post-HR) are shown.  Black boxes indicate ScUBC9 sequence to 

which the ScUBC9 DIG-labeled probe should hybridize.  (B) DNA isolated from 

potential knockout lines as well as wild-type cells and parental Y0002 lines expressing 

either 6XHIS-CrUBC9 or 6XHIS-CrUBC3 were digested with KpnI and ScaI and 

separated on a 0.8% 0.5X TBE gel to separate DNA fragments.  After transfer to a 

positively charged nylon membrane, DNA fragments were probed with DIG-labeled full 

length ScUBC9 cDNA.   
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ScUBC9 gene with the LEU2 marker, and a band of this size is produced exclusively in 

the potential disruption lines.  However, digestion of genomic DNA with ScaI should 

produce bands of size 3047 bp and 5691 bp that hybridize with ScUBC9 cDNA probe in 

wild-type and post-homolgous recombination genomic DNA, respectively.  In wild-type 

(Y0002) genomic DNA and parental lines expressing 6XHIS-CrUBC9 or 6XHIS-

CrUBC3, the correct band of 3047 bp is detected with the ScUBC9 cDNA probe.  

However, in potential disruption lines expressing either 6XHIS-CrUBC9 or 6XHIS-

CrUBC3, both a band of 3047 bp and a larger band of presumably 5691 bp is detected.   

The infrequency with which potential knockout lines were obtained, combined 

with these Southern results, suggest that neither CrUBC9 nor CrUBC3 can functionally 

substitute for ScUBC9 and that major chromosomal rearrangements occur to maintain the 

endogenous ScUBC9 gene when homologous recombination to disrupt the ScUBC9 gene 

occurs.  The failure of CrUBC9 to functionally substitute for ScUBC9 is particularly 

surprising given its strong sequence similarity to ScUBC9 compared to other proteins that 

have successfully complemented the ubc9 temperature-sensitive mutant.  Table 3-3 

shows a comparison of the percents identity and similarity of CrUBC9 and CrUBC3 to 

ScUBC9 compared to three other known SUMO E2 conjugases that have previously 

substituted functionally for the ScUBC9 protein.  In fact, CrUBC9 is the most identical 

and similar to ScUBC9 in terms of amino acid sequence, so the observation that it cannot 

functionally substitute for ScUBC9 where other less similar/identical proteins can is 

unusual.  This perhaps suggests that there are a few specific differences between CrUBC9 

and other known SUMO E2 conjugases that prevent it from being able to function as the 

sole SUMO E2 conjugase in a heterologous system.     
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Table 3-3.  Comparison of the percents identity and similarity of CrUBC9, CrUBC3, 

and other SUMO E2 conjugases to ScUBC9.  SUMO E2 conjugase sequences were 

aligned with ScUBC9 using the NCBI BlastP for aligning two or more sequences 

(BLASTp (bl2seq)) and the predicted percent identity and percent similarity between 

ScUBC9 and each given protein sequence is given in the table.  Proteins are sorted from 

most to least similar/identical.   
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Protein Organism Percent Identity to 

ScUBC9 

Percent Similarity to 

ScUBC9 

CrUBC9 C. reinhardtii 63% 81% 

HUS5 S. pombe 62% 80% 

SCE1 A.thaliana 60% 75% 

hUBC9 H.sapiens 56% 75% 

CrUBC3 C. reinhardtii 53% 71% 
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sequence appears to be slightly truncated at the N-terminus compared to other known 

SUMO E2 conjugase sequences, resulting in one of the 25 residues occurring in the 

alignment prior to the start of the V. carteri UBC3 amino acid sequence.  Overall, 

however, there is a remarkable amount of agreement between  CrUBC3 and its V. carteri 

homolog in terms of the SUMO E2 conjugase consensus residues that they share.  

Similarly, CrUBC9 and its V. carteri homolog share all 23 of the SUMO consensus 

residues initially identified as conserved in CrUBC9 and in addition the V. carteri 

CrUBC9 homolog lacks the same two SUMO consensus residues that CrUBC9 lacks in 

the alignment.  Together, these data suggest not only that CrUBC3 and CrUBC9 

homologs have been identified in the green alga V. carteri, but that the SUMO consensus 

residues that differ for CrUBC3 and CrUBC9 from the proposed consensus alignment are 

important in separating the two proteins into unique enzymes that presumably carry out 

non-overlapping functions within the cell.   

