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Using density functional theory implemented within a tight-binding linear muffin-tin orbital method we
perform calculations of electronic, magnetic, and transport properties of ferromagnetic free-standing fcc Co
wires with diameters up to 1.5 nm. We show that finite-size effects play an important role in these nanowires
resulting in oscillatory behavior of electronic charge and the magnetization as a function of the wire thickness,
and a nonmonotonic behavior of spin-dependent quantized conductance. We calculate the magnetoresistance
�MR� of a domain wall �DW� modeled by a spin-spiral region of finite width sandwiched between two
semi-infinite Co wire leads. We find that the DW MR decreases very rapidly, on the scale of a few interatomic
layers, with the increasing DW width. The largest MR value of about 250% is predicted for an abrupt DW in
the monatomic wire. We show that, for some energy values, the density of states and the conductance may be
nonzero only in one spin channel, making the MR for the abrupt DW infinitely large. We also demonstrate that
for the abrupt DW a large MR may occur due to the hybridization between two spin subbands across the DW
interface. We do not find, however, such a behavior at the Fermi energy for the Co wires considered.

DOI: 10.1103/PhysRevB.72.054443 PACS number�s�: 75.47.Jn, 75.75.�a, 72.25.Ba, 73.63.�b

I. INTRODUCTION

For a long time the electrical resistance of a magnetic
domain wall �DW� in metallic ferromagnets has been attract-
ing considerable interest �for a recent review see Ref. 1�. The
origin of the DW resistance is attributed to the mixing of up-
and down-spin electrons due to the mistracking of the elec-
tron’s spin on passing through the DW.2 The narrower DW
width results in a larger angle between the magnetization
directions of successive atomic layers thereby lowering the
electron transmission and hence enhancing the resistance. In
the ballistic regime, the change in resistance as a function of
the DW width dDW is determined by the electron Fermi
wavelength �F. In bulk ferromagnets the DW width is en-
tirely determined by the exchange and magnetic anisotropy
energies and is typically dDW�100 nm, whereas �F
�0.5 nm. Hence, DWs do not affect appreciably the resis-
tance of bulk ferromagnets because an electron can adiabati-
cally follow the varying magnetization direction within the
DW.

This behavior changes dramatically in magnetic nano-
structures, where the reduced dimensions affect both the DW
width and the mechanism of electron transport responsible
for the DW resistance. For example, a very thin DW was
predicted for atomic-size constrictions with the characteristic
width of a few interatomic distances.3 The enhanced DW
resistance expected in magnetic nanostructures stimulated
significant interest in the electronic transport through DWs
due to additional physics controlling the DW resistance and
due to possible applications of the magnetoresistance �MR�
associated with DWs in magnetoelectronic devices.

Recent advances in nanotechnology made it possible to
measure a contribution to the resistance from a single DW.4–9

Interestingly, the DW resistance turned out in some cases to
be negative,5,6 whereas in other cases to be positive.4,7–9 Both

results have found theoretical explanations.10–12 Levy and
Zhang10 showed that diffuse scattering between electronic
states of opposite spin orientation, which occurs in the pro-
cess of electron transport across the rotating magnetization
within a DW, leads to increased resistance. Tatara and
Fukuyama11 demonstrated that DWs can suppress weak lo-
calization due to the opening of additional conduction chan-
nels that results in a lower �negative� DW resistance. van
Gorkom et al.12 found that the DW resistance could be either
positive or negative, depending on the difference between
the spin-dependent scattering rates due to the spatial varia-
tion of the magnetization value within the DW.

Constrained geometries of nanojunctions add additional
features to electronic transport. If the constriction size is less
than or comparable to the mean free path, the conduction
becomes ballistic rather than diffusive which is typical for
bulk metals. When the constriction width is comparable to
the electron Fermi wavelength, the electrical conductance is
quantized. The quantized conductance was observed in me-
tallic nanowires, where an atomic-size constriction is created
by pulling apart two electrodes in contact �for a recent re-
view see Ref. 13�. The conductance quantization can be ex-
plained within the Landauer formula,14 and the adiabatic
principle,15 according to which the conductance is given by
�=Ne2 /h, where N is the number of open conducting chan-
nels, i.e., the number of transverse modes at the Fermi en-
ergy. The conductance varies in discrete steps as the number
of bands crossing the Fermi energy changes with the con-
striction width. For nonmagnetic nanowires the conductance
is quantized in units of 2e2 /h, where the factor 2 stands for
spin degeneracy. If the constriction is made of a ferromag-
netic metal, such as Ni, the exchange energy lifts the spin
degeneracy and the conductance is quantized in units of
e2 /h, provided the wire is uniformly magnetized. Such a
phenomenon was observed in Ni break junctions,16 Ni nano-
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wires electrodeposited into pores of membranes,17 Ni
atomic-size contacts made by a scanning tunneling
microscope,18 and electrodeposited Ni nanocontacts grown
by filling an opening in focused-ion-beam-milled
nanowires.19 Very recently, Velev et al.20 predicted an effect
which they called ballistic anisotropic magnetoresistance
�BAMR�. Here the conductance of a narrow ferromagnetic
wire changes in steps of e2 /h when the magnetization is
switched from along the wire to perpendicular to the wire.

