Department of Veterinary and Biomedical Sciences

2006 Annual Report

University of Nebraska-Lincoln
Institute of Agriculture and Natural Resources
Department of Veterinary and Biomedical Sciences

Facilities

Veterinary Basic Science
Lincoln, NE

Veterinary Diagnostic Center
Lincoln, NE

Great Plains Veterinary
Educational Center
Clay Center, NE
TABLE OF CONTENTS

Department of Veterinary and Biomedical Sciences Personnel 9-16
 Faculty .. 9
 VBMS Researchers, Postdoctoral and Senior Research Associates 10
 VBMS Adjunct and Courtesy Faculty .. 11
 Emeriti Faculty ... 11

VBMS Faculty and Staff by Function and Unit ... 9-16

VBMS Honors, Awards and Recognitions, 2006 .. 17-19

VBMS Committee Assignments, 2006/2007 ... 20-22

Faculty Profiles .. 23-45
 Raul G. Barletta, BS, MS, PhD ... 23
 Bruce W. Brodersen, BS, DVM, MS, PhD .. 24
 Michael P. Carlson, BS, MS, PhD ... 25
 Subash Das, BSVc, MVSc, PhD .. 26
 Alan R. Doster, DVM, MS, PhD, ACVP ... 27
 Gerald E. Duhamel, BS, DMV, PhD, ACVP ... 28
 M. Rohan Fernando, BS, MSc, PhD, MPhil ... 29
 Dicky Dee Griffin, BS, DVM, MS ... 30
 Clinton J. Jones, BA, PhD .. 31
 Clayton L. Kelling, BS, MS, PhD, DVM ... 32
 Marjorie F. Lou, BS, MS, PhD ... 33
 David S. McVey¹, PhD, DVM ... 34
 Rodeny A. Moxley, DVM, PhD ... 35
 Fernando A. Osorio, MV, MS, PhD, ACVM ... 36
 Asit K. Pattnaik, BS, MS, PhD ... 37
 Douglas G. Rogers, BS, DVM, MS, PhD ... 38
 Gary P. Rupp, DVM, MS ... 39
 John A. Schmitz², DVM, PhD, ACVP ... 40
 David R. Smith, BS, DVM, PhD, ACVP, ABVP .. 41
 Greg A. Somerville, PhD, MS, BS ... 42
 David J. Steffen, BS, DVM, PhD, ABVP .. 43
 Arden R. Wohlers, BS, DVM ... 44
 Y. “Joe” Zhou, BSc, PhD ... 45

VBMS Researchers, Postdoctoral Research Associates and Senior Research
 Associates Profiles ... 46-47

Academic Appointment Summary .. 48
 Veterinary and Biomedical Sciences Trend, 11-Year Report 49
VBMS Teaching Program - Courses, 2006 .. 50-51
Veterinary and Biomedical Sciences Department Courses 50-51
Enrollment VBMS Courses .. 52
Spring, Summer and Fall Semesters 2006 .. 52
Undergraduate Enrollment/Degrees Obtained ... 53
Nebraska Residents Enrolled in KSU/CVM, Academic Year 2006 54
(05-2005/04-2006) .. 54
Nebraska Residents that Graduated from Kansas State University, May 2006 ... 55
UNL Students Attending Veterinary Colleges Other Than Kansas State University or Iowa State ... 56
Graduate Students (MS) ... 57
Graduate Students (PhD) .. 57-59
Graduate Degrees Obtained in 2006 .. 60
Veterinary and Biomedical Science - Seminars .. 61-64
US Meat Animal Research Center (MARC) In-House Seminars 64

Great Plains Veterinary Educational Center (GPVEC) 65-72
Overview - Gary P. Rupp, Professor and Director 65-68
Beef Cattle Production Management Series - 1993-2005 69
Beef Cattle Production Management Series Participant Location 70
UNL - GPVEC Student Enrollment - 1990-2007 71
2007-2008 Electives .. 72

VBMS Research Program ... 73-99
Faculty Research Interests .. 73-74
VBMS Agricultural Research Division (ARD) Research Projects 75-77
Research Projects - Progress Summaries ... 79-99

International Activities, 2006 .. 100-101

Department of Veterinary and Biomedical Sciences
Veterinary Extension Program, 2006 ... 102-107
Topics/Titles of Extension Program Emphases 102
D. Dee Griffin ... 102
David R. Smith .. 102
Extension Faculty Programs ... 103-107
D. Dee Griffin .. 103-105
David R. Smith .. 105-107

Nebraska Veterinary and Diagnostic Center (NVDC), 2006 108-118
Overview and Director's Message, .. 108-112
Dr. David J. Steffen, Associate Professor and Director 108-112
Accessions by Species by Month - (January 2006 - December 2006) 113
Summary of Laboratory Procedures - (January 2006 - December 2006) 114
Number of Accessions, Previous Five Years ... 115
Number of Laboratory Procedures Conducted, Previous Five Years 115
Lag Time Report - Veterinary Diagnostic Center
VBMS Grants and Contracts Program, 2006

- **Active Grants and Contracts Funded in 2006** ... 119-121
- **Active Grants and Contracts Continued from Previous Years** 122-126
 - Commodity ... 126-127
 - Industry .. 127
 - State .. 127
 - Revenues Generated .. 128
- **Grant Proposals Submitted in 2006** .. 129-130
 - Teaching Grants .. 131
 - Private Industry .. 131
- **Grants Submitted, not Funded in 2006** .. 132
- **Five-Year Record of Grants and Contracts** ... 133-142
 - Industry Grants .. 142
 - Generated Revenues .. 142
 - Intramural Grants .. 142
 - Travel Grants .. 142
 - UCARE Program Grants .. 143

Patents Pending in 2006

- .. 144

Publications by VBMS Faculty in 2006

- **Refereed Publications, Year 2006** .. 145-148
- **Refereed Journal Articles, in Press or Accepted in 2006** 149
- **Articles Submitted to Refereed Journals in 2006** 150-153
- **Five-Year Record of Refereed Publications, 2001-2006** 154-173
- **Non-Refereed Publications and Research Reports for 2006** 174
- **Books and Book Chapters in 2006** ... 175
- **Other Publications-Public Press, Lay Journals, Etc., for 2006** 176
- **Extension Publications in 2006** .. 177

Computer Software, Other Publications or Media Developed in 2006

- **Brodersen, Bruce W.** ... 178
- **Doster, Alan R.** ... 178
- **Zhou, You (Joe)** ... 178

Presentations by VBMS Faculty in 2006

- .. 179-191

Selected Committees, Editorial and Other Appointments, 2006

- **Barletta, Raúl G.** ... 192
- **Brodersen, Bruce W.** .. 192
- **Carlson, Michael P.** .. 192
- **Doster, Alan R.** ... 192
- **Duhamel, Gerald E.** .. 192
Griffin, Dickey D. ... 194
Jones, Clinton J. .. 195
Kelling, Clayton L. ... 195
Lou, Marjorie F. ... 195-196
McVey, D. Scott ... 196
Moxley, Rodeny A. ... 196-197
Osorio, Fernando A. .. 197
Pattnaik, Asit K. ... 197
Rupp, Gary P. .. 197
Smith, David R. ... 198
Somerville, Greg A. .. 198-199
Steffen, David J. ... 199
Wohlers, Arden ... 199

Articles Regarding the Department in 2006 ... 200

Departmental Budget Summaries, 2006 ... 201-202
 Budget, Veterinary and Biomedical Sciences Department -
 Fiscal Year 2006 ... 201
 Summary of Other Income - Fiscal Year 2006 ... 201
 Nebraska Veterinary Diagnostic Laboratory System Revolving Account
 Summary for Fiscal Year 2006/2007 ... 202

Nebraska Agricultural Statistics, 2005/2006 ... 203-205
 Nebraska 2005/2006 Cash Receipts from Farm Marketings by
 Commodity ... 203
 Nebraska - 2006 Rank in Agriculture ... 204-205

Appendix ... 206-214
 The 47th George A. Young Swine Health and Management Conference,
 South Sioux City, Nebraska ... 207-210
 The 45th Annual Meeting of the North Central Conference of Veterinary
 Laboratory Diagnosticians, Holiday Inn Downtown, Lincoln 211-214
List of Tables

<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Table 1</td>
<td>Beef Cattle Production Management Series, 1993-2005</td>
<td>69</td>
</tr>
<tr>
<td>Table 2</td>
<td>Beef Cattle Production Management Series Participant Location</td>
<td>70</td>
</tr>
<tr>
<td>Table 3</td>
<td>UNL - GPVEC Student Enrollment, 1990-2007</td>
<td>71</td>
</tr>
<tr>
<td>Table 4</td>
<td>2007-2008 Electives</td>
<td>72</td>
</tr>
<tr>
<td>Table 5</td>
<td>Accessions by Species by Month</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(January 2006-December 2006)</td>
<td>113</td>
</tr>
<tr>
<td>Table 6</td>
<td>Summary of Laboratory Procedures</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(January 2006 - December 2006)</td>
<td>114</td>
</tr>
<tr>
<td>Table 7</td>
<td>Number of Accessions, Previous Five Years</td>
<td>115</td>
</tr>
<tr>
<td>Table 8</td>
<td>Number of Laboratory Procedures Conducted, Previous Five Years</td>
<td>115</td>
</tr>
<tr>
<td>Table 9</td>
<td>Lag Time Report - Veterinary Diagnostic Center</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(January 1, 2006 - December 31, 2006)</td>
<td>116</td>
</tr>
<tr>
<td>Table 10</td>
<td>Budget, Veterinary and Biomedical Sciences Department</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fiscal Year 2006</td>
<td>201</td>
</tr>
<tr>
<td>Table 11</td>
<td>Summary of Other Income</td>
<td>201</td>
</tr>
<tr>
<td>Table 12</td>
<td>Nebraska Veterinary Diagnostic Laboratory System Revolving</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Account Summary for FY 2006</td>
<td>202</td>
</tr>
<tr>
<td>Nebraska Agricultural Statistics</td>
<td></td>
<td>203-205</td>
</tr>
<tr>
<td>Table 13</td>
<td>Nebraska Cash Receipts from Farm Marketings By Commodity</td>
<td>203</td>
</tr>
<tr>
<td>Table 14</td>
<td>Nebraska - Rank in Agriculture, May 2006</td>
<td>204-205</td>
</tr>
</tbody>
</table>

LIST OF FIGURES

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Figure 1</td>
<td>Distribution of Accessions by State (NVDLS)</td>
<td>117</td>
</tr>
<tr>
<td></td>
<td>(January 2006 - December 2006)</td>
<td></td>
</tr>
<tr>
<td>Figure 2</td>
<td>Distribution of Accessions by Country (NVDLS)</td>
<td>118</td>
</tr>
<tr>
<td></td>
<td>(January 2006 - December 2006)</td>
<td></td>
</tr>
</tbody>
</table>
Faculty

Barletta, Raúl G.,* BS, MS, PhD .. Professor
Brodersen, Bruce W.,* BS, DVM, MS, PhD .. Research Associate Professor
Carlson, Michael P., BS, MS, PhD .. Lecturer
Das, Subash, DVM, MVS, PhD ... Research Assistant Professor
Doster, Alan R.,* DVM, MS, PhD, ACVP .. Professor
Duhamel, Gerald E.,* BS, DMV, PhD, ACVP Professor
Fernando, M. Rohan, BS, MSc, PhD, MPhil ... Research Assistant Professor
Griffin, D. Dee,* BS, DVM, MS ... Professor
Hardin, David K., DVM, Diplomat ACT .. Professor, Dept. Head and Associate Dean ISU
Hardin, Laura E.,† DVM, MS, PhD ... Coordinator/Senior Lecturer
Jones, Clinton J.,* BA, PhD ... Professor
Kelling, Clayton L.,* BS, MS, PhD, DVM .. Professor
Lou, Marjorie F.,* BS, MS, PhD ... Professor
McVey, David S.,† PhD, DVM ... Associate Professor
Moxley, Rodney A.,* DVM, PhD ... Professor
Osorio, Fernando A.,* MV, MS, PhD, ACVM ... Professor
Pattnaik, Asit K.,* BS, MS, PhD .. Professor
Paul, Prem S.,* BVSc, PhD ... Professor, UN-L, Vice Chancellor for Research
Rogers, Douglas G.,‡ BS, DVM, MS, PhD ... Professor and Interim Department Head
Rupp, Gary P.,* DVM, MS ... Professor
Schmitz, John A.,‡ DVM, PhD, ACVP .. Professor
Smith, David R.,* BS, DVM, PhD, ACVPM, ABVP Associate Professor
Somerville, Greg A.,* PhD, MS, BS ... Assistant Professor
Steffen, David J.,* BS, DVM, PhD, ABVP .. Professor
Wohlers, Arden, BS, DVM ... Extension Assistant Professor
Zhou, Joe Y., BSc, PhD ... Research Associate Professor

1 Appointment Began in 2006 2 Appointment Ended in 2006 *Graduate Faculty

Barletta-Chaón, Ofelia, .. Postdoctoral Research Associate
Jaroni, Divya,² BS, MS, PhD Postdoctoral Research Associate
Kwon, Byungjoon¹, DVM, MS, PhD Postdoctoral Research Associate
Peng, Weiping², BS, MS, PhD Senior Research Associate
Sadykov, Marat R.¹, MSc, PhD Postdoctoral Research Associate
Samrakandi, Mustapha M.², BS, MS, PhD Researcher
Topliff, Christina L., BS, DVM, MS, PhD Postdoctoral Research Associate
Xing, Kuiyi, BS, PhD .. Senior Research Associate
Department of Veterinary and Biomedical Sciences
Adjunct and Courtesy Faculty, 2006

<table>
<thead>
<tr>
<th>Name</th>
<th>Degree(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Campos, Manuel</td>
<td>2, DVM, MS, PhD</td>
<td>Adjunct Associate Professor</td>
</tr>
<tr>
<td>Cirillo, Jeffrey D.</td>
<td>1, BA, PhD, MS</td>
<td>Adjunct Associate Professor</td>
</tr>
<tr>
<td>Chenoweth, Peter</td>
<td>BVSc, PhD</td>
<td>Adjunct Professor</td>
</tr>
<tr>
<td>DeGroff, Terry</td>
<td>DVM</td>
<td>Adjunct Assistant Professor</td>
</tr>
<tr>
<td>Dewey, Catherine</td>
<td>2, DVM, MS, PhD</td>
<td>Adjunct Assistant Professor</td>
</tr>
<tr>
<td>Donis, Ruben O.</td>
<td>MV, PhD</td>
<td>Adjunct Professor</td>
</tr>
<tr>
<td>Fajt, Virginia R.</td>
<td>DVM, PhD</td>
<td>Adjunct Instructor</td>
</tr>
<tr>
<td>Groetelueschen, Dale M.</td>
<td>DVM, MS</td>
<td>Adjunct Professor</td>
</tr>
<tr>
<td>Hall, James E.</td>
<td>1,2 BS, DVM, MS</td>
<td>Adjunct Courtesy Professor</td>
</tr>
<tr>
<td>Hesse, Richard</td>
<td>BA, MS, PhD</td>
<td>Adjunct Assistant Professor</td>
</tr>
<tr>
<td>Hodgson, Clague P.</td>
<td>2, BSc, PhD</td>
<td>Adjunct Associate Professor</td>
</tr>
<tr>
<td>Hungerford, Laura L.</td>
<td>BS, DVM, PhH, PhD</td>
<td>Adjunct Associate Professor</td>
</tr>
<tr>
<td>Hunsaker, Beck D.</td>
<td>BS, DVM, MS, PhD</td>
<td>Adjunct Assistant Professor</td>
</tr>
<tr>
<td>Kador, Peter</td>
<td>BA, PhD</td>
<td>Adjunct Professor</td>
</tr>
<tr>
<td>Keen, James Edward</td>
<td>BS, DVM, PhD</td>
<td>Adjunct Associate Professor</td>
</tr>
<tr>
<td>Laegreid, William</td>
<td>BS, DVM, PhD</td>
<td>Adjunct Associate Professor</td>
</tr>
<tr>
<td>Larson, Robert L.</td>
<td>BS, DVM, PhD</td>
<td>Adjunct Assistant Professor</td>
</tr>
<tr>
<td>Lechtenberg, Kelly F.</td>
<td>2, BS, DVM, PhD</td>
<td>Adjunct Assistant Professor</td>
</tr>
<tr>
<td>Loskutoff, Nadia</td>
<td>BS, MS, PhD</td>
<td>Adjunct Assistant Professor</td>
</tr>
<tr>
<td>Mosier, Derek</td>
<td>BS, DVM, MS, PhD</td>
<td>Adjunct Professor</td>
</tr>
<tr>
<td>McKown, Richard D.</td>
<td>BS, DVM, MS, PhD</td>
<td>Adjunct Professor</td>
</tr>
<tr>
<td>Oestmann, Daniel J.</td>
<td>1,2 BS, DVM, PhD</td>
<td>Adjunct Courtesy Assistant Professor</td>
</tr>
<tr>
<td>Perino, Louis</td>
<td>BS, DVM, PhD</td>
<td>Adjunct Associate Professor</td>
</tr>
<tr>
<td>Petro, Thomas</td>
<td>BA, MA, PhD</td>
<td>Courtesy Professor</td>
</tr>
<tr>
<td>Pierce, Vern L.</td>
<td>PhD, MS, BS</td>
<td>Adjunct Assistant Professor</td>
</tr>
<tr>
<td>Rock, Daniel</td>
<td>BSE, PhD</td>
<td>Adjunct Associate Professor</td>
</tr>
<tr>
<td>Ross, Gary</td>
<td>BS, DVM</td>
<td>Adjunct Assistant Professor</td>
</tr>
<tr>
<td>Sanderson, Michael</td>
<td>BS, DVM, MS</td>
<td>Adjunct Associate Professor</td>
</tr>
<tr>
<td>Sargeant, Janice Merrill</td>
<td>DVM, MSc, PhD</td>
<td>Adjunct Assistant Professor</td>
</tr>
<tr>
<td>Sherman, Gary B.</td>
<td>2, BS, MS, DVM, PhD</td>
<td>Adjunct Courtesy Professor</td>
</tr>
<tr>
<td>Solheim, Joyce C.</td>
<td>2, BS, MA, PhD</td>
<td>Courtesy Assistant Professor</td>
</tr>
<tr>
<td>Spire, Mark F.</td>
<td>2, BS, DVM, MS</td>
<td>Adjunct Professor</td>
</tr>
<tr>
<td>Spitzer, John C.</td>
<td>BS, MS, PhD</td>
<td>Adjunct Professor</td>
</tr>
<tr>
<td>Straw, Barbara E.</td>
<td>2, DVM, PhD</td>
<td>Adjunct Professor</td>
</tr>
<tr>
<td>Wach, Ricky Sue B.</td>
<td>BA, DVM, MA</td>
<td>Courtesy Instructor</td>
</tr>
<tr>
<td>Wittum, Thomas</td>
<td>2, BS, MS, PhD</td>
<td>Adjunct Assistant Professor</td>
</tr>
<tr>
<td>Wood, Charles</td>
<td>BA, MA, MPhil, PhD</td>
<td>Courtesy Professor</td>
</tr>
<tr>
<td>Wylie, Dwane</td>
<td>2, BA, PhD</td>
<td>Courtesy Professor</td>
</tr>
<tr>
<td>Zimmerman, Jeffrey J.</td>
<td>BA, DVM, MS, PhD</td>
<td>Adjunct Associate Professor</td>
</tr>
</tbody>
</table>

1 Appt began in 2006; 2 Appt ended in 2006

Emeriti Faculty

<table>
<thead>
<tr>
<th>Name</th>
<th>Degree(s)</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dickinson, Earl</td>
<td>3* BS, DVM, PhD</td>
<td>Professor Emeritus</td>
</tr>
<tr>
<td>Erickson, E. Denis</td>
<td>DVM, PhD, ACVM</td>
<td>Professor Emeritus</td>
</tr>
<tr>
<td>Frey, Merwin</td>
<td>BS, DVM, MS, PhD</td>
<td>Professor Emeritus</td>
</tr>
<tr>
<td>Hogg, Alex</td>
<td>DVM, MS</td>
<td>Professor Emeritus</td>
</tr>
<tr>
<td>Johnson, Jerre L.</td>
<td>BS, DVM, PhD</td>
<td>Professor Emeritus</td>
</tr>
<tr>
<td>Rhodes, Marvin</td>
<td>BS, MS</td>
<td>Professor Emeritus</td>
</tr>
<tr>
<td>Rice, Duane</td>
<td>BS, DVM</td>
<td>Professor Emeritus</td>
</tr>
<tr>
<td>Schmitz, John A.</td>
<td>1, DVM, PhD, ACVP</td>
<td>Professor Emeritus</td>
</tr>
<tr>
<td>White, R. Gene</td>
<td>BS, DVM, MS</td>
<td>Professor Emeritus</td>
</tr>
</tbody>
</table>

3 Deceased in 2006
Department of Veterinary and Biomedical Sciences
2006 Faculty and Staff Personnel
By Function and Unit

Department Administration Personnel
- Hardin, David K.\(^1\), DVM, Diplomat ACT . Professor, Dept. Head & Assoc. Dean 2+2 Program
- Rogers, Douglas G.,\(^2\) BS, DVM, MS, PhD . Professor and Interim Department Head
- Albrecht, Roxann R. . Administrative Team Manager
- Gellatly, Rene K., BS . Staff Assistant
- Johnson, Lilo B. . Staff Secretary III
- Martinez, Patsy A., AA . Staff Secretary III

Animal Care Program
- Douglas G. Rogers, BS, DVM, MS, PhD . Faculty Supervisor

ARF (Animal Research Facility), Lincoln, Nebraska
- Clowser, Blaine, BS . ARF Animal Operation’s Manager
- Grotrian, Bonita K.,\(^1\) . Office/Service On Call Worker
- Lytle, Kandy . Research Technician II
- Tucker, Steve . Office/Service On Call Worker

VBMS/ARDC - (Agriculture Research and Development Center) Ithaca, Nebraska
- Bergman, Benjamin . Agricultural Research Technician I
- Justin Heldt . Office/Service On Call Worker

Pre-Veterinary Advising Center
- Steffen, David J., BS, DVM, PhD, ABVP . Advisor
- Alberts, Alyse\(^2\) . Peer Advisor
- Fry, Pamela\(^2\) . Peer Advisor
- Painter, Laura\(^2\) . Peer Advisor
- Malori Marotz\(^1\) . Senior Peer Advisor
- Lauren Taylor\(^1\) . Peer Advisor
- Kylie Wiedel\(^1\) . Peer Advisor

Cataract Research
- Lou, Marjorie, PhD . Biomedical Biochemist, Professor
- Chen, Chao-Wei (Kate)\(^2\), BA, MS . PhD Student
- Fernando, M. Rohan, BS, MSc, PhD, M.Phil. . Research Assistant Professor
- Wang, Yin, BS, MS . PhD Student
- Xing, Kuaiyi, BS, PhD . Senior Research Associate

Immunology Research
- TBA . Immunologist
Microbiology Research

- Barletta, Raúl, PhD Bacteriologist, Associate Professor
- Barletta-Chacón, Ofelia, MSc, MD, PhD Postdoctoral Research Associate
- Dogra, Harshdeep, BS, MS PhD Student
- Liu, Xiaofei, BS PhD Student
- Paulson, Avery¹, BS, MS PhD Program
- Zinniel, Denise, BS, MS Laboratory Manager

- Duhamel, Gerald, DVM, PhD Pathologist & Microbiologist, Professor
- Gulzar, Ahmed, BVSc MS Student
- Liyanage, Namal,¹ BA PhD Student
- Martinsen, Angela M,¹ MS Research Technologist
- Navaratime. Dhammika, BVSc PhD Student
- Risika, Jinadasa, BVSc MS Student
- Samrakandi, Mustapha¹, BSc, MSc, PhD Researcher
- Stryker, Cynthia Research Technician III

- Moxley, Rodney, DVM, PhD Pathologist & Bacteriologist, Professor
- Bailey, Doreen, AS, MT (Asst BioSci) Research Technician III
- Bretschneider, Gustavo, DVM PhD Student
- Erume, Joseph, DVM, MS PhD Student
- Hansen, Karen, BA Research Technician III

- Somerville, Greg A., PhD, MS, BS Microbiologist, Assistant Professor
- Jacobs, Erik, BS (Biochemistry Major) PhD Student
- Kramer, Devon P,¹ BS PhD Student
- Leverson, Erica Undergraduate Student
- Lucas, Melissa, BS (Biochemistry Major) PhD Student
- Zhu, Yefei, MEDI, MSVc PhD Student

Virology Research

- Jones, Clinton, PhD Virologist, Professor
- Geiser, Vicki,² BS, MS PhD Student
- Henderson, Gail, MA Research Technologist I
- Meyer, Florencia, BS MS (SBS) PhD Student
- Peng, Weiping,² BS, MS, PhD Senior Research Associate
- Perez de Bretschneider, Sandra², DVM, MS PhD Student
- Rose, Susanne¹ (SBS) PhD Student
- Saira, Kazima, BS, MS PhD Student

- Kelling, Clayton, DVM, PhD Virologist, Professor
- Mori, Yuko, BS MS Student
- Topliff, Christina L, BS, DVM, MS, PhD Postdoctoral Research Associate

- Pattnaik, Asit K, BS, MS, PhD Professor
- Ansari, Israrul H, BSc, MSc, PhD Researcher
- Das, Phani Bhusan¹, BVSc PhD Student
- Das, Subash C, BSVC, MVSc, PhD Research Assistant Professor
- Nayak, Debasis, BVSc, MVSc PhD Student
- Gil, Zhi Hong Laboratory Assistant II
- Martinsen, Angela M, MS² Lab Manager/Research Technologist
Osorio, Fernando MV, PhD .. Virologist, Professor
Beura, Lalit1, BVSc .. PhD Student
Brito, Monica R., BS, MS Laboratory Manager
de Lima, Marcelo, DVM, MS Visiting Scholar
Hsu, Ching Hsin, BS .. MS Student
Kwon, Byungjoon2, DVM, MS PhD Student
Kwon, Byungjoon1, DVM, MS, PhD Postdoctoral Research Associate
Oliveira, Marilia2, DVM MS Student
Subramaniam, Sakthivel1, BVSc, MVSc PhD Student

Research Support Glassware Preparation Laboratory

Barletta, Raúl1, PhD .. Bacteriologist, Professor
Duhamel, Gerald2, DVM, PhD Pathologist & Microbiologist, Professor
Nilson, David2 .. Lab Assistant II
Rajagopol, Janaki .. Lab Assistant II

UNL Core Microscopy Facility – Beadle Center

Zhou, You (Joe), BSc, PhD Director, UNL Core Microscopy Laboratory

Veterinary Epidemiology Research

Smith, David, DVM, PhD, ACVPM, ABVP Faculty Supervisor, Extension
Clowser, Sharon, BS .. Extension Assistant
Oliveira, Marilia1, DVM, MS Extension Assistant
Paulson, Avery1, BS, MS PhD Program

Extension

Clowser, Sharon, BS Extension Assistant, Lincoln
Griffin, Dee, DVM, MS Feedlot Cattle, GPVEC
Smith, David, DVM, PhD Dairy and Beef Cattle Veterinarian, Lincoln

Nebraska Veterinary Diagnostic Laboratory System - Lincoln, North Platte, Scottsbluff

Rogers, Douglas G,2 BS, DVM, MS, PhD Interim Executive Director
Steffen, David DVM, PhD Director, VDC Lincoln

Veterinary Diagnostic Center (VDC) Office Personnel

Steffen, David, DVM, PhD Director
Ellis, Roxane L., BS Specialist
Henning, Donna J. Clerical Assistant III
Laws, Lenora L. Clerical Assistant III
Seelmeyer, Mavis C. Staff Secretary III

Bacteriology

McVey, David S.,1 PhD, DVM Microbiologist/Bacteriology, Associate Professor
Bauman, Jamie Research Technician III
Combs, Recky S. Research Technician III
Gehers, Angela Research Technician III
Jaroni, Divya2, BS Postdoctoral Research Associate
Koelling-Kombs, Becky .. Research Technician III
Kuszak, Jennifer, BS .. Laboratory Specialist
Lin, Qin .. Research Technician III
Mosier, Trissa ... Research Technician III
Olsen, Cassandra J. .. Research Technologist
Pike, Laura G. .. Research Technician III
Royal, Deb, AS, BS .. Laboratory Manager
Williams, Patrick D. .. Research Technician III

Glassware Preparation Lab

Heyer, Mary .. Lab Assistant III

Histology

Doster, Alan, DVM, PhD ... Faculty Supervisor
Braderic, Marijana .. Histological Technician III
Claussen, Pat, CDA .. Research Technician II
Fields, Rosa M. ... Histological Technician III
Johns, LaVonne, HT .. Histotechnician III
Olmstead, Robin, HT .. Laboratory Supervisor
Premaratnemenike, Kalyani, BSc Histopathology Technician III

Necropsy

Doster, Alan, DVM, PhD ... Pathologist, Faculty Supervisor
Grossman, Sharon .. Research Technician III
Riggert, Christen, BS, AS Research Technician III

Pathology

Doster, Alan, DVM, PhD ... Pathologist
Brodersen, Bruce, DVM, MS, PhD Pathologist
Henningson, Jamie, BS, DVM PhD Student
Rogers, Douglas, DVM, PhD Pathologist
Nabity, Paul .. MS Student
Schmitz, John A. ... Pathologist
Steffen, David, DVM, PhD Pathologist

Toxicology

Carlson, Michael, PhD .. Diagnostic Toxicologist/Analytical Chemist
Rajurkar, Sanju, MS .. Research Technician II

Virology

Osorio, Fernando A. ... Virologist, Faculty Supervisor
Kelling, Clayton L. ... Virologist, Professor; Faculty Supervisor
Braswell, Steve, AA, BS Research Technician III
Dabydeen, Fredrick N. Laboratory Assistant II
Frink-Kotschwar, Stephaine K. Research Technician III
Galeota, Judi, BS .. Laboratory Manager
Lin, Qin .. Research Technician III
McCoy, Shannen, BS .. Research Technician III
Moural, Timothy W., BS ... Research Technician III
Russ, Julia A. ... Research Technician III
Wagner, Angela, BS ... Research Technician III
Xie, Liping, MD .. Assistant Laboratory Manager

Quality Assurance Program

Pedersen, Marci 2, BS, MA Quality Assurance Manager
Martinsen, Angela M., 1 MS Quality Assurance Manager

Great Plains Veterinary Educational Center (GPVEC) Clay Center, Nebraska

- Rupp, Gary, DVM, MS Director & Professor – Beef Cattle
 Hermesch, Dennis, BS, DVM MS Student
 Kramer, Rolland, BS, DVM MS Student
 Reece, Thomas, BS, DVM MS Student
 Dana, Ramona .. Custodian II
 Ellis, Roger, 1,2 BS, DVM, MS Lecturer
 George, Debbie .. Staff Assistant
 Griffin, D. Dee, DVM, MS Professor – Beef Cattle Extension Feedlot Veterinarian
 Brockway, William, 2 BS, DVM MS Student
 Johnson, Steve E., BA .. Systems Analyst
 Shuck, Karen K., CVT Veterinary Technician, Agricultural Research Technician II
Department of Veterinary and Biomedical Sciences
2006 Honors, Awards and Recognitions

University of Nebraska Awards

Graduate Student Awards

Jamie Henningson and Namal M. Liyanage received the Milton E. Mohr Fellowship from the University of Nebraska-Lincoln, Center for Biotechnology.