DISCUSSION 

The bioinformatic analysis of known SUMO and ubiquitin E2 conjugase enzymes 

presented here identified several key residues that were used to distinguish between a 

SUMO E2 conjugase and an ubiquitin E2 conjugase (Figure 3-1).  These residues 

included 17 amino acids that were 100% conserved between both SUMO and ubiquitin 

conjugases.  One of these 17 residues was the catalytic cysteine that forms a thioester 

with SUMO or ubiquitin (Geiss-Friedlander and Melchior, 2007).  In addition, a His-Pro-

Asn (HPN_ triad of amino acids was also strictly conserved among all SUMO and 

ubiquitin conjugases analyzed.  The asparagine that makes up part of this triad has been 

shown to be critical for catalysis by E2 enzymes (Wu et al., 2003).  The remaining 13 
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residues are likely necessary to perform the chemistry associated with forming an 

isopeptide bond between the C-terminus of a SUMO or ubiquitin protein and the ε-amino 

group on a target lysine, as that is the shared activity between these two classes of E2 

enzymes.   

Perhaps unsurprisingly, more than twice as many residues were identified that 

were uniquely and 100% conserved among SUMO E2 conjugases compared to those 

residues that were uniquely and strictly conserved among ubiquitin conjugases.  Given 

that dozens of E2 enzymes that conjugate ubiquitin are present in most species (Bachmair 

et al., 2001; Kraft et al., 2005) while only a single E2 for SUMO has been identified in 

most organisms, fewer strictly conserved residues among ubiquitin conjugases is likely to 

be expected.   

The 25 residues identified as uniquely and 100% conserved among SUMO E2 

conjugases include two residues in tandem (DG) that are part of a five amino-acid 

insertion that was identified as unique between UBC9 and other UBC enzymes when 

UBC9 was still thought of as a likely ubiquitin conjugase (Tong et al., 1997).  CrUBC9 

shares these same two residues as part of a five amino acid insertion as well, consistent 

with its activity as a SUMO E2 conjugase.  The only other potential SUMO E2 conjugase 

identified in our bioinformatic analysis that had the same conserved five amino acid 

insertion at that position was CrUBC3, which was also the only other sequence to have 

all 17 of the shared consensus residues, none of the ubiquitin-only consensus residues, 

and more than half of the 25 SUMO-only consensus residues (Figure 3-2, Table 3-1).  

These findings suggest that CrUBC3 may be a second functional SUMO E2 conjugase in 

C. reinhardtii.  It is important to note that neither CrUBC9 nor CrUBC3 conformed 
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100% to the SUMO-only consensus that was identified, as CrUBC9 shares just 23 of the 

25 consensus residues, and CrUBC3 just 17 (Table 3-2).  What could distinguish these 

UBC9 enzymes from those of other organisms is that neither has to function under all 

conditions to which a cell might be exposed.  Given our results with regards to the stress 

phenotypes of mut5 (Chapter 2), CrUBC3 clearly does not function under stress 

conditions, and similarly CrUBC9 likely does not function to SUMOylate as part of the 

typical cell cycle of C. reinhardtii.   

The fact that the ∆CrUBC9 mutant mut5 fails to SUMOylate in response to 

abiotic stress suggests that if CrUBC3 is a SUMO E2 conjugase it acts on targets distinct 

from CrUBC9 and likely is not involved in abiotic stress response.  Consistent with this, 

a marked reduction in CrUbc3 transcripts was observed upon shift to 42ºC (Figure 3-3), 

compared to an increase in transcripts for CrUbc9 in response to this same stress.  This is 

consistent with the notion that CrUBC9 is involved in abiotic stress response while 

CrUBC3 is not.  

