
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

C.J.G.J. Uiterwaal Publications Research Papers in Physics and Astronomy

8-1-1998

Self-calibrating method for measuring local
multiphotonionization yields as a function of
absolute intensity
Cornelis J. Uiterwaal
University of Nebraska - Lincoln, cuiterwaal2@unl.edu

B. Witzel
Foundation for Research and Technology–Hellas, Institute of Electronic Structure & Laser, Laser and Applications Division,
GR-711 10 Heraklion, Crete, Greece

H. Schröder
Max-Planck-Institut für Quantenoptik, D-85740 Garching, Federal Republic of Germany

K.-L. Kompa
Max-Planck-Institut für Quantenoptik, D-85740 Garching, Federal Republic of Germany

Follow this and additional works at: http://digitalcommons.unl.edu/physicsuiterwaal
Part of the Physics Commons

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska -
Lincoln. It has been accepted for inclusion in C.J.G.J. Uiterwaal Publications by an authorized administrator of DigitalCommons@University of
Nebraska - Lincoln.

Uiterwaal, Cornelis J.; Witzel, B.; Schröder, H.; and Kompa, K.-L., "Self-calibrating method for measuring local multiphotonionization
yields as a function of absolute intensity" (1998). C.J.G.J. Uiterwaal Publications. Paper 10.
http://digitalcommons.unl.edu/physicsuiterwaal/10

http://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fphysicsuiterwaal%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/physicsuiterwaal?utm_source=digitalcommons.unl.edu%2Fphysicsuiterwaal%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/physicsresearch?utm_source=digitalcommons.unl.edu%2Fphysicsuiterwaal%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/physicsuiterwaal?utm_source=digitalcommons.unl.edu%2Fphysicsuiterwaal%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/193?utm_source=digitalcommons.unl.edu%2Fphysicsuiterwaal%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.unl.edu/physicsuiterwaal/10?utm_source=digitalcommons.unl.edu%2Fphysicsuiterwaal%2F10&utm_medium=PDF&utm_campaign=PDFCoverPages


 

Phys. Rev. A 58, 1592 - 1594 (1998) 

[Issue 2 – August 1998] 

 

 

Self-calibrating method for measuring local multiphoton-

ionization yields as a function of absolute intensity  
C. J. G. J. Uiterwaal1 *, B. Witzel2, H. Schröder1, and K.-L. Kompa1

1Max-Planck-Institut für Quantenoptik, P.O. Box 1513, D-85740 Garching, Federal Republic of 

Germany 
2Foundation for Research and Technology–Hellas, Institute of Electronic Structure & Laser, 

Laser and Applications Division, P.O. Box 1527, GR-711 10 Heraklion, Crete, Greece 

 
Received 3 April 1998 

 

We present a self-calibrating method for measuring local multiphoton-ionization yields as a 

function of absolute intensity. In contrast to the method recently described by Walker et al. [Phys. 

Rev. A 57, R701 (1998)], our method does not require any assumption on the intensity 

distribution inside a laser focus, nor does it use any mathematical procedure such as 

deconvolution that would be based on such an assumption. In this sense, our method is self-

calibrating. The proposed method immediately gives ion yields as a function of absolute intensity. 

Furthermore, it allows the intensity distribution inside the focal volume to be measured with a 

spatial resolution of a few μm. The proposed method uses a five-grid high-resolution reflecting 

time-of-flight ion spectrometer, in combination with an electron spectrometer. The advanced 

design of the ion spectrometer allows detection of ions originating exclusively from a well-defined 

source volume with μm-size dimensions, thus enabling absolute measurements of ionization 

probabilities and saturation intensities. By moving the source volume of the ion spectrometer 

through the focal region, we can quantitatively measure local ion densities inside the focus. The 

corresponding spatial absolute intensity distribution is measured by electron-ion coincidence 

measurements via the ponderomotive shifts in the electron spectrum of a suitable target gas, e.g., 

He. Both aspects of the proposed method (ion measurements from a confined volume and 

intensity measurements based on ponderomotive shifts) have been successfully applied in the 

past. 
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We present a self-calibrating method for measuring local multiphoton-ionization yields as a function of
absolute intensity. In contrast to the method recently described by Walkeret al. @Phys. Rev. A57, R701
~1998!#, our method does not require any assumption on the intensity distribution inside a laser focus, nor does
it use any mathematical procedure such as deconvolution that would be based on such an assumption. In this
sense, our method is self-calibrating. The proposed method immediately gives ion yields as a function of
absolute intensity. Furthermore, it allows the intensity distribution inside the focal volume to be measured with
a spatial resolution of a fewmm. The proposed method uses a five-grid high-resolution reflecting time-of-flight
ion spectrometer, in combination with an electron spectrometer. The advanced design of the ion spectrometer
allows detection of ions originating exclusively from a well-defined source volume withmm-size dimensions,
thus enabling absolute measurements of ionization probabilities and saturation intensities. By moving the
source volume of the ion spectrometer through the focal region, we can quantitatively measure local ion
densities inside the focus. The corresponding spatial absolute intensity distribution is measured by electron-ion
coincidence measurements via the ponderomotive shifts in the electron spectrum of a suitable target gas, e.g.,
He. Both aspects of the proposed method~ion measurements from a confined volume and intensity measure-
ments based on ponderomotive shifts! have been successfully applied in the past.@S1050-2947~98!09408-6#

