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We present a dryland irrigation mapping methodology that relies on remotely sensed inputs from the
MODerate Resolution Imaging Spectroradiometer (MODIS) instrument, globally extensive ancillary sources of
gridded climate and agricultural data and on an advanced image classification algorithm. The methodology
involves four steps. First, we use climate-based indices of surface moisture status and a map of cultivated
areas to generate a potential irrigation index. Next, we identify remotely-sensed temporal and spectral
signatures that are associated with presence of irrigation defined as full or partial artificial application of
water to agricultural areas under dryland conditions excluding irrigated pastures, paddy rice fields, and other
semiaquatic crops. Here, the temporal indices are based on the difference in annual evolution of greenness
between irrigated and non-irrigated crops, while spectral indices are based on the reflectance in the green
and are sensitive to vegetation chlorophyll content associated with moisture stress. Third, we combine the
climate-based potential irrigation index, remotely sensed indices, and learning samples within a decision
tree supervised classification tool to make a binary irrigated/non-irrigated map. Finally, we apply a tree-
based regression algorithm to derive the fraction of irrigated area within each pixel that has been identified
as irrigated. Application of the proposed procedure over the continental US in the year 2001 produces an
objective and comprehensive map that exhibits expected patterns: there is a strong east-west divide where
the majority of irrigated areas is concentrated in the arid west along dry lowland valleys. Qualitative
assessment of the map across different climatic and agricultural zones reveals a high quality product with
sufficient detail when compared to existing large area irrigation databases. Accuracy assessment indicates
that the map is highly accurate in the western US but less accurate in the east. Comparison of area
estimates made with the new procedure to those reported at the state and county levels shows a strong
correlation with a small bias and an estimated RMSE of 2500 km2, or little over 2% of the total irrigated area
in the US. As a result, the future application of the new procedure at a global scale is promising but may
require a better potential irrigation index, as well as the use of remotely sensed skin temperature
measurements.

© 2008 Elsevier Inc. All rights reserved.

1. Introduction

Accurate information on irrigation extent is fundamental to many
aspects of the Earth systems science and global change research. This
includes modeling of water exchange between the land surface and
atmosphere (Boucher et al., 2004; Gordon et al., 2005; Ozdogan et al.,
2006), analysis of the impact of climate change and variability on
irrigation water requirements/supply (Alcamo et al., 2003; Rosenz-
weig et al., 2004; Vörösmarty et al., 2000), and management of water
resources that affect global food security (Vörösmarty et al., 2005).
However, the current extent of irrigated areas over continental to
global scales is still uncertain and available maps are derived primarily

from country-level statistics using maps that are often outdated or
made with data from relatively coarse resolution sensors (Droogers,
2002). Even in countries such as the US, where the general extent
of irrigated areas is known, irrigation-related information exists in
disparate datasets and cannot be easily synthesized into a single
continental scale database (Vörösmarty, 2002).

To overcome these limitations, we present a novel methodology to
map irrigated agriculture globally at a 500-m spatial resolutionwith a
combination of data from the MODerate resolution Imaging Spectro-
radiometer (MODIS) instrument and ancillary data on climate and
agricultural area. For the purposes of the work presented here,
we define irrigated as agricultural areas that receive full or partial
application of water to the soil to offset periods of rainfall shortfalls
under dryland conditions. More specifically, we focus on dryland
cultivated areas, excluding irrigated pastures as well as paddy rice
fields and other semiaquatic crops. The reasons for this are two folds.
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First, while paddy irrigated fields have a distinct remotely sensed
signal associated with transplanting inwater andmaturity (Xiao et al.,
2006), dryland irrigated conditions are much more ambiguous and
require separate methods. Second, irrigated pastures make up a small
portion of total irrigated lands and are not considered important
for food production as well as environmental implications. We also
selected a minimum mapping unit of 100 ha (roughly four MODIS
500-m pixels) to identify and map irrigated lands, in essence, not
considering small, irrigated lawns and gardens.

Our irrigation mapping methodology is objective, uses contem-
porary data, is robust enough to handle complex forms of irrigation
that occur around the globe, and can be repeated at any location and
time. This irrigation mapping effort is part of our larger research
program to understand anthropogenic effects, specifically that of irri-
gation on global water and energy cycles, climate, agricultural pro-
ductivity, and agricultural water sustainability. In this paper we
present the methodology and an example of its application to the
continental US as well as assessment and validation of our algorithm.

2. Existing datasets on global irrigation

In recent years, there have been several attempts to determine the
spatial extent of irrigation at global scale. One such attempt is the
USGS Global Land Cover Map (Loveland et al., 2000), generated based
on 1-km AVHRR observations between April 1992 and September
1993. Of several land-cover legends that the database contains,
the Global Ecosystems Legend identifies four irrigated land classes:
irrigated grassland, rice paddy and field, hot irrigated cropland, and cool
irrigated cropland. When combined, these classes provide one of the
few sources of remotely sensed information on spatial distribution of
irrigation over the continental US (Fig. 1 — Panel A).

Another global irrigation mapping effort was undertaken by
Siebert et al., 2005 (updated by Siebert et al., 2007) who combined
heterogeneous information on the (approximate) location of irrigated
areas with information on the total irrigated area from national and
international sources to generate the first global “irrigated lands”map
(Fig. 1 — Panel B). The map is a digital raster product with 5-min
spatial resolution containing information for each cell on the per-
centage of area equipped for irrigation centered on the year 2000. For
the US, this product was generated by assigning the maximum of the
irrigated areas by county as reported in the census surveys of USGS
and USDA for the years 1995, 1997, 2000 and 2002 to agricultural land
mapped by USGS and US-EPA at 30 m resolution. As a result, the total
area equipped for irrigation in the continental US is about 25% larger
than the NASS-estimate for 2002 (Siebert et al., 2005). The product of
Siebert et al. (2005) has become the de facto present-day information
source for spatial distribution of global irrigated areas.

More recently, the Remote Sensing and GIS group at the Inter-
national Water Management Institute (IWMI) released a beta version
of the Global Map of Irrigated Areas (GMIA) circa 1999 (http://www.
iwmigmia.org/info/main/index.asp). The dataset has been produced
using twenty years of AVHRR data augmented with additional
information from SPOT Vegetation, Japanese Earth Resources Satellite
(JERS-1), and Landsat GeoCover 2000 data, and mapped into 10 km
grid resolution (Fig. 1 — Panel C). The Beta release map has 53 irri-
gation classes, derived from the 628 classes in the master file. This
approach follows that of Thenkabail et al. (2005).

While these data sets provide the best available source of infor-
mation regarding the distribution of irrigation at continental scales,
depending on the way these datasets are used, they may also have
serious shortcomings. For example, the Siebert et al. (2005)
map primarily represents areas equipped to be irrigated circa 2000.

Fig.1. Irrigation in the US represented by three differentmap products (A–C) and compared to the dotmapmade by the USDA (D). Themap in the upper left (A) is the USGSmapmade
from the AVHRR NDVI data. The upper rightmap (B) wasmade by the IWMI using 10-kmAVHRR data and does not contain fractional irrigation information. The bottom left map (C) is
the University of Frankfurt-FAO map showing the fraction of the total cell area equipped for irrigation ca. year 2000. The bottom right map (D) is the USDA dot map ca. year 2001
where each dot represents ~4000 ha.
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However, actual area of irrigated lands can vary greatly driven by each
year's water availability and the choice of crop. Therefore, this product
will exhibit smaller variations in a study concerned with year-to-year
variation in irrigated areas. The major shortcoming of the USGSmap is
that irrigated areas were determined as part of a broader classification
scheme. Thus the emphasis was primarily placed on other land-cover
types while irrigated classes received less attention and thus
decreased classification accuracy. A recent comparison by Vörösmarty
(2002) of irrigated lands depicted by the USGS map to the country-
level reports of irrigated area (FAO,1998) points tomajor uncertainties
in classification and inventory irrigated lands due to the highly
politicized nature of FAO data reports, as well as to the technical
limitations of the more objective datasets made from remote sensing.
The major drawback of the IWMI global irrigation map product is that
the ground-truth data obtained only in India, SE Asia, Africa, and
South America were used to adjust and refine global irrigation classes.
This makes the IWMI product highly parameterized per region for
which extensive ground data exists. However, in areas without such
data, the irrigation classes may be less reliable.

