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Crossover from pure Ising to random-exchange dominated behavior
of the two-dimensional antiferromagnet Rb2Co12xMgxF4

Ch. Binek and W. Kleemann
Angewandte Physik, Gerhard-Mercator-Universita¨t Duisburg, D-47048 Duisburg, Germany

D. P. Belanger
Department of Physics, University of California, Santa Cruz, California 95064

~Received 1 October 1997!

The temperature dependence of the uniform susceptibilityx of diluted two-dimensional Ising antiferromag-
nets Rb2Co12xMgxF4, 0<x<0.4, is investigated in the limit of vanishing external field. Data forx50.15 are
compared with those obtained forx50 and 0.4 by Breedet al. ~1969! and Ikeda~1983!, respectively. Whereas
in the pure case,x50, Fisher’s~1962! ‘‘energetic contribution’’ dominates, Aharonyet al.’s ~1979,1986!
‘‘random contribution’’ becomes increasingly important with increasingx. Taking into account both terms not
only with respect to the global ordering temperatureTN(x), but also in relation to the ‘‘local’’ phase transition
temperaturesTN8 throughout the Griffiths regime,TN(x)<TN8 <TN(0), asatisfactory quantitative description of
x vs T is deduced for anyx above the percolation threshold.@S0163-1829~98!05914-1#

I. INTRODUCTION

Although the temperature dependence of the uniform
zero-field susceptibility of the pure two-dimensional~2D!
Ising antiferromagnet has extensively been studied by Fisher
et al.,1,2 there is, to the best of our knowledge, no convincing
attempt to describe its overall temperature dependence in di-
luted 2D Ising antiferromagnets. It is the aim of this article to
give a quantitative description of the overall temperature de-
pendence of the uniform magnetic zero-field susceptibility of
Rb2Co12xMgxF4 and its dilution dependent evolution. It
turns out, that two aspects are of major importance. On the
one hand, it is the dilution induced crossover from pure Ising
to random-exchange behavior. Here the relevance of
Griffiths-type weak singularities3 has to be considered. As
was shown qualitatively in the case of the diluted 3D Ising
antiferromagnet Fe12xZnxF2, x50.53,4 anomalous behavior
of the uniform susceptibility is expected in the temperature
rangeTN(x)<T<TN(0).

In the case of the 2D system Rb2Co12xMgxF4, the anoma-
lies due to singular behavior at ‘‘local’’ phase transitions
turn out to be directly measurable throughout the above Grif-
fiths range. On the other hand and in addition, with increas-
ing dilution x disorder-induced contributions to the uniform
susceptibility become increasingly important. According to
Aharony and co-workers5,6 these terms are due to the local
imbalance of the sublattice occupations, which arise below
the ordering temperatureTN(x). In this paper evidence is
provided that this conjecture also holds for the entire series
of ‘‘local’’ phase transitions atTN8 within the Griffiths phase,
TN(x)<TN8 <TN(0). It turns out that these contributions are
at the origin of the surprisingly large extra peak that is ob-
served in the vicinity ofTN(x) at sufficiently large dilution,
e.g.,x50.4.7

II. EXPERIMENTAL RESULTS

Single crystals of pure Rb2CoF4 are known as prototypi-
cal 2D Ising antiferromagnets.8 Their 2D magnetic character

originates in the double perovskite structure of the K2NiF4
type. In contrast with the strong antiferromagnetic~af! in-
plane couplingJ of the Co21 ions, there is only weak af
couplingJ8 between adjacent layers (J8/J'1026). The cor-
responding 2D-af long-range order sets in atT<TN
5102 K. Simultaneously, owing to dimensional crossover,
3D long-range order is established.