Lalit Beura received the Chancellor’s Doctoral Fellowship, University of Nebraska-Lincoln, awarded by the Department of Veterinary and Biomedical Sciences, Office of Graduate Studies.

Debasis Panda received one of the highest awards, the Othmer Fellowship, University of Nebraska-Lincoln, Office of Graduate Studies.

Gustavo Bretschneider received the Shear-Miles Fellowship from the University of Nebraska-Lincoln, Institute of Agriculture and Natural Resources, Agricultural Research Division and College of Agricultural Sciences and Natural Resources.

Dhammika Navarathna received the Shear-Miles Agricultural Endowed Scholarship/Fellowship Award through the University of Nebraska-Lincoln, University Foundation, Institute of Agriculture and Natural Resources, Agricultural Research Division.

Joseph Erume received the Widaman Trust Distinguished Graduate Assistant Award through the University of Nebraska-Lincoln, Institute of Agriculture and Natural Resources, Agricultural Research Division.

Vicki Geiser received recognition for her excellence in a research presentation at the April 2006 Research Fair sponsored by the University of Nebraska-Lincoln, Office of Research and Graduate Studies.

National and Regional Awards

Faculty Awards

Dr. Gary P. Rupp, Professor and Director at the Great Plains Veterinary Educational Center, received the American Association of Bovine Practitioners—Merial Beef Preventive Medicine Award at the 39th Annual Convention, September 21-23, 2006.

Dicky Dee Griffin received the American Association of Bovine Practitioner’s Award of Excellence from the University of Nebraska-Lincoln, Department of Veterinary and Biomedical Sciences.

Marjorie F. Lou received an Adjunct Professorship from China Medical University, Shenyang, China, and received the Kwan-Biao Distinguished Professorship from Zhejiang University, Hangzhou, China. She has also received a “Certification of Recognition” for Contributions to Students from the University of Nebraska-Lincoln.
Marcelo de Lima, Visiting Scholar from The School of Veterinary Medicine of the Federal University of Santa Maria, Brazil, received a First Place Award for the best Immunology Oral Presentation at the 3rd International Symposium on PRRSV and at the Conference of Research Workers in Animal Disease, Chicago, IL, December 1-5, 2006

Staff Awards

Judi Galeota received the Outstanding Employee Award for Managerial/Professional Staff in the Institute of Agriculture and Natural Resources for the period of May/June 2006

Lilo B. (Lee) Johnson received the Outstanding Service to Graduate Education Award, University of Nebraska-Lincoln, Office of Graduate Studies

VBMS Departmental Awards

Yuko Mori, MS Candidate and Kazima Saira, PhD Candidate, received the Best Seminar Award from the Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln

2006 University of Nebraska Service Awards

<table>
<thead>
<tr>
<th>Years</th>
<th>5 Years</th>
<th>15 Years</th>
<th>20 Years</th>
<th>25 Years</th>
<th>30 Years</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>M. Rohan Fernando</td>
<td>Raul Barletta</td>
<td>Roxann Albrecht</td>
<td>Romona Dana</td>
<td>Clayton Kelling</td>
</tr>
<tr>
<td></td>
<td>David Nilson</td>
<td>Dicky Dee Griffin</td>
<td>Gerald Duhamel</td>
<td></td>
<td>Rene Gellatly</td>
</tr>
<tr>
<td></td>
<td>Weiping Peng</td>
<td></td>
<td></td>
<td>Steve Johnson</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Christen Riggert</td>
<td></td>
<td></td>
<td>Lilo Johnson</td>
<td></td>
</tr>
</tbody>
</table>
UNDERGRADUATE STUDENTS
2006 DEAN’S LIST

Veterinary Sciences Majors, Spring 2006

Donna M. Bader Lindsey A. Hofman Jordan J. Bader
Kathryn A. Kasten Emily A. Dritley Sara B. Schuessler
Katie L. Franson Lauren C. Taylor Pamela R. Fry
Ashley N. Vanderheiden Cody J. Hankins Daniel J. Woodbury

Veterinary Science Majors, Fall 2006

Elizabeth Farrow Malori Marotz Jennafer Glaesemann
Sara Schuessler Megan Hiatt Lauren Taylor
Lindsey Hofman Abby Van Hoef Kathryn Kasten
Daniel Woodbury Kelsey Kerwin Jennifer Woods
Ryan Koopmans

Undergraduate Women in Science Honorees, 2006

Jennafer Glaesemann Amy Martin

University of Nebraska-Lincoln Undergraduate Awards

Undergraduate Student Awards

Holly Samson received the graduate student recruitment nomination award for the William J. Curtis
Endowed Fellowship, University of Nebraska-Lincoln, College of Agriculture Science and Natural
Resources

Jennafer Glaesemann, Animal Science, received the Outstanding Undergraduate Women Achievement in
Science Award, University of Nebraska-Lincoln, Center for Science, Mathematics & Computer
Education

Elizabeth Farrow, Veterinary Medicine DVM Program, was awarded the Nebraska Veterinary Medical
Association Pre-Vet Scholarship, while a student at University of Nebraska-Lincoln, Department of
Veterinary and Biomedical Sciences, College of Agricultural Sciences and Natural Resources

Amy Martin, Animal Science, Veterinary Medicine/DVM Program, received the Charles William Yount
Education Award in Veterinary Medicine through the University of Nebraska-Lincoln, University
Foundation, Department of Veterinary and Biomedical Sciences
2006-2007 VBMS Committee Assignments
Department of Veterinary Biomedical Science

<table>
<thead>
<tr>
<th>Name</th>
<th>Appointment Term</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Begin</td>
</tr>
<tr>
<td>Peer Review Committee (3-Yr Member Appt/1-Yr Chair)</td>
<td></td>
</tr>
<tr>
<td>Gary Rupp (Chair/October 06 - September 07)</td>
<td>October, 2006</td>
</tr>
<tr>
<td>Gerald E. Duhamel</td>
<td>October, 2002</td>
</tr>
<tr>
<td>Fernando Osorio</td>
<td>September, 2006</td>
</tr>
<tr>
<td>Douglas Rogers</td>
<td>July 2004</td>
</tr>
<tr>
<td>Raúl G. Barletta</td>
<td>November, 2005</td>
</tr>
<tr>
<td>VBMS-IBMS Graduate Committee (3-Yr Appt)</td>
<td></td>
</tr>
<tr>
<td>Gerald E. Duhamel (Chair, Nov. 05/Sept 08)</td>
<td>November, 2003</td>
</tr>
<tr>
<td>Greg A. Somerville</td>
<td>October, 2005</td>
</tr>
<tr>
<td>Raúl G. Barletta</td>
<td>August, 2004</td>
</tr>
<tr>
<td>Clayton L. Kelling</td>
<td>August, 2004</td>
</tr>
<tr>
<td>Rodney A. Moxley</td>
<td>August, 2004</td>
</tr>
<tr>
<td>Lee Johnson (Secretarial Support)</td>
<td>--</td>
</tr>
<tr>
<td>Safety Committee</td>
<td></td>
</tr>
<tr>
<td>Raúl G. Barletta (Chair, VBS)</td>
<td>September, 1999</td>
</tr>
<tr>
<td>Robin Olmsheid (VDC)</td>
<td>September, 1998</td>
</tr>
<tr>
<td>Kandy Lytle (ARF)</td>
<td>February, 2003</td>
</tr>
<tr>
<td>Doreen Bailey (VBS/Technician)</td>
<td>September, 2000</td>
</tr>
<tr>
<td>Douglas G. Rogers (VDC)</td>
<td>September, 1999</td>
</tr>
<tr>
<td>Donna Henning (Secretarial Support/VDC)</td>
<td>July, 1996</td>
</tr>
<tr>
<td>Veterinary and Biomedical Science Undergraduate Student Research Coordinator</td>
<td></td>
</tr>
<tr>
<td>Gerald E. Duhamel</td>
<td>November, 2002</td>
</tr>
<tr>
<td>Seminar, Chairman</td>
<td></td>
</tr>
<tr>
<td>Greg A. Somerville</td>
<td>November, 2005</td>
</tr>
<tr>
<td>Name</td>
<td>Appointment Term</td>
</tr>
<tr>
<td>------</td>
<td>------------------</td>
</tr>
<tr>
<td></td>
<td>Begin</td>
</tr>
<tr>
<td>George A. Young Swine Conference Planning Committee</td>
<td></td>
</tr>
<tr>
<td>Bruce W. Brodersen (Chair, UNL/VDC)</td>
<td>January 2006</td>
</tr>
<tr>
<td>Tom Buelt, Pfizer Animal Health</td>
<td>January 2006</td>
</tr>
<tr>
<td>Larry Germer, Extension Educator, Gage County</td>
<td>January 2006</td>
</tr>
<tr>
<td>Phil Hardenburger, NVMA, Crete Veterinary Clinic</td>
<td>January 2006</td>
</tr>
<tr>
<td>Mike Brumm, UNL, Northeast Research & Ext Ctr</td>
<td>January 2006</td>
</tr>
<tr>
<td>Jim Unwin, Veterinarian, Red Barn Veterinary Clinic</td>
<td>January 2006</td>
</tr>
<tr>
<td>Jeff Husa, Boehringer Ingelheim Vetmedica, Inc.</td>
<td>January 2006</td>
</tr>
<tr>
<td>Dave Hansen, Producer</td>
<td>January 2006</td>
</tr>
<tr>
<td>Ron Brodersen, Hartington Whole Hog Health Center</td>
<td>January 2006</td>
</tr>
<tr>
<td>Sharon Clowser, Conference Coordinator</td>
<td>-</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Department Curriculum Committee</th>
</tr>
</thead>
<tbody>
<tr>
<td>David J. Steffen (Chair, August 2005)</td>
</tr>
<tr>
<td>Bruce W. Brodersen</td>
</tr>
<tr>
<td>Michael P. Carlson</td>
</tr>
<tr>
<td>Clayton L. Kelling</td>
</tr>
<tr>
<td>Rodney A. Moxley</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nebraska Veterinary Student Admission Committee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruce W. Brodersen (Chair, UNL/VDC)</td>
</tr>
<tr>
<td>Gary P. Rupp (NU/GPVEC)</td>
</tr>
<tr>
<td>Jeff Keown (UNL/Animal Science Dept)</td>
</tr>
<tr>
<td>Don Drapper (ISU/Administration)</td>
</tr>
<tr>
<td>Kathy Kuehl (ISU/Coordinator of Admissions)</td>
</tr>
<tr>
<td>Monica Howard (ISU/Director of Student Programs)</td>
</tr>
<tr>
<td>Mavis Seelmeyer (UNL Secretarial Coordinator)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Departmental Computer Support Designee and Liaison to IANR Computing</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roxane Ellis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CASNR Curriculum Committee (2-yr term)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Veterinary and Biomedical Sciences; Biochemistry and Food Science and Technology Departments)</td>
</tr>
<tr>
<td>Clinton J. Jones</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>University of Nebraska-Lincoln – ISU/CVM Curriculum Committee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rodney A. Moxley</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>CASNR Faculty Advisory Council (2-yr term)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raúl G. Barletta</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pre-Veterinary Club Advisor</th>
</tr>
</thead>
<tbody>
<tr>
<td>Douglas G. Rogers, Advisor</td>
</tr>
<tr>
<td>David R. Smith, Co-Advisor</td>
</tr>
<tr>
<td>Name</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>ARD Advisory Council (3-yr term)</td>
</tr>
<tr>
<td>(District 5 -- Department of Statistics, Entomology and Veterinary and Biomedical Sciences)</td>
</tr>
<tr>
<td>Lance Meinke (Statistics)</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Institutional Animal Care and Use Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Appointment Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gerald E. Duhamel, Department Representative</td>
<td>January, 2000</td>
</tr>
<tr>
<td>Fernando A. Osorio, Alternative Member</td>
<td>January, 2006</td>
</tr>
<tr>
<td></td>
<td>December 31, 2008</td>
</tr>
<tr>
<td></td>
<td>December, 2006</td>
</tr>
</tbody>
</table>

Institutional Biosafety Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Appointment Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rodney A. Moxley</td>
<td>January, 2006</td>
</tr>
<tr>
<td></td>
<td>December 2008</td>
</tr>
</tbody>
</table>

VBMS Husker Harvest Days Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Appointment Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Michael P. Carlson, Chair</td>
<td>June 2002</td>
</tr>
<tr>
<td>Clayton L. Kelling</td>
<td>June 2002</td>
</tr>
<tr>
<td>D. Dee Griffin</td>
<td>June 2002</td>
</tr>
<tr>
<td>David J. Steffen</td>
<td>June 2002</td>
</tr>
<tr>
<td></td>
<td>Indefinite</td>
</tr>
</tbody>
</table>

UNL Radiation Safety Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Appointment Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raúl G. Barletta</td>
<td>February, 2000</td>
</tr>
<tr>
<td></td>
<td>Indefinite</td>
</tr>
</tbody>
</table>

VBMS Representative to UNL Library

<table>
<thead>
<tr>
<th>Name</th>
<th>Appointment Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Raúl G. Barletta</td>
<td>2000</td>
</tr>
<tr>
<td></td>
<td>Indefinite</td>
</tr>
</tbody>
</table>

VBMS Website Oversight Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Appointment Term</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fernando A. Osorio</td>
<td>February, 2003</td>
</tr>
<tr>
<td>Raúl G. Barletta</td>
<td>February, 2003</td>
</tr>
<tr>
<td>Bruce W. Brodersen</td>
<td>February, 2003</td>
</tr>
<tr>
<td>David R. Smith</td>
<td>February, 2003</td>
</tr>
<tr>
<td>Rodney A. Moxley</td>
<td>February, 2003</td>
</tr>
<tr>
<td>Roxane Ellis, Technical Support</td>
<td>February, 2003</td>
</tr>
<tr>
<td></td>
<td>Indefinite</td>
</tr>
</tbody>
</table>

22
DEPARTMENT OF VETERINARY
AND BIOMEDICAL SCIENCES

FACULTY PROFILES
The main focus of my laboratory is the study of bacterial pathogens including *Mycobacterium tuberculosis*, *Mycobacterium avium* subsp. *paratuberculosis* and related pathogens. In this area, the major long-term goals in my laboratory are: 1) to understand virulence and drug-resistance mechanisms in pathogenic mycobacteria, and 2) to develop molecular tools to diagnose and control mycobactenoses.

Drug resistance studies in mycobacteria have focused on the molecular targets of peptidoglycan synthesis inhibitors. We have identified the molecular targets for D-cycloserine. One of these targets is the enzyme D-alanine racemase, involved in the initial steps of peptidoglycan biosynthesis. Furthermore, we have shown that overproduction of D-alanine racemase in mycobacteria underlies the D-cycloserine resistance phenotype of resistant mutant strains. The specific molecular mechanism responsible for the overproduction of this enzyme was shown to be a promoter-up mutation in the control region of the D-alanine racemase gene. We have also studied related enzymes involved in D-alanine metabolism including L-alanine dehydrogenase and D-alanine ligase. We plan to study the essentiality of these genes in the context of drug design and vaccine development in *M. tuberculosis*.

M. paratuberculosis is the causative agent of Johne's disease, a wasting chronic enteritis affecting all ruminants. We have developed a genetic system for *M. paratuberculosis* that includes phage infection, plasmid transformation, and transposon mutagenesis. We have identified several attenuated strains from a mutant bank. In collaborative studies, we are testing these mutants in animal models including mice and baby goats. In addition, we have identified and characterized *M. paratuberculosis* secreted and cellular immunogenic proteins. From these molecular studies, a practical application test to measure the susceptibility of *M. paratuberculosis* to antimicrobial agents was developed. These steps are essential prerequisites for the understanding of pathogenesis, and the development of antimicrobial therapies and new and more effective vaccines compatible with diagnostics.

My teaching responsibilities include serving as co-instructor for the courses VBMS 951, Advanced Molecular Infectious Diseases and VBMS 424/824, Basic Molecular Infectious Diseases. I advised seven MS and three PhD graduate students who have completed their degrees. I served as co-advisor for 2 MS graduate students who completed their degrees.
Pathologist
Veterinary Diagnostic Center

Appointment: 1.00 Diagnostic Service

My position was created out of a need for more pathologists at the Veterinary Diagnostic Center. The increased need was a result of continual increase in the numbers of case submission. Existing faculty at the Diagnostic Center were not able to meet other commitments as a result of the elevated case load. Funding for my position comes entirely from revenues generated by submission fees received at the Diagnostic Center.

My efforts are directed at coordination of appropriate testing of samples submitted to the Diagnostic Center, assimilating test results for determining a diagnosis, and generating a suitable report to the submitting veterinarian or owner. The range of species that samples originate from is wide and consists mainly of food animals and companion animals with avian species as well as wild and or exotic and aquatic species. I also supervise the contract with the USDA for testing of samples for scrapie in sheep and chronic wasting disease in deer.

I have no formal research FTE, but I am conducting projects which are directed at investigating diseases of cattle. Currently my projects concentrate mainly on bovine viral diarrhea virus (BVDV). One of these studies includes detection of cattle persistently infected with BVDV. I am collaborating with researchers at Auburn University, investigating the role of BVDV as a reproductive disease in cattle.
I serve as a diagnostic toxicologist for the VDC. I review cases submitted for toxicology services, obtain case histories as needed, interpret diagnostic toxicology results, write final toxicology reports for diagnostic cases and report results to case submitters or VDC diagnosticians. I also consult with veterinarians, clients and university faculty and staff about toxicology and analytical services.

I also serve as an analytical chemist for the VDC Toxicology Laboratory. I manage the operation of that laboratory; select and validate methods for analytical services; supervise, train and manage the staff of that laboratory; and assist with performance of analytical services as required.

I teach VBMS 410 – Introduction to Pharmacology and Toxicology, a 4-credit hour, integrated studies course required for Veterinary Science undergraduate majors. The course is intended to introduce students to basic principles of drug action and toxic effects of chemical substances. The course also emphasizes written and oral communication skills. Students are required to write a position paper on a controversial pharmacology or toxicology topic and present their position orally to the class. It is offered annually each fall semester.

My research interest is nitrate toxicosis in cattle, especially chronic nitrate exposure related to abortions.

I also am interested in the application and implementation of international standards for laboratory certification to veterinary diagnostic laboratories.
My research includes the studies on viral gene expression and vaccine design using RNA viruses. The two viruses I am studying are vesicular stomatitis virus (VSV), a non-segmented negative-strand RNA virus and porcine reproductive and respiratory syndrome virus (PRRSV), a non-segmented positive-strand RNA virus. Due to its simple genome organization VSV has served as an attractive model to study the gene expression in negative-stranded RNA viruses. Understanding the mechanism of gene expression and its regulation is essential to identifying unique virus-specific targets for therapeutic intervention in controlling infection. More specifically I am looking at the role of VSV phosphoprotein P in viral transcription, replication and assembly of infectious virus particles. Phosphoprotein of VSV is a multifunctional protein which is an essential subunit of viral polymerase. Using reverse genetics I have demonstrated that phosphorylation at specific residues within the P protein of VSV regulates the activities of the viral RNA-dependent RNA polymerase in transcription and replication and plays a major role in the life cycle of VSV. Using transposon-insertion and deletion mutagenesis we recently found out that the hypervariable hinge region of VSV P protein plays an important role in viral RNA synthesis and assembly of infectious particles. At present we are mapping out the individual amino acids in the hypervariable region of P that is required for virus assembly. Currently efforts are being made to establish a yeast-two-hybrid system to identify the cellular/viral factors involved in the assembly of VSV. We are further planning to investigate the role of nucleotide sequences within the viral genome that control encapsidation, transcription and replication processes.

We have made use of our recent finding that the hypervariable region of VSV P protein can tolerate insertion of 19 amino acids with minimal effect on P protein activity. This has led us to produce a fluorescently labeled VSV with the eGFP inserted at the hypervariable region of P protein. Using this green virus we are investigating the transport of viral nucleocapsids by time lapse microscopy. This has allowed us to track the movement of individual nucleocapsids in infected cells. We have demonstrated that microtubules play an important role in the transport of VSV nucleocapsids from the site of synthesis to the site of assembly and mitochondria may play a role in this process. Several leads in this direction include single-particle tracking of viral nucleocapsids, multicolor live-cell imaging of ribonucleoprotein complexes and identification of microtubule motors involved in the transport.

Another aspect of my work has been the development of viral vaccines by genetic manipulations. At present I am using VSV as a vector to express porcine respiratory and reproductive syndrome virus (PRRSV) glycoproteins to study the immunogenicity of these proteins in animals. Recombinant VSVs expressing PRRSV GP5 and M proteins have been recovered by reverse genetics. Using these recombinant viruses we further plan to study the mechanism of entry and tissue tropism in PRRSV infection. Animal experiments are also being carried out for testing these recombinant viruses for generation of humoral and cell-mediated immune responses against PRRSV and to explore the possibility of using them as vaccines for the prevention of PPRSV infection.
I serve as a Diagnostic Pathologist in the VDC and rotate necropsy duty on a regular basis with other pathologists. We are responsible for the gross examination of various species, histological examination of tissues from necropsies and surgical biopsies; requesting and interpreting results from the bacteriological, serological, virological, toxicological tests which are part of the laboratory work-up; and establishing a diagnosis or rendering an opinion regarding each case. I spend a considerable amount of time on the telephone consulting with veterinarians and livestock owners regarding clinical histories, case submissions, and results of diagnostic testing. I have served as an expert witness many times for legal proceedings or insurance inquiries, the largest being in excess of $20 million. I have acted as a consultant for United States Department of Agriculture regarding foreign veterinary diagnostic laboratory capabilities.

I have no formal teaching FTE, but have served as the faculty coordinator for VBMS 901 (Diagnostic Techniques) and have taught several advanced pathology courses for pathology residents and graduate students. In addition, I have served as major advisor for master's and doctoral students and am a member of several graduate supervisory committees in the Department.

My research interests consist of infectious diseases of cattle and swine. I have been active in pursuing emerging disease syndromes initially seen in the VDC such as porcine reproductive and respiratory syndrome virus (PRRSV) and porcine circovirus infection. The PRRSV project led to the development of a commercially available PRRSV vaccine. I and the other pathologists serve primarily as consultants in a team-oriented approach to research problems where each member of the team contributes his area of expertise to the project. Other faculty in the Department who have major research appointments act as project leaders and request our assistance as necessary.
My long-range goal is to define basic mechanisms of host-parasite interactions, and their relationship to susceptibility or resistance against disease, particularly within the framework of enteric diseases caused by bacteria and viruses. Presently, I am engaged in basic and applied biomedical research aimed at characterizing molecular mechanisms of microbial pathogenesis and host defense with practical applications to diagnosis and control of enteric diseases of animals and human beings. Specifically, I am investigating the biology of polymicrobial interactions in inflammatory bowel diseases caused by *Brachyspira pilosicoli*, a newly discovered pathogenic intestinal spirochete, enterohepatic *Helicobacter* and *Campylobacter* species of human and animals, and *Lawsonia intracellularis*, an obligate intracellular bacterium that causes proliferative enteropathy in non-human primates and animals.

Also, I am investigating the role of heterotypic immunity in protection against intestinal disease caused by group A rotaviruses, a major cause of diarrheal disease in human infants and animals. Current research addresses bacterial virulence factors and model development of intestinal injury and repair, phenotypic and genotypic bases of microbial pathogenesis, development of molecular methods for diagnosis of enteric diseases and control using subunit and recombinant vaccines.
Cataract is the major cause of blindness around the world. Age related cataract or senile cataract is the most common type of cataract. The normally transparent lens of the eye becomes cloudy in cataract. Oxidative stress which is induced by reactive oxygen species (ROS) has long been implicated in senile cataract formation. ROS molecules are generated in the lens either endogenously by enzyme systems or exogenously from the environment. ROS molecules produced through these processes in the lens are neutralized by antioxidants and ROS neutralizing enzyme systems in the lens. Even in the presence of these powerful antioxidants and ROS neutralizing enzyme systems, some ROS molecules get through these defense systems and oxidatively damage cellular molecules such as proteins, lipids and nucleic acids. Oxidation of lens proteins leads to lens opacification and cataract formation. Hence lens is also equipped with enzyme systems that can repair such oxidatively damaged proteins and other molecules. I have focused my research on the characterization of the repair systems in the lens.

1. Functions of thioltransferase-1
Thioltransferase-1 is a thiol/disulfide exchange enzyme. It is located in cytosol and has dethiolation activity in the lens. It can repair oxidatively modified lens proteins using its dethiolation activity. In addition to that we have shown that thioltrasferase-1 has ascorbic acid recycling ability. Human lens contains 2-3 times higher concentration of ascorbic acid as compared to other human tissues. Ascorbic acid functions as an antioxidant and its oxidation product dehydroascorbic acid is highly toxic and has been implicated in human cataract formation. Hence lens must have a mechanism to regenerate ascorbic acid. We have shown that thioltransferase is responsible for ascorbic acid recycling in human lens epithelial cells. We have also investigated the induction of thioltransferase-1, thioredoxin and thioredoxin reductase in pig lens under oxidative stress and found that all three enzymes are induced under the given oxidative stress conditions in an attempt to rescue the lens from the oxidative insult so that the clarity of the lens would not be affected by the give stress.

2. Thioltransferase-1 knockout mice
Primary cultures of mouse lens epithelial cells obtained from wild type mouse and thioltransferase-1 knockout mouse are used to compare the sensitivity of the these two cell types to oxidant stress. We are comparing the oxidative damage caused by oxidants in these two cell types using parameters such as marker enzyme activities, glutathione level, cell viability and cell proliferation.

3. Functions of thioltransferase-2
Thioltransferase-2 is the nuclear and mitochondrial isoform of thioltransferase-1. We are investigating the functions of this enzyme in nucleus and mitochondria. Thioltransferase-2 has dehydroascorbate reductase activity, ascorbate free radical reductase activity as well as peroxidase activity. Investigations are under way to elucidate how these functions of this enzyme are important to maintain the integrity of mitochondria and nucleus.
Pathologist and Nutrition
Department of Veterinary and Biomedical Sciences
Great Plains Veterinary and Educational Center, Clay Center, NE

Appointment: .50 FTE Tchng; .30 FTE Ext; .20 FTE Service

I am responsible for creating and coordinating veterinary medical education opportunities in feedyards. Through my extension appointment, I am responsible for conducting applied field research that relates to feedlot production management and beef safety. I am also responsible for disseminating production management information to the beef feedlot industry. Through my service commitment I provide a substantial portion of the veterinary medical service to the MARC feedlot. I also act as a consulting veterinarian to Nebraska feedlot veterinarians and other feedlot specialists. Through these contacts, I am able to provide unique educational opportunities to fourth-year veterinary students, veterinary technician students and animal science students.