The goal of our research is to overcome these shortcomings by
relying on improved remotely sensed data sources and classification
methodology and on ever-increasing continental and globally exten-
sive ancillary data sources of gridded climate data and agricultural
extent. The major differences between the newmethodology (and the
product) described here and existing large area irrigation datasets
include improved spatial resolution, up-to-date information content,
repeatability across time, and the use of machine learning algorithms
that are intrinsically objective. The irrigation mapping effort is part of
our larger research initiative to understand anthropogenic effects,
specifically that of irrigation, on the global water, carbon, and energy
cycles. This paper describes the development of a generic methodol-
ogy for mapping irrigated lands over large areas. We apply this
method to the US – a data-rich environment – to work out potential
problems and understand the most important inputs to the algorithm
and the development and refinement of the algorithm itself.

3. Irrigation mapping procedure

3.1. Definition of irrigation

We define irrigation as agricultural area that receives full or partial
application of water to the soil to offset periods of rainfall shortfalls
under dryland conditions. More specifically, we focus on dryland
cultivated areas, excluding irrigated pastures, paddy rice fields, and
other semiaquatic crops. The reasons for this are twofold. First, while
paddy irrigated fields have a distinct remotely sensed signal
associated with transplanting in water in maturity (Xiao et al.,
2006), dryland irrigated conditions are much more ambiguous and
require separate methods. Note that while irrigated paddy rice fields
do not occupy large portions of the continental US, other countries,
especially in southeast Asia, irrigated paddy rice is an important form
of cultivation. Thus, as we move from the US effort to a global
approach, we will have to pay more attention to irrigated paddy rice
fields. Second, irrigated pastures make up a small portion of total
irrigated lands and are not considered important for food production
or environmental consideration such aswater logging and soil salinity.
We also selected a minimum mapping unit of 100 ha (roughly four
MODIS 500 m pixels) to identify and map irrigated lands, in essence
eliminating small irrigated lawns and gardens.

3.2. Proposed method

As part of our objective to map irrigated lands globally, we
designed the mapping procedure to meet three criteria. First, the
procedure must be automated and repeatable across space and time.
Next, it must be robust enough to capture many different forms of

irrigated lands across large geographic regions. Finally, it must rely on
high quality and objective remotely sensed observations. To meet
these criteria, we adapted an image classification approach to the
irrigation-mapping problem, guided by a climate-based index that
identifies locations that require irrigation. This index of irrigation
potential was found necessary in earlier versions of our work to better
identify real irrigation and reduce the rate of false positives when
using remotely sensed data (Ozdogan and Gutman, 2007). Within the
boundary conditions identified with the potential irrigation index, the
classification of remotely sensed, multi-temporal, multi-spectral
images was achieved in two steps: i) binary classification into irri-
gated and non-irrigated classes; and ii) fractional areal estimate of
each pixel identified as irrigated in the first step. The subpixel
estimation was necessary since often only a portion of individual
pixels are often occupied by irrigated fields and this can significantly
affect the estimates of agricultural/irrigated areas from remote
sensing, especially in areas known to have small cultivated fields
(Ozdogan and Woodcock, 2006).

Our classification-based irrigation mapping procedure is based on
two key developments in the global remote sensing arena. First,
remotely sensed inputs with improved radiometric and geometric
quality, such as those provided by the MODIS instrument, have
become available for continental to global scale studies. Second, a
new generation of classification algorithms, such as classification and
regression trees, initially developed within the machine learning
community, have successfully found their way into large area remote
sensing applications (DeFries et al., 1998; Friedl et al., 2002; Hansen
et al., 2002).

Our irrigation mapping procedure has four parts that are sche-
matically shown in Fig. 2. In part one, we calibrate a climatological
moisture index along with existing agricultural maps to define
irrigation potential. Second, we identify irrigation-related remotely
sensed temporal and spectral indices. Third, we combine irrigation
potential and remotely sensed indices within a supervised classifica-
tion algorithm to locate irrigation. Finally, we estimate subpixel
proportion of irrigation in each 500-m pixel identified as irrigated. We
initially tested our procedure in the US to map irrigated lands across
the entire country. In the sections that follow, we describe these steps
in greater detail. In the last section, we show the initial examples from
the US and present our results of validation.

3.3. Effective irrigation potential

Irrigation is practiced in many countries around theworld at scales
ranging from small subsistence farming to national enterprises. The
location of irrigation is determined by a combination of factors
including climate, resource availability, crop patterns, and technical
expertise. Climate plays an important role in presence and distribution
of irrigation as it determines natural moisture availability (precipita-
tion), crop water demand (evaporation), and crop schedules. In this
study, we delineated potentially irrigated areas using a climate-based
index. A map of potentially irrigated areas provides the first ap-
proximation for areas that require irrigation from the climate
perspective. As noted earlier, introduction of a climate-based potential
irrigation index into the classification process greatly reduces ambi-
guity in identifying irrigation using remotely sensed inputs alone
(Ozdogan and Gutman, 2007).

Over large areas, presence and distribution of irrigation is pri-
marily controlled by natural moisture availability at the surface. For
example, in arid and semi-arid parts of the world, dry atmosphere and
the lack of rain-supplied moisture requires exclusive use of irrigation
to grow crops. In more humid locations, on the other hand, irrigation
is often supplemental and is used to meet the demand of crops whose
growth cycle is out of sync with natural precipitation. Thus, climatic
moisture availability provides the first level of information on
potential presence of irrigation at a given location.

3522 M. Ozdogan, G. Gutman / Remote Sensing of Environment 112 (2008) 3520–3537



Budyko (1974) introduced the Radiative Dryness Index as:

D ¼ R
λP

ð1Þ

where R is mean annual net radiation, which can be estimated from
Earth–Sun geometry, observed mean air temperature, and observed
humidity; P is mean measured annual precipitation; and λ is the
latent heat of vaporization. In the present work, we calculated both R
and P using gridded datasets of the WorldClim database (Hijmans
et al., 2005). The WorldClim dataset is the only database that offers
global coverage at around 1-km spatial resolution while providing a
reliable and consistent source of climate information.

The dryness ratio has been widely used to classify climate regimes
and the corresponding land cover types in simple climate models
(e.g. Gutman et al., 1984). While D provides important information
on climatic moisture availability, it is not directly related to irrigation.
To relate D to irrigation, we plotted D against percent irrigation
presence information from the GMIA product (Siebert et al., 2005).
This relationship is shown in Fig. 3 on the left Y-axis as open circles
(original aggregated data) with a fitted curve. The association be-
tween D and fractional irrigated area is non-linear. To linearize this
relationship we follow Gutman et al. (1984) in using the empirical

relationship suggested by Lettau (1969) for a water availability
parameter:

W ¼ tanhD
D

; Dz0 ð2Þ

The association betweenW and fractional irrigated area is given in
Fig. 3, right Y-axis as triangles and a linear fit of the original aggre-
gated data.

Using this linear relationship between W and fractional irrigated
area, we mapped climate-based irrigation potential, referring to it as
the effective irrigation potential. As the final step, we used existing
cultivated area masks (e.g. Ramankutty and Foley, 1998; Wood et al.,
2000) to mask out those locations on the potential irrigation map that
are not known to be cultivated, in essence limiting our investigation to
major agricultural areas.