Figure 1 shows the temperature dependence of the mag-
netic uniform susceptibility of pure Rb2CoF4 ~full circles!.
The data were measured by Breed and co-workers using a
pendulum magnetometer.8 The static susceptibility x
5]M /]H was approximately determined according tox
'M /H whereM is the magnetization andH is a small ap-
plied magnetic field of the strengthH50.77 MA/m ~9640
Oe!. The well-known temperature dependence of the suscep-
tibility of the pure Rb2CoF4 gives rise to the logarithmic
singularity ofd(Tx)/dT vs T at TN'102 K ~Ref. 2! ~Fig. 1,

FIG. 1. Temperature dependence of the zero field susceptibility
x ~circles! of Rb2CoF4 ~data from Ref. 8! and the corresponding
derivative ofTx with respect to temperature~squares!. The solid
and dashed lines represent the best fit of Eq.~11! to the data and its
temperature derivative, respectively~see text!. TN(0) is indicated
by a vertical dashed line.
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squares!. In contrast with that, thex vs T data of
Rb2Co0.85Mg0.15F4 ~Fig. 2, open circles! exhibit a drastically
steepened increase ofx at TuTN(x50.15). It is followed by
a quasilinear increase betweenTN(x)575.2 K andTN(0)
5102 K. Both features are significant deviations from the
temperature behavior of the pure system. In contrast with
Breed and co-workers,8 we measured the temperature depen-
dence of the in-phase componentx8 of the complex ac sus-
ceptibility via superconducting quantum interference device
~SQUID! susceptometry at constant frequencyf 510 Hz.
Since f 510 Hz is far below the typical spin-flip frequency
of '1010 Hz and magnetic losses are negligible, the in-phase
componentx8 of the complex susceptibility is a good ap-
proximation of the static susceptibilityx. Moreover, Ikeda
obtained very similar results on Rb2Co0.8Mg0.2F4 with static
magnetometry.7 Hence, dynamical rounding of the data is
ruled out.

With increasing dilution the evolution of thex vs T data
proceeds in such a way that the steepened increase, which
one observes forx50.15, merges into a pronounced peak at
TN(x) for x50.4 ~Fig. 3, open squares!. For T!TN(x), the
susceptibility increases again with decreasing temperature

according to the paramagnetic response of isolated magnetic
moments. Thex vs T data in Fig. 3 were measured by
Ikeda.7 He used SQUID magnetometry and the approxima-
tion x'M /H with H50.057 MA/m ~720 Oe!.

III. THEORY AND COMPARISON WITH EXPERIMENTAL
RESULTS

According to Fishman and Aharony5,6 the contribution of
the singular part of the free energy to the static uniform
susceptibility of a diluted Ising antiferromagnet is given by

x~T,TN!5
1

T
~A11A2utu12a2A3utu2b1g2f!, ~1!

wheret5(T2TN)/TN is the reduced temperature,A1,2,3 are
constants withA2(t.0)/A2(t,0)'1,9 A3(t.0)[0,6 and
a, b, g are the critical exponents of the specific heat, the
staggered magnetization, and staggered susceptibility, re-
spectively. f.g is the crossover exponent from random-
exchange to random-field critical behavior. It should be no-
ticed that criticality is destroyed by arbitrarily weak external
fields in D52 dimensions as a consequence of the resulting
random fields acting on the af order parameter. Nevertheless,
the crossover exponentf is well defined.6,9 As will be shown
below, our analysis revealsf'1.85, i.e., f/g'1.06 if
g51.75 is accepted for the 2D random-exchange Ising model
~REIM!.6 It is the aim of the following analysis to generalize
Eq. ~1! in order to describe the global temperature depen-
dence ofx in the concentration range 0<x<0.4.

We start with generalizing the firstt-dependent term of
Eq. ~1!. It is called the energetic contribution ofx ~Ref. 6!
and is well known from the pure 2D Ising antiferromagnet.
In that case, the specific heatC is related to the susceptibility
according to

C' f
d

dT
~Tx!, ~2!

where f is a slowly varying function of temperature.2 Inte-
gration of Eq.~2! with respect to the temperature between
the boundariesT and infinity yields forf 'const

xenergy5
b

T S 11
U~T!