PACS number~s!: 32.80.Rm

Very recently, Walker, Hansch, and van Woerkom@1#
described a method for measuring multiphoton-ionization
~MPI! ion yields resolved for intensity. In their method, the
experimental problem of spatial averaging is circumvented
by detecting only a slice of the focal region, and applying a
deconvolution technique to the measured signal, making cer-
tain assumptions on the laser beam profile that limit the ap-
plicability of their method. In this Brief Report we will
briefly describe a more elegant method, that does not try to
‘‘circumvent’’ the problem of spatial averaging in MPI ex-
periments, but simply eliminates it, and is of general appli-
cability.

In general, the ion~or electron! yield signal measured in
pulsed-laser high-intensity MPI experiments is in fact a spa-
tiotemporal average of particle yields over the source volume
of the spectrometer that is used and the specific temporal
pulse shape of the laser. Although the high order of many
processes that are studied may help to reduce the effects of
spatial averaging in specific cases, there is a fundamental
experimental problem facing us here. In principle, one ide-
ally would like to measure ion yields as a function of peak
intensity for a given pulse shape, without any spatial averag-
ing. As clearly explained by Lambropoulos@2#, temporal ef-
fects ~i.e., caused by the rising and falling of the laser pulse
during its temporal evolution! cannot be neglected in high-
intensity experiments. However, temporal effects are inter-
esting in the sense that the dynamics of the system is in-

volved. Spatial intensity variations, on the other hand, just
lead to blurring of the intensity dependence of the signal to
be measured, and tend to obscure the underlying physics. In
mathematical terms, when the source volume of the ion spec-
trometer is unrestricted~i.e., its typical dimensions are much
larger than the typical structures in the spatial beam profile!,
the experimentally measured ion signalNexpt

unr (E) as a func-
tion of total laser pulse energyE is given by the spatiotem-
poral integral

Nexpt
unr ~E!}

1

DV E E E all
space

drE
2`

`

dt h~r !R„I ~E,r ,t !…,

~1!

whereR(I ) ~the quantity of main interest here! is the ion rate
as a function of intensity,h ~r ! is the local collection effi-
ciency of the spectrometer@0<h(r )<1#, and DV
5***drh(r ) is the effective volume of the region in space
the spectrometer accepts particles from~the source volume!.
In Eq. ~1!, we have explicitly written the dependence of the
intensity on space and time. As Eq.~1! shows, ions are col-
lected from all points in spacer whereh(r )Þ0, and a cor-
responding range of intensitiesI (E,r ,t) contributes to
Nexpt

unr (E). For an unrestricted source volume, this range of
contributing intensities is so large that the intensity depen-
dence ofR(I ) is ‘‘smeared out.’’ Furthermore, the relative
contribution of a specific intensity interval depends on the
spatial volume where this intensity range is found. This is
what is generally called the volume effect. In this Brief Re-
port we will briefly describe a method that enables us~i! to
detect particles from a volume in space with fixed and
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known dimensions that is so small thath ~r ! can be effec-
tively replaced by ad function located at a specific pointr0
in space;~ii ! to position this pointr0 at any desired position
in space; and~iii ! to measure the peak intensity at this point
in space@i.e., the absolute maximumI 0(E,r0) of I (E,r0 ,t)
for a given pulse energyE# in an absolute and unambiguous
way. Using this method, we immediately obtain the intensity
dependence of MPI ion yields by simply movingr0 through
the focal volume. The authors of Ref.@1# demonstrate that
their method can be applied for a Gaussian beam profile.
However, the feasibility of their deconvolution method de-
pends very critically on the intensity distribution, and thus
their method has a rather limited applicability in practice.
Our method, on the other hand, does not rely on~possibly
speculative! assumptions on the beam profile inside the focal
volume, nor does it need~possibly cumbersome! mathemati-
cal procedures based on such assumptions to be invoked. On
the contrary, the method we propose even allows detailed
analysis of the intensity distribution in the focal volume and
thus is an important tool for beam diagnostics. Because in
our so-called confined-volume method the source volume of
the spectrometer has fixed and known small dimensions~;2
mm in the critical direction has been achieved@3#!, it does
not suffer from any volume effect. The ion yields measured
with this method are given by the time integral