3.4. Remotely-sensed inputs

3.4.1. MODIS data
The MODIS instruments on board both Terra and Aqua platforms

include seven spectral bands that are designed exclusively for
monitoring Earth's land surfaces (Townshend and Justice, 2002). The

Fig. 2. Flow chart of the major steps in the proposed mapping algorithm. Each dashed box with a number refers to the processing step in the proposed irrigation mapping procedure.
Please see text for details.
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Terra and Aqua MODIS combined provide sub-daily global coverage at
250- and 500-m spatial resolutions and offer enhanced spectral,
spatial, radiometric, and geometric quality for improved mapping and
monitoring of vegetation activity. Hence, to date, MODIS land data
have been an integral part of production of a variety of land cover
maps, including irrigation (Friedl et al., 2002; Thenkabail et al., 2005;
Wardlow and Egbert, 2008; Xiao et al., 2006).

A large array of standard MODIS data products are operationally
produced by the MODIS Land Science Team and made available to the
scientific community on a timely basis. One of these products is the
Nadir Bidirectional Reflectance Distribution Function (BRDF)-Adjusted
Reflectance (NBAR) data (MOD34B4, Schaaf et al., 2002). This product
provides cloud-screened and atmospherically corrected surface
reflectances for all MODIS land bands that have been corrected for
view- and illumination-angle effects. Currently, the NBAR data is
produced at 500-m spatial resolution every 8 days with a total of 46
observations over the calendar year geographically organized in a
MODIS tile system with the Sinusoidal Projection. In this study, we
used one calendar year (2001) of NBAR data (total of 46 observations)
for 14 tiles covering the continental US.

3.4.2. Irrigation-related indices
Remote sensing of irrigated lands over large geographic regions

involves significant challenges both in selecting spectral bands or
indices that contain the maximum amount of irrigation-related infor-
mation and in relating this information to complex forms of irrigation
presence. For instance, while satellite-derived indices are extremely
useful in detecting vegetated areas in agricultural lands, the cause of
spatial and temporal variability in biomass, whether as a result of
rainfall or irrigation, is much less straightforward, hencemore difficult
to determine. A further complication may arise when only supple-
mental irrigation is practiced.

To overcome these challenges we first identified the characteristic
attributes of irrigated lands, especially those characteristics that are
observable with remotely sensedmeasurements. One such attribute is

related to vegetation “greenness”. There is an overwhelming consen-
sus that the Normalized Difference Vegetation Index (NDVI) is an
important vegetation monitoring tool (DeFries et al., 1998; Goward
et al., 1991; Justice et al., 1985; Myneni et al., 1995; Tucker, 1979). NDVI
is defined as:

NDVI ¼ ρnir − ρred

ρnir þ ρred
ð3Þ

where ρnir and ρred respectively represent NIR and red reflectances.
NDVI has been closely related to plant moisture availability (Nicholson
et al., 1990), leaf area index (Xiao et al., 2002), primary production
(Prince, 1991); and vegetation fraction (Gutman and Ignatov, 1998).

Although NDVI has beenwidely used to monitor vegetation green-
ness in agricultural settings under a variety of climatic conditions,
overwhelmingly it is the temporal NDVI signal that has often been
most related to irrigation (Kamthonkiat et al., 2005; Martinez-Beltran
and Calera-Belmonte, 2001; Pax-Lenney et al., 1996; Thenkabail et al.,
2005; Tucker and Gatlin,1984). Consider an irrigated landscape. Under
ideal conditions, irrigation would be practiced when soil moisture
deficit occurs, leading to a strong temporal mismatch between the
greenness cycle of rain-fed crops and that of irrigated crops, par-
ticularly in arid and semi-arid locations. Greenness associated with
non-irrigated crops in arid/semi-arid landscapes is often a direct
result of rainfall events while greenness associated with irrigated sites
is generally independent of rainfall and would show a development
cycle different than that of rainfed crops. This differential temporal
behavior of irrigated and non-irrigated cultivation is illustrated in
Fig. 4 for two relatively arid locations in the US. Here, the seasonal
dynamics of vegetation greenness for irrigated (solid) and non-
irrigated (dashed) croplands are illustrated in the form of mean
smoothed NDVI signature (left Y-axis) for the year 2001. Also plotted
in each panel is the monthly mean precipitation for the same year
(right Y-axis). The top panel (A) is an example from semi-arid eastern
Washington state (Northwest USA), where the non-irrigated crops

Fig. 3. The relationship between D,W, and global fractional irrigated area obtained from the GMIA product. D is plotted as filled circles with the fitted curve (solid), whileW is plotted
as open triangles with the straight fitted line (dashed). W linearizes the relationship between D and irrigated area and is used to produce effective irrigation potential. Note that the
left Y-axis has been reversed to show consistent wet and dry directions (also indicated as text).
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(mostly cereals) exhibit two peaks, first following planting in the
fall and second before harvest in late spring/early summer, closely
following the moisture availability. In contrast, irrigated crop
greenness peaks during mid-summer when moisture availability is
smallest and greenness value of non-irrigated crops drops to its
lowest value. Note that the lack of precipitation in the summer
time at this location causes a large moisture deficit and makes
irrigation absolutely necessary. The bottom panel (B) reflects a
similar mismatch of greenness dynamics between irrigated and
non-irrigated crops for a site in northern Texas (South Central US).
However, the greenness dynamics at this location do not nec-
essarily reflect moisture availability and irrigated crops that ex-
hibit greenness peak about the same time when maximum
precipitation occurs. Of course, the available precipitation may
not be enough to meet the crop demands in this region and thus
irrigation may be necessary. In fact, crop-distribution maps pro-
vided by the US Department of Agriculture's National Agricultural
Statistics Service (NASS) for this region show a large presence
of cotton, a crop with heavy water demand. Nevertheless, the
irrigated and non-irrigated crops exhibit clearly distinct temporal
greenness profiles and by monitoring the seasonal greenness be-

havior of crops via NDVI it is possible to distinguish irrigated crops
from non-irrigated ones.

While such temporal analysis of the NDVI signal clearly reveals the
differences between irrigated and non-irrigated crops, it also reveals
that the timing difference of peak greenness in each location is related
to the crop type. For example, both inWashington and Texas, the non-
irrigated crops are predominantly winter cereal varieties (e.g. winter
wheat) and the irrigated crops are primarily summer row crops (e.g.
corn, soybean, or cotton). Nevertheless, to detect this crop type
difference through temporal analysis, especially if related to moisture
availability, also reveals information about the irrigation status of
crops. For example, cereals (specifically winter varieties) are pre-
dominantly not irrigatedwhilemost summer crops are irrigated. Thus,
detecting crop type through temporal analysis is used here as a proxy
for detecting irrigation.

A more difficult case for distinguishing irrigated crops from non-
irrigated counterparts occurs in locations where the same crop type is
grown with and without irrigation in the same growing season. A
primeexample of this situation is centralNebraskawhere, dependingon
a particular year's soil moisture availability and installed irrigation
infrastructure, irrigated and non-irrigated corn fields are often

Fig. 4. Temporal NDVI and precipitation profiles of irrigated and non-irrigated fields in two different locations in the US. In each location, the lines represent average response from a
sample of approximately five sites in each category.
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simultaneously present. The temporal NDVI profile of irrigated and non-
irrigated corn from Central Nebraska in Fig. 5A exhibits an identical
pattern with a sharp peak in greenness around late June/early July
followed by a rapid decline. While irrigated corn fields exhibit slightly
larger NDVI, possibly due to constant availability of moisture, the

difference is small andprobably useless in distinguishing irrigatedfields.
Thus, a more sensitive index is required to make this distinction.

A large body of research of spectral remote sensing of vegetation
canopies indicates that moisture stress in vegetation is strongly mani-
fested in spectral indices related to chlorophyll content (Gitelson et al.,

Fig. 5. (A) Seasonal dynamics of NDVI for irrigated and non-irrigated corn in Nebraska. Each line represents an average response from a sample of approximately five individual sites
for each category. Also plotted is the long-term average monthly total precipitation acquired from a nearby meteorological station. (B). Sensitivity of four vegetation indices, namely
NDVI, EVI, GI, and WDRVI, to irrigation presence as measured by Relative Sensitivity Index (RSI) in Nebraska for 2002. Each index was generated from an average response using a
sample of approximately five individual sites. Please see the text for details on the RSI.