The crux of my research involves management and production with an emphasis on creating or perfecting techniques that can be of direct benefit to the feedlot industry. I have a passionate interest in beef quality assurance (BQA) and a portion of my research focuses on developing and evaluating pre-harvest techniques that will help guarantee the wholesomeness of the beef supply in the United States. Developing and disseminating pre-harvest HACCP techniques for use in beef feedlots has become a major effort. I recognize the economic need for the beef cattle industry to present consumers with a consistently high quality product. I communicate this information to feedlot veterinarians, feedlot producers and potential consumers through my extension. This involves poster displays at trade shows, invited presentations and through GPVEC's Internet BQA home page. I always include BQA as a part of the focus of my consulting work. Food safety, including pre-harvest HACCP, residue avoidance and minimizing injection site blemishes is always a part of the feedlot teaching curricula at GPVEC.

Inter-departmental or Inter-institutional Cooperative Activities

<table>
<thead>
<tr>
<th>Cooperator</th>
<th>Cooperative Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>KSU, Other Colleges of Veterinary Medicine</td>
<td>Electives</td>
</tr>
<tr>
<td>Industry representatives and Academicians</td>
<td>Continuing Education Seminars</td>
</tr>
<tr>
<td>KSU</td>
<td>Fundamentals of Food Animal Practice</td>
</tr>
<tr>
<td>(1st yr Students)</td>
<td>Feedlot Technical Elective</td>
</tr>
<tr>
<td>Joe Bek (NCTA)</td>
<td>Feedlot Employee Safety Training Workshop</td>
</tr>
<tr>
<td>Joe Bek (NCTA)</td>
<td>Undergraduate Feedlot Health</td>
</tr>
<tr>
<td>TJ Klopfenstein, E Erickson (UNL AnSci Dept)</td>
<td>Training Students</td>
</tr>
<tr>
<td>TJ DeGroff (Practitioner, Burwell, NE)</td>
<td>Research Projects</td>
</tr>
<tr>
<td>MARC Scientists</td>
<td>Expovision/High School Careers Workshop</td>
</tr>
<tr>
<td>Assigned UNL Faculty</td>
<td>UNL Youth Leadership Workshop</td>
</tr>
<tr>
<td>Assigned UNL Faculty</td>
<td></td>
</tr>
</tbody>
</table>

30
Molecular Virologist

Statement of Current Research Activities

1. a -Herpesvirus latency

Latency of a-herpesviruses is the focus of research in my laboratory. Bovine Herpes Virus 1 (BHV-1) and Herpes Simplex Virus 1 (HSV-1) are being used to study virus host interactions. BHV-1 is a significant viral pathogen of cattle that can induce respiratory disease, abortion, or occasionally encephalitis. BHV-1 is also a causative agent of "Shipping Fever" or Bovine Respiratory Complex. As a consequence of the pathogenic potential of BHV-1, the cattle industry suffers more than $500,000,000/year in losses. HSV-1 causes a variety of clinical symptoms, is the leading cause of corneal blindness due to an infectious agent, and appears to be a cofactor in Alzheimer's disease. Approximately 99% of all human beings are infected with HSV-1. a-herpesviruses infect epithelial cells of the upper respiratory tract or the genital tract. Extensive viral gene expression occurs, virus is shed, and clinical symptoms are apparent. Virus enters the peripheral nervous system, trigeminal ganglia or sacral ganglia, where it establishes a latent infection in neurons. Viral DNA can persist in a latent state for the lifetime of the infected host or periodically reactivate. Only one small region of the BHV-1 genome is transcriptionally active in latently infected neurons, the latency related (LR) gene. HSV has a similar gene; the latency associated transcript (LAT). A latent infection can be divided into 3 distinct stages: 1) establishment 2) maintenance and 3) reactivation of latent virus. Reactivation can cause recurrent disease and regardless of the clinical outcome promotes virus transmission. Thus, latency is crucial for pathogenesis and is required for virus transmission.

LR gene products and LAT inhibit apoptosis (programmed cell death) in transiently transfected cells, and in trigeminal ganglia (TG) of infected calves or rabbits respectively. Based on these studies, we hypothesize that LR gene products and LAT promote survival of infected neurons. Future studies will identify the mechanism by which LR gene products and LAT inhibit apoptosis.

2. Regulation of productive infection by bICP0

Bovine herpesvirus 1 (BHV-1) is an important causative agent of "Shipping Fever", an upper respiratory tract disorder that costs the US cattle industry more than $500 million/year. Acute infection by BHV-1 results in conjunctivitis, pneumonia, genital disorders, abortions, and occasionally encephalitis. As discussed above, BHV-1 establishes latency in sensory neurons located in trigeminal ganglia, and also germinal centers within the tonsil. Periodically BHV-1 reactivates from latency, which is crucial for virus transmission in the field. In sharp contrast to latency in which viral gene expression is severely restricted, 75-80 viral genes are expressed during productive infection and reactivation from latency. The bICP0 protein activates expression of all viral genes, and thus stimulates acute infection and reactivation from latency. Our recent studies identified four separate domains in bICP0 that are necessary for activating transcription: 1) the zinc RING finger located between amino acids 13-51, 2) a large domain spanning amino acids 78-265, 3) sequences at or near amino acid 457, and 4) a nuclear localization signal located at the C-terminus. bICP0 also interacts with chromatin remodeling enzymes; histone deacetylase 1 (HDAC1) (116) and p300, a histone acetyltransferase (HAT). Functional studies demonstrated that bICP0 inhibits interferon (IFN)-induced transcription, and cooperates with p300 to activate viral transcription. Finally, a bICP0 null mutant was constructed that does not efficiently replicate or kill bovine cells, but this mutant strongly induces the IFN response. Our long-term goals are to delineate the mechanisms by which bICP0 stimulates viral gene expression, productive infection, and reactivation from latency.
Our research is focused on pathogenesis of bovine respiratory syncytial virus (BRSV) and bovine viral diarrhea virus (BVDV) infections in cattle. Immunity to BRSV infection is incomplete and reinfections occur. Protective host immune responses to vaccines or natural infections may be compromised by mutation of the surface glycoproteins. We are examining the roles of the BRSV surface attachment (G) and fusion (F) glycoproteins in pathogenesis and immunity. Genetic and antigenic heterogeneity, and structure of the BRSV G and F glycoprotein are being studied to determine the influence of those variables on survival of the virus in the host and on development of protective immunity in the host. Our studies involve use of recombinant BRSV glycoproteins expressed in insect cells using the baculovirus vector and developing a cDNA BRSV F protein vaccine.

The overall goal of our BVDV research is to study the mechanisms involved in the pathogenesis of acute genotype 2 BVDV infections by studying virulence. We are examining the 5' untranslated region (5'UTR) of BVDV isolates for conserved nucleotide base substitutions in the internal ribosomal entry site (IRES) which are biologically significant. Translation studies using cDNA plasmid constructs of the 5' UTR of isolates from a panel of genotype 2 BVDV isolates are being used to study relationships between translational efficiency and virulence of individual isolates in experimental calf infection studies.

Since naturally-occurring pneumonia in cattle or neonatal calf diarrhea typically involves infection of the host with more than one infectious agent, we are also studying the interaction of BVDV with BRSV or bovine rotavirus in concurrent in vivo and in vitro infections.

Teaching responsibilities include serving as major advisor for graduate students, mentoring undergraduate students conducting thesis research projects, and as course instructor. I am the sole instructor for two courses, Principles and Prevention of Livestock Diseases and our departmental undergraduate capstone course: Integrated Principles and Prevention of Livestock Diseases. Each year, I have also contributed guest lectures in immunovirology or vaccinology courses.
Biochemistry/Biomedical Sciences

Appointment: .90 FTE Rsch; .10 FTE Tchg

Main Focus: Biochemical Mechanism of Senile Cataract Formation

Our focus on the biochemical mechanism of age-related cataract formation is oxidative stress. We used hydrogen peroxide-induced cataract in organ culture condition as our model to study the progressive changes in morphology and intracellular redox potential in the lens. We demonstrated that lens opacification is associated with the increased protein insolubility and protein aggregation, resulting from lens protein oxidation by oxidative stress. We also showed that the thiol groups in lens proteins are oxidized by forming protein-thiol mixed disulfides first followed by protein-protein disulfide formation, a condition that will lead to lens opacification. We studied the site of thiolation on lens proteins by using mass spectrometry and found a direct evidence that protein thiolation caused change in protein conformation, thus supporting our hypothesis that protein-thiol mixed disulfide formation plays an important role in cataractogenesis.

We discovered that the lens has an intrinsic repair enzyme systems, the thioltransferase/GSH and thioredoxin/thioredoxin reductase/NADPH systems, which can repair the damaged lens proteins/enzymes and restore their biological functions. We cloned, sequenced and characterized these enzymes and found them to be extremely oxidant-resistant in the lens epithelium cells. The physiological function of the two repair systems is proposed to be oxidative stress defense enzymes by preventing the accumulation of oxidant induced protein-protein disulfide in the lens and to regulate the thiol/disulfide homeostasis so that the lens will not be permanently damaged by oxidative stress.

Redox Signaling in the Lens Epithelial Cells

We examine the physiological function of reactive oxygen species in promoting cell growth and differentiation in the lens. This is a new research direction, which requires a lot of knowledge in signal transduction and the redox biology combined. We are using a growth factor, PDGF, as a model to study the mechanism of the mitogenic action of PDGF in cell proliferation. We now have extensive data suggesting that a growth factor binding can trigger generation of reactive oxygen species (ROS) via the membrane enzyme NADPH oxidase. ROS is then used by the cells to inhibit phosphatases, so that phosphorylation (activation) of signaling components, such as the MAPK cascades, can be initiated. We are also working on the regulation of this redox signaling system and investigating several transcription factors in the nucleus that are associated with gene expression under such experimental conditions.

Cataract Models

Our effort is also to establish a cataract model relevant to humans. We have recently developed a thioltransferase knockout mouse model, which showed lens protein aggregation as the animal aged beyond 13 months old, while the age-matched wild type remained normal. Thus, this is a model very much mimicking human age-related cataract. We plan to use this model to study the benefit of using various antioxidants and examine their efficacy against protein aggregation, including using thioltransferase, which is lacking in the lens of these animals.
My long-term goal is to contribute to the understanding of virulence mechanisms of bacterial pathogens of food producing animals, with particular emphasis on elucidating the mechanisms by which bacteria infect and persist in tissues. The objectives in my research projects are to determine cellular, molecular and genetic mechanisms by which *Mannheimia haemolytica* and *Mycobacterium avium* subspecies *paratuberculosis* overcome the bovine immune system and persist in bovine tissues. The central hypothesis is that these bacteria respond to environmental conditions associated with local inflammation by induction and subsequent selection of phenotypes that express increased resistance to a broad array of host-generated immune effector mechanisms. We are approaching these studies initially by investigating the relationships between metabolic processes of the organisms and expression of known virulence factors. Our rationale for this research is that completion of this overall objective would be expected to lead to improved preventative and therapeutic approaches and diagnostic procedures for Johne’s Disease and the bovine respiratory disease complex.

In addition, we are involved in developmental research to improve diagnostic medicine, especially for infectious diseases of food producing animals. This includes the continued development of The Nebraska Veterinary Diagnostic Center’s (NVDC) capabilities to function as an integrated diagnostic laboratory resource of the National Animal Health Laboratory Network (NAHLN). As an integrated laboratory, the NVDC must strive to improve the efficiency of accurate laboratory testing, with emphasis on foreign animal diseases (FADs) as well as emerging and re-emerging threats. There are many ongoing projects that support these objectives such as evaluation, verification and validation of assays to diagnose FADs, bluetongue disease, trichomoniasis, brucellosis and tularemia. The laboratory is also involved in the development of novel methodology to detect trends in antimicrobial resistance and metabolic biochemical variation among bacteria of veterinary significance. In addition, the laboratory is involved with evaluation of the efficiencies of diagnostic test methods with regard to reliability, training, data reporting and material costs.
Microbiologist

Appointment: .10 FTE Tchng; .90 FTE Rsch

My research involves two main areas, the pathogenesis of enterotoxigenic *Escherichia coli* (ETEC) in swine and pre-harvest food safety on *E. coli* O157:H7. My research on ETEC in swine is focused on study of the roles of enterotoxins in enhancement of bacterial colonization of the intestine and causation of diarrheal disease. We are also currently studying the role of the immune response to K87 capsular polysaccharide in complement-mediated serum killing of ETEC serotype O8:K87. My research on *E. coli* O157:H7 mainly involves study of the roles of secreted bacterial proteins and immune responses to these proteins in enhancement or reduction of intestinal colonization, respectively. In addition, my research on *E. coli* O157:H7 involves collaborative field studies addressing the epidemiology and testing of pre-harvest intervention strategies for this organism in feedlot cattle.

My teaching responsibilities involve the instruction of BIOS/VBMS 441/841 Pathogenic Microbiology, serving as major advisor for graduate students, and serving as a member of graduate supervisory committees. I have also served several terms as the departmental representative on the College of Agricultural Sciences and Natural Resources (CASNR) Curriculum Committee.
My research centers on pathogenesis of viral infections. In the last decade we have focused on a major viral agent that affects swine: Porcine Reproductive and Respiratory Syndrome Virus (PRRSV, an arterivirus, ssRNA+ genome). PRRSV currently causes the most economically significant infectious disease of US swine stock. Our initial interest in this disease centered on the primary characterization of the cell tropism of this virus in vivo. We initially detected and characterized a novel tropism of PRRSV for male germ cells. Such a specialized tropism of PRRSV results in death of these cells by (in vivo) induction of apoptosis. This selectivity for testicular germ cells also explains the transmission of PRRSV via semen, one of the most important routes of dissemination of this agent. We have also further characterized the immunobiology of persistence of this virus in convalescent animals. Our research seems to indicate that, contrary to other known examples of RNA virus persistence, the persistent infection established by PRRSV is finite and seems to involve a low level of productive infection that progressively declines until complete viral clearance takes place. We found that during the period of viral persistence, extensive modulation of the homologous (PRRSV-specific) cell-mediated and humoral immune response takes place. We are particularly interested in the mechanisms responsible for establishment of protective immunity against PRRSV. There is an urgent need for improvement of the vaccines that are currently used against PRRSV. We have discovered that a major role for protection against infection and disease caused by PRRSV resides with a type of PRRSV-specific antibodies that has the ability to render PRRSV un-infectious (i.e. antibodies that neutralize PRRSV). The key to a better protection against PRRSV resides on the development of better and safer vaccines that would prevent infection and possess more genetic stability than the commercial attenuated vaccines currently in use. To that end, we are interested in: 1) characterization of the major immunogenic components of PRRSV, and 2) characterization of the genes responsible for the ability to produce disease (virulence) by PRRSV. Knowing the genetic basis of PRRSV virulence and attenuation should permit a more precise design of safer, more efficacious vaccines.

Diagnostic Service: As the director of diagnostic virology at the Veterinary Diagnostic Center, my main goal has been to expedite the diagnostic process through the implementation of rapid tests that are based on the direct detection of viral components or anti-viral antibodies in the clinical sample. I am particularly interested on the evaluation of the fitness and robustness of new commercial diagnostic serologic kits for PRRSV and for Foot-and-Mouth Disease Virus (FMDV). In the latter case, the differential (i.e. capable of distinguishing infected from vaccinated animals) kits for FMDV may be of cardinal importance to US Agriculture, in case any form of vaccination is considered as a viable rapid response against a possible outbreak of this disease in the US. Another major responsibility as diagnostic virologist is my maintaining an active diagnostic surveillance for Pseudorabies Virus (PRV), a very important herpesvirus that has been recently eradicated of domestic swine in the US. Our diagnostic virology lab serves as reference for other labs nationwide in relation to molecular detection of PRV in tissues of animals suspects of PRV infection.

Regarding teaching, I collaborate with team teaching of virology courses. Together with Dr. Charles Wood, I co-teach a course on Advanced Viral Pathogenesis and collaborate with a team teaching of Advanced Viral Immunology.
My research focuses on various aspects of viral genome transcription, replication, and virus assembly in cells infected with viruses. As model systems for these studies, we use vesicular stomatitis virus (VSV), a non-segmented negative-strand RNA virus, hepatitis C virus (HCV), a positive-strand RNA virus, and porcine reproductive and respiratory syndrome virus (PRRSV), another positive-strand RNA virus. VSV is a cattle pathogen but has been widely used as a paradigm for understanding of biology of this group of RNA viruses that include some of the most serious human pathogens. HCV is a significant human pathogen for which no effective antiviral therapy is currently available. PRRSV causes economically significant diseases in swine population.

In recent past, our research has been centered on the understanding the mechanism of VSV genome transcription and replication. We have generated plasmids encoding subgenomic replicons of VSV that when transfected into mammalian cells, faithfully reproduce the processes of transcription and replication that is normally observed in virus-infected cells. Using the system of reverse genetics that I developed several years ago, we have examined many different aspects of the mechanisms of this virus genome transcription and replication. We have proposed a model suggesting that nucleotide sequences present at the beginning and the end of each gene coding sequences of VSV contain regulatory signals that mediate synthesis of five individual mRNAs from the large viral genome in infected cells. In addition, in a separate model, we have proposed that differential phosphorylation of one of the key viral proteins (the phosphoprotein, P) regulates the transcription and replication functions of the viral RNA polymerase. Logical ongoing studies are directed at generating and characterizing mutant viruses with defects in the P protein so that it may be possible to create viruses with attenuated phenotypes for development of viral vaccines.

In the area of HCV, we are attempting to develop a system for replication of subgenomic replicons in transfected mammalian cells. These are extremely challenging studies, but if successful, will advance the field significantly. For these studies, we have generated a variety of HCV subgenomic replicons and are currently examining their ability to replicate in transfected cells. In addition, our studies are directed at generating infectious HCV from mammalian cells. Currently, attempts to develop antiviral therapy against this virus are hampered by the lack of a system to grow and propagate the virus in cultured cells. With PRRSV, we have generated a full-length cDNA clone of the viral genome in a transcription vector. In vitro transcripts generated from the cDNA clone when transfected into MARC-145 cells resulted in production of infectious recombinant PRRSV from the cells. The recombinant PRRSV generated from the cDNA exhibited pathogenic properties similar to that of the parental virus. We are currently using this reverse genetic system to determine the virulence and attenuation determinants of PRRSV. Results from these studies will be significant in our attempt to develop safe and more efficacious vaccine to combat PRRS. Using infectious VSV cDNA clone, we are also generating recombinant VSVs containing PRRSV genes to examine cell-mediated and humoral immune response to the specific PRRSV proteins.
My major responsibility within the Department of Veterinary and Biomedical Sciences and within the Veterinary Diagnostic Center is diagnostic veterinary medicine. As a diagnostic pathologist, the position requires the histopathologic examination of diseased tissues, performing necropsies, assimilation and evaluation of supportive laboratory data, reporting to referring veterinarians or animal owners, preparing the laboratory reports and researching pertinent scientific literature. My special interest is conducting field investigations relative to infectious disease of livestock. This position has afforded me several opportunities to identify “new” infectious diseases of livestock and also to identify “new trends” of “old diseases.” The ultimate goal of these investigations has been (and will be) to establish intra- and inter-institutional collaborative studies on the pathogenesis of infectious diseases of livestock. My teaching responsibilities include the training of graduate students/residents interested in diagnostic veterinary medicine, advising graduate students (as major advisor or committee member), conducting research on bacterial diseases of livestock.
Theriogenology
Great Plains Veterinary Educational Center
Clay Center, Nebraska

Appointment: .50 FTE Tchg; .30 FTE Rsch; .20 FTE Srvc

As Director of The University of Nebraska Great Plains Veterinary Educational Center I work with other Departmental faculty to provide instruction in clinical and applied areas of production management and specialized health care for veterinary students in the professional curriculum of the joint KSU/UNL program. This mission is accomplished through another important activity, which is providing health and production management services for the US MARC livestock in concert with the Herd Health Veterinarian. The combination of duties provides an excellent opportunity for student experience in clinical veterinary medicine and livestock management.

An additional aspect of our Center is that of providing continuing education programs for graduate veterinarians. This activity requires working with a wide array of allied specialists in the diverse areas involved in the beef cattle industry. We are just finished providing the eighth Beef Cattle Production Management Series which increases our total participation to more than 140 veterinarians. They represent beef cattle practitioners from across the United States and Canada and also from other aspects of the animal health industry. During the past three years this educational series has evolved into an optional graduate program which usually leads to an MS degree through distance education but has contributed to several PhD programs as well. The Series is currently being taught by University from Animal Science, Agronomy, Agricultural Economics, Veterinary Science from the University of Nebraska and educators from Kansas State University, Iowa State University, the University of Missouri, Texas A&M University, as well as specialists from other beef industry perspectives.

Research by faculty involves projects conducted in cooperation with U. S. Meat Animal Scientists and with cooperating producer herds and private feed yards in Nebraska. Recent efforts have been associated with reproduction, antibiotic residues, and tracking calves through retained ownership from birth to processing. The development of biosecurity and quality assurance programs for beef producers, and work to prevent and control foodborne pathogens. Additional projects have been carried out in areas of neonatal health and production.

In the future the GPVEC program hopes to further expand the interaction of other colleges of veterinary medicine and related disciplines to broaden the teaching and industry exposure for graduate veterinarians and allied specialists to provide a broad and in-depth coverage of production, management, economic, and health related issues essential for providing service to progressive livestock producers.

Our faculty wish to continue improving our involvement in areas of clinically related research, extension, and veterinary service to MARC, Nebraska producers, and the entire livestock industry. This can best be accomplished through our cooperation and interactive participation in education, research, and service commitments. The benefits of distance education and other innovative multimedia technologies are gradually increasing general knowledge and will enhance our service to the livestock industry.
My duties include participating in the diagnostic pathology rotation in the Veterinary Diagnostic Center and teaching two courses, VBMS 101, Introduction to Animal Health Careers (1 cr hr) and VBMS 408 (4 cr hr), Functional Histology.

At this time, I am working on a research project entitled, “Recruitment and Retention of Food Animal and Rural Veterinarians in Nebraska.” A survey of Nebraska veterinarians was conducted to obtain data about background characteristics of veterinarians in food animal practices. Similarly, data was obtained regarding factors that importantly influenced decisions of veterinarians to choose rural (or urban) communities in which to practice. Data was also obtained about the perceptions of practicing veterinarians regarding current and future shortages of rural veterinary practitioners. Some of this data was presented in a VBMS Seminar on November 21st. A presentation about this topic will also be given at the Annual NVMA Meeting on January 19, 2006. Because of the national interest on this topic, additional invitations to present the data at national and/or regional meetings are anticipated. Submission of a manuscript for publication in the Journal of Veterinary Medical Education is a goal for 2006.

Another project I am currently working on entitled, “Management Model for Diagnosis, Control and Monitoring BVDV-Free Status in Beef Cattle Herds.” I am a co-principal investigator with Dr. Gary Rupp, Director, Great Plains Veterinary Educational Center, working on an Agricultural Research Division Research Project proposal that we are preparing for submission in the near future. There are other VBMS faculty members and other collaborators from outside UNL who are also contributing to this project. While on faculty development leave, I proceeded on composing the initial draft of the project description.

My appointment as Diagnostic Pathologist includes being responsible for necropsy, histopathology, ordering the appropriate tests, evaluating/interpretation of test results, report preparation and consultation for cases received by the VDC on the days when I am on pathology duty. Additionally, I have responsibility for the interpretation of test results on bacteriology cases in the absence of a diagnostic bacteriologist. Because of being gone for six months on faculty development leave, I assumed pathology duties only from July/December 2005 and was the case coordinator/pathologist for 444 cases during that time.
The goals of my research and extension programing are to contribute new knowledge and apply existing knowledge to solve animal and public health problems associated with dairy and beef production systems. I conduct research on, and communicate applications of, biosecurity and pathogen containment to control pathogens that affect dairy and beef cattle health and pre-harvest food safety.

My current research and extension efforts are directed towards animal production food safety related to *Escherichia coli* O157:H7 and *Salmonella* in feedlot cattle, evaluating herd-level diagnostic approaches for Johne’s disease and bovine viral diarrhea in dairy and beef cattle, and evaluating new production systems to prevent calf scour on Nebraska Sandhills ranches.
S. aureus and S. epidermidis are the two leading causes of nosocomial infections in the USA, resulting in dramatically increased morbidity and treatment costs. Additionally, S. aureus is a major cause of bovine mastitis, a disease costing the USA approximately $2 billion annually, due to reduced production, animal replacement costs, discarded milk, treatment costs, and veterinary fees. My research focuses on addressing how environmental conditions affect the bacterial metabolic status and, in turn, how the metabolic status affects staphylococcal virulence. This is particularly important in the era of “omics,” when genomics, proteomics, and high throughput mutagenesis screens consistently identify the genes of bacterial physiology and metabolism as being important, or essential, for pathogenesis. Currently, my lab is working on identifying the intermediary metabolism derived signals in S. aureus that facilitate the transition from a commensal state to a pathogenic state. The long-term goal of my research is the elucidation of mechanisms by which Staphylococcus aureus and S. epidermidis controls virulence factor production in response to metabolic and environmental stimuli. It is anticipated that by understanding the mechanisms of virulence regulation in response to environmental stimuli that vaccines can be developed that will attenuate the bacterial response to the host environment.
My appointment in the Nebraska Veterinary Diagnostic Center is to serve as the Director and as a Diagnostic Pathologist. My scholarly component involves making use of case materials. A regular funded congenital defects referral center was established and I was actively investigating Dwarfism in Angus cattle. I am working with the Angus and Hereford Associations to update their genetic disease control policies. Collaboration with Dr. Kelling on BVDV infections in calves is ongoing as is collaborative studies in West Nile virus infection in horses. Laboratory accessions continue to rise.

Major time commitment is toward providing administrative guidance to the Diagnostic Center and providing diagnostic and consultation services to the Nebraska livestock industry. I served as a case coordinator on 1,300-1,400 investigations per year, which involve a multi-disciplinary approach to disease diagnosis. All cases culminate in a written report to the veterinarian and/or the animal owner, and often telephone consultations regarding disease management.
My 0.50 FTE position includes veterinary education responsibilities at the UNL Panhandle Research and Extension Center. The principal goal for my position is to contribute to the viability and growth of the animal agriculture industries in western Nebraska, especially the beef cattle industry and public health. I am responsible for coordination and cooperation with faculty and staff located at PHREC and other research and extension centers, VBMS, GPVEC and other UNL units.

I am responsible for development, coordination and implementation of educational programs that are sensitive to the needs of animal owners, veterinary practitioners, extension personnel and wildlife managers. My programs relate to animal health and production management that is pertinent to industry.