In an attempt to confirm that CrUBC3 is a functional SUMO E2 conjugase, we 

sought to express the protein in yeast cells in an attempt to functionally substitute for 

ScUBC9.   Attempts to complement the yeast temperature-sensitive mutant ubc9 which 

fails to grow at 37ºC were unsuccessful with both CrUBC9 and CrUBC3.  This is 

interesting since multiple other SUMO E2 conjugase enzymes with less similarity to 

ScUBC9 than CrUBC9 have successfully substituted for ScUBC9 in this mutant (Yasugi 

and Howley, 1996; Ohsako and Takamatsu, 1999).  This inability suggests that at 37ºC, 

which is an elevated temperature for yeast growth, neither CrUBC9 nor CrUBC3 can 

functionally complement ScUBC9.  Therefore, disruption of ScUBC9 was attempted 
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under conditions in which either CrUBC3 or CrUBC9 might have a higher probability of 

being functional.  Results of these experiments at 30ºC(Figure 3-4) initially suggested 

that CrUBC9 was able to allow the survival and growth of yeast cells lacking the native 

ScUBC9 gene.  However, subsequent Southern blot analysis (Figure 3-6) revealed that 

the expression of neither CrUBC9 nor CrUBC3 allowed for the disruption of the 

endogenous ScUBC9 gene.  The inability of these partial knockout lines (i.e., lines 

containing both a disrupted ScUBC9 gene and an apparently intact ScUBC9 gene) to 

grow at 37ºC (Figure 3-5) is intriguing and could reflect several possibilities.  First, the 

chromosomal rearrangements that have to take place to maintain an endogenous ScUBC9 

gene somewhere in the genome while one copy of the gene is disrupted by homologous 

recombination could result in the elimination of a gene necessary for survival at 37ºC.  

However, another possibility is that CrUBC9 and CrUBC3 are capable of forming a 

thioester with the SUMO protein of S. cerevisiae, but that these enzymes are incapable of 

efficiently conjugating this SUMO to target proteins.  Because these proteins were 

expressed from the strong constitutive GPD promoter, if they acted in this capacity they 

could essentially act as a dominant negative to sequester endogenous SUMO within the 

cell and prevent its necessary conjugation to target proteins. In addition, we cannot rule 

out the possibility that CrUBC3 is not a functional SUMO conjugase, although the 

bioinformatic analysis presented here strongly suggests it encodes for a SUMO conjugase 

over a ubiquitin E2 conjugase. 

The combination of bioinformatic analysis and failure to complement for the 

yeast ScUBC9 is suggestive that both CrUBC9 and CrUBC3 are possibly functional 

SUMO E2 conjugases, but neither is fully functional under all growth conditions, unlike 
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endogenous ScUBC9 which is functional at both 30ºC and 37ºC.  The implication of two 

distinct, functional SUMO E2 conjugases in C. reinhardtii is unique, given that the rule 

of thumb has consistently been a single essential E2 conjugase for the SUMOylation 

pathway.  One could envision a division of labor between CrUBC3 and CrUBC9 in 

which the former is responsible for constitutive SUMOylation that regulates normal cell 

growth and development while the latter mediates SUMOylation under stress conditions.  

This would explain the viability of mut5 under standard laboratory conditions.  This 

could be an analogous situation to the SUMO isoforms in human and  Arabidopsis cells, 

in which one SUMO isoform (SUMO1 in the case of human cells) is conjugated to 

proteins under non-stress conditions, and other SUMO isoforms (SUMO2/3 in human 

cells and AtSUMO1/2 in A. thaliana) modify proteins in response to abiotic stress (Saitoh 

and Hinchey, 2000; Saracco et al., 2007).   

This possible SUMO E2 conjugase adaptation in C. reinhardtii appears unique, as 

the only homolog to CrUBC3 that could be identified is in the green alga Volvox carteri.  

This suggests that the evolution of two functional SUMO E2 conjugase enzymes might 

be confined to the Volvocales.  The evolutionary advantage that two distinct SUMO E2 

conjugases might confer to this class of algae is unknown, although perhaps the growth 

of wild-type cells at 37ºC compared to mut5 provides a clue.  mut5 cells are apparently 

capable of normal cell growth and development at 20-25ºC, and, by extrapolation, all of 

the SUMOylation reactions necessary for this growth and division under non-stress 

conditions.  At 37ºC, however, wild-type cells show not only cell survival but growth, 

whereas mut5 cells show a rapid loss in cell viability (Figure 2-5).  If only CrUBC9 was 