The ballistic transport in ferromagnetic metal constric-
tions has recently received a great deal of attention due to
unexpectedly large MR values obtained in experiments on Ni
break junctions.21 These results were attributed to a creation
and annihilation of a constrained DW during a magnetic field
sweep. Although the results of these experiments created sig-
nificant controversy,22 they stimulated a number of theoreti-
cal studies of spin-dependent transport in constrained geom-
etries using free-electron models.23–25 Imamura et al.23

demonstrated that the interplay between quantized conduc-
tance and an atomic scale domain wall results in MR that
oscillates with the cross section of the constriction and leads
to enhanced MR values. The magnetoresistance fluctuations
were also found by Tagirov et al.,24 who used a quasiclassi-
cal approach to calculate the MR due to a constrained DW
that was approximated by a step-like potential. Dugaev et
al.25 found an analytical solution for the MR of a narrow DW
limiting their consideration of electronic transport to one
quantum channel. Zhuravlev et al.26 showed for atomic size
constrictions that a closure of one spin conduction channel
may result in very large magnetoresistance due to “half-
metallic” behavior of the electrodes.

Although these free-electron theories provide a valuable
insight into the DW resistance, they cannot be used for quan-
titative comparison with experiments due to the complex
spin-polarized electronic structure of the ferromagnetic met-
als. It is well known that the band structures of transition
metal ferromagnets are dominated by d bands which cannot
be properly described by a single parabolic band at the Fermi
energy. Recent advances in band structure and electronic
transport theory have made it possible to perform first-
principles calculations of the DW MR. In particular, using
the embedded Green’s-function technique based on a linear-
ized augmented plane-wave method, van Hoof et al.27 car-
ried out calculations of defect-free DWs in bulk Ni, Co, and
Fe within the local spin-density approximation. They found a
positive DW resistance with MR of about 0.1% for DW
widths typical for bulk ferromagnets. Much higher MR val-
ues, i.e., 60–70 %, were found by these authors for abrupt
DWs. An even higher value of 250% was predicted for the
abrupt DW in bulk fcc �001� Co by Kudrnovsky et al.,28 who
used a transmission matrix formulation of the conductance
based on surface Green’s functions within the tight-binding
linear muffin-tin orbital method. They found that the DW
MR drops down on a scale of a few interatomic distances as
a function of the DW width. Yavorsky et al.29 calculated the
MR of a Fe superlattice with alternating regions of collinear
and spiral-like magnetizations using a linearized Boltzmann
equation within a state- and spin-independent relaxation time
approximation.

All the above first-principles models of the DW MR have
been applied to bulk ferromagnets and consequently have

disregarded the lateral quantization of electronic waves
which is decisive for electronic transport in nanowires and
nanoconstrictions. Recently Velev and Butler30 calculated the
DW resistance in Ni, Co, and Fe nanocontacts using a semi-
empirical tight-binding approach. Bagrets et al.31 and
Solanki et al.32 studied the magnetoresistance in metallic
atomic-size constrictions using first-principles electronic
structure methods.

In this paper, using fully self-consistent electronic struc-
ture obtained within density functional theory, we study elec-
tronic, magnetic, and transport properties of ferromagnetic
Co nanowires with diameters up to 1.5 nm. We show that
finite-size effects play an important role resulting in �i� os-
cillatory behavior of the electronic charge and magnetic mo-
ments within the wires, �ii� a nonmonotonic variation of the
magnetization as a function of wire thickness, �iii� spin-
dependent conductance quantization reflecting the electronic
structure of the wires, and �iv� a nonmonotonic change in the
DW MR with increasing wire thickness. We demonstrate
that, for some electron energy values, the conductance may
display half-metallic behavior reflecting nonzero density of
states only within one spin channel. Additionally, we show
that large MR can be observed for the abrupt DW due to the
hybridization between two spin subbands.