F D , ~3!

whereF5 f b andb5 limT→`(Tx) are constants andU(T) is
the magnetic internal energy. For pure Rb2CoF4, U(T) is
exactly known from Onsager’s solution of the 2D Ising
model.10 Although a50 represents the uncertain case with
respect to the Harris criterion,11 it turns out that, in the case
of diamagnetic dilution,a does not experimentally deviate
from zero. The predicted log-log-behavior of the specific
heat12 may play a role extremely close to the critical tem-
perature. However, from an experimental point of view this
is indistinguishable from pure behavior in the case of weak
dilution.13,14 We shall henceforth assume that the well-
known set of critical exponents,a50, b50.125, g51.75,
also holds for the 2D REIM. In particular, one expects that

FIG. 2. Temperature dependence of the in-phase component of
the complex zero-field susceptibility of Rb2Co0.85Mg0.15F4 at con-
stant frequencyf 510 Hz. The full line represents the best fit of Eq.
~11! to the data~see text!. The dashed vertical lines mark the
boundaries of the Griffiths phaseTN(x),T,TN(0). The inset
shows the decomposition of the fitting result into^xenergy& and
^x random& vs T ~broken and solid line, respectively!.

FIG. 3. Temperature dependence of the zero-field susceptibility
x ~squares! of Rb2Co0.6Mg0.4F4 ~data from Ref. 7!. The full line
represents the best fit of Eq.~11! to the data~see text!. TN(x) is
indicated by a vertical dashed line.
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the temperature dependence of the energetic contribution of
the susceptibility of the diluted system follows at least quali-
tatively the behavior of the pure 2D Ising system. Onsager’s
exact expression of the magnetic internal energy reads

U~T!52J coth
2J

kBT F11
2

p S 2 tanh2
2J

kBT
21DK1~k!G ,

~4!

whereJ is the exchange energy,kB is Boltzmann’s constant,
K1(k) is the elliptic integral of the first kind andk
52 sinh (2J/kBT)/cosh2 (2J/kBT). In order to obtain a
closed analytic expression, the elliptic integral may be ap-
proximated by

K1~k!>
p

2
16.43766S 1

~12k2!2p/10021D , ~5!

with a relative accuracy of better then 0.2%. Equation~5! is
an empirical function that interpolates between the numerical
values ofK1 according to a least-squares fit. In particular, the
limiting casesK1(k50)5p/2 and K1(k→1)→` are ex-
actly fulfilled.

In the remainder of Eq.~1!,

x random~T,TN!5
1

T
~A12A3utu2b1g2f!, ~6!

the t-dependent term appears only in diluted systems. It
originates from the fact that the configurational average of
the products of the thermal spin averages do not necessarily
cancel on summing up all possible pairs of these averaged
products.5 Since the thermal spin averages are zero above
TN , this random-exchange term contributes tox only for T
,TN . ForT!TN , utu2b1g2f is a slowly varying function of
temperature withutu2b1g2f→1 for T→0. It is, hence, rea-
sonable to assume the approximate validity of this term out-
side the critical region. This was approximately verified for
the linear susceptibility of the layered 3D REIM system
Fe12xMgxCl2, x50.3, where a steep descent ofx below
TN(x) due to the utu2b1g2f term with 2b1g2f50.62
charaterizes the low-T region.15

Similar behavior is found for Rb2Co12xMgxF4, x50.15
~Fig. 2! and 0.4~Fig. 3!, and will be analyzed below. Very
clearly, however, the temperature dependence ofx strongly
deviates from the expected energylike behavior also atT
.TN(x). For x50.15 we find a weak, but finite convex cur-
vature ~Fig. 2!, which becomes much stronger forx50.4
~Fig. 3!. Similarly, as observed in the case of Fe0.7Mg0.3Cl2,
a broadened peak emerges just aboveTN(x).15 At this point
we have to recall that the temperature range
TN(x)<T<TN(0) represents the Griffiths regime,3 which is
characterized by a continuous series of weak singularities.
They are due to ‘‘local’’ phase transitions that contribute to
the susceptibility according to a distribution functionP(TN8 ),
as was discussed recently for the case of the 3d REIM
Fe0.47Zn0.53F2 in zero4 and nonzero external field.16 In the
following we shall attempt to describe these extra contribu-
tions to x by taking into account that all of them obey a
temperature dependence following Eq.~1!, where t5T/TN8
21 with TN(x)<TN8 <TN(0) and the term (A2 /T)utu12a is
replaced by Eq.~3!. The distribution of ‘‘local’’ critical tem-