responsible for all SUMOylation in the cell, in response to continuous exposure to 37ºC 
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the CrUBC9 protein could become saturated in terms of enzymatic activity acting on 

proteins modified in response to stress.  However, if a second functional SUMO E2 

conjugase devoted exclusively to SUMO modification under normal growth conditions 

was present, it could continue to SUMOylate in a manner that would allow cell growth 

and division to take place.  Because CrUBC9 is so similar to UBC9 proteins from other 

organisms that are the sole functional SUMO E2 conjugase in that organism, it remains to 

be determined whether or not CrUBC9 is functional on both stress and non-stress protein 

substrates, as well as whether or not CrUBC3 is required for cell viability, although the 

failure of CrUBC9 to functionally substitute for ScUBC9 is suggestive that it has been 

specialized to act exclusively under stress conditions.  The two residues in CrUBC9 and 

eight in CrUBC3 that differ from the SUMO-only consensus identified in the 

bioinformatic analysis above (Figure 3-2, Table 3-2) may provide clues as to specific 

locations in the amino acid sequences that code for CrUBC9 and CrUBC3 that modify it 

in such a way as to alter its function within the cell.  This hypothesis is strengthened by 

the fact that the closest homologs to both of these proteins in V. carteri share the same 

differences with the SUMO consensus that their C. reinhardtii counterparts do (Figure 3-

7).     

MATERIALS AND METHODS 

C. reinhardtii strains and growth conditions 

Wild-type strain CC124 was obtained from the Chlamydomonas Genetics Center 

at Duke University (Durham, NC).  Cultures were grown in Tris-acetate phosphate (TAP) 

media (Harris, 2009).  For expression analysis under heat stress, 25ml aliquots of cells 

were shifted to pre-warmed flasks at 42ºC for one hour.   
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Identification of SUMO or ubiquitin specific residues in E2 conjugase enzymes.   

Known SUMO and ubiquitin conjugase enzymes were assembled in a large 

multiple-sequence alignment using CLUSTALW with default settings 

(http://www.ebi.ac.uk/Tools/msa/cluss stalw2/).  SUMO E2 conjugase enzymes included: 

Saccharomyces cerevisiae UBC9 (NP_010219), Arabidopsis thaliana SCE1 

(NP_191346), Schizosaccharomyces pombe Hus5 (NP_593204), Danio rerio UBC9-A 

(NP_571426), and Mus musculus UBC9 (NP_035795).  Ubiquitin E2 conjugase enzymes 

included: Saccharomyces cerevisiae UBC4 (NP_009638), Homo sapiens UBCE2_D2 

(NP_003330), Danio rerio UBCE2_D3 (NP_9562466), Schizosaccharomyces pombe 

Ubc4 (NP_595283), Saccharomyces cerevisiae UBC3 (NP_010339), and Arabidopsis 

thaliana UBCE2_4 (NP_568589).  After assembling an alignment using all of the 

sequences above, residues 100% conserved across all ten sequences in the alignment 

were identified.  Next, two additional alignments were assembled, one using only the 

SUMO E2 conjugase protein sequences, and a second using only ubiquitin conjugase 

protein sequences.   Residues that were 100% conserved in the SUMO E2 conjugase 

alignment were compared to the larger multiple sequence alignment containing both 

SUMO and ubiquitin E2 enzymes to identify those residues that were 100% conserved in 

SUMO E2 enzymes and for which none of the ubiquitin E2 enzymes in the alignment had 

the same residue at that position.  The reverse was also carried out in which residues 

100% conserved in an ubiquitin E2 alignment were compared to residues in the larger 

alignment to identify ubiquitin residues conserved 100% in the alignment but not in 

SUMO.   
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Identification and analysis of putative E2 conjugases in the C. reinhardtii genome 

For identification of additional E2 conjugases, the S. cerevisiae ScUBC9 protein 

sequence was queried against the C. reinhardtii genome using a BLASTp search 

(www.phytozome.net).  Protein sequences returned as potential homologs to ScUBC9 

were individually added to the SUMO/ubiquitin multiple sequence alignment above and 

the residues identified as part of either the shared, SUMO, or ubiquitin consensus 

residues were compared in that sequence to determine whether it more strongly 

resembled a SUMO E2 conjugase, ubiquitin conjugase or neither.   