II. METHOD OF CALCULATION

We consider free standing, translationally invariant nano-
wires of ferromagnetic fcc cobalt. The nanowires are built
along the �001� direction �z axis� by periodic repetition of a
supercell made up of two fcc �001� planes �except for the
monatomic wire�. We consider five nanowire configurations
having different atomic arrangements: �i� monatomic, i.e.,
infinite one-dimensional �1D� chain of atoms, �ii� 2�2, �iii�
5�4, �iv� 13�12, and �v� 25�24. To take advantage of the
k-space representation within a first-principles calculation,
we consider a periodic array of these wires separated by
empty space as described below.

A monatomic Co wire is built assuming that it lies along
the face diagonal of a fcc lattice. The resultant unit cell is a
body-centered tetragonal unit cell with a=afcc /�2 and c
=afcc where afcc=6.703 a.u. is the lattice parameter of bulk
fcc Co. The periodic array of monowires has a spacing of
three unit cells between the wires to minimize the interac-
tions between them.

The 2�2 wire is modeled by a super-cell of two fcc �001�
layers. Each layer has 18 sites �large enough to separate it
from the rest of the array� with only two sites in each layer
occupied by Co atoms while the rest are kept empty. This
forms a wire with a four-atom square cross section. Simi-
larly, a 5�4 wire �the cross section of which is shown in
Fig. 1� is modeled by two fcc �001� layers. Each layer has 25
sites such that one layer has five Co atoms and the next has
four. The rest are empty spheres. In a similar way we build
the 13�12 wire with 25=13+12 sites occupied by Co atoms
and 24 empty spheres surrounding the cell. Our largest 25
�24 wire has 98 sites with 49 Co atoms in two fcc layers.
This wire has a square cross section of about 1.5�1.5 nm.

The spin-polarized electronic band structure of the Co
nanowires is calculated self-consistently using density func-
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tional theory implemented in a tight-binding linear muffin-tin
orbital �TB-LMTO� method within the atomic sphere ap-
proximation �ASA�. For uniformly magnetized wires we cal-
culate the electronic structure in k space. In all our calcula-
tions we disregard the spin-orbit interaction and neglect any
structural relaxation.

A DW is modeled by a spin-spiral region of finite width
such that the angle between the magnetic moments of two
successive atomic layers is constant, and the magnetic mo-
ments of individual atoms are collinear within each atomic
layer. The DW is confined within the region between two Co
semi-infinite leads having antiparallel magnetization orienta-
tions. In the presence of a DW the electronic structure and
the conductance are calculated in real space. For the trans-
port calculations, we use the self-consistent electronic poten-
tial obtained in each case to produce the Hamiltonian H for
each of the semi-infinite Co leads and the Hamiltonian HS for
the scattering region containing the central sites with the DW
and three layers from each lead. First we calculate the sur-
face Green’s function for the left �L� and right �R� semi-
infinite leads, GL and GR, by solving the equations

GL = �E − H − VLGLVL
†�−1, �1�

GR = �E − H − VR
†GRVR�−1, �2�

where E is the electron energy and VL,R describe the hopping
to and from the barrier for the right �R� and left �L� lead. The
Hamiltonian HS of the scattering region is built from the
self-consistent potentials which must be transformed from
their local spin quantization axis, defined by the direction of
the magnetic moment, to the global z axis. This involves the
unitary transformation of the layer-dependent potential pa-
rameters Pn as follows:

Pn = U†��n,�n�P0U��n,�n� . �3�

Here the rotation matrices U��n ,�n� are

U��n,�n� =� ei�n/2 cos
�n

2
e−i�n/2 sin

�n

2

− ei�n/2 sin
�n

2
e−i�n/2 cos

�n

2
� . �4�

The Green’s function of the total system, i.e., the DW
coupled to the leads, is given by

G = �E − HS − �L
† − �R�−1, �5�

where �L and �R are the self energies associated with the left
and right leads, respectively. The conductance � is calculated
using the Landauer-Büttiker formula14,33

� =
e2

h
T , �6�

where T is the transmission coefficient summed up over all
the incoming and outgoing electronic states of the left and
right leads. At zero bias voltage and zero temperature the
transmission coefficient can be found from the Green’s func-
tion G�EF� taken at the Fermi energy EF �Ref. 34�

T = Tr���L
† − �L�G�EF���R − �R

†�G†�EF�� . �7�

The self energies are expressed through the hopping integrals
and the surface Green’s functions of the uncoupled elec-
trodes, GL and GR, as follows:

�R = VRGRVR
† , �8�

�L = VL
†GLVL. �9�

The conductance of a magnetically saturated nanowire �0 is
different from the conductance of the nanowire in the pres-
ence of the DW �DW. We define the DW MR value by the
ratio

MR =
�0 − �DW

�DW
. �10�

In addition to the first-principles approach, we use a
simple one-dimensional tight-binding �TB� model to provide
a simple analysis of the DW MR. A single-band TB Hamil-
tonian takes the form: H=V−	
z, where V is the hopping
integral which is assumed to be nonzero only between
nearest-neighbor atoms, 	 is the Stoner exchange splitting
parameter, and 
z is the Pauli matrix. The magnetization
variation within the DW is obtained by the unitary transfor-
mation 
=U†
zU which is performed on each site.

We use a one-band TB model to predict the upper limit
for magnetoresistance. In this model the bandwidth is deter-
mined by the hopping integral V. If this parameter is small,
the neighbors interact weakly and states are, to a large de-
gree, localized on each site. The exchange parameter 	 con-
trols the splitting of the band between majority- and
minority-spin states. When 	 is larger than V and the band is
half-filled, the Fermi energy lies within the majority-spin
band and the minority-spin band gap. This case corresponds
to a half-metallic magnet which is expected to have the larg-
est DW MR value.

FIG. 1. Cross section of the 5�4 wire representing a periodi-
cally repeated super cell of two fcc �001� layers with five �white�
and four �gray� Co atoms in each layer.
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A two-band model can be built in a similar fashion. The
difference is that two bands are allowed with different hop-
ping parameters V. One band is made wide to simulate s-like
states and another one is narrow to mimic d-like states. This
model is used below to explain the appearance of gaps in the
spectrum of electronic states obtained for Co nanowires from
TB-LMTO calculations.

III. ELECTRONIC AND MAGNETIC STRUCTURE

The electronic structure of Co nanowires is quite different
compared to that of bulk Co due to the large number of
atoms at the surface. The reduced coordination for these at-

oms leads to sizable charge transfers and enhanced magnetic
moments for these atoms. Table I shows the electronic and
magnetic structure results which include charge transfers 	q
and magnetic moments m for all the considered geometries
of the nanowires and for bulk fcc Co. An increase in electron
occupation, relative to the atomic state, is denoted by
	q�0, and 	q�0 implies the atom has lost electrons.

As is seen from Table I, a monatomic Co wire shows
appreciably enhanced magnetic moment per atom, m
=2.31B, compared to the bulk value of 1.67B. This result
is in agreement with the experimental and other theoretical
findings.35,36 For the 2�2 wire configuration all four con-
stituent atoms in the two planes of the supercell are of the

TABLE I. Electronic, magnetic, and transport properties of Co nanowires: charge transfer, 	q, magnetic moment per atom �m�, number
of bands �N� crossing the Fermi energy for majority �maj� and minority �min� spin electrons, ballistic conductance per unit area �� /A�, and
MR for an abrupt DW. �A for the monatomic wire is chosen as 1

4 the area of the 2�2 wire.� 	m
 denotes an average magnetic moment per
atom. For bulk Co ballistic conductance values are taken from Ref. 41 and the abrupt DW MR value from Ref. 28. Charge neutrality is
maintained when the charge transfer to the empty spheres is taken into account. r0 is the radius �in units of afcc /2� from the axis of the wire
for each atom type.