I deal with one on one conferences concerning isolated disease or management problems on a daily basis. An emphasis is placed on biosecurity applications for animal production systems. Currently my focus programs are the IRM pen of 5 demonstration project, foreign animal disease and agroterrorism issues and the planning for a beef industry discussion group to be implemented in the future. I am involved in the study of veterinary needs of the future in rural Nebraska.
As Manager for the Microscopy Research Core Facility, my main goal has been to establish and maintain the state-of-art microscopy imaging facility, which provides expertise and instrumentation to researchers within/outside UNL. I am also actively involved in research collaborations and in providing technical support for seeking research funding. One of the major research and service projects involves the use of immunohistochemical labeling and digital imaging technology to support an NIH-funded collaborative study of viral pathogenesis by a group of scientists from UNL, UNMC and UNC. Microscopy imaging technologies we provide include: a) immunofluorescence microscopy using whole tissues or sections, b) multi-probe in situ hybridization, c) real-time imaging confocal microscopy (i.e. detection of GFP-tagged proteins in live cells in cultures and d) transmission and scanning electron microscopy. My research is focused on genetic and environmental effects on stress responsiveness in relation to age-related neurodegeneration using animal models. The goal of my research is to establish a mouse model of altered stress response in order to identify and characterize the genes/proteins associated with or affecting stress susceptibility and aging. One of the ongoing projects, in collaboration with Dr. MK Nielsen of Animal Sciences, is genetic selection of mouse lines with high and low responsiveness to stress, in order to establish a useful mouse model of stress-induced early aging and neurodegeneration. Molecular events associated with stress-induced abnormalities remain ambiguous despite scientific advancement, owing to the complexity of genetic and environmental interactions. Many experimental paradigms have been used to study the mechanisms of stress responses in animals, but to date there is no well-documented animal model generated from genetic selection for altered corticosterone response to stress to facilitate the study of stress-induced changes in gene expression with relation to behavioral abnormalities. We recently initiated genetic selection of two mouse lines for high and low stress responsiveness (SH and SL lines, respectively), using serum corticosterone as one of the key criteria. After completion of the selection process for the second generation, the SH mice displayed up to twice the level of serum corticosterone observed in the SL mice (with or without exposure to stress). The initial microarray using the SH/SL mouse brains revealed significant differences in expression of many genes between the stressed and control mice within the same line and between the two genotypes. I, therefore, hypothesize that the difference in stress responses between the SH and SL lines results from complex genetic alteration (mainly in differential gene expression), and in mechanisms of central response to stress that were applied throughout the genetic selection process. Major focuses of my research are 1) In vitro characterization of biochemical properties and functional integrity of primary cultured hippocampal neurons derived from the embryonic SH and SL mice; 2) Assessment of behavioral activity and cognitive performance and subsequent gene expression profiling in the SH and SL mice in response to stress; and 3) Gene expression profiling and behavioral/cognitive assessments in the SH and SL mice in response to chronic stress in relation to the aging process in order to identify age-related genes associated with high or low susceptibility to chronic stress. This research is expected to foster an increased understanding of the molecular and biochemical events associated with neuronal calcium/kinase signaling and with regulation of genetic and environmental interactions in the mechanisms of stress.
<table>
<thead>
<tr>
<th>Name</th>
<th>Title</th>
<th>Mentor</th>
<th>Degree(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ofelia Chacon-Barletta</td>
<td>Postdoctoral Research Associate</td>
<td>Raul G. Barletta, UNL; G. Adams (TX A&M Univ)</td>
<td>MSc – January 1995 – University of Antioquia, Colombia (Immunology)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MD – July 1991 – University of Antioquia, Colombia (Physician and Surgeon, General Practice)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PhD – December 2002 – Texas A&M University, Texas (Microbiology)</td>
</tr>
<tr>
<td>Weiping Peng</td>
<td>Senior Research Associate</td>
<td>Clinton J. Jones</td>
<td>BS - July 25, 1982 - Anhui Agricultural University - China (Sericulture)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MS - December 26, 1986 - Anhui Agricultural University - China</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Silkworm genetics and breeding)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PhD - March 4, 2000 - Chinese Academy of Agricultural Sciences, China</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Silkworm genetics and breeding)</td>
</tr>
<tr>
<td>Mustapha Moulay Samarakandi</td>
<td>Researcher</td>
<td>Jeffrey D. Girillo</td>
<td>BS - June 1985 - Marrakech, Morocco - Sahnoun College (Experimental Sciences)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MS - September, 1990 - France - University of Sciences Toulouse III</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Biochemistry)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Post-Graduate Diploma - September 1991 - France - Politechnic National</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Institute - Toulouse III (Phytransitary and Antiparasitic Agrochemistry)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PhD - February 1996 - France - University of Sciences Toulouse III</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Microbiology)</td>
</tr>
<tr>
<td>Marat R. Sadykov</td>
<td>Postdoctoral Research Associate</td>
<td>Greg A. Somerville</td>
<td>MSc – June 1991 – Kazan State University, Kazan, Russia (Genetics)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PhD – April 1999 – Moscow State University</td>
</tr>
<tr>
<td>Christina Topliff</td>
<td>Postdoctoral Research Associate</td>
<td>Clayton L. Kelling</td>
<td>BS – May 1985 – Kansas State University, Manhattan, KS (Veterinary Science)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>MS – December 1995 – University of Nebraska-Lincoln, Lincoln, NE</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>(Veterinary Science)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>DVM – May 1987 – Kansas State University, Manhattan, KS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PhD – December 2004 – University of Nebraska-Lincoln, Lincoln, NE (Integrative</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Biomedical Sciences)</td>
</tr>
<tr>
<td>Kuiyi Xing</td>
<td>Senior Research Associate</td>
<td>Marjorie F. Lou</td>
<td>BS - July 15, 1991 - Fudan University, Shanghai, People’s Republic of China (Biochemistry)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>PhD - December 20, 2002 - University of Nebraska-Lincoln (Biochemistry)</td>
</tr>
</tbody>
</table>
Name: Sandra Elizabeth Perez-DeBretsneider
Mentor: Clinton J. Jones
Title: Postdoctoral Research Associate

Degree(s):
- **MS** – June 05, 2000, University of Mar Del Plata, Buenos Aires, Argentina (Animal Virology)
- **DVM** – April 3, 1996, Universidad del Centro de la Provincia, DeBuenos Aires (UNCPBA), Buenos Aires, Argentina (Animal Health)
- **PhD** – May 2006, University of Nebraska-Lincoln, Department of Veterinary and Biomedical Sciences (Molecular Virology)
- **Specialist in Animal Health Degree** – December 1996, University of Mar Del Plata, Buenos Aires, Argentina (Animal Health)
December 20, 2006

TO: IANR Faculty Involved in CASNR Instruction/Advising

FROM: Steve Waller
Dean

SUBJECT: Academic Appointment Summary

Enclosed is a summary of your calculated FTE for the 2005-2006 academic year (Fall 2005, Spring 2006, Summer 2006). This is a measure of effort, not quality of instruction or advising. The CIEQ, Peer Review and Student Outcomes Assessment provide opportunities to address quality. The documentation for the Academic Appointment is on the CASNR website at http://casnr.unl.edu/facstaff/forms.htm

We have provided a format for the academic appointment summary that identifies the contributions of each category (Advising, Adjustments and Instruction) to the total calculated FTE. If you are on an academic year appointment, the calculated FTE has been adjusted. The budgeted FTE is taken from the 2005-2006 Departmental Budget Listing and will not reflect changes made after April 1, 2005. Mid-year adjustments in your budgeted FTE are considered during the evaluation process. Please contact Associate Dean Dann Husmann if you have any questions about the enclosure. Your historical summary of the academic appointment is available upon request. Please contact Carol Wusk for a summary.

Although completing the Academic Appointment Information Sheet is time consuming and may appear more bureaucratic than necessary, it has proven to be very accurate College-wide. It allows you, your unit administrator and the College to make knowledgeable decisions regarding workload adjustment and resource allocation. As helpful as it is within the College, its benefit is even greater when campus administration is evaluating academic appointments across colleges.

CASNR is the only college with substantial quantitative documentation. Our process acknowledges important components of the academic appointment that cannot be measured by student credit hour production alone. Consequently, the data that you help us collect has greatly strengthened our position in discussing faculty load among the other colleges. For that I am grateful and appreciate your time and effort invested in helping us each year with this activity.

cc: IANR Deans’ Council w/o encl.
VETERINARY AND BIOMEDICAL SCIENCES TREND

<table>
<thead>
<tr>
<th>Name</th>
<th>Calculated FTE</th>
<th>Budgeted FTE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>97-98</td>
<td>98-99</td>
<td>99-00</td>
<td>00-01</td>
<td>01-02</td>
<td>02-03</td>
<td>03-04</td>
<td>04-05</td>
<td>05-06</td>
<td>06-07</td>
</tr>
<tr>
<td>Barletta</td>
<td>15</td>
<td>13</td>
<td>12</td>
<td>13</td>
<td>11</td>
<td>9</td>
<td>5</td>
<td>6</td>
<td>16</td>
<td>21.9</td>
</tr>
<tr>
<td>Dubmnel</td>
<td>5</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>9</td>
<td>8</td>
<td>6</td>
<td>6</td>
<td>8</td>
<td>0</td>
</tr>
<tr>
<td>Jones</td>
<td>13</td>
<td>18</td>
<td>18</td>
<td>16</td>
<td>29</td>
<td>14</td>
<td>24</td>
<td>22</td>
<td>37</td>
<td>25.7</td>
</tr>
<tr>
<td>Kelling</td>
<td>21</td>
<td>29</td>
<td>32</td>
<td>35</td>
<td>39</td>
<td>40</td>
<td>43</td>
<td>34</td>
<td>33</td>
<td>38.5</td>
</tr>
<tr>
<td>Mosley</td>
<td>15</td>
<td>28</td>
<td>16</td>
<td>25</td>
<td>15</td>
<td>18</td>
<td>28</td>
<td>25</td>
<td>30</td>
<td>30.1</td>
</tr>
<tr>
<td>Schmitz</td>
<td>20</td>
<td>32</td>
<td>31</td>
<td>33</td>
<td>31</td>
<td>37</td>
<td>37</td>
<td>18</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Sub-Total</td>
<td>143</td>
<td>111</td>
<td>124</td>
<td>116.2</td>
<td>120</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Contract/Other Teaching Faculty

<table>
<thead>
<tr>
<th>Name</th>
<th>Calculated FTE</th>
<th>Budgeted FTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Berg</td>
<td>128.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0</td>
</tr>
<tr>
<td>Brodersch</td>
<td>1</td>
<td>11</td>
<td>12</td>
<td>3</td>
<td>3.6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Casdor</td>
<td>21</td>
<td>17</td>
<td>18</td>
<td>31.1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Doster</td>
<td>6.3</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Griffin</td>
<td>6.8</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hardin L.</td>
<td>24.1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kannerman</td>
<td>7.6</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lou</td>
<td>4.7</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>McVey</td>
<td>20.1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ondrak</td>
<td>4</td>
<td>7</td>
<td>13</td>
<td>21</td>
<td>15.7</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pottsak</td>
<td></td>
</tr>
<tr>
<td>Rogers</td>
<td>21.5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rupp</td>
<td>1.1</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smith</td>
<td></td>
</tr>
<tr>
<td>Sommerville</td>
<td>16.5</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zhou</td>
<td>2.7</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sub-Total</td>
<td>54</td>
<td>70</td>
<td>79</td>
<td>303.9</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TOTALS

<table>
<thead>
<tr>
<th>Calculated FTE</th>
<th>Calculated FTE</th>
<th>Calculated FTE</th>
<th>Calculated FTE</th>
<th>Calculated FTE</th>
<th>Calculated FTE</th>
<th>Budgeted FTE</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
<td>274</td>
<td>203</td>
<td>420.1</td>
<td>120</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 The CASNR Academic Appointment - Philosophy and Guidelines (Sept. 2003)
2 Based on Fall 2006, Spring 2007, Summer 2007
3 Fiscal Year 2006-2007, Departmental Budget Listing

02/14/2008
<table>
<thead>
<tr>
<th>Course #</th>
<th>Course Title /Cross listing</th>
<th>Credit Hours/Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBMS 101</td>
<td>Introduction to Animal Health Careers</td>
<td>1 cr, I</td>
</tr>
<tr>
<td>VBMS 303</td>
<td>Principles and Prevention of Livestock Diseases</td>
<td>3 cr, II</td>
</tr>
<tr>
<td>VBMS 403</td>
<td>Integrated Principles and Prevention of Livestock Diseases</td>
<td>4 cr, I</td>
</tr>
<tr>
<td>VBMS 408</td>
<td>Functional Histology Lec 2, lab 2</td>
<td>4 cr, II</td>
</tr>
<tr>
<td>VBMS 410</td>
<td>General Pharmacology and Toxicology</td>
<td>3 cr, II - Lec 3</td>
</tr>
<tr>
<td>VBMS 416</td>
<td>Veterinary Entomology/Ectoparasitology</td>
<td>2 cr, II</td>
</tr>
<tr>
<td></td>
<td>(Animal Science; Entomology; Forestry, Fisheries and Wildlife 416/816)</td>
<td></td>
</tr>
<tr>
<td>VBMS 424</td>
<td>Basic Molecular Infectious Diseases</td>
<td>3 cr, II, even numbered yrs</td>
</tr>
<tr>
<td>VBMS 441</td>
<td>Pathogenic Microbiology (BIOS 441/841)</td>
<td>3 cr, II</td>
</tr>
<tr>
<td>VBMS 452</td>
<td>Introduction to Molecular Virology and Viral Pathogenesis</td>
<td>3 cr, I</td>
</tr>
<tr>
<td>VBMS 488</td>
<td>Exploration of Production Medicine</td>
<td>2 cr, III - Lec 2</td>
</tr>
<tr>
<td>VBMS 496</td>
<td>Independent Study in Veterinary Science</td>
<td>1-5 cr, I, II</td>
</tr>
<tr>
<td>VBMS 499H</td>
<td>Honors Thesis</td>
<td>3-6 cr, I, II, III</td>
</tr>
<tr>
<td>VBMS 805</td>
<td>Introduction to Mechanisms of Disease</td>
<td>3 cr, II</td>
</tr>
<tr>
<td>VBMS 808</td>
<td>Functional Histology</td>
<td>4cr, II Lec/Lab</td>
</tr>
<tr>
<td>VBMS 811</td>
<td>Introduction to Veterinary Epidemiology</td>
<td>2 cr, III - Lec/Disc/Lab</td>
</tr>
<tr>
<td>VBMS 816</td>
<td>Veterinary Entomology/Ectoparasitology</td>
<td>2 cr, II</td>
</tr>
<tr>
<td>VBMS 816L</td>
<td>Veterinary Entomology/Ectoparasitology</td>
<td>1 cr, I</td>
</tr>
<tr>
<td>VBMS 818</td>
<td>Computer-aided Sequence Analysis Primer</td>
<td>2 cr, I</td>
</tr>
<tr>
<td>VBMS 820</td>
<td>Molecular Genetics (420/820) (BIOS 820)</td>
<td>3 cr</td>
</tr>
<tr>
<td>VBMS 824</td>
<td>Basic Molecular Infectious Diseases</td>
<td>3cr, I</td>
</tr>
<tr>
<td>VBMS 835</td>
<td>Animal Biochemistry (BIOS 835)</td>
<td>3 cr, II, even numbered yrs</td>
</tr>
<tr>
<td>VBMS 838</td>
<td>Molecular Biology Laboratory (BIOS 838)</td>
<td>5 cr, III</td>
</tr>
<tr>
<td>VBMS 840</td>
<td>Microbial Physiology (BIOS 840)</td>
<td>3 cr</td>
</tr>
<tr>
<td>VBMS 841</td>
<td>Pathogenic Microbiology (BIOS 841)</td>
<td>3 cr, II Lec/Lab</td>
</tr>
<tr>
<td>Course#</td>
<td>Course Title Cross Listings</td>
<td>Credit Hours/Semester</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>-----------------------</td>
</tr>
<tr>
<td>VBMS 842</td>
<td>Endocrinology (ASCI 842, BIOS 842)</td>
<td>3 cr, I</td>
</tr>
<tr>
<td>VBMS 843</td>
<td>Immunology (BIOS 843)</td>
<td>3 cr</td>
</tr>
<tr>
<td>VBMS 845</td>
<td>Animal Physiology I (ASCI 845, BIOS 813)</td>
<td>4 cr, I Lec/Lab</td>
</tr>
<tr>
<td>VBMS 846</td>
<td>Animal Physiology II (ASCI 846, BIOC 814)</td>
<td>4 cr, II Lec/Lab</td>
</tr>
<tr>
<td>VBMS 847A&B</td>
<td>Interdisciplinary Concepts in Beef Production</td>
<td>3 cr, max 6, I, II</td>
</tr>
<tr>
<td>VBMS 848</td>
<td>Introduction to Veterinary Biotechnology</td>
<td>1-2 cr, II</td>
</tr>
<tr>
<td>VBMS 852</td>
<td>Molecular Virology and Viral Pathogenesis</td>
<td>3 cr, I</td>
</tr>
<tr>
<td>VBMS 899</td>
<td>Masters Thesis</td>
<td>6-10 cr , I, II, III</td>
</tr>
<tr>
<td>VBMS 901</td>
<td>Diagnostic Techniques</td>
<td>1-10 cr, I, II</td>
</tr>
<tr>
<td>VBMS 909</td>
<td>Seminar</td>
<td>1-4 cr, I, II</td>
</tr>
<tr>
<td>VBMS 919</td>
<td>Regulation of Eukaryotic Gene Expression</td>
<td>3 cr, II</td>
</tr>
<tr>
<td>VBMS 920</td>
<td>Measurement of Animal Disease and Production</td>
<td>2 cr, I</td>
</tr>
<tr>
<td>VBMS 921</td>
<td>Analytic Observational Studies in Veterinary Epidemiology</td>
<td>2 cr, I</td>
</tr>
<tr>
<td>VBMS 925</td>
<td>Critical Reading of the Epidemiology Literature</td>
<td>1-4 cr, II</td>
</tr>
<tr>
<td>VBMS 930</td>
<td>Advanced Food Animal Production Medicine</td>
<td>2 cr, II (even yrs)</td>
</tr>
<tr>
<td>VBMS 942</td>
<td>Microbial Genetics</td>
<td>3 cr</td>
</tr>
<tr>
<td>VBMS 944</td>
<td>Immunovirology (BIOS 944)</td>
<td>3 cr</td>
</tr>
<tr>
<td>VBMS 948</td>
<td>Concepts in Experimental Immunology (BIOS 948)</td>
<td>3 cr, II</td>
</tr>
<tr>
<td>VBMS 949</td>
<td>Vaccinology</td>
<td>3 cr, II, alternate yrs</td>
</tr>
<tr>
<td>VBMS 950</td>
<td>Medical Molecular Virology (BIOS 950)</td>
<td>3 cr, I</td>
</tr>
<tr>
<td>VBMS 951</td>
<td>Advanced Molecular Infectious Disease</td>
<td>3 cr, II</td>
</tr>
<tr>
<td>VBMS 964</td>
<td>Signal Transduction (BIOS 964)</td>
<td>3 cr</td>
</tr>
<tr>
<td>VBMS 966</td>
<td>Advanced Viral Pathogenesis (BIOS 966)</td>
<td>3 cr (alternate yrs)</td>
</tr>
<tr>
<td>VBMS 975</td>
<td>Seminar in Veterinary Histopathology</td>
<td>1 cr, I, II</td>
</tr>
<tr>
<td>VBMS 996</td>
<td>Research on Selected Problems in Veterinary Science</td>
<td>2-10 cr, I, II</td>
</tr>
<tr>
<td>VBMS 998</td>
<td>Special Topics in Veterinary Science</td>
<td>1-10 cr, I, II</td>
</tr>
<tr>
<td>IBMS 999</td>
<td>Doctoral Dissertation</td>
<td>1-10 cr, I, II, III</td>
</tr>
</tbody>
</table>
Department of Veterinary and Biomedical Sciences
2006 Enrollment

Spring, Semester, 2006

<table>
<thead>
<tr>
<th>Course #</th>
<th>Course Title</th>
<th>Instructor</th>
<th>Students</th>
<th>Cr Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBMS 303</td>
<td>Preventive Livestock Diseases</td>
<td>Kelling</td>
<td>17</td>
<td>51</td>
</tr>
<tr>
<td>VBMS 403</td>
<td>Capstone: Issues Ani Health</td>
<td>Kelling</td>
<td>15</td>
<td>60</td>
</tr>
<tr>
<td>VBMS 441</td>
<td>Pathogenic Microbiology</td>
<td>Moxley</td>
<td>17</td>
<td>51</td>
</tr>
<tr>
<td>BIOSCI 441</td>
<td>Pathogenic Microbiology</td>
<td>Moxley</td>
<td>5</td>
<td>15</td>
</tr>
<tr>
<td>VBMS 496</td>
<td>Independent Study</td>
<td>Kelling</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>BIOS 841</td>
<td>Pathogenic Microbiology</td>
<td>Moxley</td>
<td>5</td>
<td>13</td>
</tr>
<tr>
<td>VBMS 899</td>
<td>Masters Thesis</td>
<td>Staff</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>VBMS 909</td>
<td>Seminar</td>
<td>Moxley</td>
<td>19</td>
<td>19</td>
</tr>
<tr>
<td>VBMS 964</td>
<td>Signal Transduction</td>
<td>Jones</td>
<td>7</td>
<td>21</td>
</tr>
<tr>
<td>VBMS 996</td>
<td>Research Problems</td>
<td>Staff</td>
<td>13</td>
<td>61</td>
</tr>
<tr>
<td>IBMS 999</td>
<td>Doctoral Dissertation</td>
<td>Staff</td>
<td>5</td>
<td>14</td>
</tr>
</tbody>
</table>

Eight Week Session, Summer

<table>
<thead>
<tr>
<th>Course #</th>
<th>Course Title</th>
<th>Instructor</th>
<th>Students</th>
<th>Cr Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBMS 996</td>
<td>Research Problems</td>
<td>Duhamel</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

First Five-Week Summer Session, 2006

<table>
<thead>
<tr>
<th>Course #</th>
<th>Course Title</th>
<th>Instructor</th>
<th>Students</th>
<th>Cr Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBMS 899</td>
<td>Masters Thesis</td>
<td>Staff</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>VBMS 996</td>
<td>Research Problems</td>
<td>Staff</td>
<td>10</td>
<td>29</td>
</tr>
<tr>
<td>IBMS 999</td>
<td>Doctoral Dissertation</td>
<td>Staff</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

Second Five-Week Summer Session, 2006

<table>
<thead>
<tr>
<th>Course #</th>
<th>Course Title</th>
<th>Instructor</th>
<th>Students</th>
<th>Cr Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBMS 899</td>
<td>Masters Thesis</td>
<td>Staff</td>
<td>5</td>
<td>25</td>
</tr>
<tr>
<td>VBMS 996</td>
<td>Research Problems</td>
<td>Staff</td>
<td>9</td>
<td>27</td>
</tr>
<tr>
<td>IBMS 999</td>
<td>Doctoral Dissertation</td>
<td>Staff</td>
<td>3</td>
<td>7</td>
</tr>
</tbody>
</table>

Fall Semester, 2006

<table>
<thead>
<tr>
<th>Course #</th>
<th>Course Title</th>
<th>Instructor</th>
<th>Students</th>
<th>Cr Hrs</th>
</tr>
</thead>
<tbody>
<tr>
<td>VBMS 101</td>
<td>Animal Health Careers</td>
<td>Hardin</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>VBMS 408</td>
<td>Functional Histology</td>
<td>Dappen</td>
<td>23</td>
<td>92</td>
</tr>
<tr>
<td>VBMS 410</td>
<td>Pharmacology/Toxicology</td>
<td>Carlson</td>
<td>23</td>
<td>92</td>
</tr>
<tr>
<td>VBMS 496</td>
<td>Independent Study</td>
<td>Steffen/Brodersen</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>VBMS 499H</td>
<td>Honors Thesis</td>
<td>Duhamel</td>
<td>1</td>
<td>3</td>
</tr>
<tr>
<td>VBMS 808</td>
<td>Functional Histology</td>
<td>Dappen</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>VBMS 852</td>
<td>Molecular Viro&Viral</td>
<td>Jones/Pattnaik</td>
<td>26</td>
<td>78</td>
</tr>
<tr>
<td>VBMS 899</td>
<td>Masters Thesis</td>
<td>Kelling/Moxley</td>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>VBMS 901</td>
<td>Diagnostic Techniques</td>
<td>Duhamel</td>
<td>2</td>
<td>6</td>
</tr>
<tr>
<td>VBMS 909</td>
<td>Seminar</td>
<td>Hardin</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>VBMS 996</td>
<td>Research Problems</td>
<td>Staff</td>
<td>16</td>
<td>67</td>
</tr>
<tr>
<td>IBMS 999</td>
<td>Doctoral Dissertation</td>
<td>Staff</td>
<td>5</td>
<td>26</td>
</tr>
</tbody>
</table>
Department of Veterinary and Biomedical Sciences
Undergraduate Enrollment, 2006

2006 Spring Semester Enrollment

<table>
<thead>
<tr>
<th>Program</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veterinary Sciences</td>
<td>83</td>
</tr>
<tr>
<td>Pre-Veterinary Medicine</td>
<td>11</td>
</tr>
<tr>
<td>Veterinary Technician</td>
<td>2</td>
</tr>
</tbody>
</table>

2006 Fall Semester Enrollment

<table>
<thead>
<tr>
<th>Program</th>
<th>Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Veterinary Science</td>
<td>75</td>
</tr>
<tr>
<td>Pre-Veterinary Medicine</td>
<td>20</td>
</tr>
<tr>
<td>Veterinary Technician</td>
<td>3</td>
</tr>
</tbody>
</table>

Pre-Veterinary Ambassadors

Spring, 2006
- Pam Fry
- Alyse Aerts
- Lorie Painter

Fall, 2006
- Malori Marotz
- Lauren Taylor
- Kylie Wiedel

Undergraduate Degrees Obtained

May, 2006

<table>
<thead>
<tr>
<th>Name</th>
<th>Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>Laura E. Painter</td>
<td>VBMS</td>
</tr>
<tr>
<td>Mikayla S Ward</td>
<td>VBMS</td>
</tr>
<tr>
<td>Alyse C. Aerts</td>
<td>VBMS</td>
</tr>
<tr>
<td>Michaela R. Clark</td>
<td>VBMS</td>
</tr>
<tr>
<td>Brett A. Scheiding</td>
<td>VBMS</td>
</tr>
<tr>
<td>Pamela R Fry</td>
<td>VBMS</td>
</tr>
<tr>
<td>Nichelle N. Ferdinand</td>
<td>VBMS</td>
</tr>
<tr>
<td>Jordan J. Bader</td>
<td>VBMS</td>
</tr>
<tr>
<td>Cody J. Hankins</td>
<td>VBMS</td>
</tr>
<tr>
<td>Emily M. Becker</td>
<td>VBMS</td>
</tr>
</tbody>
</table>

August, 2006

<table>
<thead>
<tr>
<th>Name</th>
<th>Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nicole C. Hanson</td>
<td>VBMS</td>
</tr>
<tr>
<td>Ryan D. Muldoon</td>
<td>VBMS</td>
</tr>
<tr>
<td>Sonja Jo Witzki</td>
<td>VBMS</td>
</tr>
</tbody>
</table>

December, 2006

<table>
<thead>
<tr>
<th>Name</th>
<th>Major</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amy R. Auch</td>
<td>VBMS</td>
</tr>
<tr>
<td>Jeffrey A. Korus</td>
<td>VBMS</td>
</tr>
<tr>
<td>Amanda J Young</td>
<td>VBMS</td>
</tr>
<tr>
<td>Jenny R. Prior</td>
<td>VETT</td>
</tr>
</tbody>
</table>
Department of Veterinary and Biomedical Sciences
Nebraska Residents Enrolled in KSU, CVM Academic Year 2006 (05-2005/04-2006)

<table>
<thead>
<tr>
<th>Fourth Year Students</th>
<th>Class</th>
<th>Third Year Students (con’t)</th>
<th>Class</th>
<th>Second Year Students (con’t)</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asche, Leslie</td>
<td>2006</td>
<td>Grosse, Miranda</td>
<td>2007</td>
<td>Moravec, Martin</td>
<td>2008</td>
</tr>
<tr>
<td>Bangert, Alicia</td>
<td>2006</td>
<td>Heftie, David</td>
<td>2007</td>
<td>Pigsley, Becky</td>
<td>2008</td>
</tr>
<tr>
<td>Carpenter (Spurgin)</td>
<td>2006</td>
<td>Jirovsky, Lynn</td>
<td>2007</td>
<td>Robbins, Joel</td>
<td>2008</td>
</tr>
<tr>
<td>Crumly, Lindsey</td>
<td>2006</td>
<td>Larson, Aaron</td>
<td>2007</td>
<td>Staab, Dusty</td>
<td>2008</td>
</tr>
<tr>
<td>DiMari, Joseph</td>
<td>2006</td>
<td>Leach, Tiffany</td>
<td>2007</td>
<td>Stevens, Elliot</td>
<td>2008</td>
</tr>
<tr>
<td>Dittmars, Nora</td>
<td>2006</td>
<td>Nienhueser, Travis</td>
<td>2007</td>
<td>Straka, Lindsey</td>
<td>2008</td>
</tr>
<tr>
<td>Hartmann, Erica</td>
<td>2006</td>
<td>Olson, Emily</td>
<td>2007</td>
<td>Talbott, Joan</td>
<td>2008</td>
</tr>
<tr>
<td>Jones, Stephanie</td>
<td>2006</td>
<td>Rainwater, Kimberly</td>
<td>2007</td>
<td>Waechter-Mead, Lindsay</td>
<td>2008</td>
</tr>
<tr>
<td>Karlin, Wm. Mike</td>
<td>2006</td>
<td>Stevens, Lindsey</td>
<td>2007</td>
<td>Wright, Leann</td>
<td>2008</td>
</tr>
<tr>
<td>Longfellow, Daniel</td>
<td>2006</td>
<td>Stones, Allen</td>
<td>2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rath, Fatima</td>
<td>2006</td>
<td>Svehla, Nichole</td>
<td>2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rowan, Jennifer</td>
<td>2006</td>
<td>Thiel, Kevin</td>
<td>2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skavdahl, Elizabeth</td>
<td>2006</td>
<td>Thomassen, Michael</td>
<td>2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Smith, Eliza</td>
<td>2006</td>
<td>Tolstedt, Calvin</td>
<td>2007</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stahl, Matthew</td>
<td>2006</td>
<td>Torpy, Rebecca</td>
<td>2007</td>
<td>Fear, Clarence</td>
<td>2009</td>
</tr>
<tr>
<td>Stuart, Jeremy</td>
<td>2006</td>
<td>Willers, Amanda</td>
<td>2007</td>
<td>Flock, Katie</td>
<td>2009</td>
</tr>
<tr>
<td>Sund, Patricia</td>
<td>2006</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tolstedt, Calvin</td>
<td>2006</td>
<td>Abel, Jeramie</td>
<td>2008</td>
<td>Corinna Gibbons</td>
<td>2009</td>
</tr>
<tr>
<td>Tuller, Eric</td>
<td>2006</td>
<td>Botger, Jeffrey</td>
<td>2008</td>
<td>Nathan Korschwar</td>
<td>2009</td>
</tr>
<tr>
<td>Jeremy Young</td>
<td>2006</td>
<td>Eitzmann, Allison</td>
<td>2008</td>
<td>Alicia Lloyd</td>
<td>2009</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Third Year Students</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Backlund, Michelle</td>
<td>2007</td>
<td>Friedel, Christopher</td>
<td>2008</td>
<td>Brooke Martin</td>
<td>2009</td>
</tr>
<tr>
<td>Becher, Megan</td>
<td>2007</td>
<td>Haase, Melissa</td>
<td>2008</td>
<td>Mathew McGraw</td>
<td>2009</td>
</tr>
<tr>
<td>Buschkamp, Nicholas</td>
<td>2007</td>
<td>Kilzer, Elizabeth</td>
<td>2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cole, Jeremiah</td>
<td>2007</td>
<td>Koppold, Emily</td>
<td>2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Creighton, Amanda</td>
<td>2007</td>
<td>Korus, Jeffrey</td>
<td>2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fellers, Kristen</td>
<td>2007</td>
<td>Kruce, Rachel</td>
<td>2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Friedericks, Marc W.</td>
<td>2007</td>
<td>Lustgarten, Meghann</td>
<td>2008</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

