Explanation of Statistics Used in This Report
Explanation of Statistics Used in This Report

Pigs treated alike vary in performance due to their different genetic makeup and to environmental effect we cannot completely control. When a group of pigs is randomly allotted to treatments it is nearly impossible to get an “equal” group of pigs on each treatment. The natural variability among pigs and the number of pigs per treatment determine the expected variation among treatment groups due to random sampling.

At the end of an experiment, the experimenter must decide whether observed treatment differences are due to “real” effects of the treatments or to random differences due to the sample of pigs assigned to each treatment. Statistics are a tool used to aid in this decision. They are used to calculate the probability that observed differences between treatments were caused by the luck of the draw when pigs were assigned to treatments. The lower this probability, the greater confidence we have that “real” treatment effects exist. In fact when this probability is less than .05 (denoted $P < .05$ in the articles), there is less than a 5% chance (less than 1 in 20) that observed differences were due to random sampling. Evidence for real treatment differences is very strong.

It is commonplace to say differences are significant when $P < .05$, and highly significant when $P < .01$. However, P values can range anywhere between 0 and 1. Some researchers say that there is a tendency that real treatment differences exist when the value of P is between .05 and .10. Tendency is used because we are not as confident that differences are real. The chance that random sampling caused the observed differences is between 1 in 10 and 1 in 20.

Sometimes researchers report linear (L) and quadratic (Q) responses to treatments. These effects are tested when the experimenter used increasing increments of a factor as treatments. Examples are increasing amounts of dietary lysine or energy, or increasing ages or weights when measurements are made. The L and Q terms describe the shape of a line drawn to describe treatment means. A straight line is linear and a curved line is quadratic. For example, if finishing pigs were fed diets containing .6, .7, and .8% lysine gained 1.6, 1.8 and 2.0 lb/day, respectively we would describe the response to lysine as linear. In contrast, if the daily gains were 1.6, 1.8, and 1.8 lb/day the response to increasing dietary lysine would be quadratic. Probabilities for tests of these effects have the same interpretation as described above. Probabilities always measure the chance that random sampling caused the observed response. Therefore, if $P < .01$ for the Q effect was found, there is less than a 1% chance that random differences between pigs on the treatments caused the observed response.

Pigs caused observed treatment differences is less than 1 in 100. Evidence for real treatment differences is very strong.

The mean and the .8 is the SEM. The SEM or SE is added and subtracted from the treatment mean to give a range. If the same treatments were applied to an unlimited number of animals the probability is .68 (1 = complete certainty) that their mean would be in this range. In the example the range is 10.2 to 11.8.

Some researchers report standard errors of means (SEM) or standard errors (SE). These are calculated from the measure of variability and the number of pigs in the treatment. A treatment mean may be given as $11 \pm .8$. The 11 is