Type of wire

N
�0 /A

�1015 �−1 m−2�

�DW/A
�1015 �−1 m−2�

MR
�%�	q �e� m �B� min maj min maj

Monatomic 0.65 2.31 6 1 1.42 0.24 0.47 253

2Ã2 0.32 1.84 3 3 1.78 1.79 3.36 6

5Ã4 6 5 0.89 0.74 1.48 10

Type r0

Layer 1 Atom 1 0.00 −0.43 1.43

Atom 2 1.00 0.42 1.78

Layer 2 Atom 3 1.00 0.17 1.75
	m
=1.72

13Ã12 8 7 0.30 0.26 0.49 14

Layer 1 Atom 1 0.00 0.06 1.66

Atom 2 1.00 −0.21 1.48

Atom 3 1.41 0.26 1.86

Atom 4 2.00 0.42 1.77

Layer 2 Atom 5 1.00 −0.09 1.71

Atom 6 1.73 0.21 1.79

	m
=1.73

25Ã24 19 10 0.31 0.17 0.25 92

Layer 1 Atom 1 0.00 0.00 1.72

Atom 2 1.00 0.02 1.77

Atom 3 1.41 −0.05 1.73

Atom 4 2.00 −0.12 1.69

Atom 5 2.24 0.16 1.83

Atom 6 2.83 0.54 1.78

Layer 2 Atom 7 1.00 0.01 1.66

Atom 8 1.73 −0.09 1.70

Atom 9 2.24 −0.04 1.67

Atom 10 2.65 0.41 1.85

	m
=1.75

Bulk 0 1.67 1.12 0.47 0.45 253
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same type due to their identical environment. From Table I
we see again a sizable enhancement of the magnetic moment
m=1.84B due to an atomiclike environment with very few
Co neighbor atoms to hybridize with.

For the 5�4 wire configuration, Co atoms can be classi-
fied into three different types within the two layers of the
supercell according to tetragonal symmetry. For the 13�12
and 25�24 wire configurations, Co atoms can be classified
into six and 10 types, with the two fcc �001� planes having
four and two types for the 13�12 wire and 6 and 4 types for
the 25�24 wire, respectively. For these wires the outermost
atoms with lowest coordination have a substantial charge
transfer toward the first nearest neighbor inside the wire. For
example, the four atoms of type 6 �surface corner atoms� in
the 25�24 wire lose electrons with 	q=0.54e in the atomic
sphere while the four atoms of type 4 acquire electrons 	q
=−0.12e. This implies an oscillatory behavior in the charge
transfer when moving from surface atoms to core atoms.

The charge oscillations correlate strongly with the mag-
netic moment variations: The atoms which gain electrons
have lower magnetic moments while the atoms which lose
electrons have larger magnetic moments compared to the av-
erage moment of the wire. In particular, atoms located close
to the center of the wire have local magnetic moments close
to the bulk value. Nearly all atoms that lose electrons have
moments above the average moment of the wire. Corner at-
oms have magnetic moments above 1.8B.

The direct correlation between 	q and m can be explained
by the fact that the minority-spin density of states �DOS� at
the Fermi energy is much higher than the majority-spin DOS
which is a consequence of the partially filled d band for the
minority-spin electrons. This is evident from Fig. 2�a� which
shows the DOS for a monatomic Co wire. Gaining electrons
by an atom implies filling the minority d band that reduces
the magnetic moment of this atom, whereas losing electrons
implies depopulation of the minority d band that enhances
the magnetic moment. Similar oscillatory behavior of mag-
netic moments is known from the studies of electronic prop-
erties of ferromagnetic metal surfaces.37

Interestingly, for the 25�24 wire, with an approximate
side length of 1.5 nm, the average magnetic moment, 	m
, is
larger than that for the 5�4 and 13�2 wires �	m

=1.75B vs 	m
=1.72B and 	m
=1.73B, respectively�.
This is because the 25�24 configuration has the larger num-
ber of atoms which lose electrons compared to the other two
geometries.

We find that the magnetization varies in an oscillatory
fashion with increasing wire cross section. This is similar to
the behavior observed for free clusters.38 There are two rea-
sons for this oscillation to occur. The first reason is the dis-
continuous variation of the number of core and surface atoms
with the filling of the successive atomic shells as the wire
thickness increases. The variation of the Co moments in the
outermost atomic shell is due to the changing Co coordina-
tion number as determined by symmetry. The second reason
is the charge and spin density oscillations across the wire.
The charge density creates a standing wave due to the con-
finement effect similar to that predicted within the jellium
model.39 The charge oscillations in nanowires are more pro-

nounced than the respective charge oscillations near the sur-
face of a semi-infinite metal. The charge density oscillations
lead to spin-density oscillations in the manner described
above. A change in the cross-sectional area of the wire modi-
fies the pattern of these oscillations. As a result the magne-
tization of the wire changes in an oscillatory fashion. We
expect that this oscillatory trend in the magnetization will
continue with increasing thickness of wires and stabilize
eventually at the bulk magnetic moments.