First Year Students

Stahl, Matthew	2006	Torpy, Rebecca	2007	Fear, Clarence	2009
Stuart, Jeremy	2006	Willers, Amanda	2007	Flock, Katie	2009
Sund, Patricia	2006				
Tolstedt, Calvin	2006	Abel, Jeramie	2008	Corinna Gibbons	2009
Tuller, Eric	2006	Botger, Jeffrey	2008	Nathan Korschwar	2009
Jeremy Young	2006	Eitzmann, Allison	2008	Alicia Lloyd	2009
		Second Year Students			
		Crystal Frost Rhine			
		Third Year Students			
Department of Veterinary and Biomedical Sciences
Nebraska Residents that Graduated from Kansas State University (May, 2006)

Alicia Lynn Bangert Lindsey R. Blevins
Leslie Ann Buggi Rebecca Jean Carpenter
Joseph R. DiMari Nora Francine Ditmars
Erica Lynn Hartmann Fatima Kimiyoko Johnson
Stephanie Marie Jones Melody Dale Kaliff
W. Michael Karlin Daniel Jackson Longfellow
Jennifer C. Rowan Elizabeth Skavdahl
Eliza E. Smith Matthew D. Stahl
Jeremy James Stuart Eric G. Tuller
Jeremy D. Young
Students Attending Other Veterinary Colleges Other Than Kansas State or Iowa State

<table>
<thead>
<tr>
<th>Name</th>
<th>Pre-Vet Curriculum Completed</th>
<th>Admitted to</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pamela Fry</td>
<td>UNL</td>
<td>Ohio State</td>
</tr>
</tbody>
</table>

Nebraska Residents Attending Iowa State University

<table>
<thead>
<tr>
<th>Name</th>
<th>Class</th>
<th>Name</th>
<th>Class</th>
</tr>
</thead>
<tbody>
<tr>
<td>Assad, Katherine M</td>
<td>2009</td>
<td>Aerts, Alyse</td>
<td>2010</td>
</tr>
<tr>
<td>Bierman, Merle J</td>
<td>2009</td>
<td>Arens, Brenda</td>
<td>2010</td>
</tr>
<tr>
<td>Deroin, Jamie L.</td>
<td>2009</td>
<td>Bader, Jordan</td>
<td>2010</td>
</tr>
<tr>
<td>Dinslage Tyson G.</td>
<td>2009</td>
<td>Bader, Donna</td>
<td>2010</td>
</tr>
<tr>
<td>Friedrich, Rachel A.</td>
<td>2009</td>
<td>Baker, Katherine</td>
<td>2010</td>
</tr>
<tr>
<td>Gulbrandson, Cody M.</td>
<td>2009</td>
<td>Behlke, Eric</td>
<td>2010</td>
</tr>
<tr>
<td>Jensen, Justin V.</td>
<td>2009</td>
<td>Eggers, Lesha</td>
<td>2010</td>
</tr>
<tr>
<td>Kahle, Kelsey L.</td>
<td>2009</td>
<td>Hadenfeldt, Tracy</td>
<td>2010</td>
</tr>
<tr>
<td>Kopf, Kelli M.</td>
<td>2009</td>
<td>Hankins, Cody</td>
<td>2010</td>
</tr>
<tr>
<td>Kreifels, Tammy L.</td>
<td>2009</td>
<td>Hanson, Nicole</td>
<td>2010</td>
</tr>
<tr>
<td>Meyer, Ashley E.</td>
<td>2009</td>
<td>Hayek, Sandi</td>
<td>2010</td>
</tr>
<tr>
<td>Perez, Margarita M</td>
<td>2009</td>
<td>Jenkins, Carrie</td>
<td>2010</td>
</tr>
<tr>
<td>Petersen, George F.</td>
<td>2009</td>
<td>Lurz, Jeri</td>
<td>2010</td>
</tr>
<tr>
<td>Pieper, Jason B.</td>
<td>2009</td>
<td>Martin, Amy</td>
<td>2010</td>
</tr>
<tr>
<td>Reiman, Amber N.</td>
<td>2009</td>
<td>Painter, Laura</td>
<td>2010</td>
</tr>
<tr>
<td>Reiter, Dawn M</td>
<td>2009</td>
<td>Pumphrey, Danielle</td>
<td>2010</td>
</tr>
<tr>
<td>Schaefer, Jennifer L</td>
<td>2009</td>
<td>Ringenberg, Glenn</td>
<td>2010</td>
</tr>
<tr>
<td>Schmidt, Megan E.</td>
<td>2009</td>
<td>Saathoff, Andrew</td>
<td>2010</td>
</tr>
<tr>
<td>Shemek, Angela K.</td>
<td>2009</td>
<td>Schmidt, Nathan</td>
<td>2010</td>
</tr>
<tr>
<td>Shultz, Mikaleh A.</td>
<td>2009</td>
<td>Uden, Jessika</td>
<td>2010</td>
</tr>
<tr>
<td>Smith, Rik R.</td>
<td>2009</td>
<td>Waddell, Jess</td>
<td>2010</td>
</tr>
<tr>
<td>Thiele, Melissa A.</td>
<td>2009</td>
<td>Worth, Troy</td>
<td>2010</td>
</tr>
<tr>
<td>Waples, Alison J</td>
<td>2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Whitted, Alexis L.</td>
<td>2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Woolard, Rebecca L.</td>
<td>2009</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Department of Veterinary and Biomedical Sciences
PHD & MS Graduate Students

<table>
<thead>
<tr>
<th>MS Candidate/Advisor</th>
<th>Program</th>
<th>Title Research Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gulzar Ahmad</td>
<td>VetSci</td>
<td>Genetic diversity of Brachyspira pilosicoli isolated from humans and animals with Colonic spirochetosis</td>
</tr>
<tr>
<td>BS, MS, Agric-Faisalabad India (GE Duhamel)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Karen Hansen</td>
<td>VetSci</td>
<td>Efficacy of an experimental Escherichia coli O157:H7 vaccine in cattle</td>
</tr>
<tr>
<td>BS, UNL (RA Moxley)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ching Hsin Hsu</td>
<td>VetSci</td>
<td>Protective immunity to PRRSV</td>
</tr>
<tr>
<td>BS, China (FA Osorio)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rasika Jinadasa</td>
<td>VetSci</td>
<td>Mouse susceptibility to Helicobacter hepaticus cytolethal distending toxin</td>
</tr>
<tr>
<td>BVSc, Peradeniya,India (GE Duhamel)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Yuko Mori</td>
<td>VetSci</td>
<td>TBA</td>
</tr>
<tr>
<td>BS, UNL (CL Kelling)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marília Oliveira</td>
<td>VetSci</td>
<td>Evaluation of immunogenic subunits of PRRSV using viral vectors</td>
</tr>
<tr>
<td>DVM, Brazil (FA Osorio)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Holly Sampson</td>
<td>VetSci</td>
<td>TBA</td>
</tr>
<tr>
<td>BS, UNL (CL Kelling)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PhD Candidate/Advisor</th>
<th>Program</th>
<th>Research Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lalit Beura</td>
<td>IBMS</td>
<td>Studies on virulence, pathogenesis and immune response of porcine reproductive and respiratory syndrome virus</td>
</tr>
<tr>
<td>BVSc, India (FA Osorio)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gustavo Bretschneider</td>
<td>IBMS</td>
<td>Immune responses to Escherichia coli O157:H7 in cattle and role in protection</td>
</tr>
<tr>
<td>DVM, University of Nacional de Buenos Aires MS, National Univ of Mar Del Plata, Argentina (RA Moxley)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kate Chen</td>
<td>BIOC</td>
<td>Investigating the initial sites of redox signaling in human lens epithelial cells</td>
</tr>
<tr>
<td>BA, MS, China (MF Lou)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phani Das</td>
<td>IBMS</td>
<td>Viral glycoproteins in PRRSV immunity</td>
</tr>
<tr>
<td>BVSc, India (AK Pattnaik)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Harshdeep Dogra</td>
<td>IBMS</td>
<td>Mechanisms of drug action and resistance in mycobacteria</td>
</tr>
<tr>
<td>BVSc, PAU Ludhiana, India MVSc, CSKHPKV, Palampur, India (RG Barletta)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Influence of enterotoxins on virulence and colonization of the porcine intestine by *Escherichia coli*

Regulation of productive infection by the bovine herpesvirus 1 encoded bICPO

Comparative virulence of non cytopathic variants of NADL bovine viral diarrhea virus with mutation and non-structural protein NS4B or inpro by experimental inoculation of calves

Tricarboxylic acid cycle mediated regulation of *Staphylococcus aureus* virulence factors

Immunopathogenesis of porcine reproductive respiratory syndrome virus

Comparative structure and function relationship of cytoleathal disfending toxins from bacterial pathogens

Functional analysis of the bovine herpesvirus 1 (BHV-1) latency related gene

Pathogenesis of *Candida albicans* infection in a laboratory mouse model of disseminated candidiasis

Role of the nucleocapsid protein in VSV genome replication

The phosphoprotein P of VSV and its functions in viral replication and assembly

Bovine herpesvirus-1 induced pathogenesis

TBA

TBA
<table>
<thead>
<tr>
<th>PhD Candidate/Advisor</th>
<th>Program</th>
<th>Research Project Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>Susanne Rose (CJ Jones)</td>
<td>BIOS</td>
<td>TBA</td>
</tr>
<tr>
<td>Kazima Saira BS, MS, India (CJ Jones)</td>
<td>IBMS</td>
<td>Regulation of interferon production by (\alpha)-herpesviruses</td>
</tr>
<tr>
<td>Sakthivel Subramaniam BVSc, MVSc, India (FA Osorio)</td>
<td>IBMS</td>
<td>Studies on virulence, pathogenesis and immune response of porcine reproductive and respiratory syndrome virus</td>
</tr>
<tr>
<td>Olga Vitvitskaia MS, Moscow Acad of Agriculture (CJ Jones)</td>
<td>IBMS</td>
<td>TBA</td>
</tr>
<tr>
<td>Yin Wang BS-MS-Taiwain (MF Lou)</td>
<td>BIOC</td>
<td>Signal transduction: The mechanism for ROS generation in lens epithelial cells</td>
</tr>
<tr>
<td>Yefei Zhu MEDI, MSVc Zhejiang Med Univ, India (GA Somerville)</td>
<td>IBMS</td>
<td>Exploiting staphylococcal metabolism to prevent biofilm associated heart infections</td>
</tr>
</tbody>
</table>
Department of Veterinary and Biomedical Sciences
2006 Graduate Degrees Obtained

MS Degree

December

Marillia Oliveira “Characterization and immunogenicity of recombinant Vesicular Stomatitis Virus expressing GP5 and M protein of Porcine Reproductive Respiratory Syndrome Virus”
Advisor: Fernando A. Osorio

PhD Degree

May

Sandra Perez “Analysis of bovine tonsils and trigeminal ganglia following infection with wild type bovine herpesvirus type 1 (BHV-1) or a latency-related mutant BHV-1 strain”
Advisor: Clinton J. Jones

Vicki Geiser, School of Biological Sciences
“Regulation of bovine herpesvirus 1 (BHV-1) productive infection by viral genes (bICP0 or the LR gene) and cellular transcription factors (p300 or C/EBPα)”
Advisor: Clinton J. Jones

Chao-Wei (Kate) Chen, Department of Biochemistry
“The physiological function of reactive oxygen species in human lens epithelia cells”
Advisor: Marjorie F. Lou

December

Byung Joon Kwon “Use of reverse genetics to study porcine reproductive and respiratory syndrome virus virulence”
Advisor: Fernando A. Osorio
VBMS 909 Seminars
Spring Semester, 2006

January 9
“Emerging Zoonotic Diseases”
Alan R. Doster, Professor, Veterinary Pathologist, Department of Veterinary and Biomedical Sciences, Veterinary Diagnostic Center, Lincoln, Nebraska

January 23
“CCAAT enhancer binding protein alpha binds to Bovine Herpesvirus-1 latency related fusion protein possibly modulating aspects of the latency reactivation cycle”
Florence Meyer, PhD Graduate Student, School of Biological Sciences, Department of Veterinary and Biomedical Sciences, Lincoln, Nebraska

January 29
“The molecular epidemiology of problem Staphylococcus aureus isolates: A real World application of Sudoku Science”
Richard V. Goering, Professor and Interim Chair, Department of Medical Microbiology and Immunology, Creighton University, Medical Center, Omaha, Nebraska

February 6
“Results of microbiological examination of mule and white-tailed deer from Nebraska”
Richard D. McKown, Candidate for an Adjunct Appointment in the department

February 13
“The Ying and Yang effect of oxidation in eye lens function”
Marjorie F. Lou, Professor, Biomedical Biochemist, Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln

February 20
“Nuclear-cytoplasmic function of the porcine reproductive and respiratory syndrome virus capsid protein”
Dongwan Yoo, Adjunct Professor, Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph Ontario, Canada

February 27
“Farnesol as a virulence factor in a mouse model of systemic candidiasis”
Dhammika Navaratne, PhD Graduate Student, Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln

March 6
“The molecular scaffold KSR2 regulates energy balance in vivo”
Robert E. Lewis, Professor, Eppley Institute for Cancer Research and Allied Diseases, Cancer Genes and Molecular Regulation Program, University of Nebraska Medical Center, Omaha, Nebraska

March 27
“The inactivation of low molecular weight protein tyrosine phosphatase by oxidation is involved in steroid-induced cataract”
Hideo Nishigori, Professor and Chair, Faculty of Pharmaceutical Sciences, Teikyo University, School of Pharmaceutical Science, Division of Medical and Pharmaceutical Sciences-II, Applied therapeutics, Kanagawa, Japan

April 3
“Analysis of miRNAs encoded by the Herpes Simplex Virus Type 1 latency-associated transcript”
Weiping Peng, Senior Research Associate, Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln

April 10
“Role of nucleocapsid protein in Vesicular stomatitis virus (VSV) replication”
Debasis Nayak, PhD Graduate Student, Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln

April 17
“Influence of bovine respiratory syncytial virus F protein N-glycosylation on host cell fusion”
Yuko Mori, MS Graduate Student, Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln
April 24 "BHV-1 gene encoding infected cell protein (bICPO) inhibits antiviral signaling by inducing IRF3 degradation"
Kazima Saira, PhD Graduate Student, Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln

Fall Semester, 2006

August 21 "D-alanine ligase as a candidate drug target to develop novel anti-mycobacterial agents"
Harshdeep Dogra, PhD Graduate Student, Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln

August 28 "From barnyard to dinner table: The omnipresence of hepatitis E virus in animals and risk for zoonosis"
Xiang-Jin Meng, Associate Professor, Molecular Virology, College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, Virginia

September 11 "Reduced intestinal colonization of adult beef cattle by *Escherichia coli* O157:H7 tir deletion and nalidixic-acid-resistant mutants lacking flagellar expression"
Gustavo Bretschneider, PhD Graduate Student, Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln

September 18 "The biological role of bacterial programmed cell death"
Dr. Kenneth W. Bayles, Associate Professor & Vice Chair for Research, Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska

September 25 "Replication and encapsidation of human papillomaviruses"
Dr. Peter Angeletti, Assistant Professor, Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln

October 2 "Mannheimia haemolytica: Efflux pump activity is associated with antimicrobial resistance and virulence"
D. Scott McVey, Associate Professor, Department of Veterinary and Biomedical Sciences, Veterinary Diagnostic Center, University of Nebraska-Lincoln

October 23 "Controlling *Escherichia coli* O157:H7 in fed cattle: a population approach"
David R. Smith, Associate Professor, Extension, Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln

October 30 "Virion host shutoff protein of Herpes Simplex Virus Type 1"
Anisa K. Angeletti, Research Assistant Professor, Nebraska Center for Virology, School of Biological Sciences, University of Nebraska-Lincoln

November 6 "Serologic marker candidates identified amongst B-cell linear epitopes of Nsp2 and structural proteins of a North American strain of porcine reproductive and respiratory syndrome virus (PRRSV)"
Marcelo de Lima, Visiting Scholar, The Federal University, Santa Maria, Brazil

November 13 "Staphylococcus aureus metabolism in a biofilm"
Yefei Zhu, PhD Graduate Student, Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln

November 20 "Variation in the genome of *Escherichia coli* O157:H7"
James Bono, Microbiologist, Meat Safety and Quality Research Center, Clay Center, Nebraska

November 27 "Phosphorylation regulates the activities of herpes simplex virus type 1 (HSV-1) immediate early protein ICPO"
David J. Davido, Assistant Professor, Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas
Departmental Special Seminars

May 19 "Management and versatility of fish as a laboratory animal model"
Daniel J. Oestmann, Clinical Veterinarian, Research Representative, University of Nebraska-Lincoln, Institute Animal Care Program, Candidate, Courtesy Appointment in the department

May 26 "Diseases of Hamsters"
James Hall, Director, Research Representative, University of Nebraska-Lincoln, Institutional Animal Care Program, Candidate, Courtesy Appointment in the department

September 8 "Characterization and immunogenicity of recombinant vesicular stomatitis virus expressing GP5 and M protein of porcine reproductive respiratory syndrome virus"
Marilia Oliveira, DVM, Masters Thesis Graduate Student, Veterinary Epidemiology Research, University of Nebraska-Lincoln, Department of Veterinary and Biomedical Sciences, Lincoln, Nebraska

September 13 "Recruiting future food supply veterinarians"
Jeff D. Ondrak, Candidate, Beef Cattle Clinical Veterinarian, University of Nebraska, Department of Veterinary and Biomedical Sciences, Great Plains Veterinary Educational Center, Clay Center, Nebraska

September 14 "Salmonella in beef and dairy"
Dennis R. Hermesch, Candidate, Beef Cattle Clinical Veterinarian, University of Nebraska, Department of Veterinary and Biomedical Sciences, Great Plains Veterinary Educational Center, Clay Center, Nebraska

November 15 "Passive stay apparatus of the equine forelimb" and "The challenge of gross anatomical instruction at veterinary schools in the 21st century"
John R. Kammermann, Candidate, Veterinary Gross Anatomist, University of Nebraska-Lincoln, Professional Program in Veterinary Medicine

November 28 "Morphological and functional studies of cells derived from post-natal neural stem like cells"
Eric W. Rowe, Candidate, Veterinary Gross Anatomist, University of Nebraska-Lincoln, Professional Program in Veterinary Medicine

November 30 "Strategies and vision for instruction in veterinary gross anatomy"
Anthony O. Oluoch, Candidate, Veterinary Gross Anatomist, University of Nebraska-Lincoln, Professional Program in Veterinary Medicine

December 4 "Educating tomorrow's food animal practitioners: A different perspective"
Douglas E. Hostetler, Candidate, Veterinary Surgery/Anesthesiology, University of Nebraska-Lincoln, Professional Program in Veterinary Medicine

December 12 "Expression of pentraxin-related gene, rapidly induced by IL-1β (PTX3) in cattle and pigs"
Carol Chitko-McKown, Candidate, Immunologist, University of Nebraska-Lincoln, Professional Program in Veterinary Medicine

December 14 "Bridging and modulation of innate and adaptive immunity by mycoplasma superantigen MAM"
Hong Hua Mu, Candidate, Immunologist, University of Nebraska-Lincoln, Professional Program in Veterinary Medicine

December 19 "Naturally occurring regulatory T cells mediate genetic resistance to autoimmunity"
NR Jayagopal (Jay) Reddy, Candidate, Immunologist University of Nebraska-Lincoln, Professional Program in Veterinary Medicine
December 20
“Photic entrainment of circadian rhythms”
Gary E. Pickard, Candidate, Neurobiologist, University of Nebraska-Lincoln, Professional Program in Veterinary Medicine

December 21
“Improving non-technical skills, knowledge, aptitudes, and attitudes (SKAS) in the veterinary profession”
Dr. James Lloyd, Associate Dean for Budget, Planning and Institutional Research, Office of the Dean Administration, Michigan State University, College of Veterinary Medicine

US Meat Animal Research Center In-House Seminars (US MARC)

January 6
“Expression of pentraxin-related gene, rapidly induced by IL-1 Beta (PTX3) in cattle and pigs”
Dr. Carol Chitko-McKown

January 20
“Genetic and environmental components of disease resistance”
Dr. Gary Snowder

February 3
“Management tools for livestock production systems”
Dr. Roger Eigenberg

February 17
“Control of zoonotic pathogen transmission from animal manures”
Dr. Elaine Berry

March 3
“Factors regulating fertility in beef cattle”
Dr. Robert Cushman

March 17
“STEC0157 as agri-food industry “bacterial weed””
Dr. Jim Keen

April 7
“US MARC twinning population: a unique resource for mapping production traits in cattle”
Dr. Mark Allan

April 14
“Inefficiencies in reproduction of postpartum sows”
Dr. Tommy Wise

April 28
“Heat stress in feedlot cattle”
Dr. Tami Brown-Brandl

May 5
“Variation in the genome of E. coli 0157:H7”
Dr. Jim Bono

May 26
“Early Innate Immune response to porcine reproductive and respiratory syndrome virus infection”
Dr. Laura Miller

October 27
“State of the US Meat Animal Research Center”
Dr. Mohammad Koohmaraie

November 17
“How do we increase the number of pigs weaned?”
Dr. Jeff Vallet

December 1
“A comprehensive genetic and physical map of the bovine genome”
Dr. Warren Snelling

December 15
“Reflecting on the past and gazing into the future of beef cattle genetics and breeding”
Dr. Larry Cundiff
University of Nebraska
Great Plains Veterinary Educational Center
Teaching, 2006

Faculty -
Gary P. Rupp, DVM, MS, Dip. ACT
D. Dee Griffin, DVM, MS
Roger Ellis, BS, DVM, MS

Graduate Students -
Dennis Herrmsch, BS, DVM, MS Student
Rolland Kramer, BS, DVM, MS Student
Rhomas Reece, BS, DVM, MS Student

SITUATION

The University of Nebraska, Great Plains Veterinary Educational Center (GPVEC) was established to provide education and clinical training for students in the professional curriculum and continuing education for graduate veterinarians. In addition to teaching, the faculty has been assigned appointments in research, extension and scholarly service. GPVEC is located at the U. S. Meat Animal Research Center, which provides an opportunity to work with the Herd Health Veterinarian to provide veterinary services for the livestock population and interaction with the ARS scientists. This unique program has been operational for nearly 20 years and it has initiated strong ties with Kansas State University, College of Veterinary Medicine, and the majority of other veterinary colleges in offering training to veterinary students, as well as practicing veterinarians on a national basis. A new cooperative program is currently under development with Iowa State University, College of Veterinary Medicine, which will offer new opportunities in teaching and research. GPVEC has gained national prominence in training students and veterinarians in food animal education and maintains a strong desire to expand and improve training opportunities in the future. To accomplish this goal will require addressing a wide array of important issues affecting our national food supply. The task will involve interactions and feedback with those directly involved in agriculture and the much larger majority of our population who have become isolated from production agriculture. We are all consumers interested in a sustainable future, but often with widely divergent ideas about the path to follow.

OUTCOMES - IMPACT

Short term

Increase and Improve the Entry Level Knowledge and Clinical Expertise of Graduate Veterinarians in Food Animal Practice - because of the vast expansion in knowledge, the number of services offered and the breadth of animal species addressed, the veterinary curriculum related to food animal/livestock practice has been severely compromised in the allotted time, course structure and clinical training. The trend in veterinary medicine, over several decades, has strong reflections
of human medicine with a major clinical emphasis shift to in-depth diagnostic, medical and surgical practices on individual animals, while the major need in food animal/livestock practice is a population health approach. This effort encompasses medical/surgical intervention, but goes significantly beyond to emphasize production-management concepts stressing disease prevention, herd management, nutrition, genetics, economics, marketing, food safety/wholesomeness and the environment.

Intermediate term

Increase Student Interest in Food Animal Practice - the number of graduate veterinarians with a strong desire to enter food animal practice has continually declined for more than a decade. This trend has developed in spite of an increasing number of students being admitted to veterinary colleges than ever before. Legitimate reasons for this appear to be: 1) a lower portion of students with livestock backgrounds being admitted; 2) fewer male students being admitted; 3) a feeling that a companion animal practice offers advantages such as improved working hours, higher earnings, less physical stress and better use of medical knowledge; 4) an improved cultural lifestyle in urban areas and 5) extended educational opportunities for children in large urban areas.

Increase the Number of Practitioners Trained in Beef Cattle Production Management - the beef cattle industry is in need of practicing veterinarians with advanced interdisciplinary skills in production management. This requires the training of skilled practitioners that possess the important herd health concepts of beef production and expanding their knowledge in management, nutrition, selection, economics and marketing. It also necessitates in-depth training in modern veterinary epidemiology, which addresses concepts of evidence-based medicine, data management, statistics, computer usage and information-based decision making. The recent evolution of modern veterinary epidemiology may be the best example of progress in veterinary medicine as it pertains to food animal practice, because it encompasses measures of production and performance to monitor disease and encourages information-based decision making.

Long term

Increase the Number of Veterinarians Interested in Research, Public Health, and Food Animal Practice - to advance the practice of food animal production management will require the development of new scientific information while constantly challenging current production practices. Encouraging outstanding students to pursue careers in research must be a significant part of our goals for improving future food animal veterinary medicine. The food industry must have a number of modern researchers with livestock backgrounds to answer questions essential for a future safe and wholesome food supply. Acceptance of students interested in training for careers in these areas appears crucial. Attracting graduate veterinarians back for postgraduate education is another viable source of researchers.

OUTPUTS

Who do we reach?

1. Prospective veterinarians - develop programs to reach junior high and high school students
interested in veterinary medicine in conjunction with local practitioners, teachers and agri-science educators.

2. Develop mentoring programs for entering veterinary students with an interest in food animals at all veterinary colleges and encourage future interactions with students to pursue frequent clinical and work experience with livestock operations and practitioners.

3. Provide continuing education and distance education for current practitioners interested in serving livestock producers to broaden and sharpen their services and education.

4. Maintain close contact with livestock producers and listen to their needs and encourage them to optimize the veterinary services offered by cutting-edge practitioners.

5. Work with food industry purveyors and develop cooperative efforts to provide the safest and optimum production, processing and handling practices for livestock products.

6. Work closely with governmental agencies such as FSIS and APHIS to train future veterinarians for work in public health, epidemiology and food safety.

7. Consumers - everyone is a consumer, but it is essential to make an extended effort to educate the consumers not directly involved in the agriculture/livestock industries about scientific facts of food safety, wholesomeness, human and animal health and how systems function in production, processing and handling our food supply. In addition, the spin-off areas such as environmental concerns, sustainability of natural resources, use of modern technology to control plant and animal diseases and the importance of future biotechnology to develop new genetically superior plants and animals.

What do we do?

1. Change to a more pro-active approach in selecting future prospective food animal veterinarians.

2. Follow up with students to mentor them during their professional curriculum and develop strong background experiences in livestock production.

3. Develop interdisciplinary skills in students by working with other specialists and having them actively involved in teaching and clinical experiences.

4. Offer easily accessible training - classes, electives, workshops, demonstrations and/or distance education updates.

5. Provide re-treading opportunities for veterinarians wanting to change/improve/increase their professional capabilities.

6. Develop CDs and DVDs for specific areas of training that can be conveniently accessed when time is available for self-study.

What is the educational product?