Nexpt
conf~E,r0!}E

2`

`

dtR„I 0~E,r0!F~ t !…, ~2!

where we have explicitly factorized out the temporal profile
of the laser pulseF(t), normalized according to 0<F(t)
<1. The peak intensity can be varied by varyingE and/or
r0 . However, to vary the laser energyE one typically would
put some filter in the laser beam, and this may lead to un-
wanted changes in the intensity distribution. Therefore varia-
tion of r0 is the preferred way to vary intensity. Briefly, the
confined detection volume of the five-grid spectrometer@4#
is realized as follows. A laser beam passes between the elec-
trically grounded entrance slit of the spectrometer and a re-
peller at kV voltage at a few mm distance. The entrance slit
geometrically cuts off the detection volume in two dimen-
sions. In the third direction, parallel to the spectrometer axis,
ions are labeled by the electrostatic equipotential surface
they are created on, and the kinetic energy they have when
entering the grounded spectrometer entrance has a one-to-
one relation to their initial position. The five-grid spectrom-
eter accepts ions only from a limited region in space by
acting as an energy bandpass filter. By changing the poten-
tials of the five grids, the characteristics of this bandpass
filter are changed, and thus the detection volume is moved in
space. The feasibility of our method is illustrated by Fig. 1,
where we show the spatial distribution of H2O

1 ions~circles!
inside the focus of a 170-fs Ti:sapphire laser beam (l
5790 nm). In these measurements, the confined volume was
400 mm wide along the propagation direction of the laser,
and only;20 mm wide in both other~critical! directions@3#.
The beam waist with a diameter of about 170mm was
scanned by moving the confined volume in steps of typically
5 to 10 mm. The differences between the left and the right
wing show that the beam profile is particularly asymmetric,
and for this case a deconvolution method would be unrealis-

tic. The reduction of the H2O
1 yield in the center, where the

intensity is about 1016 W cm22 ~estimated by conventional
methods! is caused by photodissociation.

To measure absolute intensities inside the focal region,
the five-grid spectrometer only needs to be extended by a
very simple time-of-flight electron spectrometer. Using a
suitable gas, such as He, one can deduce the intensity at any
position in space by performing electron-ion coincidence
measurements. In that case, a repeller with a slit must be
used, to allow electrons to enter the electron spectrometer,
and the repeller voltage must be pulsed, so that the electrons
can drift away under field-free conditions. A very slow 1-eV
electron would travel the typical distance of 1 mm between
the laser focus and the repeller in 1.7 ns, so a delay of a few
ns between the laser pulse and the voltage pulse on the re-
peller is sufficient. The He ions, on the other hand, have
thermal velocities of about 1.1mm ns21 at room tempera-
ture, so they are essentially frozen in space during this ns
delay, and the confined volume remains well defined. In this
way, a kinetic energy spectrum can be recorded for electrons
originating exclusively from the confined volume. As was
demonstrated in Ref.@5#, the redshift in a He above-
threshold ionization~ATI ! spectrum is proportional to the
peak intensity of the laser pulse for intensities up to about the
saturation intensity of (6.960.8)31014 W cm22 ~at 248.6
nm!. This redshift is caused by the ponderomotive shiftUp
of the ionization threshold given~in practical units! by

Up~eV!593.4@l~mm!#2I ~1015 W cm22!, ~3!

wherel is the wavelength andI the intensity. Thus, for every
positionr0 of the confined volume, a recorded coincident He
ATI spectrum will immediately reveal the absolute intensity.
In practice, the He pressure must be optimized for maximum
signal-to-noise ratio, and one has to correct for random co-
incidences, e.g., by correlating electrons from one laser pulse
with ions from the next one. However, space does not permit
a detailed discussion of such practical aspects, and we want

FIG. 1. Dependence of the H2O
1 yield on the radial positionx

of the confined volume inside the beam waist of a Ti:sapphire laser
~l5790 nm, pulse duration 170 fs!. The intensity in the center
(x'125mm) is of the order of 1016 W cm22. The confined volume
was moved through the focus in steps of typically 5 to 10mm.
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to stress the generality of the proposed method. Anyhow, the
intensity measurements can be done once and for all, and
only need to be repeated when the laser profile is changed.
Since the ion yield measurements with a moving confined
volume do not require the laser beam to be manipulated, this
profile remains unaffected.

In summary, we have proposed a self-calibrating method
for measuring MPI ion yields as a function of absolute in-
tensity, that is free of volume effects, and is intensity re-

solved. The method is generally applicable, and does not
require a specific laser profile. It is based on concepts that
have already proved their applicability and reliability in the
past. As a spinoff, our method allows absolute intensity dis-
tributions inside a beam waist to be measured withmm reso-
lution, and thus is a valuable tool for laser beam diagnostics.

C.I.G.T.U. gratefully acknowledges the Alexander von
Humboldt-Stiftung for support.
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