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Analysis of combustion-driven acoustics 

L. Boshoff-Mostert and H. J. Viljoen* 
Department of Chemical Engineering, University of Nebraska-Lincoln, Lincoln, NE 68588- 

0126, U.S.A. 

Abstract-Combustion-driven acoiistic oscillations are investigated by performing a one- 
dimensional stability analysis of a burner-stabilized premixed flame. In contrast to other 
investigators, no initial acoustic wave is assumed in the analysis; the downstream acoustic field 
results from flame instability. Two models are considered: the thermodiRusive model (un- 
coupled model) and the fully coupled thermodiffusive-hydrodynamic model. The fully coupled 
problem exhibits instability at a much lower critical Lewis number than the uncoupled 
problem. 

1. INTRODUCTION tant consumption may be retarded or  accelerated, 
Flames stabilized on a flame holder or inside a corn- depending upon the initial dimensionless acoustic fre- 
bustion chamber lnay become unstable towards quency of the disturbance. Gilbest er [d .  (1973) studied 
infinitesimally small perturbations and pressure oscil- the acoustic-kinetic interaction of a standing acoustic 
lations wil l  build up and an intense sound may be wave in a gaseous medium. They found for the de- 
emitted. Combustion-driven acoustic oscillations are com~osition of c ~ c l o ~ r o ~ a n e  at 953 K, acoustic 
~mportant  in a number of combustor applications, waves with frequency of 500 Hz. 
including jet and rocket engines and combus- Clavin et al. (1990) analyzed the stability limits of 

tors. Because of the destructive consequences that can vibratory instabilities of a planar flame propagating 
r ;ult from acoustic instability, the phenolmenorl has in a tube. The origin of the instability comes from 

been and continues to be extensively studied (Si- time-dependent modifications of the flame structure 
powicz et ol., 1971; Lawn, 1982). A low-frequency which are induced by acoustic waves. Mc~ntosh  

instability can lead to intense pressure perturbations (1987) studied the interaction of a one-dimensional 
in afterburners of aerojet engines (Macquisten and flalne with long wavelength acoustic waves when the 

Dowling, 1995). In propLllsion systems large ampli- flame is anchored to a perforated plate within a tube. 

tude oscillations can result in unacceptable structural This analysis differs from previous analysis because 

vibrations and even failure (Margolis, 1993). the downstream acoustic field is the result of flame 

A number of papers addressed the acoustic problem instability. NO acoustic wave is introduced initially. 

from a different point of view. A pressure field, When a planar flame becomes unstable via a Hopf 

modulated externally up stream of the flame is im- bifurcation, the flame oscillates around the stcady- 

posed on the systeln, and the stability of the field State position. An oscillatory flame can lead to pres- 

downstream of the flame is analyzcd. Toong et ( ( 1 .  sure osciilations both upstream and downstream of 
(1975) investigated the acoustic-kinetic interaction the flame sheet. The frequency of the acoustic pressure 
between an acoustic wave and chemical reaction. An field is determined by the frequency of  the flame 
initially right-traveling plane acoustic wave. in a gas- instability. Experimental proof of oscillations in the 

eous medium is subject to a simple one-step exother- audible range is well documented (Sugimoto and 

mic Arrhenius-type reaction. They found that Matsui, 1982; Afanas'ev et al., 1995). 
acoustic-kinetic coupling can, depending on the sys- Two descriptions of the combustion problem are 
tern conditions, lead to amplification or attenuation of analy~ed in the linear stability analysis. The first de- 

the acoustic field. In a similar study of acoustic-kin- scription follows the thermodifiusive model where an 

etic interaction. Garris et al. (1975) found that reac- isobaric mAUnpti0n allows the temperature and con- 
centration solutions to be found independent of the 
density, pressure and fluid velocity. This is referred to 
as the uncoupled case. The second description in- 

*Corresponding author. Tel.: (402) 472-9318. fax: (402) cludes a time derivative of pressure in the energy 
173-6989. balance which couples the momentum and energy 
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equations. Due to the coupling the temperature. con- 
centration, pressure, density and tluid velocity eqtia- 
tions need to be solved simultanously. The important 
etTect of the coupled model is that flame instability is 
found at lower Lewis numbers. 