1. New curriculum emphasizing clinical/hands-on training (multi-institutional faculty and students)

2. Case studies (offered over internet, polycam or DVDs)

3. Publications and interactive web page (available between institutional resources)

4. Future training - multi-site, multi-institutional, multi-disciplinary

Inputs

What we invest - faculty, philosophy, staff, planning, transportation, training material, resources, time and partners (other specialists/practitioners/producers/managers/collaborative faculty)

67
Assumptions

1. Review previous teaching/training efforts and make use of successful ones
2. We will be working with old attitudes and skeptics
3. Develop new resources/approaches and commitment
4. Enlist successful BCPMS graduates that are good role models (the doers that make-it-happen)

Environment

"We are what we most commonly do, therefore, excellence is not an act but a habit" (Aristotle)
Producer attitudes
Beef Cattle Production Management Series 1993-2005

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Alabama</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>Arizona</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>3</td>
<td>California</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>4</td>
<td>Canada</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>5</td>
<td>Colorado</td>
<td></td>
<td>1</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>Connecticut</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>Florida</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>8</td>
<td>Georgia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>Idaho</td>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>10</td>
<td>Illinois</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>11</td>
<td>Iowa</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td></td>
<td>2</td>
<td></td>
<td></td>
<td>6</td>
</tr>
<tr>
<td>12</td>
<td>Kansas</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>13</td>
<td>Kentucky</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td>2</td>
</tr>
<tr>
<td>14</td>
<td>Minnesota</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>15</td>
<td>Missouri</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>16</td>
<td>Montana</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Nebraska</td>
<td>7</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>4</td>
<td>9</td>
<td>4</td>
<td>7</td>
</tr>
<tr>
<td>18</td>
<td>North Dakota</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>19</td>
<td>Oklahoma</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
<td>1</td>
<td>6</td>
</tr>
<tr>
<td>20</td>
<td>Oregon</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>21</td>
<td>South Dakota</td>
<td>1</td>
<td>2</td>
<td></td>
<td>2</td>
<td>1</td>
<td></td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>22</td>
<td>Texas</td>
<td>2</td>
<td></td>
<td></td>
<td>1</td>
<td>4</td>
<td>1</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>23</td>
<td>Utah</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>24</td>
<td>Washington</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>Wyoming</td>
<td></td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>16</td>
<td>17</td>
<td>19</td>
<td>15</td>
<td>20</td>
<td>147</td>
</tr>
<tr>
<td>University Represented</td>
<td>90-91</td>
<td>91-92</td>
<td>92-93</td>
<td>93-94</td>
<td>94-95</td>
<td>95-96</td>
<td>96-97</td>
<td>97-98</td>
<td>98-99</td>
</tr>
<tr>
<td>---</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
</tr>
<tr>
<td>Kansas State University</td>
<td>99</td>
<td>110</td>
<td>158</td>
<td>128</td>
<td>143</td>
<td>150</td>
<td>151</td>
<td>161</td>
<td>163</td>
</tr>
<tr>
<td>Auburn</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>University of California-Davis</td>
<td>6</td>
<td>8</td>
<td>3</td>
<td>2</td>
<td>8</td>
<td>12</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Colorado State University</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Cornell University</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>University of Florida</td>
<td>8</td>
<td>4</td>
<td>11</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>University of Georgia</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>University of Guelph</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>University of Illinois</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Iowa State University</td>
<td>1</td>
<td>2</td>
<td>5</td>
<td>8</td>
<td>6</td>
<td>10</td>
<td>2</td>
<td>6</td>
<td>2</td>
</tr>
<tr>
<td>Louisiana State University</td>
<td>2</td>
<td>18</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>Michigan State University</td>
<td>6</td>
<td>11</td>
<td>8</td>
<td>7</td>
<td>5</td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>2</td>
</tr>
<tr>
<td>University of Minnesota</td>
<td>5</td>
<td>16</td>
<td>6</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Mississippi State University</td>
<td>8</td>
<td>19</td>
<td>2</td>
<td>2</td>
<td>6</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
<tr>
<td>University of Missouri</td>
<td>9</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>North Carolina State University</td>
<td>6</td>
<td>4</td>
<td>5</td>
<td>8</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Ohio State University</td>
<td>9</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Oklahoma State University</td>
<td>6</td>
<td>1</td>
<td>19</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>Oregon State University</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>University of Pennsylvania</td>
<td>4</td>
<td>5</td>
<td>2</td>
<td>4</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Purdue University</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>University of Saskatchewan</td>
<td>2</td>
<td>3</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Texas A&M University</td>
<td>3</td>
<td>3</td>
<td>8</td>
<td>9</td>
<td>17</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tufts University</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Tuskegee University</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Virginia - Maryland University</td>
<td>12</td>
<td>4</td>
<td>14</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>University of Wisconsin</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Washington State University</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Western University</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>St. George's University</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>TOTAL</td>
<td>135</td>
<td>161</td>
<td>213</td>
<td>234</td>
<td>237</td>
<td>235</td>
<td>228</td>
<td>200</td>
<td>186</td>
</tr>
</tbody>
</table>
2007-2008 Electives

University of Nebraska
Great Plains Veterinary Educational Center

<table>
<thead>
<tr>
<th>Elective</th>
<th>Dates Offered</th>
<th>Student Enrollment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lambing</td>
<td>May 14-18, 2007</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>October 1-5, 2007</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>January 7-11, 2008</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>January 14-18, 2008</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>February 4-8, 2008</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>February 11-15, 2008</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>March 10-14, 2008</td>
<td>1</td>
</tr>
<tr>
<td>Fall Calving</td>
<td>August 13-18, 2007</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>August 20-25, 2007</td>
<td>3</td>
</tr>
<tr>
<td>Weaning Management</td>
<td>September 10-14, 2007</td>
<td>4</td>
</tr>
<tr>
<td>Feedlot Production Management</td>
<td>September 24-28, 2007</td>
<td>4</td>
</tr>
<tr>
<td>and Health Consulting</td>
<td>October 1-5, 2007</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>October 8-12, 2007</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>October 15-19, 2007</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>February 4-8, 2008</td>
<td>7</td>
</tr>
<tr>
<td>Pregnancy Examination</td>
<td>October 9-12, 2007*</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>October 15-19, 2007</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>October 22-26, 2007</td>
<td>4</td>
</tr>
<tr>
<td>Bovine Reproduction</td>
<td>October 29 - November 2, 2007</td>
<td>10</td>
</tr>
<tr>
<td>Spring Calving</td>
<td>March 3-8, 2008</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>March 10-15, 2008</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>March 17-22, 2008</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>March 24-29, 2008</td>
<td>4</td>
</tr>
<tr>
<td>Clinical/Calving</td>
<td>March 31 - April 5, 2008</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>April 7-12, 2008</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>April 14-19, 2008</td>
<td>2</td>
</tr>
<tr>
<td>Bull Breeding Soundness</td>
<td>April 21-26, 2008</td>
<td>5</td>
</tr>
<tr>
<td>Special Studies</td>
<td>Available Upon Request / Approval</td>
<td></td>
</tr>
</tbody>
</table>

*Due to Federal Holiday on Monday, this elective will begin on Tuesday.

7-31-06
All Department faculty are involved in some research activity, either as project leaders or as contributors to research teams. Some faculty members have designated appointments in research. As a part of this appointment, they prepare research project descriptions which are peer-reviewed through a process established by the Agricultural Research Division (ARD) and assigned ARD Research Project numbers. Through an extension of this same process, projects can be approved by the USDA Cooperative State Research Services for matching federal funds, including Hatch, Regional Research or Animal Health Research Formula Funds. As a matter of USDA policy, competitive research grants from the USDA are assigned separate ARD project numbers. Several projects are assigned ARD numbers for administrative and budget management purposes even though they are not specifically research projects, e.g., the Nebraska SPF Swine laboratory project (NEB 14-029) and the Nebraska Veterinary Diagnostic Laboratory System project (NEB 14-059). Research projects funded by the UNL Center for Biotechnology or other external sources are not required to go through the ARD Research Project review process.

Faculty Research Interests

♦ Barletta, Raúl G. Molecular genetic bases of bacterial pathogenesis and drug resistance, mycobacterial infections in cattle (Johnne’s disease) and human beings (tuberculosis, M. avium infections)

♦ Brodersen, Bruce W. Pathogenesis of bovine viral diarrhea virus; diagnostic pathology

♦ Doster, Alan R. Ultrastructural changes in the lung produced by bacteria, viruses and pneumotoxic compounds

♦ Duhamel, Gerald E. Pathogenesis of enteric diseases caused by spirochetes and rotavirus; primarily Brachyspira pilosicoli and bovine rotavirus

♦ Griffin, D. Dee Beef cattle production medicine, especially respiratory disease in feedlot cattle

♦ Jones, Clinton J. Regulation of viral gene expression and persistent herpesvirus infections; mechanisms of chemical and viral carcinogenesis.

♦ Kelling, Clayton L. Pathogenesis of viral diseases, primarily bovine respiratory syncytial virus and bovine viral diarrhea virus infections
Lou, Marjorie F. Biochemical mechanism of senile cataract formation: controls of cellular thiol/disulfide homeostasis

McVey, D. Scott Understanding of virulence mechanisms of bacterial pathogens of food producing animals, with particular emphasis on elucidating the mechanisms by which bacteria infect and persist in tissues.

Moxley, Rodney A. Pathogenesis and control of Escherichia coli infections in swine and cattle; on-farm control of E. coli 0157:H7 prevalence in beef cattle (food safety)

Osorio, Fernando A. Pathogenesis of persistent viral infections including persistent reproductive and respiratory syndrome (PRRS) virus and herpesvirus latency; vesicular diseases

Pattnaik, A. K. Transcription, replication and assembly of RNA viruses; viral pathogenesis; interferons and antivirals

Rogers, Douglas G. Pathogenesis of chlamydial infections in livestock

Rupp, Gary P. Effect of production practices and management on beef cattle diseases and enterprise profitability

Smith, David R. Food safety through study of on-farm prevalence and control of E. coli 0157:H7 in beef cattle; epidemiologic approaches to study of livestock diseases

Somerville, Greg A. Metabolic and environmental regulation of staphylococcal pathogenesis. Redox-dependent regulation of virulence factor synthesis

Steffen, David J. Diagnosis and characterization of genetic and congenital diseases of cattle
Department of Veterinary and Biomedical Sciences
Agricultural Research Division (ARD)
Research Projects, 2006

<table>
<thead>
<tr>
<th>ARD Project #</th>
<th>Project Title (Researchers)</th>
<th>Expiration Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-039</td>
<td>SAES/NEB/STATE HATCH PROJECT (0096920): Research Laboratories and Animal Care Facility (Departmental)</td>
<td>Indefinite 12/21/2020</td>
</tr>
<tr>
<td></td>
<td>STATE HATCH PROJECT (0153376): Vet Diagnostic Lab System:</td>
<td>Indefinite 12/21/2020</td>
</tr>
<tr>
<td>14-059</td>
<td>Diagnostic Surveillance & Disease Investigation in Nebraska Livestock & Poultry (Veterinary Diagnostic Center Faculty)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>CSREES/NEB/NRI Comp Grant (0198063) Regulation of the Latency-Reactivation Cycle by the Bovine Herpesvirus 1 (BHV-1) Latency Related (LR) Gene (C. J. Jones/A. R. Doster)</td>
<td>12/14/2006</td>
</tr>
<tr>
<td>ARD Project #</td>
<td>Project Title (Researchers)</td>
<td>Expiration Date</td>
</tr>
<tr>
<td>---------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>14-130</td>
<td>CSREES/NEB Animal Health (0199447): Regulation of the Latency-Reactivation Cycle by the Bovine Herpesvirus 1 (BHV-1) Latency Related (LR) Gene (C. J. Jones)</td>
<td>09/30/2008</td>
</tr>
<tr>
<td>14-131</td>
<td>SAES/NEB/State (0199961) Veterinary Field Disease Research Program (D. R. Smith)</td>
<td>04/30/2009</td>
</tr>
<tr>
<td>14-134</td>
<td>CSREES/NEB/NRI Comp Grant (0201032): Influence of Enterotoxins on Virulence and Colonization of the Porcine Intestine by Escherichia coli (R. A. Moxley)</td>
<td>Extended 08/31/2007</td>
</tr>
<tr>
<td>14-136</td>
<td>HATCH (0204923): Tricarboxylic Acid Cycle Mediated Regulation of Staphylococcus Aureus Virulence Factors (G. A. Somerville)</td>
<td>02/28/2010</td>
</tr>
<tr>
<td>14-138</td>
<td>CSREES/NEB/NRI Compet. Grant (0204665) Functional Analysis of BICPO, the Major Transcriptional Regulatory Gene of Bovine Herpesvirus 1 (BHV-1) (C. J. Jones)</td>
<td>09/14/2008</td>
</tr>
<tr>
<td>14-140</td>
<td>CSREEs Grant (0205221) Stimulating the Development of Veterinarians to Serve Rural America (D.D. Griffin)</td>
<td>09/14/2007</td>
</tr>
<tr>
<td>14-141</td>
<td>Animal Health (0205570) Molecular Genetic Analysis of Mycobacterium avium subsp. Paratuberculosis (MAP) and related mycobacterial pathogens (R.G. Barletta)</td>
<td>09/30/2010</td>
</tr>
<tr>
<td>ARD Project #</td>
<td>Project Title (Researchers)</td>
<td>Expiration Date</td>
</tr>
<tr>
<td>--------------</td>
<td>--</td>
<td>-----------------</td>
</tr>
<tr>
<td>39-143</td>
<td>NRI Competitive Grant (0207841) Functional Analysis of Proteins Encoded by the Bovine Herpesvirus 1 (BHV-1) (C.J. Jones)</td>
<td>09/14/2009</td>
</tr>
</tbody>
</table>
Department of Veterinary and Biomedical Sciences

2006 ARD Research Projects Progress Summaries
Our focus on the biochemical mechanism of age-related cataract formation is oxidative stress. We used hydrogen peroxide-induced cataract in organ culture condition as our model to study the progressive changes in morphology and intracellular redox potential in the lens. We demonstrated that lens opacification is associated with the increased protein insolubility and protein aggregation, resulting from lens protein oxidation by oxidative stress. We also showed that the thiol groups in lens proteins are oxidized by forming protein-thiol mixed disulfides (protein thiolation) followed by protein protein disulfide formation, a condition that will lead to lens opacification. We discovered that this deleterious process could be reversed or delayed if cataract formation is at an early stage, such as removal of the oxidant. The most drastic recovery is the reversal of the thiolation of lens proteins. Therefore, we speculate that the lens must possess some repair systems that can protect it against pathological consequences. We have found two of such repair systems, one is the glutathione-dependent thioltransferase system, which is a cytosolic enzyme and can specifically dethiolate protein-s-s-glutathione. The other is the NADPH-dependent thioredoxin system, which in conjunction with thioredoxin reductase and NADPH can reduce protein-protein disulfides. We have cloned the thioltransferase gene and the thioredoxin gene, purified the recombinant enzyme/protein for their respective functional studies. Both enzyme/protein are very resistant to oxidation and have a characteristic, conserved sequence of CXXC at their active sites. Both systems are proven to have the ability to restore the activities/functions of other oxidation-inactivated enzymes/proteins using human lens epithelial cells pretreated with hydrogen peroxide as a model. Furthermore, genes for thioltransferase and thioredoxin have been shown to upregulate under oxidative stress conditions, a phenomenon of adaptive response by the cells to combat the stress.

A secondary function of thioltransferase has been confirmed to be an ascorbate-recycling enzyme, which is able to reduce the oxidized ascorbate, dehydroascorbate, to return to the reduced form of ascorbate. This is extremely important finding, as the lens is rich in ascorbate, which along with vitamin E, contributes to the protection of membrane lipids. Ascorbate is also needed for other metabolic functions of various enzymes. The oxidized ascorbate, if not reduce in time can form glycation products with lens proteins and lead to high molecular weight aggregates. The catalytical function of thioltransferase in recycling ascorbate is first evidence that an enzyme is involved in reducing dehydroascorbate, against the dogma of a nonenzymatic recycling process.

Lastly, the mitochondrial-specific TTase (Grx2), which we co-discovered recently with Dr. Gladyshev of Biochemistry Department, has been shown to present in the mitochondria of human lens epithelial cells. It possesses duel activities of dethiolase and dehydroascorbate reductase, similar to the cytosolic thioltransferase enzyme. We are pursuing the task of proven the physiological function of Grx2 in 2the mitochondria.

RESEARCH PROJECT SIGNIFICANCE & IMPACTS

Based on our research results, the concept of oxidative stress-induced cellular damage as one of the major factor for cataractogenesis continue to gain momentum and has escalated our scholarly standing in the eye field as well as outside of the lens research. One of such impact is the founding of the Redox Biology Center at UNL upon receiving the NIH award of ten million dollar for the Cobra grant. My role of being one of the five senior advisors may have contributed to the success of the funding. The other impact is
our discovery of the involvement of thioltransferase in the recycling of ascorbate. These results when reported at our annual national eye meeting last year, sent shocking wave to those scientists working in this area. A collaboration by the request from one of these scientists resulted in one manuscript just now completed. A third impact is my recognition and honor extended from Oxford University in England as a Leichfield Lecturer (2002-2003), and a subsequent invitation by the editor from the Oxford University to contribute a review article based on my work in this area for the series of Progress of Retina and Eye Diseases.

The Role of Reactive Oxygen Species (ROS) in Maintaining the Health of Lens Cells: The Redox Signaling Investigator

Marjorie F. Lou

We have been concentrating in the redox signaling this year after publishing three manuscripts describing the basic signaling pathways in the lens and how diabetic condition can alter the cell signaling. We have been very successful in demonstrating that reactive oxygen species, which may be harmful to the cells/tissues, but at low level (nanomolar range) can be stimulants for various cell functions, including cell proliferation, via signal transduction pathway. It has been discovered and reported in other tissues/cells that certain growth factors such as PDGF, EGF are functional mitogens because they can stimulate ROS generation endogenously upon binding with the receptors on the cell surface. We have demonstrated with confocal microscopy that fluorescein preloaded into live human lens epithelial cells can generate fluorescence upon PDGF stimulation. The generated fluorescence can be quenched by cells preloaded with catalase enzyme or antioxidants, confirming our speculation that the lens cells have an ability to produce ROS in situ. Additionally, we have shown that exogenous hydrogen peroxide can mimic PDGF and produce similar effect, including activation of a battery of cell signaling proteins, followed by gene expression and eventual cell proliferation. We also showed that the lens cells possesses the membrane-bound enzyme NADPH oxidase, which can generate superoxide ion upon stimulation by arachidonic acid or hydrogen peroxide.

RESEARCH PROJECT SIGNIFICANCE & IMPACTS

A new physiological function of reactive oxygen species is identified as redox signaling, which is a process to mediate the function of certain growth factors for cell function. This finding has raised tremendous interest in the lens community. We have definitely being regarded as the laboratory working in the leading edge of lens research.

NEB 14039
Research Laboratories and Animal Care Facility (Department/ARF)

This past year, the Animal Research Facility (ARF) has provided housing for 2,039 animals, by species as follows: 30 Blue Winged Teal Ducks; 15 goats; 48 cows; 6 Xenopus frogs; 1,404 mice; 441 pigs; 53 dogs; 40 hamsters and 2 rabbits. The Animal Research Facility replaced, upgraded and purchased new equipment, such as feed storage barrels, transport carts, storage racks and animal restraint devices, including halters and snares. The Animal Research Facility also increased its rodent cages to a capacity of approximately 100% over the previous year by acquiring new rodent cages and supplies. The floors in rooms B-1, B-2, B-3, B-4, B-5 and G-6 were resealed, making them more suitable for housing companion animals and small laboratory animals. Due to the increased use of the surgical suite for companion animal surgeries, the Animal Research Facility acquired a new isoflurane.
vaporizer, a large number of small animal surgical instruments, such as huck towels, drapes, incubation tubes, rebreather bags and medications suitable for use in small and companion animals. The Animal Research Facilities completed the caulking around the floors in the surgery preparation room to ensure an adequate seal. The outside (non-brick portion) of the Animal Research Facility was repainted and the lettering on the outside doors was replaced with new stencils.

IMPACT STATEMENT

The Animal Research Facility staff contributed to a variety of research projects on animal diseases at UNL, by supporting many research projects for VBMS faculty members. The ARF staff also supported many investigators in other departments at UNL. The Animal Research Facility staff also supported projects for private industry; thereby, assisting in the development of new commercially available animal health care products. The Animal Research Facility is also providing some temporary housing for research animals from the Dental College while the Dental College animal housing is being upgraded/renovated. The Animal Research Facility also participates in public relations and educational ventures, including the Nebraska State Fair, Birthing Pavilion.

NEB 14-059

Veterinary Diagnostic Laboratory System: Diagnostic Surveillance & Disease Investigation in Nebraska Livestock & Poultry (Veterinary Diagnostic Center)

The lab received 15,330 requests for diagnostic assistance from producers. Foreign animal diseases are included in the differentials and excluded based on laboratory examination or clinical data. We assist state health officials with monitoring programs for M paratuberculosis, avian influenza, newcastle disease, classical swine fever, CWD and West Nile virus. A serologic survey of West Nile exposure and risk factors in dogs is in progress. Equine serologic response to West Nile was studied and a poster presented with the findings. Testing for BVDV PI status was performed on 178,000 calves. Positive animals are removed from production to prevent spread of virus. This is the third year of the CWD prevalence study in Nebraska and results should be summarized for publication next year. We continued to support a study of Johnes prevalence in Nebraska as a representation of prevalence in extensive beef cattle operation of the Great Plains and the monitoring program to reduce the incidence of Johnes disease. We investigated the prevalence of Neospora caninum in Nebraska deer and demonstrated that a deer coyote cycle may exist with infection occasionally spilling into beef cattle populations. Prevalence in deer was estimated at 2.5%. Outbreaks of abortion related to Neosporosis were investigated and one herd with vaccine failure was investigated to characterize risk factors that may have contributed to the increased abortion in the face of vaccination. Dwarfism investigations continued and DNA samples were shared with ISU for genetic analysis. A putative site was found on chromosome 6 associated with the trait. A detailed investigation of Kochia and Rumex intoxication provided data on outcomes that will be useful to educate producers faced with similar exposure issues. Investigations into deaths of wildlife and zoo animals led to recognition of Tsukamurekka Pulmonis as a new differential for granulomatous disease in zoo mammals. Health, reproductive status, and agricultural chemical exposure were accessed in river otters.

IMPACT STATEMENT

BVDV infections rate at 1% means over 1,700 persistently infected calves; the reservoir for virus were eliminated from production facilities. West Nile testing supported state wide monitoring and control programs and
significant decreases in animal and human infections were reported in 2003. Studies in horses demonstrated the reduced utility of IgM serology in endemic regions. It appears IgM response is muted in clinical infections from vaccinated and previously exposed animals. Routine surveillance testing supports free movement of livestock products across state and national boundaries and identifies endemic diseases providing useful data for management and treatment of diseases that affect livestock profitability. The CWD and Johne's surveys will provide base line statistically valid prevalence data for the state so that effectiveness of intervention can be measured. Identification of and publications describing, emerging diseases of domestic and wild animals aids those responsible for animal health in humane management of those resources.

+++++

NEB 14-115
Porcine Reproductive and Respiratory Syndrome (PRRS) (FA Osorio)

Using reverse genetics, we generated a series of chimeric viruses containing specific genomic sequences of an attenuated PRRSV vaccine strain (Prime Pac) within the genomic context of a highly virulent infectious clone (FL-12). Eight viable chimeric viruses, encompassing the entire genome of PRRSV (Prime Pac), have been obtained. Five of these chimeras include all the non-structural open reading frames (ORFs): Most virulence determinants clustered in the structural genes of PRRSV. Some non-structural regions of the PRRSV genome (NSP3-8) exhibited a marked role in virulence. Meanwhile, other non-structural regions (NSP1-3, NSP10-12) showed an intermediate attenuation phenotype, while other non-structural (NSP9) or structural (ORF2) regions of the PRRSV genome could be ruled out as important determinants of virulence. We further dissected the structural regions for a finer mapping of individual ORFs of the PRRSV genome and generated 5 more chimeric viruses representing the majority of each individual ORF, 3 through 7. Three putative N-linked glycosylation sites (N34, N44, and N51) are located on the GP5 ectodomain, where a major neutralization epitope also exists. To determine which of these putative glycosylation sites are used in PRRSV life cycle and the role of the glycans in induction of neutralizing antibodies, we generated a panel of GP5 mutants containing single and multiple amino acid substitutions at these sites. In serum neutralization assays, the mutant viruses exhibited enhanced sensitivity to neutralization by wt PRRSV-specific antibodies. Furthermore, inoculation of pigs with the mutant viruses induced significantly higher levels of neutralizing antibodies against the mutant as well as the wt PRRSV, thus suggesting that the loss of glycan residues in the ectodomain of GP5 enhances both the sensitivity of these viruses to in vitro neutralization as well as the immunogenicity of the nearby neutralization epitope. These results should have great significance for development of PRRSV vaccines of enhanced protective efficacy. This study is aimed at identifying PRRSV B-cell linear epitopes that would be consistently recognized by the humoral immune response of naturally infected animals. To this end, 213 overlapping 15-mer synthetic peptides covering the whole amino acid sequence of a non-structural protein (nsp2) and all the structural proteins of a North American strain of PRRSV (NVSL97-7895) were used in a peptide-based enzyme-linked immunosorbent assay. Interestingly, the Nsp2 was found to contain most linear epitopes when compared to the structural proteins. Analysis of the peptides spanning the amino acid sequence of all structural proteins of the NVSL97-7895 strain against convalescent sera (45dpi) revealed the presence of B-cell linear epitopes in all studied proteins. Despite a genetic diversity between different PRRSV genotypes (1), we found immunodominant epitopes in specific regions of the gp2, gp3, gp5 and M protein which has been previously demonstrated to be recognized by immune sera raised against an European strain of
PRRSV.

IMPACT STATEMENT

The experiments dealing with reverse genetics using an infectious Cdna clone are significant to understand the virulence of PRRSV and its attenuation. Understanding the gene basis for the virulent phenotype of PRRSV is the basis for the development of new, safer, more rationally designed replicating vaccines. In addition, the identification of epitopes (small fragments) of PRRSV proteins that can be inactivated or eliminated from a live PRRSV may be the basis for the development of a marker vaccine. Along the same line, enhancement of the PRRSV neutralizing antibody response by molecular modification of the PRRSV proteins is of high value for the development of more effective vaccines against PRRSV infections.

+++++

NEB 14,117
Role of A/E Proteins in E. Coli O157:H7 Intestinal Colonization of Adult Cattle (RA Moxley)

Escherichia coli O157:H7 is an important zoonotic pathogen, and prevention of infection in cattle has been proposed to reduce the risk of human disease. The outer membrane protein, intimin has been reported to enhance intestinal colonization of adult cattle; however, the importance of Tir (translocated intimin receptor) in this regard has not been addressed. Adult beef cattle (n=30, average age, 16 mo) were orally inoculated with one of 5 isogenic strains of E. coli O157:H7, including: (1) tir gene deletion mutant; (2) complemented mutant; (3) tir gene deletion mutant transformed with empty vector; (4) nalidixic acid resistant (NaIR) parent; and (5) wild-type (WT). Prior to the first inoculation (C1), all cattle were seropositive by ELISA for antibodies to intimin, Tir, EspA, EspB and O157 LPS. Forty-two days after the first inoculation (42 DPC1), all animals were re-challenged (C2) with the NaIR parent strain to test whether prior infection with a Tir+ strain had any effect on shedding. At 14 DPC1, the WT strain was shed in the feces at higher levels than the other challenge strains, whereas shedding of the complemented mutant and NaIR parent strains was comparable to that of the tir gene deletion mutant strain. No increase in anti-Tir titer was detected following C1 with either the Tir- strains or NaIR parent strain. In contrast to those inoculated at C1 with the WT and NaIR strains, cattle inoculated with either the tir gene deletion mutant or complemented strains at C1 had an increase in the magnitude and duration of NaIR bacterial excretion at 14 DPC2, although the difference was not statistically significant (P>0.05). Overall, C1 challenge with WT resulted in higher post-C1 anti-Tir and anti-O157 LPS titers compared to the complemented mutant and NaIR parent strains, which resulted in low or no detectable anti-Tir immune response. These results suggest that serologically detectable responses to Tir are associated with the level of intestinal infection; however, more studies will be required to determine the relative importance of Tir for E. coli O157:H7 colonization of the adult bovine gastrointestinal tract.

IMPACT STATEMENT

The results of this study provide a basis for the development of effective pre-harvest intervention strategies for reduction of the prevalence of E. coli O157:H7 in feedlot cattle. Reduction of E. coli O157:H7 in cattle should result in reduced environmental and food-borne contamination with the organism, thereby reducing the incidence of infection in humans.

+++++

NEB 14-118
Pathobiology of Porcine Colonic Spirochetosis Caused by Brachyspira Pilosicoli (GE Duhamel)
Brachyspira pilosicoli is a major cause of colonic spirochetosis, a polymicrobial inflammatory bowel disease that affects humans and a wide range of animal species. Five penicillin-binding proteins were identified among human and porcine *B. pilosicoli* strains. Cecal spirochetosis and typhlitis associated with *B. pilosicoli* was characterized in 7.5- to 18-week-old commercial turkeys for the first time. Enterohemorrhagic *Helicobacter* species, including the prototype *H. hepaticus*, are emerging causes of intestinal diseases in humans and animals that produce a novel nuclease toxin, known as cytolethal distending toxin (Cdt). A sensitive fluorometric assay was developed to assess the biochemical properties of the CdtB effector subunit. The Ca2+ and Mg2+-dependence and neutral properties of CdtB were similar to mammalian nucleases, but DNA hydrolysis by CdtB was approximately 100-fold less active and was considerably more resistant to inhibition by ZnCl2 and G-actin than mammalian nucleases. Similar to other gram negative pathogens, the CdtB subunit of *H. hepaticus* localized to the nucleus and alone was sufficient for cellular intoxication. Comparative analysis of CdtB genes and toxins produced by *C. jejuni*, a major cause of foodborne diarrheal illnesses, *C. hyointestinalis*, an emerging cause intestinal diseases in pigs and human beings, and *C. coli* commonly found in intestinal specimens obtained from pigs and other species provided new insights into the pathogenesis of intestinal disease associated with these pathogens and methods for improved detection. By contrast with a recent report suggesting high CdtB activity among *C. coli* isolated from pigs in Denmark, CdtB activity was not found among US porcine *C. coli*.