peratures originates from the corresponding statistical distri-
bution of the diamagnetic dilution, which accompanies the
process of ideal crystal growth. Hence, we introduce a dis-
tribution functionP(TN8 )dTN8 , which describes the probabil-
ity to find a local critical temperature within the interval
@TN8 ,TN8 1dTN8 #. It is reasonable to assume that the fluctua-
tions of the dilution are normally distributed around the av-
erage valuex. In the limit x→0, the critical temperature of a
2D Ising system with nearest-neighbor interaction is a linear
function of the dilution which is given byTN(x)5TN(0)(1
21.33x).11 Hence, the local critical temperaturesTN8 are also
normally distributed around the average valueTN(x), which
characterizes the critical temperature of the global phase
transition. Below that temperature the whole sample is in-
volved in the process of long-range order. The distribution
function is explicitly given by

P~TN8 !5
1

A2ps
e2~TN~x!2TN8 !2/2s2

, ~7!

wheres determines its width.
Since the SQUID measures the integral magnetic re-

sponse of the sample, the measured susceptibility is given by
the weighted average of all local contributionsx(TN8 ). Keep-
ing in mind the onset of long-range order atT,TN , the
average is given by

^x~T!&5E
TN~x!

TN~0!

dTN8 P~TN8 !x~T,TN8 !. ~8!

The local susceptibility contributions are given by the super-
position ofxenergy, Eq. ~3!, andx random, Eq. ~6!. The fact that
P(TN8 )x(T,TN8 ) is centered around some maximum value
suggests to approximate Eq.~8! by saddlepoint integration
methods.17 Within reasonable approximations~see Appendix
A! straightforward calculation yields the following expres-
sion for the energetic contribution to Eq.~8!,

^xenergy~T!&5

aS 12
U~T!

F D
TN5TM~x!

TAS TM2TN~x!

s2 D 2

1
1

s2

3e2@TN~x!2TM #2/2s2

3~A12e2A2[TN~0!2TM ] 2[((TM2TN~x!)/s2)211/s2]

2A12e2A2~TN~x!2TM !2[ ~~TM2TN~x!!/s2!211/s2] !,

~9!

where a is a proportionality constant, whileU(T) and
TM(T) are given by Eqs.~4! and ~A3!, respectively. The
exchange energyJ, which enters the internal magnetic en-
ergy U(T), is related toTM via uJu5c3 TM in order to take
into account the proportionality betweenJ and the critical
temperature. The proportionality constantc3 is, however, ex-
pected to deviate from the value of the pure system, because
in the case of a diluted systemJ has the meaning of an
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effective exchange within a virtual crystal approximation.
Hence,c3 enters Eq.~4! as an unknown fitting parameter.

The above procedure of calculatinĝxenergy& applies
similarly to the calculation of ^x random&. Since

(2A3 /T)utu2b1g2f[0 for T.TN8 , its averaging with re-
spect toP(TN8 ) has to be done subsequently for the tempera-
ture regionsT,TN(x), TN(x),T,TN(0), andT.TN(0).
Straightforward calculation~see Appendix B! yields

^x random&5
k

T H I 12c4I 2@ l 5TN~x!,u5TN~0!# if T,TN~x!

I 12c4I 2@ l 5T,u5TN~0!# if TN~x!<T<TN~0!

I 1 if T.TN~0!
J , ~10!

with c45A3 /A1 and I 1 , I 2( l ,u) given by Eqs.~B2! and
~B8!, respectively.

In the final expression of the susceptibility

x5x01xp /T1^xenergy&1^xrandom&, ~11!

we have to take into account two correction terms that are
not included in the above analysis.x0 takes into account the
background of the van Vleck type. It amounts to1

3 of the
total parallel susceptibility in the case of the pure system8

~see Fig. 1!. xp /T takes into account the paramagnetic sus-
ceptibility of isolated magnetic moments. Their influence in-
creases with increasing dilution owing to the increasing con-
centration ratio of isolated to exchange coupled magnetic
moments.