IV. CONDUCTANCE AND MAGNETORESISTANCE

Due to the periodicity of the wires along the z direction,
the ballistic conductance of a uniformly magnetized wire is
solely determined by the number of bands N crossing the
Fermi energy �EF� along the wire direction. This is the con-
sequence of the transmission coefficient being equal to unity
for each conduction channel due to no reflection or mixing of
spin channels of incoming electronic waves. We calculated
band dispersions along the direction of the wire and found
the number of bands crossing the Fermi energy. The results
are shown in columns 4 and 5 of Table I for minority- and
majority-spin electrons, respectively. For a monatomic wire
there is a large spin asymmetry in the number of bands cross-
ing the Fermi energy: six majority-spin bands cross EF com-
pared to only one minority-spin band. This result is similar to
that obtained by Smogunov et al.40 This asymmetry disap-
pears for the 2�2 wire, for which there are three bands
crossing EF in both spin channels. The 5�4, 13�12, and
25�24 wires display some spin asymmetries in N which
vary with the cross section of the wire.

FIG. 2. �a� Density of states for monatomic Co wire for
majority- �the top panel� and minority- �the bottom panel� spin elec-
trons as a function of energy. The dotted curve is the s-p partial
DOS scaled up by a factor of 10 to make it visible. �b� Conductance
of a ferromagnetic wire as a function of energy for majority- and
minority-spin channels. �c� Conductance of the abrupt DW as a
function of energy. The Fermi energy is denoted by the dashed
vertical line.
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The spin-dependent ballistic conductance is given by �
=Ne2 /h. We calculated the ballistic conductance per unit
area by dividing � with the cross-sectional area of the nano-
wires, which allows comparison with the values of the con-
ductance obtained for the wires to the value known for bulk
Co.41 As is evident from Table I �see columns 6 and 7�, the
ballistic conductance per unit area varies appreciably with
the nanowire thickness displaying strong nonmonotonic be-
havior. This variation reflects features of the electronic band
structure of the nanowires. With increasing thickness of the
wires one expects that the spin conductance will eventually
saturate at the bulk value given in Table I In this limiting
case the ballistic conductance is simply proportional to the
cross section of the wire. However, for the wires in the
nanometer-thickness range, we find a significant departure of
the conductance values from those in the bulk. Even for the
25�24 wire we find that the conductance differs by a factor
of more than three from the bulk value. This fact indicates
the importance of the adequate description of the band struc-
ture for the prediction of electronic transport properties of
wires in a nanometer range of thickness.

We note that for all cases �except for the 2�2 wire�
minority-spin electrons have a larger N compared to
majority-spin electrons. This reflects the presence of the d
bands at the Fermi energy in the minority-spin channel �see
Fig. 2�a�� which makes the DOS and the ballistic conduc-
tance of this spin channel higher. This is different from the
diffusive regime in which majority-spin electrons have much
higher conductivity due to the dispersive s-p bands crossing
the Fermi energy.42,43

The conductance variation as a function of energy reflects
features of the electronic band structure of the wires. Figure
2�b� shows the conductance � for majority- and minority-
spin electrons for a monatomic uniformly magnetized Co
wire. As expected, � is quantized in units of e2 /h, reflecting
the changing number of open conducting channels, i.e., the
number of bands crossing the appropriate energy. This pic-
ture correlates with the DOS shown in Fig. 2�a�: If the en-
ergy lies within the d band having much larger DOS, the
conductance is higher, whereas if the energy lies within the s
band the conductance is lower.

It may happen that, for certain energies, there is a gap in
one of the spin DOS making its spin conductance equal to
zero. This indeed occurs for the monoatomic Co wire for
energies lying just above the top of the majority-spin band
and just below the minority-spin band �see the top and bot-
tom panels in Fig. 2�b��. If these energies were the Fermi
energy, the ferromagnetic metal would behave as a half
metal, i.e., material for which only one spin band is occu-
pied, resulting in a 100% spin polarization.44 In the case of a
half-metal the electronic conduction through an abrupt do-
main wall is blocked by the spin conservation rule.26 Indeed,
if the magnetizations of two adjacent domains are antiparal-
lel the spin channel that is open in the left domain is closed
in the right domain and vice versa. This makes the conduc-
tance between the antiparallel-aligned leads with the abrupt
magnetization change equal to zero. This is opposite to the
case of the parallel-aligned leads for which one spin channel
is open and the conductance is not equal to zero. Our calcu-
lations do not predict, however, the true half-metallic behav-

ior for the Co wires considered. At least one band is always
present at the Fermi energy in each spin channel, the spin
conductance gap opening being possible only for energies
different from the Fermi energy.