3526 M. Ozdogan, G. Gutman / Remote Sensing of Environment 112 (2008) 3520–3537



2003; Zarco-Tejada et al., 2002). One such index, suggested by
Gitelson et al. (2005) to be used with the MODIS sensor, is the
Green Index (GI) defined as:

GI ¼ ρnir=ρgreen ð4Þ

where ρgreen is the reflectance in the green spectral region. The
theoretical foundations of the GI are given in Gitelson et al. (2003). In
short, it is based on the evidence that in the green spectrum (centered
around 510 nm) the specific absorption coefficient of chlorophylls
is very low while green leaves absorb more than 80% (e.g., Gitelson
andMerzlyak, 1994). In contrast, depth of light penetration into leaves
in the blue and red spectral ranges is four to six times lower (e.g.,
Merzlyak and Gitelson, 1995). Therefore, in the green spectrum,
absorption of light is high enough to provide high sensitivity of GI to
chlorophyll content but much lower than in the blue and red to avoid
saturation (Gitelson et al., 2003).

Our hypothesis for using the GI for irrigation assessment is that
irrigated crops with very little or no soil moisture stress will exhibit
larger Chlorophyll content than non-irrigated crops with potential
moisture stress. To test this hypothesis and the sensitivity of the GI to
irrigation (moisture) presence, we compared four vegetation indices,
NDVI, Enhanced Vegetation Index (EVI) (Huete et al., 1999), Wide
Dynamic Range Vegetation Index (WDRVI) (Gitelson, 2004), and GI,
using the following Relative Sensitivity Index (RSI):

RSI ¼ Iirr−Inon
Inon maxð Þ−Inon minð Þ

x100 ð5Þ

In Eq. (5), Iirr and Inon are the irrigated and non-irrigated values for
each index, I, at each time period, normalized by the seasonal
amplitude (maximum−minimum) of non-irrigated values of each
index. RSI represents the difference between irrigated and non-
irrigated index value compared to the seasonal maximum change in
the same index's non-irrigated value. Comparison of relative sensi-
tivity of all four indices reveals that the GI shows the largest sensitivity
to irrigation presence during peak crop growth (Fig. 5B). Similar
results were obtained by Gitelson et al. (2006) over other maize
canopies in Nebraska. Recognizing the increased sensitivity to irri-
gation, we developed a GI dataset from MODIS NIR and green NBAR
bands for each 8-day period.

The temporal analysis of NDVI and GI data presented above reveals
that the timing of phenological transition dates such as the timing of
greenup, maturity, and senescence are nearly identical between the
two indices while the absolute magnitude of greenness (or maximum
greenness) as one indication of irrigation presence is better cap-
tured by the GI. In essence, the GI by itself captures all of the salient
temporal features of irrigation in addition to the spectral signature
associated with the chlorophyll content. Therefore, we developed a
full year (46 observations) GI only dataset and incorporated it into our
classification algorithm. The complete list of input features into the
irrigation classification algorithm is given in Table 1. Note that the
methods involving the GI are only applicable to sensors such asMODIS
that are capable of sensing in the green part of the electromagnetic

spectrum. Without this capability, NDVI may be the only data source
to monitor irrigation remotely and may require new methods.

3.5. Classification algorithms

Our goal is to separate irrigated crops from non-irrigated crop-
lands. Remote sensing based greenness indices suggest that mapping
is possible through the use of certain rules based on input data.
While there are several different methods to formulate these rules
(e.g. Thenkabail et al., 2005), in our research we use a supervised
classification methodology derived from the tree-based models.
Popularized by Brieman et al. (1984), tree-based models have been
successfully used to determine distributions of a variety of bio-
geophysical fields using remote sensing data (DeFries et al., 1998;
Friedl and Broadley, 1997; Friedl et al., 2002; Hansen et al., 2002).
Tree-based methods have substantial advantages for remote sensing
classification problems because of their flexibility, intuitive simplicity,
and computational efficiency. Because of their ability to handle noisy
and missing data as well as eliminating requirements for distribu-
tional assumptions these methods are useful for remote sensing
applications, particularly at continental to global scales (Friedl et al.,
2002).

For the research presented here, we consequently used two tree-
based models: i) decision trees to classify the input data into irrigated
and non-irrigated classes; and ii) regression trees to estimate the
fraction of irrigation within each pixel that has been identified as
irrigated. At the heart of our decision tree phase is a supervised
decision-tree classification algorithm (C4.5) (Quinlan, 1993). Widely
used in the machine learning community, the C4.5 algorithm we use
has been augmented with the Boosting method (Friedman et al., 1998)
to optimize classification accuracies and to provide spatially explicit
class confidence estimates (McIver and Friedl, 2001). In this appli-
cation, we used 10 boosting iterations as suggested in McIver and
Friedl (2001). We also used C4.5's internal pruning algorithm to limit
overfitting.

As in classification trees, the regression-tree algorithms produce
rule-based models for prediction based on training data but allow
prediction of continuous variables such as subpixel distribution of
irrigation. Each rule set defines the conditions under which a
multivariate linear regression model is established. We use a specific
regression-tree algorithm called Cubist (Rulequest, 2001). The Cubist
algorithm consists of a set of linear models and a set of inequality
“cuts” on the variables to select among the individual linear models,
yielding a piecewise linear model.

3.6. Development of a continental-scale training database

Our approach to irrigation mapping is a supervised learning
methodology that requires training data that well characterizes the
desired output. Thus, the training data that provide exemplars of
all different types and amount of irrigation across large regions are
critical. A globally representative, consistent, and accurate training
database is required to establish a relationship between remotely
sensed signal, climate constraints and irrigation and plays a key role in
land-cover classification based on remote sensing. In addition to the
quantity, the quality of the training site database strongly influences
the quality of classification results. Because irrigation is highly diverse,
a key requirement of the database is that it be geographically com-
prehensive and include variations in irrigation practices manifested
across different landscapes.

In our approach, we derive two separate sets of training data, one
to train the decision-tree algorithm and the other for the regression-
tree algorithm. The method to derive both training datasets involves
several dozen high spatial resolution satellite images acquired by the
Landsat 7 ETM+ sensor circa 2000. The location of the training sites is
chosen to represent major irrigated land areas of the US. In the case of

Table 1
List of input features in the classification algorithm

Input feature Source Frequency Period Description

GI MODIS reflectance 8-days 12 months Ch2 & Ch4 NBAR
reflectance

Irr. Potential WorldClim static climatology Precip. and temp.
climatology

croplands Ramankutty & Foley static circa 1995 LC classification
and country
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decision trees, each training site is derived from a corresponding
Landsat scene in the form of a polygon that represents examples of
both irrigated and non-irrigated lands and served as a basis for
classification and quality assessment. Each site is chosen to represent a
minimum of 0.25 km2 uniform land cover (irrigated vs. non-irrigated).
The non-irrigated class included all other forms of land cover
including agriculture. In most cases, each training site is interpreted
based on characteristic shapes of irrigated fields (e.g. center pivot
irrigation systems), as well as with the help of ancillary data sources
such as county-based irrigated area maps, climate data, state reports,
and the internet. For example, in the Pacific Northwest, agricultural
fields having healthy green vegetation cover on the mid-summer
Landsat images are interpreted to be irrigated as very little precipita-
tion is available to sustain crops during summer. Similar logic applies
to most arid western states. Note that, in the more humid east, the
selection and interpretation of the training data is more subjective.
Here we additionally rely on county-level irrigation infrastructure
data, state reports and production estimates. However, the reliability
and the quality of these learning samples may be less than those
obtained in the west and therefore lead to poor classification accu-
racies. At the same time, the eastern part also represents a smaller
portion of the total irrigated area of the United States and hence
potential errors would be expected to affect a smaller area where
irrigation is mostly supplementary in nature.