Figure 1~solid line! shows the best fit of Eq.~11! to thex
vs T data of pure Rb2CoF4. Clearly in this casêx random& and
xp /T vanish for obvious reasons. Further,^xenergy& degener-
ates to Eq.~3!. The final result of the fitting procedure yields
b5116.604 K, 1/F50.616, J/kB592.92 K, andx050.61.
Obviously, the data are well described by Eq.~11! within a
wide temperature range. For the pure 2D Ising antiferromag-
net on a square lattice the exact relationTN
50.5673qJ/2kB holds,1 whereq54 is the number of mag-
netic nearest neighbors. Using this relation we obtainTN
5105.4 K. Obviously, this relation also holds for our ‘‘en-
ergetic’’ approximation, because the derivatived/dT (Tx)
vs T of the fitting result~Fig. 1, broken line! exhibits a vir-
tually logarithmic singularity atTN(0)5105.4 K, which de-
viates from the experimental valueTN(0)'102 K ~Fig. 1,
squares! by only '3%. Although this discrepancy may ori-
gin from the inadequate temperature resolution of the experi-
mental data in the vicinity ofTN , a systematic shift of the
fitting result cannot be ruled out according to the weak, but
finite Heisenberg-type character of the exchange interaction
in Rb2CoF4.

18 However, the large value of the background
x050.61 remains unreasonable. It may indicate that the ap-
proximation x'M /H is not appropriate in the case ofH
50.77 MA/m used in the experiments.8 Probably, the ap-
plied magnetic field is not small enough in order to avoid
nonlinearities ofM vs H.

Figure 2~solid line! shows the result of the best fit of Eq.
~11! to thex vs T data of Rb2Co0.85Mg0.15F4. With regard to
the relatively high temperatures,T.50 K, the paramagnetic
contributionxp /T has been neglected. The fit involves the
proportionality constantsa5384.06 andk590.73 that enter

Eqs. ~9! and ~10!, respectively. Moreover, the fitting proce-
dure yields the values of 1/F50.049 that enters Eq.~1!,
c25132.24 that enters Eq.~A3!, c351.19 that mediates be-
tween the effective exchange, andTM , c450.483 that enters
Eq. ~10!, the van Vleck backgroundx050.31 ~Ref. 8! and
s50.38 the width of the distribution functionP(TN8 ). Fur-
thermore we find 2b1g2f50.14, which impliesf51.86.
Hence,f/g51.06 and 2b1g2f50.14,2b50.25 is in ac-
cordance with theory.6 The inset of Fig. 2 shows the ener-
getic ~dashed line! and the random exchange contribution
~solid line!, respectively. As expected, the steep increase ofx
vs T below TN(x) originates exclusively from the nonener-
getic contribution̂ x random&. The quasilinear increase ofx vs
T within TN(x),T,TN(0) appears to be accidental in view
of the opposite curvatures revealed by both contributions.
Hence, this remarkable temperature dependence cannot be
taken as a typical signature of the Griffiths phase as might
have been assumed at the first glance. However, since the
Griffiths temperatureTN(0) enters our theory, Eqs.~9! and
~10!, it is at the origin of a subtle kinklike temperature de-
pendence ofdx/dT vs T at TN(0). In fact, closer inspection
of the temperature derivative of the experimental data seems
to confirm this prediction, although the scatter of the data
prevents its ultimate evidence.

Figure 3~solid line! shows the best fit of Eq.~11! to thex
vs T data of Rb2Co0.6Mg0.4F4. In this case the energetic con-
tribution to ^x& turns out to be negligible with respect to the
random-exchange contribution. The fitting procedure yields
k56.60, c450.68, xp57.46, TN(x)517.79 K, and x0
50.04. Very remarkably, we find 2b1g2f50.13, which
differs but slightly from the corresponding fitting parameter
for x50.15. Again, the condition 2b1g2f50.13,0.25 is
fulfilled. As expected, the resulting widths52.66 of the dis-
tribution function is larger than forx50.15. The observed
amount, however,s~0.4!'7.1s~0.15!, does not follow the
relation Dx}Ax, which one might expect from natural sta-
tistics. Probably this is a consequence of the crossover from
equilibrium ~Gaussian! to percolation ~Poisson! statistics
when approaching the percolation threshold,xp50.41. At
closer inspection of Fig. 3 the fit exhibits a kinklike behavior
at TN(x). According to our theory, this reflects the residual
influence of the temperature dependence of the thermal spin
averages, which vanish atT.TN8 . Unfortunately the tem-
perature resolution of the experimental data is not sufficient
in order to resolve this detailed structure.
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IV. CONCLUSION