As was shown previously for bulk Co,28 the DW MR
drops down with increasing DW width dDW on a scale of a
few interatomic distances. We find a similar behavior for Co
wires, although both the MR values and the conductance
variation as a function of dDW vary significantly depending
on the cross section of the nanowires. Figure 3 shows results
for the monatomic 2�2 and 5�4 wires. We see that despite
the sizable difference in the absolute MR values for the three
wires, in all the cases the MR drops on a length scale of 2–4
interlayer distances.

The fast decrease of the DW MR as a function of the DW
width can be qualitatively understood using a simple one-
dimensional single-band tight-binding model described in
Sec. II. We find that within this model the DW MR becomes
very small for the DW width more than 3–5 atomic layers.
This is the case even if one spin channel does not have any
states at the Fermi energy, i.e., the ferromagnet is a half-
metal.

This result can be understood using an analogy with an
optical polarizer. If two ideal polarizers are at 90° to each
other, there is no light coming through. But if another polar-
izer at 45° is inserted between them, the light can go through
with 1/4 intensity of incident light. Inserting a few polarizers
with a gradual change in angle will result in almost no loss in
the light transmission �only the polarization direction will
change�.

For a half-metallic ferromagnet, a single-band tight-
binding model gives the largest MR value in a narrow band
limit. In this case the transmission coefficient T across an
abrupt DW between two leads with the magnetization direc-
tion rotated by angle � is given by

T =

4 cos2��

2
�

1 + cos2��

2
��2 . �11�

FIG. 3. Domain-wall magnetoresistance as function of the
domain-wall width dDW in units of the interlayer separation, for a
monatomic �triangles�, 2�2 �squares�, and 5�4 �circles� wires.
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Figure 4 shows the transmission coefficient and the MR
for this interface. This behavior is reminiscent of the Malus’
law in optics,45 but the angle is divided by a factor of two
and there is an additional angle-dependent denominator
which comes from the propagator in the Landauer-Büttiker
formalism. If we consider the DW as a collection of these
abrupt interfaces with relative angle � /n, where n is an in-
teger and represents the number of atomic layers in the DW,
then the transmission coefficient T approaches unity very fast
with increasing n. Note that the transmission coefficient is
almost equal to unity within the interval of angles from 0 up
to about � /2, and then the T drops abruptly to zero �see Fig.
4�. It means that the MR is quite small when the relative
angle between the directions of the local moments in the
consecutive monolayers of the wire is smaller than � /2. This
corresponds to 3–5 monolayers. Note, that this is the upper
limit for MR. Realistic bands with finite bandwidth would
give smaller MR values. Therefore, for a large MR the DW
should be abrupt representing a sharp flip in the magnetiza-
tion direction.

The electronic structure of Co nanowires which strongly
depends on the wire cross section has a dramatic effect on
the DW MR. As is evident from Fig. 3, the MR values vary
strongly for Co nanowires of different cross section. In par-
ticular in the case of the abrupt DW, in which the magnetic
moment orientation changes from parallel to antiparallel
within 1 ML of Co, the largest MR value of 250% is pre-
dicted for a monatomic wire, whereas it is much smaller for
2�2 and 5�4 wires �6 and 10%, respectively�. Interest-
ingly, the MR shows a very nonmonotonic behavior with
increasing cross-sectional area of the wires. As is seen from
Table I the MR value obtained for an abrupt DW is higher
for 13�12 and 25�24 wires �15 and 90%, respectively�
than for 2�2 and 5�4 wires. This variation in the MR
values reflects changes in the electronic structure of the Co
wires. Table I indicates that there is a strong correlation be-
tween the asymmetry in the number of bands N crossing the
Fermi energy for majority- and minority-spin electrons for
uniformly magnetized wires and the MR values. For ex-
ample, the highest MR values obtained for monatomic and
25�24 wires is the consequence of the largest ratios of open
spin channels for these wires. Surprisingly, the predicted

value of about 250% obtained for the abrupt DW MR in bulk
fcc �001� Co �Ref. 28� is as large as the value we predict for
a monatomic Co wire. We note, that this value is reduced to
67% for abrupt DW MR in bulk fcc �111� Co.27

Half-metallic behavior is not the only case when large
MR can be observed. As is evident from Figs. 5�a� and 5�b�,
for the 2�2 wire there are no gaps in the minority- or the
majority-spin bands near the Fermi energy. However, Fig.
5�c� demonstrates that for the abrupt DW the conductance is
strongly suppressed in the region about 0.3 eV above the
Fermi energy �this is indicated in Fig. 5�c� by the arrow�. It
appears that in this case the electronic hybridization in the
antiparallel alignment leads to the “pseudogap” in the den-
sity of states. The mechanism which causes the suppression
of the conductance in the antiparallel configuration in sys-
tems that are metallic in the ferromagnetic configuration is
different from the “half-metallic” mechanism discussed
above.