IMPACT STATEMENT

Identification of penicillin-binding proteins of *B. pilosicoli* provides a basis for development of improved control strategies for pathogenic intestinal spirochetes of humans and animals. Cecal spirochetosis caused by *B. pilosicoli* was characterized in commercial turkeys for the first time. Differences between the biochemical properties of *Helicobacter* CdtB and mammalian nucleases suggest that novel antitoxin control strategies can be developed. A novel Campylobacter cdtB gene encoding a highly toxic CdtB subunit was characterized among porcine and human *C. hyointestinalis*. Porcine *C. coli* are an unlikely source of toxigenic Campylobacter for humans.

NEB 14119

Functional Genomic Analysis of Bovine Viral Diarrhea (RO Donis)

Bovine viral diarrhea virus (BVDV), a pestivirus, is a pathogen that is economically important to the cattle industry primarily because of its propensity to cause viremia resulting in fetal infection or immunosuppression. Effective, safe BVDV vaccines that induce protective immunity without causing fetal infection or immunosuppression are needed. Inhibition of cellular innate immunity by pestiviruses correlates with the presence of a nonstructural protein, at the 5 prime terminus of the open reading frame. This N-terminal protein (NPRO) is an autoprotease. We hypothesized that BVDV virulence also correlates with the presence of NPRO. The objective of the present study was to characterize the influence of NPRO on BVDV virulence in calves. The virulence of a noncytopathic NADL BVDV with a functional NPRO [i-NADL.del (ins)] was compared with the virulence of i-NADL.del (ins) with a dysfunctional NPRO as a result of fusion with EGFP [i-NADL.del (ins)-EGFP] by experimentally infecting dairy calves with each virus. Calves infected with i-NADL.del (ins)-EGFP developed elevated body temperatures, viremia, and marked lymphoid depletion and extensive deposition of BVDV antigen in lymphatic tissue. Calves infected with i-NADL.del (ins) developed low-level viremia, and mild lymphoid depletion with minimal BVDV antigen.
deposition in lymphatic tissues. These results provide evidence for a correlation of BVDV virulence with the presence of a functional N.PRO Studies are underway to assess host innate and adaptive immune responses as well as the level of protective immunity afforded by vaccination of calves with this attenuated, noncytopathic BVDV mutant.

IMPACT STATEMENT

BVDV infections have a significant negative impact on animal well-being and profitability in the US cattle industry. BVDV vaccines are available to help control those infections; however, the vaccines do not provide complete protection. Our research on the molecular basis of virulence contributed to the understanding of mechanisms involved in BVDV infections and will facilitate research aimed at identifying safe, effective vaccine candidates.

NEB 14-121

Evolving Pathogens, Targeted Sequences, and Strategies for Control of Bovine Respiratory Disease (CJ Jones and SSrikumaran)

BHV-1 is a significant viral pathogen of cattle that can induce respiratory disease, abortion, or occasionally encephalitis. BHV-1 is also frequently found in buffalo, which is a growing food animal source in the US. BHV-1 is also a causative agent of "Shipping Fever" or Bovine Respiratory Complex. As a consequence of the pathogenic potential of BHV-1 and Bovine Respiratory Complex, the cattle industry suffers more than $3,000,000,000/year in losses. BHV-1 typically initiates infection in mucosal epithelial surfaces located in the eyes, nose, mouth, upper respiratory tract, or genital tract. Extensive viral gene expression occurs, virus is shed, and clinical symptoms are apparent. Virus then enters the peripheral nervous system, where it establishes a latent infection in sensory neurons. Viral DNA can persist in a latent state for the lifetime of the infected host or it can periodically reactivate. In contrast to the 70-80 viral genes expressed in epithelial cells, only one small region of the viral genome is transcriptionally active in latently infected neurons. This region is designated the latency related (LR) gene. Expression of LR gene products is necessary for the latency-reactivation cycle. The focus of these studies is to understand the mechanism by which the LR gene regulates the latency-reactivation cycle. We have recently found that a protein encoded by the LR gene interacts with cellular proteins that induce apoptosis and regulate transcription. Studies are also being performed to understand how a viral transcriptional activator, bICP0, regulates productive infection, and inhibits innate immune responses. We have also identified a novel protein, ORF-E, which is expressed in latently infected neurons. Finally, these studies may lead to novel strategies that may lead to better vaccines against BHV-1.

IMPACT STATEMENT

Bovine respiratory disease is a significant problem to the cattle industry. BHV-1 is an important pathogen of cattle that initiates Bovine respiratory disease. Studies focused on understanding the replication of BHV-1, and developing better vaccines are crucial for the cattle industry.

NEB 14-123

Develop Pre-Harvest Version of the USDA- FSIS Fast Antibiotic Screening Test and Antibiotic Residue Avoidance Education (DD Griffin)

The first objectives, to develop a live animal test equivalent to FAST by determining the minimum inhibitory concentration (MIC) of commonly used antimicrobials on Bacillus megaterium has been accomplished, validation of these results, testing of antibiotic spiked urine
and in vivo testing of 12 classes of antibiotics in cattle born in the spring of 2003 and 2004, and whose health histories were traced from birth to the farm of origin has been completed. Using cattle that can be traced from birth insures a complete analysis of health treatment records. Cattle with a history of antibiotic treatment were excluded. Minimum inhibitory concentrations (MIC) for 12 different antibiotics commonly used in the field, using the ATCC reference strain 9885 of B. megaterium will be determined and compared to the in vitro results. Originally 14 total antibiotics were included, but due to FDA AMDUCA regulations two antibiotics from the class aminoglycosides (gentamicin, neomycin) had to be excluded because of prolonged residue potential. The following antimicrobial groups were represented: aminocyclitols (spectinomycin), beta-lactams (penicillin G, ampicillin, cephalotin), chloramphenicol derivatives (florfenicol), fluoroquinolones (enrofloxacin), lincosamides (lincomycin), macrolides (tilmicosin, tylosin), sulfonamides (sulfadimethoxine, sulfamethazine), and tetracyclines (oxytetracycline). A unique renal biopsy technique was developed which use a copotamy approach. A large three millimeter biopsy instrument was developed as the available commercial biopsy instrument did not retrieve a sufficient sample for HPLC analysis. All the sample were collected without apparent discomfort or harm to the cattle used in this project. The renal tissue samples are awaiting analysis. The preliminary outline for the field instruction manual for use of the Pre-Harvest Antibiotic Screening Test has been developed and is being evaluated by 20 practicing beef feedlot veterinarians. These veterinarians are located in six states (Colorado, Iowa, Kansas, Nebraska, Oklahoma and Texas).

IMPACT STATEMENT

Presently there is not a pre-harvest antibiotic residue screening test available to mirror the new antibiotic screening test adopted by the USDA-FSIS 2000. This increases the risk of producers marketing an animal with violative residue, risks consumer confidence in the food supply of our nation and potentially impacts the economic sustainability and profitability of the United States beef industry. A pre-harvest antibiotic screening test that mirrors the USDA-FSIS FAST test will be developed. Disseminate the information to producers and veterinarians.

NEB 14-125
Entreic Diseases of Swine and Cattle: Prevention, Control and Food Safety (RA Moxley, GE Duhamel, DR Smith)

Escherichia coli O157:H7 is an important zoonotic pathogen, and prevention of infection in cattle has been proposed to reduce the risk of human disease. A large-scale study of 140 pens of cattle from 19 commercial feedlots (n=20,556 head) was conducted in which cattle received two doses of vaccine, and the effects of vaccination on terminal rectal colonization and probability for pens to test positive for E. coli O157:H7 was determined. The pen-testing strategy consisted of culturing seven ropes per pen hung overnight from feedbunk neckrails, a correlate of fecal shedding prevalence. Vaccinated pens of cattle were 27% less likely to test ropes-positive than non-vaccinated pens. Other variables explaining the probability for pens to test ropes-positive were month of the year, region of the state, the number of cattle within the pen, and condition of the pen surface. Terminal rectum mucosal samples from 720 cattle in 21 pens (11 vaccinated, 10 not vaccinated) selected from 140 pens in the study were cultured. Vaccinated cattle were 76% less likely to be colonized in the terminal rectum compared to non-vaccinated cattle. We concluded that, in commercially fed cattle, the two-dose vaccine regimen reduced the probability of E. coli O157:H7 colonization of the terminal rectum, and reduced pen-level contamination. Brachyspira pilosicoli is a major cause of colonic spirochetosis, a polymicrobial inflammatory
bowel disease that affects humans and a wide range of animal species. Five penicillin-binding proteins were identified among human and porcine \textit{B. pilosicoli} strains. Spirochetes that were identified as \textit{B. pilosicoli} were identified in 7.5- to 18-week-old commercial turkeys with cecal spirochetosis and typhlitis. \textit{Enterobacterial Helicobacter} species, including the prototype \textit{H. hepaticus}, are emerging causes of intestinal diseases in humans and animals that produce a novel nuclease toxin, known as cytolethal distending toxin (Cdt). A sensitive fluorometric assay was developed to assess the biochemical properties of the CdtB effector subunit. The Ca$^{2+}$- and Mg$^{2+}$-dependence and neutral properties of CdtB were similar to mammalian nucleases, but DNA hydrolysis by CdtB was approximately 100-fold less active and was considerably more resistant to inhibition by ZnCl$_2$ and G-actin than mammalian nucleases. Similar to other gram negative pathogens, the CdtB subunit of \textit{H. hepaticus} localized to the nucleus and alone was sufficient for cellular intoxication. Comparative analysis of CdtB genes and toxins produced by \textit{C. jejuni}, a major cause of food-borne diarrheal illnesses, \textit{C. hyointestinalis}, an emerging cause of intestinal diseases in pigs and human beings, and \textit{C. coli} commonly found in intestinal specimens obtained from pigs and other species provided new insights into the pathogenesis of intestinal disease associated with these pathogens and methods for improved detection. By contrast with a recent report suggesting high CdtB activity among \textit{C. coli} isolated from pigs in Denmark, CdtB activity was not found among US porcine \textit{C. coli}.

IMPACT STATEMENT

A large-scale clinical trial in commercial feedlots provided scientific evidence that vaccination with type III secreted proteins is an effective pre-harvest intervention strategy for the control of \textit{E. coli O157:H7} in feedlot cattle. Identification of penicillin-binding proteins of \textit{B. pilosicoli} provides a basis for development of improved control strategies for pathogenic intestinal spirochetes of humans and animals. Cecal spirochetosis caused by \textit{B. pilosicoli} was characterized in commercial turkeys for the first time. Differences between the biochemical properties of \textit{Helicobacter} CdtB and mammalian nucleases suggest that novel antitoxin control strategies can be developed. A novel \textit{Campylobacter} cdtB gene encoding a highly toxic CdtB subunit was characterized among porcine and human \textit{C. hyointestinalis}. Porcine \textit{C. coli} are an unlikely source of toxigenic \textit{Campylobacter} for humans.

+++

NEB 14-126

Pathogenesis of Bovine viral Diarrhea Virus and bovine Respiratory Syncytial virus Infections (CL Kelling)

Bovine respiratory disease complex (BRDC) has a major negative impact on profitability in the beef cattle industry. BRDC outbreaks are caused by interactions of multiple ubiquitous pathogens, such as bovine viral diarrhea virus (BVDV) and bovine respiratory syncytial virus in affected animals. Vaccination against BVDV infection should protect against viremia and prevent dissemination of virus throughout the host following exposure, thus blocking infection of target cells of the reproductive and lymphatic systems and preventing fetal infection and immunosuppression, respectively. The objective of this study was to characterize the level of protection against systemic infection and disease from challenge exposure with NY-1 BVDV afforded by use of a modified-live, noncytopathic BVDV type 1 vaccine. Calves, 5-7 months old, were allotted to two groups, group 1, not vaccinated (n = 5), and group 2, vaccinated (n=5). Calves in group 2 were vaccinated subcutaneously on day 0 with BVDV 1 (WRL strain) in a combination vaccine containing other MLV fractions. Calves in both groups were challenged intranasally on day 21 postvaccination.
with NY-1 BVDV. Rectal temperatures and clinical signs of disease were recorded daily. Total and differential white blood cell and platelet counts were performed. Histologic examination and immunohistochemical analysis were conducted postmortem to detect lesions and distribution of viral antigens, respectively. Vaccine virus replicated systemically in vaccinated calves as evident antemortem by transient decreased peripheral leukocyte and lymphocyte counts as well as evident postmortem by lymphoid depletion in Peyers patches and mesenteric lymph nodes. Post-challenge, nonvaccinated calves developed elevated body temperatures, respiratory tract disease signs, viremia, leukopenia, lymphopenia and thymic infection. In contrast, post-challenge, vaccinated calves did not exhibit fever nor signs of respiratory tract disease. Post-challenge with NY-1, vaccinated calves were protected against systemic replication of challenge virus since they did not develop reduced leukocyte counts and were protected against viremia and infection of target lymphoid cells.

IMPACT STATEMENT

The BRDC causes a significant negative impact on animal well-being and profitability in the U.S. cattle industry. BVDV infections are important causes of BRDC and vaccines are available to help control those infections; however, the vaccines do not provide complete protection. Our research contributed to the understanding of mechanisms involved in BVDV infections. This understanding is useful for developing effective intervention strategies to help control BRDC to enhance animal well-being and increase profitability.

NEB 14-127

Intervention Strategies to Reduce *Escherichia coli* O157:H7 in Beef Feedyards (DR Smith)

The specific aims of this project are: 1) to field test the effect of vaccination and feeding direct-fed microbials for singular, additive or interactive effects on the prevalence of *E. coli* O157:H7 in feedlot cattle; and 2) to share our findings with cattle producers, veterinarians, food safety researchers, food safety policy makers, and other stakeholders through extension programming. A phase III clinical trial was conducted to field test the effect of 1) vaccination and 2) feeding a direct-fed microbial product on the prevalence of *E. coli* O157:H7 in commercial feedlot cattle. Feedlots were classified as either feeding or not feeding Bovamine™ (Lactobacillus acidophilus and Propionibacterium freudenreichii) and pens of vaccinated and nonvaccinated cattle within feedlots were matched by time in a split plot design with the whole plot factor being Bovamine TM and the split plot factor being vaccination. Vaccine was given to cattle at initial processing and again at reimplanting. Each pen of cattle enrolled in the study was sampled for *E. coli* O157:H7 starting at least one week after the second dose of vaccine was given, and continued every three weeks for four test period samplings. Pens were sampled for O157 by hanging seven ROPES from the neckrail of the feedbunks where cattle could easily lick, chew, or rub on them. *E. coli* O157:H7 was isolated and identified by standard methods involving selective enrichment, immunomagnetic separation, agar plating, biochemical and immunological testing and PCR confirmation. The outcome was whether or not pens tested positive for *E. coli* O157:H7 using the ROPES device. Recovery of *E. coli* O157:H7 from at least one ROPES classified the pen as positive. The probability for pens of cattle to test ROPES-positive was modeled in a generalized estimation equations (GEE) model using the logit link function and accounting for clustering by matched pairs of pens within feedlot and repeated measures. We studied 140 pens of cattle (n=20,556 head) in 19 feedlots. Vaccinated pens of cattle were less likely to test ROPES-positive (OR=0.59, P=0.004). Other
variables in the model were month of the year, region of the state, the number of cattle per pen, and pen surface condition. At harvest, terminal rectum mucosal cells (TRM) were collected from a sample of cattle from a proportion of vaccinated and unvaccinated pens to assess for colonization. The TRM were collected by scraping the mucosa of the terminal rectum 3.5 cm proximal to the rectoanal juncture. The probability to detect E. coli O157:H7 from TRM was modeled using a generalized linear mixed model (GLMM) with a logit link function and accounting for random effect of pen. Seven hundred twenty cattle were tested from within 21 pens of cattle (11 vaccinated, 10 not vaccinated). We observed a 75% lower probability for E. coli O157:H7 colonization at harvest among vaccinated cattle (OR=0.20; P=0.03). We concluded that the two-dose vaccine regimen reduced the probability of E. coli O157:H7 colonization of the terminal rectum in commercially fed cattle at harvest.

IMPACT STATEMENT

These data suggest that vaccination reduced E. coli O157:H7 colonization of cattle and lowered the environmental burden of exposure. Therefore, this strategy may be promising for pre-harvest control of E. coli O157:H7 in commercially fed cattle. Extension programming will help veterinarians and cattle feeders become aware of how they can apply effective interventions to improve the safety of food.

NEB 14-128

Regulation of the Latency-Reactivation Cycle by the Bovine Herpesvirus 1 (BHV-1) Latency Related (LR) Gene (CJ Jones and AR Doster)

Bovine herpesvirus 1 (BHV-1) is an important pathogen of cattle that belongs to the α-herpesvirus subfamily. Like other members of this subfamily, a latent infection is established in sensory neurons following acute infection. However, the virus can reactivate and spread to other cattle. Reactivation from latency is the mechanism by which the virus survives in nature, and is thus, an important property of pathogenesis. During a latent infection, one abundant viral transcript can be detected, the latency related RNA (LR-RNA). Plasmids expressing LR gene products enhance survival of monkey kidney cells (CV-1), neuronal like cells (neuro-2A), and human lung cells (IMR-90) after treatment with chemicals that induce apoptosis. We have developed a LR mutant does not express the LR protein encoded by ORF-2. This mutant grows well in tissue culture, but does not grow well in the eyes or tonsil during acute infection of calves. Furthermore, the LR gene mutant does not reactivate from latency indicating that the LR gene is important for the latency-reactivation cycle in calves. Immune infiltration into trigeminal ganglia (TG) occurs as a result of infection and it is believed this is important for regulating latency. Calves infected with the LR mutant contain enhanced immune infiltration and programmed cell death (apoptosis) in TG at the end of acute infection. In addition, the LR gene regulates interferon RNA expression in productively infected calves and cultured bovine cells suggesting this is the mechanism by which the LR gene regulates lymphocyte infiltration into TG.

IMPACT STATEMENT

BHV-1 is an important pathogen of cattle, which costs the cattle industry one-half billion dollars per year in the US. The ability of BHV-1 to infect lymphocytes is believed to enhance pathogenesis and virus transmission. We are trying to understand virus host interactions in the peripheral nervous system to facilitate production of a better vaccine.
Molecular Analysis of a Mycobacterium Paratuberculosis Colony-Morphology Attenuated Mutant (RG Barletta and CJ Czuprynski)

Mycobacterium avium subsp. paratuberculosis (MAP) is the etiological agent of a severe gastroenteritis in ruminants, known as Johnes disease. In the United States alone, economic losses for the dairy industry are estimated to be over $1.0 billion per year. Survival within macrophages is a hallmark of MAP. Identification of genes responsible for MAP survival in macrophages is important to understand how this bacterium causes disease. This project is focused on the MAP mutant 4H2 that displays a colony morphology alteration and an attenuated phenotype in bovine macrophages. In this reporting period, we compared the phagocytosis of MAP wild type by freshly isolated bovine monocytes and a bovine macrophage cell line. Bovine monocytes exhibited a greater ability to phagocytose MAP (i.e. greater percentage of infected cells, and more bacilli per infected cell), than did a bovine macrophage cell line. Phagocytosis of MAP by monocytes, but not the cell line, was significantly enhanced by the addition of autologous serum. Following ingestion, the number of viable MAP cells in monocytes increased during the first 4 days and then declined between day 4 and day 8 after infection, as determined by a radiometric method. The numbers of MAP remained largely unchanged in the cell line during the same incubation period. The number of microscopically visible acid-fast bacilli increased with time in monocytes, but not in the macrophage cell line. These observations suggest that replication and inhibition of bacilli may both occur in monocytes. The difference in the ability of bovine monocytes and the macrophage cell line to ingest and restrain the intracellular growth of MAP provide valuable model systems for investigating various aspects of how MAP enters and persists within its preferred niche, the mononuclear phagocyte. Similar experiments with mutant 4 H2 are in progress. In addition, Southern blot and PCR analyses are consistent with the inactivation of MAP 1152. However, transposon insertions may have polar effects, and thus, we are carrying complementation tests with all wild type genes in the region immediately downstream to the transposon insertion site including genes MAP1152-1153-1155 and 1156. Transformants will be verified and tested for survival in bovine macrophages.

IMPACT STATEMENT

Paratuberculosis and related mycobacterioses cause an estimated one billion dollars in annual losses to U.S. agriculture alone. Molecular genetic studies of MAP mutants attenuated for survival in bovine macrophages may aid in the development of a live-attenuated vaccine to control Johnes disease.

Regulation of the Latency-reactivation Cycle by the Bovine herpesvirus 1 (BHV-1) Latency Related (LR) Gene (CJ Jones)

Bovine herpesvirus 1 (BHV-1) is an important pathogen of cattle that belongs to the α-herpesvirus subfamily. Like other members of this subfamily, a latent infection is established in sensory neurons following acute infection. However, the virus can reactivate and spread to other cattle. Reactivation from latency is the mechanism by which the virus survives in nature, and is thus, an important property of pathogenesis. During a latent infection, one abundant viral transcript can be detected, the latency related RNA (LR-RNA). Plasmids expressing LR gene products enhance survival of monkey kidney cells (CV-1), neuronal like cells (neuro-2A), and human lung cells (IMR-90) after treatment with chemicals that induce apoptosis. We have developed a LR mutant does not express the LR protein encoded by ORF-2. This mutant grows well in tissue culture, but does not
grow well in the eyes or tonsil during acute infection of calves. Furthermore, the LR gene mutant does not reactivate from latency indicating that the LR gene is important for the latency-reactivation cycle in calves. Immune infiltration into trigeminal ganglia (TG) occurs as a result of infection and it is believed this is important for regulating latency. Calves infected with the LR mutant contain enhanced immune infiltration and programmed cell death (apoptosis) in TG at the end of acute infection. In addition, the LR gene regulates interferon RNA expression in productively infected calves and cultured bovine cells suggesting this is the mechanism by which the LR gene regulates lymphocyte infiltration into TG.

IMPACT STATEMENT

BHV-1 is an important pathogen of cattle, which costs the cattle industry one-half billion dollars year in the US. The ability of BHV-1 to infect lymphocytes is believed to enhance pathogenesis and virus transmission. We are trying to understand virus host interactions in the peripheral nervous system to facilitate production of a better vaccine.

NEB 14-131
Veterinary Field Disease Research Program (DR Smith)

The Field Disease Research Program uses a team approach to solve problems of animal or human health related to livestock production systems. Currently research is underway to 1) estimate the proportion of Nebraska beef cattle herds with Johne's disease and identifying factors associated with Johne's disease status; 2) use microscopic examination of immunohistochemistry-stain skin biopsies to detect and remove calves born persistently infected with BVDV from a commercial cow-calf ranch; 3) validate the use of serology among unvaccinated sentinel beef calves to detect evidence of BVDV exposure during the period when their dams are carrying fetuses susceptible to BVDV infection and subsequent development of the PI state. Seventy-three cow-calf herds representing 20,865 cows were extensively tested for the presence of Johne's disease using a serial testing strategy (ELISA serology followed by fecal culture confirmation of positives). Mean herd size was 286 head, ranging from 94-1,700 cows per herd. A total of 15,402 cows were tested following a pre-determined sampling strategy. Johne's disease was identified in 9 herds (12%). Factors significant as univariate risk factors for Johne's disease positive herds were: 1) the presence of Johne's disease suspect animals in the calving area, or 2) with pre-weaned calves, and 3) exposure of pre-weaned calves to manure contaminated water. Of these variables, the presence of Johne's disease suspects in the calving area was most explanatory of the herds Johne's disease status. BVDV was eliminated from a 600 head cow-calf ranch by testing calves at birth using microscopic examination of immunohistochemistry-stain skin biopsies collected from the ear margin (ear-notch test) to detect calves born BVDV persistently infected (BVDV-PI). Calves ear-notch test-positive in 2003 were removed from the cow herd prior to the breeding season. No calves were born BVDV-PI in 2004 or 2005. Tests in previous years identified the presence of PI calves and BVDV transmission could be traced to breeding pastures where PI calves were present. BVDV serology from 10% of weaned calves from herds with and without BVDV are being evaluated for herd-level diagnostic value. Because of maternal antibodies, titers to BVDV are variable and age-dependent. Data analysis of this years serology results is still underway. Data were analyzed to identify the risk factors for neospora transmission in dairy cattle and the presence of virulence factors among Moraxella ovis. Papers were published describing the ecology of E.coli O157:H7 and Salmonella in fed cattle populations.
IMPACT STATEMENT

Neospora, Johne's disease, neonatal diarrhea and BVDV are economically important diseases of cattle. The results of these studies help veterinarians now how to diagnose a herd's status for these diseases or to understand how their producer clients may risk exposure and further transmission of the agents of these diseases in their herds. Understanding the ecology of food safety pathogens in cattle environments is important to designing strategies for intervention.

++++

NEB 14-132

Examination of Attenuation and Virulence Determinants of Porcine Reproductive and Respiratory Syndrome Virus

(AK Pattnaik and FA Osorio)

We have generated an infectious molecular clone (PP-18) from the Prime Pac attenuated vaccine strain of PRRSV. The viral genome is 15,520 nucleotides long excluding poly (A) tail, which is the same length as the parental virus. The full-length cDNA clone was assembled in pBR322 after incorporating T7 RNA polymerase promoter. In vitro transcribed RNAs, when transfected into MARC-145 cells resulted in production of infectious virus. The rescued virus had similar growth properties in both MARC-145 cells and porcine alveolar macrophages (PAMs) as the parental vaccine virus. The derivation of this infectious clone from the attenuated PRRSV vaccine strain should significantly facilitate ongoing molecular attenuation studies by providing an avirulent phenotypic background on which to evaluate the contribution that single wt PRRSV genes may have on virulence. We have also generated a series of chimeric viruses containing specific genomic sequences of an attenuated PRRSV vaccine strain (Prime Pac) within the genomic context of a highly virulent infectious clone (FL-12). Eight viable chimeras, encompassing the entire genome of Prime Pac, have been obtained. Clear-cut characterization of the chimeric viruses for virulence phenotype was obtained in vivo, upon inoculation of pregnant sows at day 90 of gestation. Most virulence determinants clustered in the structural genes of PRRSV. Some non-structural regions of the PRRSV genome (NSP3-8) exhibited a marked role in virulence. Meanwhile, other non-structural regions (NSP1-3, NSP10-12) showed an intermediate attenuation phenotype, while other non-structural (NSP9) or structural (ORF2) regions could be ruled out as important determinants of virulence. We further dissected the structural genes for a finer mapping and generated 5 chimeras representing the majority of each individual ORF, 3 through 7. The in vitro growth kinetics in both MARC-145 cells and PAM and in vivo characterization in pregnant sows are currently in process. This approach should allow us to narrow down the relative contribution of individual ORFs on attenuation of virulence of PRRSV, thus, opening the avenue for precise mapping of the critical regions and residues within the individual gene products that are important for attenuation.

IMPACT STATEMENT

Porcine reproductive and respiratory syndrome (PRRS) in pigs is a complex disease responsible for significant economic losses to the swine industry. The virus, PRRSV in not well characterized and current vaccines are less efficacious. Using a reverse genetic approach, we attempt to understand the genetic determinants of PRRSV that are responsible for causing disease in infected pigs and how such information can be used for generation of safer and efficacious vaccine to combat PRRS.