To compare the percent identity and similarity of C. reinhardtii SUMO E2 

conjugases to ScUBC9, sequences were aligned using NCBI Blastp for aligning two 

more more sequences (http://blast.ncbi.nlm.nih.gov/Blast.cgi, program BLAST 

(bl2seq))and identifying the reported percent identities and percent similarities after the 

alignment was generated.  

To identify CrUBC3 homologs in other organisms, the CrUBC3 amino acid 

sequence was used in a BLASTp search against the NCBI database of non-redundant 

protein sequences using default parameters (http://blast.ncbi.nlm.nih.gov/Blast.cgi).  The 

top hits based on E-value were compared to both CrUBC3 and CrUBC9 sequences using 

a CLUSTALW alignment and the resulting percent identity between the putative 

homolog and either CrUBC3 or CrUBC9.   

Quantitation of expression levels of CrUBC9 and CrUBC3 

For quantitation of expression levels of CrUbc9 and CrUbc3 transcripts, total 

RNA was isolated from CC124 C. reinhardtii cells grown at 25ºC and after a shift to 

42ºC for one hour using Trizol LS (Invitrogen, Grand Island, NY) according to the 
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manufacturer’s recommendations.  Contaminating DNA was removed by treatment with 

DNaseI (ThermoScientific).  Complementary DNA was synthesized from 2.4ug of total 

RNA with oligo-dT primers using the Plexor Two-Step qRT-PCR system (Promega, 

Madison, WI).  Synthesized cDNA was diluted 1:2 in 1mM MOPS, 0.1mM EDTA and 

used as substrate for a qPCR reaction according the Plexor Two-Step qRT-PCR system 

recommendations, using 0.2mM of each primer (Biosearch  Technologies, Novato, CA).  

Primer pairs for qPCR were as follows: CrUBC3:( 5’-FAM-isoC – 

GCTGGGGTACACG-TTTGGATG-3’ and  5’- GATACCAGGGCCGGAGAAGAC-3’);  

CrUBC9: (5’-CAL Fluor Orange 560-isoC - TGAGGCACACGGTACCGGAG-3’ and 

5’- CTCACCATGGAGTTCAGCGAG-3’); G-Protein: (5’ - Quasar 670-isoC-GTTGGT-

GGTCATGGGCGAGAA-3' and  5'-GACAAGACCATCAAGCTGTGGAAC-3'). G-

Protein and CrUBC9 primers were multiplexed in a single reaction.  The efficiency of 

amplification for each set of primers was calculated and used to quantify the relative 

transcript abundance at 25ºC compared to 42ºC (Pfaffl, 2001).  Efficiencies for the primer 

pairs were as follows: CrUBC9: 83%, CrUBC3: 82%, G-Protein: 82%.  The fact that the 

primer pair efficiencies were essentially the same for all three transcripts allowed the 

direct comparison of relative transcript level between the transcripts.  In this case, the Ct 

values for CrUBC9 and CrUBC3 at 25ºC were analyzed in the same manner as the ΔCt 

values above to determine the relative abundance of CrUBC3 when compared to CrUBC9 prior to 

any stress treatment.  Final analysis therefore reflected transcript abundance relative to CrUBC9 

transcript levels at 25ºC and are the result of a technical triplicate of a biological triplicate 

(three separate cultures shifted to 42ºC for one hour analyzed in triplicate by qRT-PCR). 
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Yeast methods 

Yeast strain Y0002 was a generous gift of Stefan Jentsch.  Wild-type yeast strain 

Y0002 (MATα his3-Δ200 leu2-3, 112 lys2-801 trp1-1 (am) ura3-52) was transformed by 

lithium acetate/heat shock using standard protocols (Gietz, 2002).  Transformants 

obtained using the p423-GPD based plasmids were selected on complete minimal media 

lacking histidine (CM-HIS).  Transformants using the LEU2 marker for homologous 

recombination were selected on complete minimal media lacking histidine and leucine 

(CM-HIS-LEU) (Sambrook, 1989).   