In this study the frequency of the pressure perturba- 
tions is related to the inlet fuel fraction for both the 
coupled and uncoupled case at two different burner 
temperatures. The downstream pressure perturbation 
is shown to form a standing wave pattern on the 
acoustic length scale. 

A premixed flame, stabilized on a cooled burner, is 
considered. This analysis considers only the axial spa- 
tial variable. To facilitate the analysis, we assume that 
the combustion chamber is in thermal equilibrium 
with the gas phase at all times. Hence, there is no 
radial variation in the gas-phase temperature field. 
A mixture of air and fuel is fed to the burner and the 
flame is stabilized at a small distance from the burner 
surface. This stand-off distance is determined by 
physicochemical properties of the system. 

At steady state the stand-off distance remains con- 
stant, but for certain parameter values, the steady- 
state solution becomes unstable via a Hopf bifurca- 
tion. Beyond the critical point, the stand-off distance 
becomes a sinusoidal function in time which causes 
the flame sheet to oscillate around the steady state 
position. If it is recognized that the flame sheet drives 
pressure perturbations downstream, it is acceptable to 
think of the flame sheet as a vibrating diaphragm. 
(Actually, the flame sheet behaves in the opposite 
manner as a diaphragm in the sense that the down- 
stream pressure increases when a diaphragm moves 
downstream. whilst the pressure downstream of the 
flame sheet decreases when the flame sheet moves 
downstream, due to the increase in temperature.) 

To  distinguish between conditions at the burner 
and at the flame sheet, the subscripts 11 and b are used, 
respectively. The subscript a is used for adiabatic 
values and the subscript c is used to identify variables 
at the bifurcation point. In this analysis, we only 
consider subsonic flow (small Mach numbers). Since 
flame destabilization occurs at velocities below the 
adiabatic flame velocity, this is not a restrictive as- 
sumption. 

The ideal gas law is used as the equation of state: 

where R, is taken as R, X Mai,. The continuity equa- 
tion is 

and the momentum balance is given by 

The specles and energy balances are 

To keep the focus on the acoustic aspect, intricacies 
which arise from conditions of near stoichiometric 
mixtures will be neglected (Pvlargolis, 1980) - it is 
assumed that the mixture is sufficiently non- 
stoichiometric that C describes the limiting species. 
Furthermore, a single step first-order reaction is used 
to describe the kinetics. 

It is also assumed that the product of the diffusion 
coefficient and density, D X p is constant. In his analy- 
sis, Margolis used a density-weighted axial variable 
(useful to eliminate the continuity equation) and as- 
sumed that D X p2 and k, x p are constant (k,  is the 
thermal conductivity). We did not choose to use 
a density-weighted axial variable, leaving us with 
a variable coefficient eigenvalue problem. We assume 
that the density in the region between the burner and 
the flame remains constant, and we use the value of 
the density in the flame in the analysis (Joulin and 
Clavin, 1979). This assumption removes the variable 
coefficients from the eigenvalue problem. This as- 
sumption is discussed in detail in the uncoupled prob- 
lem section (Section 3.1). 

Equations ( l H 5 )  are written in dimensionless form; 
pressure, density and temperature are scaled with 
respect to the adiabatic values, velocity is scaled with 
respect to the adiabatic flame velocity U, and concen- 
tration is scaled by the far upstream value C,,. Let p, 
m and Q denote the dimensionless pressure, density 
and temperature and 11,  Y denote the dimensionless 
velocity and fuel mass fraction. The thermal diffusivity 
is denoted as K and we assume that it remains con- 
stant. Time and position are scaled as r = tU;/k-, and 
z = sU,/K, respectively. The feed rate of the gas mix- 
ture, pi,Ui, is constant and in terms of the scales 
p, and U, it is denoted as the dimensionless flux xf. 
The non-dimensional equations are 

dtn S(ITIII) 
+ ---- - - 0 ar az 

+ (1 - @,,)mDuYe[,'l '1 +-  -+: . (10) 
C ,  R (" dr P:) 