For training sites to be used in the regression tree, we first classify
each Landsat image (wall-to-wall) into irrigated and non-irrigated
classes at native resolution (30 m) and then aggregate these maps up
to 500 m using a square-wave filter. The outcome is a small map that
shows the fraction of irrigated area in each 500-m pixel as a con-
tinuous variable. The quality of the classified maps at 30-m resolution
ranged from 68% in the east to 95% in the west, based on a 10-fold
cross-validation exercise. While it is hard to predict the impact of
lower accuracy samples on the training of the Cubist model, aggre-
gation of the high-resolution samples to MODIS scale would be
expected to reduce labeling errors. Moreover, by filtering the frac-
tional irrigated area samples by pixels that have been identified as
irrigated at the decision tree phase, we reduced the occurrence of
these labeling errors.

Note that we rely heavily on the recently available Landsat datasets
(either free or at cost of reproduction) such as those from the
University of Maryland Global Land Cover Facility (http://glcf.umiacs.
umd.edu/data/landcover/index.shtml). The existence of these data-
bases significantly reduces the cost of our research. Moreover, these
datasets are global in nature and thus the same procedure can be used
to extract a global training database.

4. Implementation of the proposed method in the continental US

The first step in implementing the irrigation mapping algorithm
for the continental US is to screen the MODIS time series data for
clouds and snow cover as well as for non-agricultural land cover. For
cloud cover, we use the quality control cloud flags included in the
NBAR data files in the form of cloud masks for each 8-day time period
for a total of 46 files per year. Pixels corresponding to these cloud
masks are then excluded from the analysis. To minimize the potential
impact of snow cover, especially in the spring months, we use MODIS
snow masks (Hall et al., 1995) for each of the 8-day periods; pixels
identified as snow are removed from further analysis.

The second step in the implementation of our algorithm is to train
the decision tree model (tree growing stage) with the example
datasets derived from the training sites described above to auto-
matically generate the rules and thresholds that identify irrigation.We
then apply the trained decision tree to all of the individual MODIS tiles
that cover the continental US. Each tile consists of cloud- and snow-
screened time series of GI values representing a total of 46 per-pixel
observations. The end result of the classification algorithm is a two-

class map showing irrigated and non-irrigated areas over the con-
tinental US.

In the last step, we train and apply the regression-tree algorithm to
estimate the subpixel distribution of irrigation presence as a contin-
uous variable within each 500-m pixel identified earlier as irrigated.
Our final product is a continental scale map of irrigation distribution
circa 2001 (Fig. 7).

5. Validation

Accuracy assessment of moderate resolution (500-m to 1-km)
land-cover products is a challenging task as these maps cover large
areas and can over- or under-estimate areas of land-cover types due to
the fragmentation and subpixel proportion of individual types
(Wulder et al., 2006). Because of budget constraints and resource
limitations, we are not able to conduct extensive field surveys for
collection of site-specific data. Instead, we rely on freely available
high-resolution data (Ikonos and Landsat), as well as assembled sub-
national (county- and state-level) irrigated agriculture statistical
datasets. We evaluate the MODIS-derived irrigation map in three
ways: (1) statistical estimate of the binary irrigation map accuracy
(resulting from the decision-tree phase) using an independent set of
ground-truth observations selected from a probability-based sample
design; (2) comparison of area estimates made from the continuous
irrigation map (resulting from the regression tree phase) to sub-
national level (state and county level); and (3) comparison to other
irrigation map products such as those reported in Section 2.

As part of the first method, we select a two-tier stratified random
sampling approach where accuracy assessment samples are stratified
on both geographic distribution and class type. To accomplish this, we
first divide the country right from the middle and generate 100
randomly-located accuracy assessment sites (points) in each half with
a total of 200 samples. This first-order geographic stratification is
necessary as the western and eastern halves of the continental US
contain very distinct irrigation presence. In the arid west, irrigation is
often absolutely necessary to grow crops during very dry summer
growing seasons. Indeed, roughly 75% of total irrigation applied in the
US occurs in the arid west (Gollehon and Quinby, 2000). On the other
hand, the eastern US primarily supports supplemental irrigation. This
stark difference of moisture availability and irrigation practices
between the eastern and western portions of the country requires
careful consideration of how the MODIS-based irrigation map should
be evaluated. Our qualitative assessment of the binary irrigation map
(resulting from the decision tree stage), based on a visual comparison
to the county-level irrigation database, suggests that the map is more
accurate in the west than it is in the east.

Within each geographic area, we also stratify our test samples on the
class label (irrigated vs. non-irrigated) and select approximately 70% of
the sites from the non-irrigated class and 30% of the sites from the
irrigated class. The increase in the number of samples from the non-
irrigated class is directly related to its larger area. We identify the
irrigation status of each site using available high-resolution datasets
from Landsat, as well as from those available through Google Earth
(http://earth.google.com). We use these high-resolution datasets as a
substitute for ground truth, although these images may be
snapshots of cropping systems and irrigation status taken at different
times. The high-resolution datasets have the advantage of being
comprehensive, providing information on much larger areas, and,
therefore, more representative. When labeling these test sites, we rely
on shapes of cultivated fields such as center pivot irrigation, ancillary
information at the county level, and other sources of information
extracted from reports and the internet. Once identified, we compare
the class label of each test sample to the class label of the pixel extracted
from the binary irrigation map at the same location within a confusion
matrix — a standard tool for assessing accuracy of land-cover
classifications (Table 2).

3528 M. Ozdogan, G. Gutman / Remote Sensing of Environment 112 (2008) 3520–3537

http://glcf.umiacs.umd.edu/data/landcover/index.shtml
http://glcf.umiacs.umd.edu/data/landcover/index.shtml
http://earth.google.com


Note that, when compared to the western US, the quality and
accuracy of the ground truth data in the eastern US may be less than
ideal. This is partially due to inherent difficulty of correctly identifying
what is and isn't irrigated in this region as irrigation is not very
extensive and often supplementary in nature. Thus, it is possible that
the accuracy assessment for the eastern US provided in the following
sections maybe slightly inflated. However, the eastern US also repre-
sents a smaller portion of the total irrigated area in the continental
US and hence errors would affect less area.

We also evaluate the MODIS irrigation map using sub-national
statistics (both at state and county level) obtained by the NASS as
part of the 2002 Census of Agriculture (http://www.nass.usda.gov/
Census_of_Agriculture/). This dataset provides the total irrigated
cropland area sown to various crops based on a sample of farms and
contains data from a year (2002) similar to our remote sensing
analysis. Results of this comparison are provided in the next section.

The last method of evaluation of our methodology and its results is
to compare the final MODIS-based irrigation intensity map to other
irrigated area maps available from a variety of sources. One such map
is for the state of California where a digital database of distribution of
agricultural resources, including irrigation, exists and is available for
each county. While the dataset spans a few years around the target
year of 2001 due to a rolling census approach, it represents the best
available digital map of irrigation in the state (California DWR).

6. Results

6.1. Decision rules

The first type of result is concerned with the decision rules gen-
erated at the decision tree training phase presented in graphic form in
Fig. 6. This representation of the tree structure is informative as it
provides physically-based meaningful interpretation. Note that the
tree structure in Fig. 6 was generated from data but represents a
simplified version of the decision process made using only a third of

Table 2
Confusion matrices for the eastern (top) and western (bottom) US

Predicted

non-irr irr total

Observed non-irr 70 19 89
irr 2 9 11
total 72 28 100

Observed agreement=0.79
Chance agreement=0.67
Kappa=0.36 (±0.2)

Observed non-irr 69 1 70
irr 12 18 30
total 81 19 100

Observed agreement=0.87
Chance agreement=0.62
Kappa=0.65 (±0.16)

Fig. 6. Simplified decision tree that displays decision rules for mapping irrigation. Each decision node (rectangle) shows the green index observation time (e.g. gi11 means Green
Index observed on observation period 11 – Julian day 88) and leaf nodes (ellipse) shows prediction results.
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the training data, selected randomly. The input features and decision
boundaries are given in rectangles and the terminal nodes (leaves) are
shown in ellipses. Several important observations can be made by
examining this tree structure. First, the tree is balanced, meaning
that it uses roughly an equal number of input features and splits
throughout the decision process following the initial node at the top.
Next, the first split in the tree uses the Effective Irrigation Potential,
represented by the Water Availability Parameter W, indicating the
importance of this variable in irrigation mapping. This initial split
represents moisture availability that is so important in discerning
irrigation and roughly coincides with the break in the east-west
moisture gradient across the continental US, hence slightly different
decision rules are applied to each portion. This is also intuitive, as our
climate-based effective irrigation potential shows very little irrigation
probability for locations with small moisture availability (i.e. eastern
US).