Although diamagnetic dilution does virtually not affect
the critical behavior of 2D Ising systems, there are strong
qualitative deviations of the uniform magnetic susceptibility
x of Rb2Co12xMgxF4 from the ‘‘energetic’’x vs T behavior
of the pure compound,x50. First, owing to subtractive
random-exchange extra contributions,^x random&, we observe
a steep decrease ofx vs T just below TN(x). Second,
Griffiths-type weak singularities have to be taken into ac-
count at temperatures betweenTN(x) and TN(0). They are
composed of contributions due to bothxenergy and x random
that form a flat, nearly linear anomaly in the casex50.15.
For higher dilution,x50.4, the contributions due tox random
give rise to a pronounced peak atTN(x).

Originally, Ikeda7 proposed a coupling mechanism be-
tween the uniform and the staggered susceptibility in order to
explain this peak structure. However, within this paper we
have shown, that the dilution-induced evolution of the peak
structure inx vs T originates from the crossover from pure
Ising to random-exchange dominated behavior. Since this
crossover affects also the temperature dependence ofx out-
side the critical region, we have generalized Aharony’s ex-
pression ofx for REIM antiferromagnets6 in a phenomeno-
logical way. This generalized expression has then to be
averaged with respect to the distribution of local critical tem-
peratures, which are distributed throughout the temperature
interval TN(x),TN8 ,TN(0) of the Griffiths phase. Within
the framework of an averaged and generalized susceptibility
function we are thus able to model the temperature depen-
dence of the susceptibility of Rb2Co12xMgxF4 for the con-
centrationsx50, 0.15, and 0.4, i.e., throughout the concen-
tration range in which long-range order is exhibited. Forx
50.15 the susceptibility mediates between two extreme sce-
narios, the pure Ising behavior (x50), which is character-
ized by the energetic susceptibility^xenergy&, and the REIM
behavior, which is dominated bŷx random& in the limit of
strong dilution,x50.4.

It will be interesting to consider the 3D REIM case in an
analogous way. Data obtained previously on Fe0.7Mg0.3Cl2
~Ref. 15! seem to hint at strong importance of^x random&,
which dominates not only atT,TN , but also in the peak
region just aboveTN . Analysis will, however, be more te-
dious than in the above 2D case, since the pure-to-random
crossover inD53 dimensions is connected with a change of
the critical behavior. This rules out, e.g., a simple approxi-
mation of the energylike contribution of the susceptibility.
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APPENDIX A

We start with the saddlepoint integration of^xenergy&. Ac-
cording to Eq.~7! the temperature-dependent positionTM of
the maximum value ofP(TN8 )x(TN8 ) can be determined from
the following equation:

S ]x

]TN8
D

TM

5x~TM !
TM2TN~x!

s2 . ~A1!

From that we calculateTM5TM(T) while we restrict our-
selves for simplicity to the approximation

x~TN8 !5
c1

T F12c2S 12
TN8

T D lnU12
TN8

T
UG , ~A2!

which reproduces the temperature behavior of Eq.~2! in the
critical regionT'TN8 .1 Althoughc1 andc2 are known in the
case of the square Ising lattice,c2 becomes a free parameter
within the following analysis in order to compensate the de-
viations of Eq.~A2! with respect to Eq.~3! outside the criti-
cal region. In the limit T'TM the approximation
(12TM /T)lnu12TM /Tu'0 holds. Insertion of Eq.~A2! into
Eq. ~A1! and using the above approximation yields

TM5TN~x!1
c2s2

T
. ~A3!

A series expansion ofx(TN8 ) andP(TN8 ) up to first and sec-
ond order in powers of (TN8 2TM), respectively, yields

x~TN8 !P~TN8 !'A1
B

2
~TN8 2TM !2 ~A4!

with A5x(TM)P(TM) and B52A@((TM2TN(x))/s2)2

11/s2#. The linear term of the expansion vanishes due to
Eq. ~A1!. With Eq. ~A4! we calculate the weighted average
of xenergywithin the saddle-point approximation. It reads

^xenergy&}AE
TN~x!

TN~0!

dTN8 e~2uBu/A!~TN8 2TM !2
. ~A5!