For expression of CrUBC9 and CrUBC3 in S. cerevisiae, cDNAs encoding both 

proteins were cloned into the plasmid p423-GPD which places the expression of a given 

cDNA under the control of the strong constitutive promoter, GPD and uses his as a 

selectable marker for incorporation of the plasmid into yeast cells (Mumberg et al., 

1995).  CrUBC9 cDNA was amplified using the following primers: 5’ – TAAA-

GGATCCATGTCTGGCGTCGC – 3’ and 5’ – TTTTGTCGACTCACGAGGGTG-

GCGGG – 3’ (BamHI and SalI sites underlined).   CrUBC3 cDNA was first amplified 

from C. reinhardtii RNA as a larger fragment including 5’ and 3’UTR of the UBC3 

transcript using the following primers:  5’ – CTGTGTCACAGCCGAACTTGGTTTCG – 

3’ and 5’ - TCGCTTGCATATCAAAGG CCGCATACC – 3’.  The product of this RT-

PCR was used as template for PCR using the following primers: 5’ – TAAAGGATCC-

ATGGCATCTCAGC – 3’ and 5’ – CCCCGTCGACTCATTCCTCATCCTCC – 3’ 

(BamHI and SalI sites underlined).  cDNAs were cut with BamHI and SalI and cloned 

into p423-GPD digested with BamHI and SalI.  The resulting plasmids were named 

p423-GPD-CrUBC9 and p423-GPD-CrUBC3.  A 6X-HIS tag was added to the plasmid 
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by annealing the following primers together: 5’ – GATCATGCATCATCATCATCAT-

CACG – 3’ and 5’ - GATCCGT GATGATGATGATGATGCAT – 3’.  Annealing was 

carried out by boiling equal volumes of 100mM concentrations of each primer for five 

minutes in the presence of 1X Pfu Polymerase Buffer (Agilent Technologies) and 

allowing the boiling reaction mix to slowly cool to room temperature in the same water 

bath in which it was boiled.  The annealed primers have 5’ overhangs compatible with 

BamHI digested DNA, and were ligated into BamHI digested p423-GPD-CrUBC9 and 

p423-GPD-CrUBC3.  The resulting plasmids were called p423-GPD-HIS-CrUBC9 and 

p423-GPD-HIS-CrUBC3.   

To generate a LEU2 marker flanked by ScUBC9 sequence for homologous 

recombination, the ScUbc9 cDNA was amplified using the following primers: 5’ - 

CCCCGGATCCATGAGTAGTTTGTGTCTACAGC – 3’ and 5’ – CCCCGTCGACC-

TATTTAGAGTACTGTTTAGC – 3’ (BamHI and SalI sites underlined) and cloned into 

BamHI-SalI digested pET28b resulting in the plasmid pET28b-ScUbc9.  The ScUbc9 

cDNA contains an endogenous DraI site that was cut 295bp into the 480bp cDNA.  The 

LEU2 marker was amplified with the following primers: 5’ – TAAACCATGGCTGTGC-

GGTATTTCACACCG – 3’ and 5’ – CCCCTTTAAAAGATTGTACTGAGAGTGCAC 

– 3’ using Phusion DNA Polymerase (Thermo Fisher Scientific, Pittsburgh, PA) to 

generate a blunt-ended PCR product which was cloned into DraI cut pET28b-ScUbc9.  

The resulting plasmid pScU-LEU2-bc9 was used as template for PCR using the ScUbc9 

primers above (BamHI, SalI containing).  The resulting PCR product was used for 

transformation of Y0002 cells previously transformed with either p423-GPD-HIS-

CrUbc9 or p423-GPD-HIS-CrUbc3 in an attempt to knock out the endogenous ScUbc9.   
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Analysis of ScUbc9 knockouts 

High throughput DNA isolation of wild-type yeast and potential transformants 

was carried out according to the method of Lõoke, et. al. (2011).  One microliter of 

isolated DNA was used as template for PCR using primers designed to amplify a product 

in the event of a homologous recombination event between the LEU2 marker and 

endogenous ScUbc9.  A set of primers was designed on either side of the insertion site to 

confirm disruption of the ScUbc9 gene.  Each set contained a primer that annealed either 

upstream or downstream of the ScUbc9 gene and a second primer that annealed within 

the LEU2 marker.  Therefore, a PCR product of the correct size would only be amplified 

if the LEU2 marker inserted into the yeast chromosomal DNA at the ScUbc9 locus.  The 

first set of primers included a forward primer that annealed upstream of the ScUbc9 locus 

and a reverse primer that annealed within the LEU2 marker (5’ – GCTACCTGTACG-

CCATCACTGTCC – 3’ and 5’ – AGTCATCGAATTTGATTCTG-TGCGATAGC – 3’, 

respectively).  The second set of primers was the reverse with a forward primer that 

annealed within the LEU2 marker and a reverse primer that annealed downstream of the 