Following the splitting rules down the tree path further provides
evidence for the decision process to map irrigation. Take the non-
irrigated decisionmade at node 2, for instance. A pixel is labeled “non-
irrigated” when climate-derived irrigation potential is lower (b78%)
and there is enough mid-season greenness (gi23N2.0) typical of con-
ditions in humid mid-western states. A more complicated irrigation
labeling is exemplified by node 6 where a pixel with high irrigation
potential (WN78%) and high mid-season greenness (gi25N2.6) and
low early- to mid-season greenness (gi18b4.2, gi1b1.2, and gi9b2.3)
would be labeled as irrigated, suggesting conditions for drier mid-
western states such as Nebraska. Contrast this with node 3, where a
pixel with similar high irrigation potential (WN78%) and high early-to
mid-season greenness (gi25N2.6 and gi18N4.2) but low early-season
greenness (gi11b2.3) would be labeled as “irrigated.” These rules
exemplify typical conditions in southern Californiawhere a long grow-
ing season and water availability allows irrigated forage crops such
as hay and grass.

These results suggest a set of physical/logical rules that use con-
current information from multiple variables (temporal greenness and
irrigation potential in this case) to discern irrigated agriculture. Note
that an additional benefit of the tree-based analysis used here would
be to project rule/node information onto a geographic space since

each pixel's predicted label has a known decision path through the
tree structure. Our preliminary analysis (not shown) indicates that
there is a strong relationship between geographic distribution of at-
tributes (different time slices of MODIS GI) and irrigation, in essence
revealing how irrigation/non-irrigation class labels are assigned on
the basis of both the value and geographic position of each input
feature. This sort of information is useful, especially for expanding the
irrigation mapping work to other parts of the globe because it allows
geographic discovery of the relationship between irrigation presence
and the remotely sensed signal (Andrienko and Andrienko, 1999).

6.2. Map accuracy

The purpose of assessing the accuracy of a MODIS irrigation map is
to provide objective information on classification results and its error
structure. As described above, we used traditional confusion matrix
approach at the decision tree classification phase and then compared
the area estimates obtained from the subpixel mapping from the
regression tree phase to those reported at county and state levels.
The confusion matrices provide information on the accuracy of the
classification process as applied to an independent set of observations.
In this section, we report the results of the confusion matrices for the
eastern and western portions of the continental US separately
(Table 2). The eastern portion has an index of agreement of 0.79
while the western, and more heavily irrigated portion of the country
has 0.87 index of agreement. A better index to determine map
accuracy from confusionmatrices is the Kappa Index, which compares
the agreement against that whichmight be expected by chance. Kappa
can be thought of as the chance-corrected proportional agreement,
and possible values range from +1 (perfect agreement) via 0 (no
agreement above that expected by chance) to −1 (complete disagree-
ment). For the irrigation map that represents the eastern half of the
country the Kappa statistic is around 0.36 (0.16–0.56 at 95% CI), which
is considered to represent a fair agreement between independent and
mapped irrigation (Landis and Koch, 1977). For the western half, on
the other hand, the Kappa statistic increases to 0.65 (0.49–0.82 at 95%
CI), which is considered to be a substantial agreement. These accuracy
measures suggest that many irrigated lands in the arid western

Fig. 7. Spatial distribution of irrigation in the US circa 2001 mapped form MODIS and ancillary data using the proposed procedure. The thick vertical line separates the east and west
portions of the country individually selected for accuracy assessment. See text for detailed description of the procedure.
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Fig. 8. Regional views of irrigation depicted by Landsat ETM+ data (left), MODIS-based procedure (center), and by the FAO map (right) in the Columbia River Plateau (A), eastern US
(B), midwestern US (C), and south-central US (D).
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portion of the continental US are more accurately represented by the
MODIS irrigation map than the irrigated lands of the eastern portions
of the country.

6.3. Spatial distribution of irrigated agriculture from MODIS

The spatial distribution of irrigation across the continental US is
given in Fig. 7 and shows some expected patterns. First, irrigation has
a strong east-west divide. The MODIS map indicates that over 70% (by
area) of all irrigated lands in the US are located in the western part of
the country primarily due to its relatively arid nature, a result also
supported by Gollehon and Quinby (2000). The eastern part of the
country, on the other hand supports less irrigated land area, primarily
in the form of supplemental irrigation, although not distinguished
here.

At the continental scale, major irrigated areas are distributed along
dry lowland valleys in thewest such as the Central Valley of California,
the Snake River Basin of Idaho, and in the Columbia basin of the Pacific
Northwest. In the central parts of the country, irrigation occurs in
small, dry depressions of Colorado, in the Texas Pan Handle, in west-
ern dry portions of Kansas and Oklahoma, and in major corn growing
regions of Nebraska. In the Eastern parts of the country, irrigation is

found in locations where mostly sand soils and high water-demand
crops such as cotton occur including the Mississippi valley, south-
western Georgia, and along agricultural areas of the eastern coastal
plain.

More detailed, regional representations of irrigation mapping
results in four locations with very different climatic and irrigation
patterns across the continental US are given in Fig. 8. In each row in
Fig. 8, the left panel shows the Landsat ETM+ view of the landscape
(spectral bands 7, 4, and 2 as RGB) during the peak growing season
where bright green color indicates irrigated agriculture circa 2000.
The center panel shows the MODIS continuous irrigation map and the
right panel shows the same area mapped as equipped to be irrigated
circa year 2000 by Siebert et al. (2005) (hereafter the FAO map). The
first row (8a) depicts the irrigated landscape of the arid Columbia
River Plateau in the Pacific Northwest. The plateau is comprised
mostly of agricultural fields, punctuated by river valleys and sur-
rounded by lush, green forests. While the plateau is primarily devoted
to agriculture, only a part of this agricultural landscape is irrigated
during summer. In the Landsat image, the irrigated fields are depicted
by green vegetation in the southwestern corner of the image while
non-irrigated, summer fallow fields show up as bright purple color.
Both the MODIS and FAO irrigation maps accurately identify this

Fig. 9. Comparison of MODIS irrigation map (C) to other irrigation map products in California. The other data sets are from California DWR (A), the FAO map (B), and the GIAM map
(IWMI-Sri Lanka) (C).
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pattern of irrigation presence but the MODIS map does so in greater
detail.

In contrast to the arid Columbia plateau, the second row (8b)
shows an example from the more humid eastern US where the prac-
tice of irrigation is more supplementary in nature (Solley et al., 1998).
Here, agricultural fields are interspersed with forested areas and
irrigation mostly occurs over sandy soils that, in recent years, support
large acreages of soybean crop. Again the MODIS irrigation map
captures this pattern of irrigation as accurately as the FAO map but in
greater detail.

The third regional view shows an area in north-central US in
the state of Wisconsin (8c). This example is particularly interesting
because in this area, which receives ample natural precipitation
during the growing season (~700 mm annual average of which
roughly 60% falls during the growing season), large scale irrigation is
only practiced in what is known as the “Central Sand Plain”, a
diamond-shaped area in the lower left portion of the Landsat ETM+
image. Here a large expanse of sandy soils allows rapid infiltration
of precipitation and depresses the amount of plant available soil
moisture, making irrigation necessary, especially in below normal
precipitation years. As portrayed in the middle panel, the Central
Sands area is nicely depicted by the MODIS irrigation map. What is
interesting about this example from the irrigation mapping perspec-
tive is that themajority of the landscape shown in the Landsat image is
agriculture where crop phenology is very similar to that observed in
the Sand Plain area. Yet the irrigation mapping procedure accurately
identifies only the irrigated sites.