The downstream constit~~tive continuity and mo- 
mentum equations are coupled to the energy b. CI I ance 
in the eigenvalue problem due to the (RIG,) [(dpldr) 
+ (dplaz)] term. Since the flame velocity is signifi- 

cantly less than the speed of sound, effects due to the 
compressibility of the gas may be neglected 
(Sivashinsky, 1983). In both the coupled and un- 
coupled case the compressibility effects associated 
with pressure variations in the energy equation (dplaz) 
are neglected. Clavin et al. (1990) showed that the 
isobaric assumption is well justified for small Mach 
numbers. Also consider the steady-state momentum 
equation (Williams, 1985): if we assume u2/(p/m) c< 1 
(small Mach number) then the equation 

du d p  
mI.1- + X I -  = 0 

dz dz 
reduces to 

We see that fractional changes in the pressure are 
negligibly small. We solve both the coupled case 
(shown above) and the unco~lpled case where 
ap/iir = 0. 

The boundary conditions at  the inlet (burner sur- 
face) are 

dY 
- = xFLe[Y - l]. az 

A Danckwert's-type condition is imposed for the reac- 
tant, but the temperature is equal to the burner face 
temperature. implying a non-adiabatic condition. For 
the temperature it is sufficient to require that the 
downstream temperature is bounded. The fuel is com- 
pletely consumed by the flame, and Y is identically 
zero downstream. The origin of the coordinate system 
is defined as the steady-state flame position, z = 0. 
Flames are associated with large activation energies. 
reflected by the parameter 7 .  In the asymptotic limit 
the flame structure is made up of two different length 
scales; an upstream (and downstream) non-reactive 
zone and a very thin reaction-diffusion region (flame 
sheet). Outside the flame sheet the reaction term can 
be neglected. 

It can be shown (Margolis, 1980) by matched 
asymptotic analysis of the flame sheet that the reac- 
tion term can be replaced by a source term located at 
the flame position. 

where 6, is the Kronecker delta function and f denotes 
the instantaneous flame sheet position. At the flame 
sheet, z = f, the following continuity and jump condi- 
tions hold: 

[el = o (14) 

[PI = 0 (15) 

2.1. Steady-state solcrriot~ 
The steady-state solutions (subscript o) upstream 

and downstream of the flame sheet are distinguished 
by the use of the superscripts - and + , respectively. 
The upstream solutions are 

B, - Qhe- + ((e - Q,,) eZFz 
Q,; = 1 e - ' ~ h  (19) 

1 - e - ~ ~ h  - 
m ,  = 

B,, - B,, e - + (Oh - Q,) e*Fz (21) 

- xF [Q, - + ((e - Oe,)ez~'] 
11, = l - e - + h  (22) 

The downstream solutions are 

3. LINEAR STABILITY ANALYSIS 

The problem is solved by perturbation series and 
the following variables are introduced: 

where E is a small parameter. The above perturbations 
are applied to eqs (6HlS).  The leading order [O(l)] 
perturbation problem yields the steady-state solution. 
The next order of terms CO(&)] lead to the eigenvalue 
problem with the generic form s,(z)e"'. The instan- 
taneous flame position is at 

The stand-off distance h can be determined by integ- 
rating the steady-state forms of eqs (9) and (10) across 
the flame sheet: 



In Fig. 1 the stand-of distance is plotted as a function 
of H h  for different methane fractions (parameter values 
as listed in Table 1). For some of the values or h there 
are two oh values. Lower inlet fuel concentrations 
have larger stand-of distances. The curves show an 
increase as the adiabatic value is approached and 
h 4 CO when 0 -+ 1, indicating that the adiabatic 
value can only be reached when the flame is infinitely 
far away from the heat sink (burner face). 

3.1. Uncoupled problem 
The eigenvalue problem CO(&)] associated with the 

uncoupled equations (6H10) is 

Fig. 1. Stand-of distance (h). 