Since exp@2uBu(TN82TM)2/A# does not vanish atTN(x) and
TN(0), it is not appropriate to shift the boundaries of the
integration towards infinity. Hence, in order to calculate the
Gaussian integral with finite boundaries, we use the approxi-
mation

E
0

a

dt e2t2'
1

2 AE
0

r̄
drE

0

2p

dw r e2r 2
5

1

2
Ap~12e2 r̄ 2

!,

~A6!

where r̄ 5a21/4 is the geometrical average of the radius of
the largest inner and the smallest outer circle that fills in and
contains a square of the area 4a2, respectively. Within this
approximation Eq.~A5! yields the explicit result of Eq.~9!.

APPENDIX B

In the caseT,TN , ^x random& is given by

^x random&}
A1

T H E
TN~x!

TN~0!

dTN8 e2@TN8 2TN~x!#2/2s2

2c4E
TN~x!

TN~0!

dTN8 UT2TN8

TN8
U2b1g2f

e2@TN8 2TN~x!#2/2s2J
~B1!
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with c45A3 /A1 . Using approximation~A6! the first integral
yields

I 1 :5E
TN~x!

TN~0!

dTN8 e2@TN8 2TN~x!#2/2s2

>Ap

2
sA~12e2@TN~0!2TN~x!#2/A2s2

!. ~B2!

The solution of the second integral via saddle-point integra-
tion requires the calculation of the maximum position ac-
cording to d/dTN8 @ u(T2TN8 )/TN8 u2b1g2fP(TN8 )# uT

N8 5TM
50.

Taking into accountT,TN8 , one obtains

@TM2TN~x!#~TM2T!TM5~2b1g2f!Ts2. ~B3!

In order to obtain a quadratic equation inTM , Eq. ~B3! is
roughly simplified within the approximationTM'TN(x). It
yields

@TM2TN~x!#~TM2T!TN~x!5~2b1g2f!Ts2,
~B4!

which has the solution

TM
random5

1

2 S @TN~x!1T#

1A@TN~x!2T#214~2b1g2f!s2
T

TN~x!
D .

~B5!

Since TM
random is located within the interval

TN(x),TM
random,TN(0), thecorresponding negative solution

of Eq. ~B5! has to be discarded.
The series expansion ofu(T2TN8 )/TN8 u2b1g2f exp$2@TN8

2TN(x)#2/2s2% up to the second order in powers of (TN8
2TM

random) yields for T,TN(x),

^x random&}
A1

T S I 12c4Arandom

3E
TN~x!

TN~0!

dTN8 e2~ uBrandomu/Arandom!~TN8 2TM
random

!2D
~B6!

with Arandom5A2ps(12T/TM
random)2b1g2fP(TM

random) and

Brandom52ArandomS ~2b1g2f!T
2TM

random2T

@TM
random~TM

random2T!#2

1
1

s2D ,

while I 1 is given by Eq.~B2!. In order to obtain an explicit
expression of the second integral that enters the proportion-
ality ~B6!, we calculate

I 2~ l ,u!:5ArandomE
l

u

dTN8 e2~ uBrandomu/Arandom!~TN8 2TM
random

!2

~B7!

using generalized lower and upper boundariesl and u. In-
sertion ofArandom and Brandom into Eq. ~B7! and application
of the approximation~A6! yields

I 2~ l ,u!5
ps

A2

~12T/TM
random!2b1g2fP~TM

random!

A~2b1g2f!T
2TM

random2T

@TM
random~TM

random2T!#2 1
1

s2

3$A12e2A2$@~2b1g2f!T#~2TM
random

2T!/@TM
random

~TM
random

2T!#211/s2%~u2TM
random

!2

2A12e2A2$@~2b1g2f!T#~2TM
random

2T!/@TM
random

~TM
random

2T!#211/s2%~ l 2TM
random

!2
%. ~B8!

In the caseTN(x),T,TN(0), ^x random& is given by

^x random&}
A1

T
$I 12c4I 2@ l 5T,u5TN~0!#%, ~B9!

according to (2A3 /T)utu2b1g2f[0 for T.TN8 . In the caseT.TN(0), thesecond term of Eq.~B9! vanishes.
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