The example shown in the last row (8d) is from the south-central
US in the state of Texas, where large scale groundwater-fed center-
pivot irrigation is very common. The summer irrigation crops in the
western half of the Landsat image are accurately depicted in the
MODIS irrigation map (center) and provide detail that is missing from
the FAO map. In an area where accurate information on irrigated area
and related water use from the groundwater supply by irrigated crops
is critical for irrigation sustainability, the detail provided by the
MODIS approach as well as its potential for operational status is of
critical importance. Note that our primary goal with these compar-
isons is to highlight the differences in spatial detail between the
MODIS and FAO maps. The larger irrigated area depicted by the FAO
map is expected given its maximal nature.

Note that this qualitative evaluation of regional map views is not
the same as statistically based accuracy assessment using high reso-
lution data. Large area land-use/land-cover studies that use medium-
to coarse-resolution (e.g. MODIS) data often use Landsat type datasets
for quantitative accuracy evaluation (Friedl et al., 2002; Loveland et al.,
2000; Xiao et al., 2005). While we also use quantitative analysis to
assess the binary map accuracy, the purpose of map comparison
presented in Fig. 8 is to suggest to the reader that both the location
and intensity of irrigation predicted by the new method exhibit
accurate patterns. Ideally, independent estimates, especially of irriga-
tion intensity, would be used to evaluate how well areas are predicted
by the new procedure. However, because of budget limitations, we
were not able to conduct extensive field surveys across the US. Never-
theless, the visual interpretation of Landsat ETM+ images in Fig. 8
suggest that our irrigation-mapping algorithm accurately identifies
both location and density of irrigated fields across a variety of mois-
ture and cultivation conditions.

Another regional view, this time over the state of California, (which
is the largest irrigating state in the US), compares the irrigation map
generated as a result of thework presented here to three other sources
of irrigation data (Fig. 9). The upper left panel is the irrigation data
from the California Department of Water Resources (hereafter the

Fig. 10. Correlation betweenNASS-reported (2002) andMODIS-estimated (2001) irrigated
area at the state-level.

Table 3
Irrigated area of US states in hectares derived from MODIS (right column) and reported
by USDA-NASS for the year 2002 (left column)

State NASS [ha] MODIS [ha]

Alabama 41,264 334,539
Arizona 359,347 304,985
Arkansas 1,677,263 1,061,009
California 3,216,867 2,680,779
Colorado 881,708 1,204,303
Delaware 39,264 59,981
Florida 686,452 415,996
Georgia 343,183 580,214
Idaho 1,145,253 834,801
Illinois 158,022 207,223
Indiana 126,247 197,329
Iowa 57,238 85,107
Kansas 1,078,791 1,213,093
Kentucky 14,859 223,411
Louisiana 375,569 1,076,736
Maine 7929 9160
Maryland 32,317 104,677
Massachusetts 9514 5336
Michigan 183,714 120,836
Minnesota 182,001 85,439
Mississippi 475,491 827,926
Missouri 415,699 304,661
Montana 629,956 800,138
Nebraska 3,037,935 3,311,778
Nevada 216,366 130,591
New Jersey 38,766 19,248
New Mexico 264,734 366,539
New York 27,889 16,400
North Carolina 96,455 509,130
North Dakota 81,350 253,570
Ohio 16,139 72,107
Oklahoma 190,584 219,676
Oregon 572,964 397,380
Pennsylvania 16,544 32,989
South Carolina 37,148 184,403
South Dakota 155,468 548,427
Tennessee 23,616 426,727
Texas 1,849,955 1,831,209
Utah 315,750 330,027
Virginia 38,564 101,828
Washington 675,796 632,405
Wisconsin 153,936 55,839
Wyoming 388,672 437,005
United States 20,369,456 22,623,781

States with less than 5000 ha are omitted.
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DWR) and is considered the best available map of irrigation over the
entire state, although it is updated only every few years. The upper
right panel shows the FAO map, which closely matches the patterns
shown in the DWR but at a coarser resolution. The lower left panel
is the MODIS-based irrigation map presented here and, with a few
exceptions, shows a strong correlation with the FAO and the DWR
map. Finally, the lower right panel portrays the IWMI GIAM dataset at
8-km resolution and this dataset shows the least correlation to the
DWR dataset.

6.4. Comparison of area estimates

An important use of large area irrigation datasets concerns area
estimates. To better understand how well the MODIS based irrigation
map compares with the estimates reported by the NASS, we aggregate
the 500-mMODIS product to two levels of sub-national polygonmaps,
state and county. At the state level, we calculate the area of irrigated
land in each state and compare it to the NASS reported estimate both
in tabular and graphic forms. As shown in Fig. 10, MODIS-based and

reported estimates at the state level agree reasonably well with an r-
squared value of 0.88 and a root mean squared error (RMSE) of
2290 km2 based on a simple linear regression model. The MODIS map
estimates the total irrigated area of the US to be a little over
226,000 km2, which is similar to the NASS estimate of 203,694 km2

(Table 3). Estimated and reported irrigated areas for individual states
are also given in this table as well. Note that there are also areas
with significant disagreement between two datasets, especially in the
eastern US where high annual rainfall and the mosaic nature of
agricultural and natural vegetation make it difficult to distinguish
irrigated from rainfed agriculture. Potential irrigation index derived
from average annual inputs further complicates this issue. Further
discussion on this is provided in the next section.

At the county level, we calculate the percentage of irrigated area
estimated with the MODIS map as well as irrigated area reported by
NASS over the total land area for each county, normalizing
comparisons between large and small counties. We compare these
results in Fig. 11. Except for a few significant differences, the spatial
pattern of the MODIS irrigation map strongly resembles that of NASS.

Fig. 11. County-level irrigated area presented as a percentage of total county area in 2002 in NASS dataset (A) and MODIS-irrigation map in 2001 (B).
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For instance, the pattern and fraction of irrigated area in most of the
counties in large irrigating states such as California, Nebraska, and
Texas show remarkably good agreement with those reported in
the NASS dataset, indicating the strength of our irrigation mapping
methodology. Moreover, the large concentration of bias between the
MODIS and NASS maps near zero (Fig. 12) further lends credibility to
remote sensing of irrigation through the method we propose.

7. Discussion

The results of the new irrigation mapping procedure presented
here suggest that the MODIS algorithm is capable of identifying both
the location and intensity of the majority of irrigated lands across the
continental US, but there remain areas of significant disagreement
between area estimates from the MODIS map and those reported by
NASS, even at the county scale. These areas are mostly concentrated
along the eastern US where high annual rainfall and vigorous natural
vegetation make it difficult to distinguish irrigation from rainfed agri-
culture and natural vegetation. This problem is further exacerbated by
the choice of a climate-based potential irrigation index that makes use
of average annual inputs. The need for irrigation over agricultural
fields in relatively humid eastern US area is directly related to sporad-
ic, unreliable water supplies through precipitation that often comes in
the form of fast moving fronts. This, combined with the sandy nature
of the soils in the region significantly diminishes the plant avail-
able water content, thus creating the need for irrigation, even though
annual total precipitation is always relatively high. However, because
of its annual nature, our current potential irrigation index does not
capture this phenomenon well and, as a consequence, assigns lower
probability to irrigation in this region. While not tested here, an ideal
potential irrigation index would be able to capture both the frequency
and duration of natural water availability from precipitation and
combine this information with soil types to identify locations where
irrigation maybe required. This approach may become especially
important for areas with small field size distributions outside the
US where an irrigation-related remotely sensed signal would be
weakened by mixed pixel effects.