Table 1. Properties for methane combustion 

Item Units Value 

At the t la~ne sheet the following cont~nulty and jump 
conditions hold: 

It follows from the equation of state and continuity of 
1 1 ,  and m ,  that p, is also continuous. At the inlet. 
- = -  h, the boundary conditions become 

Upstream. the eigenvalue problem has variable coefi- 
cients which would require a numerical solution. If 
m,, upstream of the flame sheet is replaced by the value 
at the flame sheet, m,, it can be readily solved. This 
simplification gives the same dispersion relation as 
Margolis (1980). As a result of the density-weighted 
axial coordinate, Margolis' result corresponds to ours 
when a value of m, = m, is used. When a density- 
weighted coordinate system is used, it is necessary to  
assume that and k p  are constant in order to keep 
the coefficients constant; the present approach only 
requires that p D  is constant. 

It can be shown that the eigenvalues of the variable 
coelficient eigenvalue problem are bounded from 
above and below by replacing the coefficient m,(;) by 
m, and m,. Consider eq. (39). At the critical point, the 
real part of tu is zero. Two possibilities exist, the 
imaginary part could also be zero or the imaginary 
part could be non-zero. In the case of a principal 
exchange of stability, w is identical zero and the prob- 
lem of a variable coefficient no longer exists (for z <J 
mn is taken constant). In the case of a Hopf bifurca- 
tion, multiply eq. (39j with to* Y f  (conjugates) and 
integrate between z = - h and z = J'-. If the integrals 
I ,  and I ,  are defined as follows: 

one can write 

In I z  the positive real function I Y ,  I is multiplied with 
the positive monotone decreasing function m,. If 
I ,  and I, denote the integrals of  m,,l Y l  l and m,, Y ,  1 



over the same interval. the following inequalities The particular solutions are given by 
result: m;, = H ~ " =  + w r  

l 3  > I~ > I ~  (5 1) 
(62) 

and hence 

The adiabatic value /nu t min(m,,) = m,,, and if 
m, would be used, the absolute value of the eigenvalue 
for - h z 2 0 will be overestimated. 

The Hame is located very close to the inlet of the 
burner. The wavelength of the pressure perturbation 
is large in comparison to the stand-off distance so that 
it is assumed that the pressure between the inlet of the 
burner and the Hame sheet remains constant. If the 
pressure is constant upstream of the flame sheet, then 
p; = 0. 

The upstream mass flux is also taken as constant 
and these assumptions decouple the temperature and 
species balances [eqs (39) and (40)] from the rest of the 
eigenvalue problem and allows the separate solution 
of V and Y both upstream and downstream. In par- 
ticular? the solutions for 0 ,  and Y ,  are given by 

where 

and i., is the root with the negative real part. Making 
use of eqs (41)-(44), (47) and (48) and eliminating 
coefficients A, B, C, D and G yields the following 
dispersion relation: 

The functions m:,, p:, and U:, can be written in terms 
of 0;. The homogeneous solutions for u;. m: and 
p:  are 

where 

Note: An eigenvalue problem can only be solved 
within an arbitrary constant. In this study all vari- 
ables are scaled with respect to fl 

3.2. Coripled problem 
The coupled linear stability analysis problem con- 

sists of the uncoupled equations (36H40) with the 
energy balance replaced by 

The continuity and jump conditions and the bound- 
ary conditions of the coupled problem [eqs (41H48)I 
hold, with an additional b o ~ ~ n d a r y  condition at the 

The solutions for m; and 11; are found by means of burner outlet, : = L - h: 
eqs (36) and (37) as 

do1 - = 0. 
= - 5 (A~'.." W' + Be": + "' dz (70) 

0, 
1 (60) 

Note that the solutions to the coupled problem are 
- 

= 5 (Aeil:iwr + ~ ~ i : z + w r ) ,  distinguished from the uncoupled problem by the 