ScUbc9 locus (5’ – AATTGATACTAATGGCTCAACGTGATA-AGG -3’, and 5’ – 

GGACAAATTGATGCAAATAAGGAGATTGGGC – 3’, respectively).  

For Southern Analysis, genomic DNA was isolated from yeast strains using 

standard protocols (Sambrook, 1989).  Isolated DNA was digested overnight with KpnI 

and ScaI and DNA fragments were separated on a 0.8% 0.5X TBE gel.  Southern analysis 

including transfer to positively charged nylon membrane, generation of DIG-labeled 

ScUBC9 probe, and hybridization and detection of probe was carried out according to 

established protocols for DIG-labled probe Southern analysis (Roche, Indianapolis, IN) 
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with the modification that blots were hybridized to probe in Ultrahyb hybridization buffer 

(Ambion).  DIG-labeled ScUBC9 probe was generated by PCR amplification of ScUBC9 

cDNA with the following primers: 5’ – CCCCGGATCCATGAGTAGTTTGTGTCTA-

CAGC – 3’ and 5’ - CCCCGTCGACCTATTTAGAGTACTGTTTAGC – 3’ in the 

presence of DIG-dUTP nucleotide. 

Growth tests of ScUbc9 knockout lines 

For analysis of the growth of wild-type (Y0002) and knockout lines, cultures were 

normalized based on their OD600nm and spotted in a 1:4 dilution series on YPD, CM(-

HIS), and CM(-HIS, -LEU) plates (Sambrook, 1989).  Plates were incubated at either 

20ºC, 30ºC, or 37ºC to assess growth.   
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CHAPTER 4 

Conclusions and Future Work 
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The role of the protein SUMO within the eukaryotic cell has rapidly broadened 

from its initial identification as a post-translational modification to regulate nuclear pore 

localization.  We now know that this protein can target hundreds, if not thousands of 

proteins within a cell and that the consequences of SUMOylation on these target proteins 

can be highly varied.  Although the name “ubiquitin-like” is appropriate for SUMO, both 

in terms of its structure and the enzymatic pathway leading to its conjugation to a target 

protein, in terms of function one could make the argument that it acts more like 

phosphorylation in terms of the diversity of consequences resulting from this 

modification.  Although our understanding of this diversity, both in terms of the 

biochemical and functional consequences of SUMOylation, has greatly expanded in 

recent years, much remains to be understood about the role of this covalent modification 

in the cell.   

C. reinhardtii presents a unique opportunity not available in any other organism 

examined to date to study the effects of a SUMO E2 conjugase mutant.  This allowed us 

to focus specifically on the effect this mut5 mutation had under abiotic stress.  We 

demonstrated that CrUBC9 is essential for SUMOylation in response to a wide range of 

stresses, including abiotic stress treatments such as elevated temperature, as well carbon 

deprivation.  The mere viability with no obvious growth defects of mut5 is remarkable 

given the phenotypes observed in all other UBC9 mutants studied to date, and is strong 

suggestive evidence that a second functional SUMO E2 conjugase is likely present in C. 

reinhardtii.  Nevertheless, it is clear from our experiments that under stress conditions, 

CrUBC9 is absolutely essential for SUMOylation and in many cases increases the 

tolerance of C. reinhardtii for a given stress condition.  It would be interesting to 



129 
 

determine if overexpression of CrUBC9 could further increase the tolerance of C. 

reinhardtii to abiotic stress.  However, the failure of CrUBC9 to complement the growth 

defect observed on high salt suggests that precise regulation of the SUMOylation state of 

proteins may be required for proper adaptation to stress.   