The second reason for the observed difference between the NASS
reported irrigated area and the MODIS estimates at the state level is
related to the timing of each dataset, especially in more arid western
states. The NASS irrigated area statistics are extracted from the 2002
Census of Agriculture (NASS, 2002) and are based on a sample over the
census year. On the other hand, the MODIS irrigated area is a direct

observation, pixel-by-pixel, of conditions in 2001. In any particular
year, the irrigated area maybe reduced as a response to infrastructure
or water scarcity issues. In fact, 2001 was one of the dry years with
below normal precipitation levels in California (NOAA-NCDC, 2001).
Reduced irrigated area is one response to this limited water avail-
ability and thus less irrigated area prediction (less than the NASS
reports) by MODIS is highly likely.

While not a significant source of error in the US, the presence of
small patch size for agricultural areas around the world would be one
of the challenges when the methods developed here are applied
globally. A long line of research suggests that when landscape patches
(cultivated fields) cover a small fraction of a pixel, accurate estimation
of the land cover of interest and its fraction remains challenging. This
could be further exacerbated by the presence of topographic relief and
persistent cloud cover over the growing period that is most important
for dicerning irrigation (Thenkabail et al., 2005).

The purpose of the new mapping procedure presented here is to
develop an operational irrigation-monitoring tool applicable over
large areas using remotely sensed inputs. The algorithm involves a
two-step mapping procedure: first, a climate-based potential irriga-
tion index and remotely sensed temporal and spectral indices are
combinedwithin a decision tree-based supervised image classification
tool to map the presence of irrigation; in the second step, continuous
subpixel distribution of irrigation is predicted with a regression-tree
tool for those pixels identified as irrigated in the first step. This two-
step approach is considerably different than other well-publicized
continuous field mapping projects such as the Vegetation Continuous
Fields (Hansen et al., 2002) or impervious surfaces (Yang et al., 2003),
which directly estimate subpixel proportions of the geophysical field
of interest. There are several reasons behind the two-step choice
for irrigation mapping in this study. First, irrigated lands have non-
uniform distribution across large landscapes. They depend on mois-
ture availability, crop type, infrastructure presence, and cultural
traditions. For example, in any given year, irrigated and non-irrigated
fields could simultaneously occur on the same landscape. As a result,
irrigation exhibits complex patterns of spectral-temporal remotely
sensed signatures that make it difficult to map their location, let alone
their intensity. Hence, a two-step approach that first identifies the
location and then the intensity of irrigated fields improves the quality
of final predictions. Second, identification of irrigated agricultural
fields with remote sensing is complicated by the fact that irrigated
landscapes are a subclass of croplands that have traditionally been
difficult tomapwith remote sensing, especially over large areas (Friedl
et al., 2002; Loveland et al., 2000). Agricultural fields (and therefore
irrigated agricultural fields) are highly dynamic because each culti-
vated field may be at a different stage of development and thus easily
confused with natural land cover classes. As the desired accuracy of
a land-cover map is often inversely related to its categorical detail,
mapping irrigated agriculture as a subclass of agriculture − already an
inherently difficult category to identify andmap − becomes evenmore
difficult.

While it is impossible to predict the exact uses of theMODIS-derived
irrigation dataset presented in this paper, it is highly likely that one
major use (at least by theauthors for their irrigation/climate relationship
study) will be to assess irrigationwater requirements and use by major
irrigated cropland areas. Asmodelingof irrigationwater requirements is
(among other things) directly related to the area of irrigated crops, it is
likely that theerrors in theMODISmapwill propagate through irrigation
water use estimates. This is especially true for those states where the
largest discrepancy between the NASS and MODIS datasets occurs (e.g.
Alabama, Kentucky, North Carolina, North Dakota, Ohio, South Carolina,
South Dakota, Tennessee) (Table 3) and users should exercise caution
when using the MODIS-derived dataset in those locations. However, it
is also important to note that these states are not necessarily the most
arid states with major irrigation needs such as Texas, California, and
Nebraska. Thus, calculated irrigationwater requirements for these areas

Fig. 12. Histogram distribution of the difference between NASS-reported and MODIS-
estimated irrigated area at the county-level.
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will be much less than the major irrigation states and errors related to
area estimates may be less important.

Despite these challenges, the application of the MODIS irrigation
algorithm to the continental US produces a reasonably accurate
map with several advantages over existing products. First, the new
procedure is automated in a sense that the decision- and regression-
tree tools automatically identify irrigation based only on the relevant
information using a physically based set of objective rules. This
objectivity by itself leads to improved prediction accuracies that are
free of user interpretation of irrigation-related spectro-temporal
indices (e.g. Thenkabail et al., 2005). The new algorithm may also be
generalized across both space and time. In terms of space, signatures
generated from the US can be directly applicable to other areas with
similar irrigation conditions without having to retrain/relearn
patterns of irrigation presence. In terms of time, the same signatures
can be applied across years to map irrigation over time without the
necessity of recreating training samples for each year for which the
map is intended. This becomes particularly important when we wish
to quantify change and variability of irrigated areas across time under
population and climate pressure with the least amount of error. This
type of change analysis is considered superior to an approach that
uses two moderate-resolution maps generated from algorithms
based on spatial pattern recognition to infer land-cover and land-use
changes. Given the possibility that irrigated lands will expand globally
to feed growing population, as well as to increasingly accommodate
bioenergy production, our methodology is well positioned to under-
stand changes in irrigated areas. The successful application of our
algorithm in the US is a testament of the capability of the new pro-
cedure to map irrigation over large, continental areas as an input to
a variety of hydrologic, agronomic, economic, and climate studies.

Experience shows that the quality and quantity of the learning
dataset is of paramount importance for accurate predictions of the
location and intensity of irrigation with tree-based models. Currently,
the irrigation learning dataset contains examples only from the US
where they are eventually applied. As the irrigation mapping pro-
cedure is expanded worldwide, more training data, representing an
even greater variety of irrigation-related signatures, will be added to
our database. This global learning sample will then be capable of
locating irrigation in many different environments, especially when
combined with a better climate-based potential irrigation index.

Finally, the spatial detail provided by the new MODIS irrigation
map directly serves the needs of hydroclimatological studies where
information on landscape heterogeneity is important. It is becoming
increasingly clear that changes in land surface properties involving
croplands, especially irrigated croplands, influence local and regional
climates and hydrology by modifying the partitioning of water
between the surface and the atmosphere (Bonan, 2001; Lobell et al.,
2006; Moore and Rojstaczer, 2002; Otterman et al., 1990). However,
at continental and global scales, these climatic and hydrologic effects
of irrigation are still poorly understood, primarily because reliable
datasets that can resolve the presence of dry (non-irrigated) and
wet (irrigated) patches have not been available. The MODIS-based
irrigation map is one way to fill this gap.

8. Conclusions

In this paper, we present a novel classification-based irrigation
mapping procedure that utilizes MODIS time series data coupled with
ancillary data on climate and agricultural extent. The procedure is
built on four parts: i) calibration of a climatological moisture index
along with existing agricultural maps to define irrigation potential; ii)
identification of irrigation-related remotely sensed temporal and
spectral indices; iii) supervised decision tree-based classification of
remotely sensed input and irrigation potential; and iv) estimation of
subpixel distributions of irrigation within each pixel identified as
irrigated. Application of these steps to the continental US produces a

relatively accurate map of irrigated agriculture under dryland irri-
gated conditions (excluding irrigated pastures and paddy rice) circa
2001. As an objective and repeatable methodology that is robust
enough to handle complex forms of irrigation that occur around the
earth, the successful application of our procedure in the US warrants
pursuing a global application. The result of this application is a first
step in a larger research agenda to understand anthropogenic effects
of cultivation, and specifically that of irrigation, on worldwide water
and energy cycles, climate, agricultural productivity, and sustainabil-
ity where accurate, objective, up-to-date maps of irrigation at a global
scale are essential.
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