0; 
(61) superscript *. The solutions for 0: and Y: are given by 

Q* - A* ei,'+"' + B* e"l'+w' The downstream pressure perturbation. p;, is not I - (71) 
  den tic ally zero. Since the downstream temperature 0: + =,c: eh:+wr  + C; - w r  * J,Z + w r  + C 3 e  
perturbation is solved first, it becomes a non-homo- 
geneous function in the eigenvalue problem (36H38). m c : e ' ' A 2 + w r  (72) 



where are given by eq. (57), v l , '  are given by 
eq. (58) and G,, ,, ,, , are found by solving the following 
fourth-order polynomial: 

The solutions for the upstream density and velocity 
perturbations are given by 

Using eqs (36)-(38) we can write 

m,x,6: 
C* d - + w r  e >-  + 

( (m + u.6,)' - 8,,x16~ 

~ 1 ~ ~ ~ 6 :  
+ 

((m + u.6,)' - 8,x16: 
C: e6,= + or (78) 

and 

B,,r ,G: - (co + U,;.)' 

Using eqs (41)-(48) and (70) and eliminating coeffi- 
cients A*, B*, C:, C$, CT,Cz, D* and G* yields the 
coupled problem dispersion relation. The dispersion 
relation is very lengthy and is not given here. 

4. RESULTS ;\ND DISCUSSION 

The basic solution is stable for flame temperatures 
between the adiabatic temperature T ,  (upper open 
boundary) and the critical bifurcation temperature 
T ,  (lower bound). The dimensionless critical b i f~~rca-  
tion temperature is denoted as 0,. 

In Fig. 2. B, is plotted as a function of the inlet 
burner temperature for Le = 1.5 and Le = 2.5. The 
curves are for an inlet fuel fraction of 6%. For the case 
where Le = 2.5 results are shown for both the coupled 
and uncoupled model. It is evident that the uncoupled 
model exhibits much the same behaviour as the 
coupled model. The uncoupled model results in slight- 
ly lower critical temperatures. No solution was found 
for Le = 1.5 with the uncoupled model. For the 
coupled model however, a solution was found for 
Le = 1.5, which indicates that the flame can become 
unstable at this lower Lewis number. It is important 
to  note that the uncoupled model does not predict 
instability for Lewis numbers lower than 2. but with 
the uncoupled model we see a definite range of inlet 
burner temperatures where the flame becomes un- 
stable at a Lewis number of 1.5. The range of inlet 
burner temperatures is smaller than in the uncoupled 
case, and ranges from T,, = 400 to 460 K. Also evident 
is that lower burner temperatures have higher critical 
temperatures. Since the adiabatic temperature de- 
pends on the burner temperature, the stable region is 
decreased when the burner temperature is lowered. 

Figure 3 illustrates the effect of inlet fuel fraction on 
the critical temperature. The burner temperature is 
470 K and the uncoupled model was used. The lower 
Lewis number has a larger region of stability, i.e. the 
region between the adiabatic temperature (6, = l) and 
the critical bifurcation temperature B,. The region of 
stability is increased with an increase in fuel fraction. 
It is stable over a smaller range of inlet fuel fractions 
than for Le = 2.5. 

The frequency of the oscillation at the Hopf bifurca- 
tion point is shown in Figs 4(a) and (b) for both the 
coupled and uncoupled models, and a Lewis number 
of 2.5. It is presented in I lz  and note that the values lie 
in the audible range. At low inlet fuel concentrations 

1 stable I 

unstable 

------- Le=2.5 - uncoupled 

-. - . - . - . Le=i .S - coupled 

Fig. 2. Critical temperature (6% methane) 



the frequencies are low as well, but it increases as the 
fuel concentration is increased from 3 to 8%. This 
sensitivity is ideal for control applications. The fre- 
quencies are much higher for the lower burner tem- 
perature ( T ,  = 470 K). 

Fig. 3. Critical temperature To  = 470 K. 

In Fig. 5 the frequencies are shown for the coupled 
model and two burner temperatures (Lewis number of 
1.5). The frequencies are much lower for this Lewis 
number. Higher burner temperature results in much 
lower frequencies-for a fuel fraction of 6% increas- 
ing the burner temperature from 450 to 470 K de- 
creases the frequency from 210 to 75 Hz. 