There are several additional questions that remain regarding CrUBC9 and 

CrUBC3.  The first is definitive identification of CrUBC3 as a functional SUMO 

conjugase.  In addition, it remains to be seen whether or not there is a clear division of 

labor between the two, or if there might be some degree of functional redundancy.  Based 

on the abiotic stress experiments described herein, it is quite clear that CrUBC3 does not 

act under stress conditions, however it remains to be seen whether or not CrUBC9 can 

SUMOylate target proteins under non-stress conditions.  One can readily envision at least 

two plausible models for the functions of CrUBC9 and CrUBC3.  In Model #1, CrUBC3 

is the dedicated SUMO E2 conjugase for constitutive SUMOylation in the cell, while 

CrUBC9 only actively targets proteins for SUMOylation in response to stress.  In Model 

#2, both CrUBC3 and CrUBC9 act upon proteins during normal growth and 

development, and under stress conditions, CrUBC9 switches to targeting stress-related 

proteins while CrUBC3 maintains constitutive SUMOylation so cells can continue to 

grow and divide.  If Model #1 is correct, a CrUBC3 knockout mutant should be lethal, 

while if Model #2 is correct, knockout of CrUBC3 would not be expected to affect cell 

viability because CrUBC9 could functionally complement for CrUBC3 under these non-

stress conditions.  The failure of CrUBC9 to function in yeast cells as a SUMO E2 

conjugase favors Model #1 in which both CrUBC3 and CrUBC9 have distinc,t non-
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overlapping functions.  Although the fact that this was a negative results makes the 

evidence only weakly suggestive of this fact. 

What proteins are targeted by both CrUBC3 and CrUBC9 also remains to be 

determined.  In addition, what specific SUMO proteins are used for this SUMOylation is 

unknown as well.   It appears as though two distinct SUMO proteins are encoded in the 

C. reinhardtii genome, CrSUMO96 and CrSUMO148 (Want et al., 2008).  Whether or 

not each SUMO E2 conjugase has a preferred SUMO, or if both can use either SUMO 

protein with similar efficiencies is yet to be determined.  

One major hurdle in answering many of these questions is the identification of the 

other components of the SUMOylation pathway in C. reinhardtii.  Given the likely 

presence of at least two E2 enzymes in this green alga compared to other known 

organisms, could there also potentially be multiple E1 activase enzymes as well?   

In terms of intracellular localization, it appears as though CrUBC9 predominantly 

localizes to the nucleus, although a small proportion of this protein localizes to the 

cytoplasm.  Whether or not the same pattern would be observed for CrUBC3 is unknown.  

If CrUBC3 localized within the cell in a different pattern, this would be suggestive 

evidence that the two proteins acted in completely separate ways within the cell (Model 

#1 described above).  However, given the fact that most SUMO proteins localize to the 

nucleus, a nuclear localization of CrUBC3 would not rule out this possibility.   

One of the most intriguing questions regarding the presence of CrUBC9 and 

CrUBC3 in the C. reinhardtii genome is the question of “why?”  Why is it that in all 

other organisms a single E2 enzyme can carry out this function under both non-stress and 
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stress conditions, while in C. reinhardtii there are likely two?  What sort of selective 

advantage could be acquired as a result of this adaptation that would have to be unique to 

the Volvocales?   

The identification of a SUMO-only consensus that distinguishes a SUMO E2 

conjugase from an ubiquitin E2 conjugase could potentially be used to begin to address 

this question.  Knowing the residues that differ between CrUBC3 and CrUBC9 at those 

consensus sites that are 100% conserved among SUMO E2 conjugases, one could 

generate CrUBC3 and CrUBC9 “versions” of SUMO E2 conjugases for other organisms 

and express them together or separately to see what advantage or disadvantage it had on a 

cell.   

While many questions remain regarding the role of CrUBC3 and CrUBC9 in C. 

reinhardtii the work described here advances our knowledge of both how and why cells 

SUMOylate proteins.  The identification of two, likely separate SUMO E2 conjugases in 

a single organism that are distinct both in sequence and regulation is a novel discovery 

that differs from the dogma that a single E2 conjugase exists for the SUMOylation 

pathway.  In addition, the role of CrUBC9 and, by extrapolation, SUMOylation in 

response to abiotic stress is established as absolutely critical for SUMO modification and 

for tolerance to a wide range of stress conditions in C. reinhardtii.   
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