This origin of this behavior can be understood within a
simple tight-binding model with two bands of a different
bandwidth. In order to mimic the d metal we choose one
band to be wide �with large hopping integrals�, and one to be
narrow. In the ferromagnetic state the up- and down-spin
bands are exchange split. As is seen from Fig. 6�a�, for a
uniformly magnetized wire there is no band gap in the den-
sity of states. This leads to the conductance of the majority-
and minority-spin electrons showing no reduction within the
band region �Fig. 6�b��. For the wire with the abrupt DW,
however, there is a coupling between states in the one spin
channel and states in the other spin channel across the DW.
In this case if there are two states with similar on-site energy,
they hybridize in such a way that the bonding and antibond-
ing levels appear with the splitting of the order of the hybrid-
ization parameter. This causes the band to split into two sub-
bands with the gap between them. This creates a pseudogap

FIG. 4. Transmission coefficient �solid line� and magnetoresis-
tance �dashed line� of an abrupt DW between two half-metallic
electrodes with the magnetization direction rotated by angle � as
predicted by a one-dimensional single-band tight-binding model in
a narrow band limit. Note that the MR is defined here by MR
= ��0−�DW� /�0 so that the maximum MR value is equal to unity.

FIG. 5. �a� Density of states for 2�2 Co wire for majority- �the
top panel� and minority- �the bottom panel� spin electrons as a
function of energy. �b� Conductance of a ferromagnetic wire as a
function of energy for majority- and minority-spin channels. �c�
Conductance for the abrupt DW configuration as a function of en-
ergy. The vertical arrow shows the energy at which the conductance
through the abrupt DW is strongly suppressed.

DOMAIN-WALL MAGNETORESISTANCE OF Co ... PHYSICAL REVIEW B 72, 054443 �2005�

054443-7



in the conductance across the abrupt DW at these energies
�see Fig. 6�c��. This statement remains valid also if there are
extended �s-like� states in both spin channels in the ferro-
magnetic state. Thus, for the abrupt DW a large magnetore-
sistance can occur due to the hybridization between the two
spin bands across the DW interface.

V. CONCLUSIONS

Using density functional theory implemented within a
tight-binding linear muffin-tin orbital method we have per-
formed calculations of the electronic, magnetic, and transport
properties of ferromagnetic free-standing fcc Co wires ori-
ented in the �001� direction with diameters up to 1.5 nm. We
found that there is a substantial redistribution of charge, cre-
ating a charge density standing wave across the wire. These
charge oscillations correlate strongly with the magnetic mo-
ment variations: The atoms which gain electrons have lower

magnetic moments while the atoms which lose electrons
have larger magnetic moments compared to the bulk value.
The magnetization of the Co wires oscillates with increasing
wire thickness similar to that observed for free ferromagnetic
nanoparticles.

The ballistic conductance of the nanowires was calculated
using Landauer-Büttiker formalism. We found that the con-
ductance of uniformly magnetized wires per unit cross-
sectional area varies in a nonmonotonic fashion reflecting
features of the electronic band structure and differs from the
ballistic conductance for bulk fcc Co. We modeled a domain
wall �DW� by a spin-spiral region of finite width placed be-
tween antiparallel-aligned Co leads and calculated the DW
magnetoresistance �MR�. We found that the predicted DW
MR varies nonlinearly as a function of the wire thickness
and decreases very rapidly, on a scale of a few monolayers of
fcc �001� Co, with increasing DW width. The latter behavior
is explained in terms of the angular dependence of the con-
ductance through an abrupt interface between two semi-
infinite leads with magnetization directions rotated by a finite
angle. The largest MR value of about 250% is predicted for
an abrupt DW in a monatomic Co wire. The variation of the
DW MR as a function of electron energy is very sensitive to
the electronic structure of the wire. We found that for some
energy values the conductance displays half-metallic behav-
ior making the MR of an abrupt DW for these energies infi-
nitely large. Also we showed that for the abrupt DW a large
MR can occur due to the hybridization between two spin
subbands across the DW interface. We did not find, however,
such a behavior at the Fermi energy for the Co wires consid-
ered.
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