In Figs 6 and 7 the pressure perturbation is shown 
in the vicinity of the flame sheet and far downstream, 
respectively, for the uncoupled model. The particular 
part of the solution decays very rapidly downstream. 
In Fig. 6 the variation in the flame position is shown 
over one period. Close to the flame the particular 
solution determines the pressure variation but it ap- 
proaches the value of the homogeneous solution after 
a few length scale units. The spatial behaviour of the 
homogeneous solution is nearly periodical, but the 
wavelength is quite large on the dimensionless length 
scale. Therefore, a dimensional scale is used in Fig. 
7 to show the behaviour far downstream for the di- 
mensionless times shown. A standing wave pattern 
develops with fixed nodes. However, there is modula- 
tion of this wave pattern. Due to the large value of 

1. ---- T o 4 5 0  coupled 1 
............. To-600 uncoupled - 
- To=600 coupled 

- 

Fig. 4(a). Frequency of flame oscillation T,, = 600 K. Fig. 5. Frequency of flame osc~llation Le = 1.5 

............. To=470 uncoupled I 

Fig. qb). Frequency of flame oscillation To = 600 K. Fig. 6. Pressure perturbation (p;) far downstream 



Fig. 7. Pressure perturbation (p;) for smaller 2, 

r ,  for typical subsonic flames, it follows from eq. (68) 
that the roots l.,,, are pure imaginary and they are 
not complex conjugates. When r ,  is decreased, the 
difference between the two roots become bigger and 
the modulation becomes more pronounced. 

If the viscosity term is included in the momentum 
balance, eq. (38) becomes 

where Pr denotes the Prandtl number pC,/k, .  As was 
shown before, the particular solutions are only signifi- 
cant close to the flame sheet. However, the homogene- 
ous parts of U;, m: and p :  are affected by the 
viscosity term. The characteristic equation, whose 
roots are shown in eq. (68), now becomes a cubic 
polynomial with complex coefficients; 

(-  Pr 11;)ib3 + (rFlr; - P r w  - r l ) i 2  

The third root has a large negative real part, but the 
other two roots are very close to the roots of eq. (68). 
The important role of the Pr number is to change the 
roots from pure imaginary values to complex roots 
with non-zero real parts. Although one of the roots 
has a very small positive real part, this term now has 
the ability to  amplify as z increases. It must be kept in 
mind that a length scale based on the thermal length 
has been chosen, this length has typical values of 
10-'m. If downstream distances of 50-100 cm are 
considered, the dimensionless values become large 
and the products ofthese values and the small positive 
real part could become significant. 

This analysis lays the basis for a control strategy of 
flames, based on acoustic perturbations which devel- 
o p  downstream of the flame. It has been shown that 

the acoustic perturbations can be driven by a tlame 
instability, without any external forcing involved. The 
frequencies of the perturbations have been reported 
for typical parameter values. The frequencies vary 
over a large range when the inlet fuel concentration is 
varied. When viscosity is considered in the analysis, 
the pressure perturbation can be amplified. Increased 
adiabatic flame velocities lead to smaller X ,  values 
and stronger modulation and amplification. 
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NOTATION 

C concentration 
C, heatcapacity 
D diffusion coefficient 

activation energy 
instantaneous flame sheet position 
heat of reaction 
dlstance between burner and flame sheet 
frequency factor 
thermal conductivity 
tube length 
( = KID) 
dimensionless density 
molar mass of air 
dimensionless pressure 
pressure 
molar gass constant 
mass gass constant 
time 
temperature 
critical bifurcation temperature 
dimensionless gas velocity 
gas velocity 
adiabatic flame velocity 
axial variable 
molar fuel fraction 
dimensionless mass fuel fraction 
dimensionless axial variable 

Greek letters 
XF dimensionless flux moll,, 
z1 ( =  RmT$U3) 
? ( = E/% Tu) 
6~ Kronecker delta function 
8 dimensionless temperature 
@h dimensionless temperature at flame sheet 
8, dimensionless temperature at burner 
K ( = k,/p,C,) 
P density 
r dimensionless time 
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