Genetic Control of Sorghum Grain Color

Centro Nacional de Tecnología Agropecuaria y Forestal (CENTA),
San Andrés, km 33 1/2, highway to Santa Ana.
Postal Apdo.: 885,
Tel.: (503) 2302-0200 Ext. 239
San Andrés, La Libertad, El Salvador
February 2009

René Clará Valencia • William (Bill) L. Rooney
The first Memorandum of Agreement between INTSORMIL and the National Center of Agricultural and Forest Technology (CENTA) was initiated in the year 2000 and endorsed by means of Executive Agreement No. 1133 of the branch of foreign relations and Legislative Decree No. 183 published in the Official Newspaper No. 231, December 8, 2000. This agreement indicates the importance that sorghum cultivation deserves in El Salvador. It establishes the collaborative relationship between CENTA scientists and INTSORMIL scientists in initiating activities to generate and transfer technology that is beneficial to producers in El Salvador and the Central America Region.

There have been many sorghum varieties and hybrids generated under this Agreement which are beneficial to farmers in El Salvador, other countries in Central America and other latitudes. For this reason, CENTA and INTSORMIL take pleasure in supporting this scientific publication to clarify the concept of sorghum grain color with the intent of improving sorghum grain quality and in contributing to the development of better products from sorghum which will be beneficial to all in the sorghum food value chain.

John Yohe
Program Director
Sorghum, Millet and Other Grains CRSP
Genetic Control of Sorghum Grain Color

INTRODUCTION
Today there is a real interest in the utilization of sorghum grain as a substitute for wheat in baked goods and as a substitute for yellow maize in animal feed. Sorghum grain color and quality are important characteristics in the baking and livestock feed industries. For that reason it is necessary to develop varieties that are suitable for the food and feed industries.

The purpose of this bulletin is to briefly describe the main genetic characteristics that objectively affect sorghum grain appearance and quality.

The pericarp and glume color affect the color of the finished products made with sorghum grain. Until now at least 10 pair of genes that affect sorghum grain color have been identified. The pericarp color is determined by the genes: R_Y_ I_S_B1_B2_. The genes P_Q and Tp_ affect the expression of this basic pool of genes.

SORGHUM GRAIN
The sorghum grain is the fertilized mature ovary (Fig. 1) which consists of the by the embryo, endosperm and pericarp. The pericarp determines the color of the grain because genes that control color are concentrated in this layer.

Fig. 1. Cross section of a sorghum grain.

Genotypes and Gene Effects on Grain Color

I - PERICARP COLOR
The epicarp is the outer thin layer of the sorghum pericarp and surrounds the entire seed. The genes RR and YY determine the grain color and its appearance.

- \(R_Y_ \) red epicarp
- \(R_yy \) white epicarp
- \(rrY_ \) lemon yellow epicarp
- \(rrry \) white epicarp

These genes interact epistatically to produce the observed colors.

Fig. 2. High variability of sorghum grain color

The lemon yellow pericarp color (Figs. 3 and 4) is not related to yellow factor(s) of the endosperm and could be confused with it.

Fig. 3
Both \(R_ \) and \(Y_ \) genes are related epistatically to produce the observed colors and act in a complementary way.

The endosperm makes up 80-85% of the grain size and determines grain quality. It is composed of two types of starch cells: amylose and amylpectin. One locus controls the type of starch in the endosperm. The dominant allele \(Wx \) controls the amylose and the recessive homozygotic allele (\(wx \)) results in amylpectin starch and a waxy phenotype.

Fig. 4
Both \(R_ \) and \(Y_ \) genes are related epistatically to produce the observed colors and act in a complementary way.
II - COLOR OF THE TESTA LAYER

The color of the testa layer is dependent on the Tp_, tp tp genes. The dominant Tp_ presents a brown pigmentation and the recessive (tptp) a purple pigmentation.

The pigmentation (Fig. 6) is determined by B1B1 and B2B2 genes in the following manner:

- B1_ B2_ pigmented testa
- B1_ b2b2 non pigmented testa
- b1b1 B2_ non pigmented testa
- b1b1 b2b2 non pigmented testa

If the spreader gene (S_) is present in the dominant form (Figs. 7, 8 and 9), the brown pigments of dominant gene B1_B2_ are spread throughout the pericarp. When the homozygous recessive gene (ss) is present the brown color of dominant alleles B1_B2_ occurs only in the testa layer. This means that the brown color appears in the pericarp if genes B1_B2 are present.

Fig. 4
Endosperm color

Fig. 5
Intensifier gene effect (I_) on pericarp color

Fig. 6
White endosperm grain with a non pigmented (left) and pigmented (right) testa.

Fig. 7
Interaction of the spreader gene (S_) in the red color of the thin and thick pericarp.

Fig. 8
Effect of the spreader gene (S_) interacting with B1_B2_ for red grain color

Genetic Control of Sorghum Grain Color
IV - PLANT COLOR

Plant color is controlled by the PP and QQ genes. The \(P_Q \) gene determines the purple color, the \(P_qq \) gene determines the red color, the \(pp Q_ \) and \(ppqq \) genes for tan plant color. The glume color is generally associated with these pairs of genes (Fig. 11, 12, 13 and 14). The \(P_Q \) gene affects the maternal tissue of the grain and modifies the effects of other direct color factors.

Fig. 11
Plant color and purple glumes \((P_Q) \)

Fig. 12
Plant color and red glumes \((P_{qq}) \)

The presence of tannins in the testa layer is positively correlated with the presence of dominant genes \(B_1 B_2 \). The pigmentation in the testa layer produced by these genes is the effect of the condensate phenols.

The amount of tannin is determined by the presence of the intensifier \((I) \) and spreader genes \((S) \), interacting with genes \(B_1 B_2 \), \(Tp_ \), \(tp \) and other genes that control mesocarp thickness.

III - MESOCARP

Mesocarp layer thickness is determined by genes \(Z_ \) and \(zz \) (Fig. 10). The dominant gene \(Z_ \) results in a thin pericarp and white color grain. The thin pericarp is translucent and permits the color of the testa layer and the endosperm to affect the appearance of the grain. The recessive homozygous \((zz) \) causes a thick pericarp with a chalky appearance due to a high starch concentration.

Fig. 10
\(Z_ \) zz genes that control pericarp thickness in white grain

PERICARP THICKNESS

\[ZZ \quad Z_ \quad Z \quad ZZ \]

TAMU
V. IMPORTANT INTERACTIONS

A white grain crossed with another white grain may give as a result an F1 white, brown or purple, depending on whether there is an interaction between genes R_yy, rr yy, B_1 B_2, S_, I_, tp tp.

A white grain could be affected by the presence of gene Z_, when it is dominant, the mesocarp is thin and has a white pearl color appearance but if it is recessive homozygous the mesocarp will be thick and the grain has a white and chalky appearance.

A white grain (R_yy) with pigmented testa (B_1 B_2), thick mesocarp (zz zz,) crossed with another yellow grain (rr Y_), with spreader (S_), intensifier (I_) and testa (tp tp), the F1 will have a purple grain in appearance.

The presence of genes B_1 B_2 indicate that there are tannins present in the testa layer which can be increased in the pericarp if there is interaction between I_, S_, zz zz, Tp_, tp tp genes.

Gene I_ interaction with red or yellow grain color genes intensifies the color in these grains but it is not the same result with white grain color.

Genes P_ Q that affect plant color, in general, are correlated with glume color but some plants have a glume color different from the plant color.

In summary, there are allelic interactions that change the basic expression of grain color and this explains why the crossing of two white color grains results in a grain that has a brown or purple appearance.

LITERATURE CITED