++++
During the past year, we have been able to generate a series of chimeric viruses containing specific genomic sequences of an attenuated PRRSV vaccine strain (Prime Pac) within the genomic context of a Highly virulent infectious clone (FL-12). Eight viable chimeras, encompassing the entire genome of Prime Pac, have been obtained. Five of the chimeras include all the non-structural open reading frames (ORFs): (1) 5′UTR and NSP1 and part of NSP2, (2) part of NSP2 and part of NSP3, (3) part of NSP3 to NSP8, (4) part of NSP9, and (5) part of NSP9 to NSP12 genes; while the remaining 3 chimeras include all the structural ORFs: (6) part of NSP12, ORF2 and part of ORF3, (7) ORF3 to 7 and 3′UTR, and (8) the entire region spanning all the structural genes and the 3′UTR. Clear-cut characterization of their virulence phenotype was obtained in vivo, upon inoculation of pregnant sows at day 90 of gestation. Most virulence determinants clustered in the structural genes of PRRSV. Some non-structural regions of the PRRSV genome (NSP3-8) exhibited a marked role in virulence. Meanwhile, other non-structural regions (NSP1-3, NSP10-12) showed an intermediate attenuation phenotype, while other non-structural (NSP9) or structural (ORF2) regions could be ruled out as important determinants of virulence. We further dissected the structural genes for a finer mapping and generated 5 chimeras representing the majority of each individual ORF, 3 through 7. The in vitro growth kinetics in both MARC-145 cells and PAM and in vivo characterization in pregnant sows are currently in process. This approach should allow us to narrow down the relative contribution of individual ORFs on attenuation of virulence of PRRSV, thus, opening the avenue for precise mapping of the critical regions and residues within the individual gene products that are important for attenuation. To complement the experiments involving a virulent infectious clone (FL-12), we have also generated an infectious clone (PP-18) from this Prime Pac attenuated vaccine strain. The complete nucleotide sequence was determined and compared with parental vaccine virus. The viral genome is 15,520 nucleotides long excluding poly (A) tail which is the same length as the parental virus. A number of changes in nucleotide sequence were noted. A full-length cDNA clone was assembled in pBR322 after incorporating T7 RNA polymerase promoter. In vitro transcribed RNAs, when transfected into MARC-145 cells resulted in production of infectious virus. The rescued virus had the similar growth kinetics in both MARC-145 cells and porcine alveolar macrophages as the parental vaccine virus and could be differentiated from the other American type viruses by indirect fluorescent staining with specific Mabs (SDOW17 and SR30). The derivation of this infectious clone from the attenuated PRRSV vaccine strain should significantly facilitate ongoing molecular attenuation studies by providing an avirulent phenotypic background on which to evaluate the contribution that single wt PRRSV genes may have on virulence.

IMPACT STATEMENT

Porcine reproductive and respiratory syndrome virus (PRRSV) is responsible for significant economic losses to the swine industry. The goal of the project is to gain knowledge about the determinants of virulence and attenuation of PRRSV, which will be important towards developing safer and more efficacious vaccine to combat the disease.
Influence of Enterotoxins on Virulence and Colonization of the Porcine Intestine by *Escherichia coli* (RA Moxley)

Enterotoxigenic *Escherichia coli* (ETEC) is an important cause of diarrhea and death in human beings and animals. This study was conducted as a step toward understanding the biological roles of *E. coli* enterotoxins in intestinal colonization and pathogenesis of disease in piglets. The lambda Red-mediated recombinogenic system has been widely used for gene inactivation in yeasts and different pathogenic bacteria, but to our knowledge, not ETEC. This approach is simpler and more efficient than conventional methods of allelic exchange. In the study herein, this system was used for homologous recombination by two approaches, both plasmid based. In the first approach, amplification of an antibiotic insertion-inactivated enterotoxin gene in a plasmid vector with primers outflanking that gene was done, resulting in a linear PCR product containing the antibiotic gene outflanked on either side by enterotoxin gene nucleotides. In the second approach, enterotoxin genes were disrupted using PCR products from primers specifically targeting antibiotic markers, flanked on either side by short homologies to 5' primer ends of target genes. Conditions were identified that optimize use of the lambda Red system for recombineering in ETEC. Lambda Red and FLP recombinase helper plasmids were used with successful disruption of enterotoxin genes in ETEC. We examined the use of plasmid-derived short (60-bp) and long (>100-bp) PCR-generated homology products, both of which worked well. Recombinants were selected on respective antibiotics, PCR-analyzed and mutagenesis confirmed using Southern blots. The success of lambda Red-mediated recombination in ETEC depended on a number of factors, such as the orientation of the antibiotic marker in the recombination substrates, amount of PCR product, buffers used to make the bacteria competent, heat shock effects, electroporation conditions and exposure to UV, among others. Overall, we have optimized the lambda Red recombineering technology for use in ETEC, as demonstrated by the precise disruption of the estB and eltAB genes, results which encourage further use of this technology in studies aimed at the elucidation of gene function.

IMPACT STATEMENT

Methods for the inactivation of enterotoxin genes in *Escherichia coli* were optimized, which should facilitate studies aimed at the elucidation of gene function.

Tricarboxylic Acid Cycle Mediated Regulation of Staphylococcus Aureus Virulence Factors (GA Somerville)

Aconitase is a bifunctional protein having both an enzymatic and regulatory function. Inactivation of the aconitase gene in the human and animal pathogen *Staphylococcus aureus* caused a significant reduction in the production of several virulence factors and enhanced long-term survival relative to the wild-type strain. The purpose of this project is to identify those genes that are affected by aconitase inactivation and to determine if these genes are affected by the loss of enzymatic activity or regulatory function. To accomplish this goal, we will employ DNA microarray technology using three tricarboxylic acid cycle mutants. Phase 1 of this project is to construct *S. aureus* strains bearing mutations in either the isocitrate dehydrogenase gene or the citrate synthase gene. During the past year, the plasmids necessary to inactivate these genes were constructed and the screening of putative mutants has begun. We anticipate completion of the mutant construction by early next year. Phase 2 of the project is to analyze the transcriptional profiles of the three tricarboxylic acid cycle mutants (isocitrate dehydrogenase, citrate synthase, and aconitase) using DNA microarray technology in collaboration with the
Department of Pathology and Microbiology at the University of Nebraska Medical Center. We have completed the DNA microarray experiment for the aconitase mutant strain and are awaiting the completion of the additional mutant strains before continuing the microarray experiments. Upon completion of this project, it is anticipated that we will have identified new therapeutic targets to combat S. aureus infections.

IMPACT STATEMENT

The bacterium Staphylococcus aureus poses major health risks and causes significant economic hardships in the dairy and food industries. As an example, the economic impact of bovine mastitis to Nebraska per year is approximately $13.4 million. The research contained within this proposal is designed to identify novel therapeutic targets in Staphylococcus aureus, which will facilitate the development of new drugs to combat bovine mastitis.

NEB 14-137
Genetic Basis of Resistance to Food-Borne Bacterial Pathogens (GE Duhamel and JS Weber)

Campylobacter jejuni and Escherichia coli are leading causes of food-borne bacterial infections in humans worldwide. Conversely, Helicobacter hepaticus is a well-established cause of chronic hepatitis and liver cancer in susceptible mouse strains. Cytolethal distending toxin (CDT) is a newly discovered virulence factor consisting of a tri-peptide complex of subunit A, B and C which is shared among these bacterial pathogens. The proposed mechanism of CDT toxicity is consistent with that of heterodimeric AB2 bacterial toxins where subunits A and C bind to host cell membrane for cellular delivery of the toxic B subunit. The central hypothesis of this project is that subunits A and C of CDT bind to specific host tissue/cellular receptor(s) resulting in damage and illness. The objective of this project is to characterize the distribution of CDT-binding target tissues in susceptible pigs and susceptible and resistant inbred strains of mice. We have cloned, overproduced and characterized the biochemical properties of H. hepaticus CdtB in details. Hexahistidine (His6)-tagged CDT subunits A, B, and C of H. hepaticus and B subunit of C. jejuni have been cloned and purified and monospecific rabbit polyclonal hyperimmune sera have been produced against the B subunits of each pathogen. Currently, His6-tagged A and C subunits of H. hepaticus have been cloned and purified for production of rabbit hyperimmune sera whereas overexpression and purification of His6-tagged A and C subunits of C. jejuni are in progress.

IMPACT STATEMENT

Identification of cellular targets and receptors for CDT will form the basis for implementation of genetic selection of livestock resistant to these important food-borne bacterial pathogens, and basic understanding of disease susceptibility and resistance to several important bacterial pathogens of humans and animals.

NEB 14-138
Functional Analysis of bICPO, the Major Transcriptional Regulatory Gene of Bovine Herpesvirus 1 (BHV-1) (CJ Jones)

Bovine herpes virus 1 (BHV-1) can cause clinical symptoms in cattle and induce shipping fever, which costs the industry more than $640 million per year. Current vaccines can be pathogenic to small calves, cause abortions, and do not prevent latency of wild-type virus. BHV-1 establishes latency, but can reactivate, in part, because the bICPO protein activates viral gene expression. bICPO can activate expression of all three classes of viral genes, is expressed throughout productive infection, and is thus
considered to be the most important viral regulatory gene. We have demonstrated that a C3HC4 zinc ring finger near the amino terminus of bICP0 plays an important role in activating transcription and productive infection. Furthermore, bICP0 interacts with chromatin remodeling enzymes (histone deacytase 1 (HDAC1) and a histone acetylase (p300)). Recent studies have demonstrated that bICP0 also inhibits interferon dependent transcription, suggesting that bICP0 regulates innate immune responses. We have recently developed a mutant BHV-1 strain that does not grow efficiently. This mutant grows poorly and does not form well-defined plaques. The mutant virus establishes a persistent infection in cultured bovine cells. In summary, our studies suggest that bICP0 is crucial for productive infection.

IMPACT STATEMENT

BHV-1 is an important pathogen of cattle, which costs the cattle industry one-half billion dollars per year in the US. These studies will help us understand bICP0 function and its relationship to disease and may help the vaccine industry design modified live vaccines that induce immunity, do not cause disease in cattle, and do not reactivate from latency.

PRRSV has the ability to infect target cells with the same level of efficiency and virulence as the parental PRRSV, while maintaining a steady level of expression of green fluorescent protein in the virus-infected cells and tissues. Therefore, this powerful imaging tool allows us now to easily and unequivocally track, identify and localize single virus-infected cells and tissues throughout the body of the pig; therefore, positioning us to address some fundamental yet pending issues related to the way PRRSV causes disease in vivo. Using this recombinant PRRSV we should be able to follow the sequential progression of the viral load throughout different target sites in the body during all the phases (acute & persistent) of infection, while looking at the complete phenotypic characterization of the infected cell in each case. We would give special emphasis to the possible in vivo association of PRRSV with some specialized targets, such as dendritic cells, which are of fundamental importance for the establishment of the protective immune response to pigs against the PRRSV infection. The anticipated results of this project consist of obtaining a better picture of how the PRRSV infection progresses throughout the body and how it affects certain cells that are key for protection against the infection and for elimination of this virus from the body.

IMPACT STATEMENT

Porcine reproductive and respiratory syndrome (PRRS) virus imposes devastating effects on swine health and productivity. In the U.S., PRRS virus causes approximately $560 million in losses each year. By comparison, annual losses in the U.S. to classical swine fever (eradicated from the US in 1978) and pseudorabies virus (eradicated from the U.S. in 2004) were estimated at $364 million and $36 million, respectively prior to their eradication. The National Pork Board and the rest of swine industry are considering to initiate a regional/national eradication campaign. So far there is one country (Chile) that has initiated an official eradication campaign.
NEB 14-140
Stimulating the Development of Veterinarians to Serve Rural America (DD Griffin)

IMPACT STATEMENT

Presently there is not a pre-harvest antibiotic residue screening test available to mirror the new antibiotic screening test adopted by the USDA-FSIS 2000. This increases the risk of producers marketing an animal with violative residue, risks consumer confidence in the nation's food supply and potentially impacts the economic sustainability and profitability of the United States beef industry. A pre-harvest antibiotic screening test that mirrors the USDA-FSIS FAST test will be developed. Disseminate the information to producers and veterinarians.

NEB 14-141
Molecular Genetic Analysis of Mycobacterium avium subsp. Paratuberculosis (MAP) and related mycobacterial pathogens (RG Barletta)

Mycobacterium avium subsp. paratuberculosis (MAP) is a slowly growing mycobacterial species, requiring 6 to 8 weeks of culture before colonies can be counted visually. We have made significant progress in the study of replication and survival of MAP strains by developing a luciferase assay to evaluate the replication of MAP more easily. Along with our collaborators at the Pasteur Institut de Brussels (Kris Huygen et al.), we developed a MAP luminescent strain expressing luxAB (luciferase) genes of Vibrio harveyi. We showed the use of this strain for vaccine testing in an experimental mouse model, replacing fastidious colony forming unit counting by rapid luminometry. In addition, we characterized several genes (MAP0282c, MAP2296c, MAP2297c, MAP1150c, MAP1151c and MAP0460) whose inactivation by a transposon insertion (within the promoter region or the structural gene) led to a reduced survival in bovine macrophages. We have also made significant progress in the identification of drug targets. We have collaborated with Corporacion para Investigaciones Biologicas (CIB, Medellin, Colombia) and the Texas A&M University (College Station) to analyze the Mycobacterium tuberculosis D-alanine-D-alanine ligase (Ddl). This enzyme catalyzes the formation of the basic peptidoglycan moiety D-alanyl-D-alanine. Saturation mutagenesis suggests that ddl is an essential gene and likely encodes a lethal drug target. To obtain large amounts of enzyme for structural and functional studies, we over-produced the M. tuberculosis Ddl enzyme in recombinant Escherichia coli. The M. tuberculosis Ddl represented 5-10% of the total protein as determined by SDS gel electrophoresis. The purified soluble recombinant protein displayed enzymatic activity for the ATP-dependent catalysis of D-alanyl-D-alanine formation from D-alanine. The enzyme activity is dependent on ATP and Mg++ cations, and optimal activity requires K+ cations. D-cycloserine (DCS) inhibited enzyme activity in a concentration-dependent manner. The significance of this work resides in the development of novel inhibitors of peptidoglycan biosynthesis as candidate antimycobacterial agents.

IMPACT STATEMENT

Paratuberculosis and related mycobacterioses cause an estimated one billion dollars in annual losses to U.S. agriculture alone. The functional analysis of mutant strains may aid in the development of a vaccine to control Johne's disease and bovine tuberculosis.
Development of Broad-Spectrum Antibiotics Against Bacterial pathogens (RG Barletta, R Powers and JM Takacs)

We have obtained large amounts of one of the enzymes in the murein (Mur) biosynthetic pathway. We have developed a high throughput assay and are synthesizing chemical inhibitors. We also developed a NMR metabolic profiling method to analyze the essential role of D-alanine racemase in the Mur pathway. We have prepared cell extracts of wild-type, susceptible and resistant Mycobacterium smegmatis strains, a model system for Mycobacterium tuberculosis, to conduct NMR profiling studies. The drug used for this study was the murein (peptidoglycan) synthesis inhibitor D-cycloserine (DCS). We analyzed the NMR data by the principal component analysis (PCA) methodology, a well established statistical technique that determines the direction of largest variations in the NMR data set. The results showed three distinct clusterings, indicating that the drug tested is active toward the system. The DCS susceptible strain TAM23 treated with and without DCS clustered in different locations, indicating that DCS is targeting a different protein in the system, which is a discovery of significance in the field. Since TAM23 is deficient in D-alanine racemase activity, this result indicates that this enzyme is not the lethal target of DCS. The wild-type (mcc155) and resistant GPM267 strains treated with DCS clustered with TAM23 treated with DCS indicating that DCS inhibits the same secondary protein present in TAM23. These results are consistent with one lethal target for DCS different from D-alanine racemase.

IMPACT STATEMENT

Antimicrobial agents (antibiotics) continue to play an essential role in the fight against infectious diseases of human and veterinary importance. The widespread use of antibiotics has resulted in the emergence of drug resistance. Nonetheless, antibiotics still provide an essential means to accomplish these rapid intervention strategies. The expected outcome of this research effort will be the identification of candidate broad-spectrum antimicrobial agents that minimize the emergence of drug resistance.

Functional Analysis of Proteins Encoded by the Bovine herpesvirus 1 (BHV-1) (CJ Jones)

Bovine herpes virus 1 (BHV-1) causes a variety of upper respiratory tract disorders in cattle, and induces shipping fever (Bovine Respiratory Disorder). BHV-1 infections and Bovine Respiratory Disorder cost the US cattle industry more than $500 million per year. Current modified live vaccines directed against BHV-1 can be pathogenic to small calves and cause abortions in pregnant cows. BHV-1, including current modified live vaccines, establishes latency in sensory neurons and periodically reactivates from latency. Thus, the latency- reactivation cycle is crucial for virus transmission and pathogenesis. The latency related (LR) RNA is abundantly expressed in sensory neurons of latently infected cattle. A LR mutant BHV-1 strain that contains stop codons near the 5'-terminus of the LR-RNA does not reactivate from latency. Calves acutely infected with the LR mutant have reduced shedding of infectious virus from the eye, tonsil, and trigeminal ganglia. The LR mutant virus does not express two proteins (ORF,2 and RF,C) strongly suggesting that expression of these proteins is necessary for the latency-reactivation cycle. ORF-2 and/or RF-C expression are necessary for inhibiting apoptosis and beta interferon (IFN-b) RNA expression. A novel LR fusion protein binds to cellular proteins that regulate transcription and apoptosis. These interactions are believed to be necessary for regulating the latency-reactivation cycle in sensory neurons. Future studies are designed to help us understand how proteins encoded by the
LR gene regulate the latency-reactivation cycle, and innate immune responses.

IMPACT STATEMENT

Completion of these studies may lead to a superior modified live vaccine that induces higher levels of innate immunity, does not cause clinical disease in cattle, and does not reactivate from latency.
Department of Veterinary and Biomedical Sciences
2006 International Activities

Raúl G. Barletta

Dr. Barletta has a specific project, which includes the Mycobacterial drug targets. Corporacion para Investigaciones Biologicas, CIB, Medellin, Colombia. Dr. Barletta will serve as the PI, representing the University of Nebraska-Lincoln and will work in collaboration with J. Robledo, CIB and Ofelia Chacon also from the University of Nebraska-Lincoln, CIB. This special project will be funded by an NIH and USDA grants, subcontracts and Colciencias, Colombian Federal Agency for Science.

Marjorie F. Lou

Dr. Lou continues to serve as the Founder and organizer of the Asian Cataract Research Conference. She continues to organize the Biannual Conference that will be held in a major city in Asia. The 6th Conference will be held in Beijing, China, June 3-7, 2006, which Dr. Lou has been actively supervising the progress of the local organizers. For the same reason, she is actively promoting and sponsoring lens and cataract research programs in Asian countries, such as South Korea, Hong Kong, China, India, Pakistan and Singapore.

Dr. Lou was elected as Membership Committee Chairman for the International Society for Eye Research (ISER), 2004-2007. As a Committee Chairman, she is responsible in promoting and increasing new or active members. She also is responsible for the Biannual International Congress of Eye Research (ICER), sponsored by ISER for the selection of young investigator’s travel award and this year there are 25 that were selected.

Dr. Lou continues to be Board of Trustees for the National Foundation for Eye Research since 1998. This research foundation sponsors US-Japan Cataract Corporation Research Group (CCRG) Conference. Each board member is responsible for selecting one young investigator Lens Research Achievement Award per year and other travel grants to attend the US-Japan CCRG meetings.

Fernando A. Osorio

Dr. Osorio continues to serve as an Advisor for the PRRSV Eradication Campaign in Chile. Fernando continues on a joint international effort to fight PRRS. His collaborative work with J-H Sur (Konkuk U., Seoul, Korea) and M. Quezada (University of Concepcion, Chillan, Chile) jointly develop new practical techniques to fight PRRS in each of the three countries. The Porcine Reproductive and Respiratory Syndrome (PRRS) is a disease that causes multi-billion dollar losses worldwide.

Dr. Osorio is a Member of the Scientific Advisory Committee “Center for Research in Swine Infectious Diseases.” He will serve in the capacity of Visiting Faculty of Veterinary Medicine, St-Hyacinthe, University of Montreal, Québec, Canada, beginning 2006.
Asit K. Pattnaik

Dr. Pattnaik will be attending the International Conference on “Negative-Strand RNA Viruses,” to be held in Salamanca, Spain, June 2006. Dr. Pattnaik will be a speaker at the symposium to an audience of 1,200 colleagues.

Dr. Pattnaik will also be attending and giving a lecture at the Asia Pacific Congress on “Medical Virology,” in New Delhi, India, November, 2006.
2006 Veterinary Extension Program

Topics/Titles of Extension Program Emphases

Dicky Dee Griffin

Pre-Harvest Food Safety

My continued focus on the education of production management influences, both Extension Educators and Veterinarians, on techniques that will build good production management practices into beef production. Special effort is made with Beef Quality Assurance (BQA) and antibiotic residue avoidance. The program also focuses on the financial assessment of production management changes.

Biosecurity and Security in Beef Production Systems

I will be continuing my focus on the education of biosecurity and security principles applied appropriately to fit the needs of the beef production unit. The Hazard Analysis Critical Control Points (HACCP) system is used as the technique evaluation and design of the appropriate biosecurity and security system for each operation.

David R. Smith

Extension Emphasis

I will continue with communicating the principles of biosecurity and pathogen containment; emphasizing diagnostics and the role of production-systems on transmission of pathogens and the resulting impact on dairy and beef cattle health and pre-harvest food safety.

Internet: <http://vetext.unl.edu>

2006 Extension Programming

Biocontainment of calf scours -the Sandhills Calving System
Biosecurity and diagnosis of Johne's disease and BVDV in cattle herds
Bioterrorism preparedness
Use of antibiotics in animal agriculture
Nebraska 4H Veterinary Science School Standards curriculum
Nebraska State Fair birthing pavilion
Nebraska State Fair livestock drug testing
Co-advisor to the NU Pre-veterinary Club
Field investigations: beef calf scours, Salmonellosis in a dairy, cow-calf respiratory disease, feeder cattle receiving vaccination programs, beef abortion cluster, hydrocele in bulls
D. Dee Griffin, DVM, MS, Feedlot Veterinarian

Beef Safety from “Mad Cow” Disease

What is “Mad Cow” Disease?
Bovine Spongiform Encephalopathy (BSE), or commonly called “mad cow” disease, is a degenerative neurological disease in cattle that is caused by misfolded proteins (called prions) that build up in the central nervous system (CNS) and eventually kill nerve cells. BSE is spread through certain cattle feed ingredients, which have been banned since 1997.

Beef Safety from BSE
The world’s leading scientists, medical professionals and government officials agree that BSE is not a public or animal health risk in the United States.

Interlocking Safeguards
For nearly 20 years, the US Department of Agriculture (USDA) has been developing and implementing a series of interlocking safeguards to ensure a safe, BSE-free food supply. Tissues that could potentially carry BSE in an animal – including the brain and spinal cord – must be removed from cattle prior to processing, and therefore, are not allowed into the food supply. This step along with other safeguards ensures BSE has no affect on public health.

Enhanced BSE Surveillance
In June 2004, USDA instituted a one-time expanded testing program to determine the incidence of BSE in the United States. From June 1, 2004 through August 20, 2006, USDA tested 787,711 cattle and found just two BSE positives. A scientific analysis of seven years of surveillance data found the estimated prevalence of BSE in the United States to be less than one infected animal per one million adult cattle.

Variant Creutzfeldt-Jakob Disease
BSE is in a class of rare neurological diseases called Transmissible Spongiform Encephalopathy (TSE), some of which affect animals while others affect humans. All TSE are associated with accumulation of prions in CNS tissues. Human TSEs include sporadic Creutzfeldt-Jakob disease (sCJD or CJD), which accounts for about 85% of CJD cases and has an annual incidence of about one case per one million population worldwide.

Another human TSE is the very rare variant Creutzfeldt-Jakob disease (vCJD), which research from the United Kingdom has associated with consumption of products contaminated with CNS tissue from BSE-infected cattle. There have been about 200 cases
of vCJD in the world (most of these in the UK) and zero cases associated with beef consumption in the United States.

Washington, July 12, 2006, The Food Safety and Inspection Service (FSIS) announced a scheduled technical meeting to present and receive comments on the updated risk assessment for Bovine Spongiform Encephalopathy (BSE) in the United States. The technical meeting will be to discuss the updated Harvard Risk Assessment Model. In April 1998, USDA entered into a cooperative agreement with the Harvard Center for Risk Analysis (HCRA) of the Harvard School of Public Health and the Center for Computational Epidemiology at Tuskegee University to conduct a comprehensive investigation of the BSE risk in the United States. Because of updated scientific data about infectious tissues, new information about compliance with the FDA feed controls, new assumptions regarding beef consumption, and structural changes in the model related to the disposition of non-ambulatory cattle, the base case projections differ slightly from those reported in October 2003. The report, referred to as the Harvard Risk Assessment, was completed in 2001, and was revised in 2003 after being peer reviewed. Both USDA and the Department of Health and Human Services’ Food and Drug Administration (FDA) implemented measures to strengthen protections against BSE in the United States immediately following the discovery of BSE in a cow in Washington State on December 23, 2003. USDA then contracted with the HCRA in May 2004, to revised the Harvard Risk Assessment model to reflect new information available through December 2003. The updated risk assessment analyzes the effects of various BSE risk mitigation scenarios. HCRA analyzed the effects of the measures implemented by USDA and HHS-FDA and analyzed recommendations made by an international expert BSE panel that was convened to review the actions taken by the United States in response to the BSE case in Washington State.

In 2006, the first focus of my program will be to improve Veterinary Recruitment to Rural Communities - Work with the Academy of Rural Veterinarians to develop mentor ship opportunities for veterinary students with rural veterinary practitioners. Objectives to reach this goal is 1) Aid the organization and funding efforts to strengthen veterinary service in rural communities. My accomplishment was to acquire from the Academy of Rural Veterinarians, with funding from a USDA CSREES grant obtained and it has mentored over 120 veterinary students. The impact from this has provided 20 students with work in the rural communities. Each new veterinarian will infuse over $100,000 into that community yearly.

My second focus in my program is the support of the NC and NCBA quality assurance and cattle efforts - Aid the NC and NCBA with their efforts to educate producers and their employees in proper quality assurance and cattle care. Objectives to reach this goal is 1) Participate in NCBA’s quality assurance and animal care efforts and 2) Help develop training for auction market workers that includes livestock care and handling and personal worker safety. My accomplishments was an active participation in both the NCBA’s Animal Health Network and the NCBA’s Beef Quality Assurance Advisory Board. I also served on the Nebraska Cattlemen’s Technical Advisory Board. The impact that this serves is the educational effort that plays a key part of the success we have had in the beef industry in virtually illuminating chemical residues in beef.

My third focus in my program is the Biosecurity training for cattle producers and their employees. Objectives to reach this goal is 1) Develop and deliver educational programs and presentation on biosecurity. My accomplishments was to serve on the Nebraska LEDRS (Livestock
Emergency Disease Response System). Delivered numerous biosecurity presentations in Nebraska, regionally in other states and at a national meeting of the American Association of Bovine Practitioners. The impact was an involvement in livestock biosecurity education and training which helped protect one of Nebraska’s most important economic resources.

My fourth focus in my program is to develop and revise my educational materials to fit the needs of the new relationship UNL has with ISU. Objectives to reach my goal is to revise the 260 educational pieces that were developed for KSU to adapt them to address curriculum differences at ISU. The impact will be well-served to those students who will attend Iowa State University.

David R. Smith, DVM, PhD, Dairy and Beef Cattle Veterinarian

Johnie’s Disease

What is Johnie’s Disease?
Johnie’s (pronounced “Yo-nees”) Disease is a contagious bacterial disease of the intestinal tract. A German veterinarian first described the disease in a dairy cow in 1895; his name is used as the common name for the disease. The disease is also called paratuberculosis.

What kind of animals get Johnie’s Disease?
Johnie’s disease occurs in a wide variety of animals, but most often in ruminants. Ruminants are hoofed mammal that chew their cud and have a 3-4 chambered stomach. Some of the more common ruminants are: cattle, sheep, goats, deer, antelope and bison. Johnie’s disease has been reported in all of these animals, but is most commonly seen in dairy cattle.

What causes Johnie’s Disease?
The bacterium that causes Johnie’s disease is named Mycobacterium paratuberculosis often the name is abbreviated M. paratuberculosis. M. paratuberculosis is a relative of the bacterium that causes tuberculosis in humans (Mycobacterium tuberculosis), cattle (Mycobacterium bovis) and birds (Mycobacterium avium) - Some taxonomists favor the name Mycobacterium avium subspecies paratuberculosis for the organism that causes Johnie’s disease, since genetically it is closely related to M. avium. M. paratuberculosis can replicate only when it is in animals: it cannot multiply in nature, outside the animal. However, if soil or water is contaminated with this bacterium, it can survive there for over a year, because of its resistance to heat, cold and drying.

What are the signs of Johnie’s Disease?
Primarily, there are only two signs of M. paratuberculosis infection: diarrhea and rapid weight loss. In some animals, like sheep and goats, diarrhea is less common. In general, animals with Johnie’s disease “waste away” despite their continuing to eat well. Infected animals maintain a normal temperature, but may appear unthrifty and can become weak in later stages of the infection. Because of the slowly progressive nature of the infection, signs of Johnie’s disease are usually not seen until animals are adults. Since the signs of Johnie’s disease can be confused with the signs of several diseases, a diagnosis can be confirmed only
by use of laboratory tests.

How common is Johne’s Disease?
Johne’s disease occurs worldwide. In the US, it is estimated that 7.8% of the beef herds and 22% of the dairy herds are infected with \textit{M. paratuberculosis}. Infection rates in cattle in other countries are generally similar. The disease has been reported in sheep, goats, elk, deer, bison, llamas and wild ruminants in zoos, but accurate estimates of the number of infected animals are not available.

How do animals get Johne’s disease?
Johne’s disease typically enters a herd or flock of animals when an infected, but healthy-looking, animal is purchased. The infection then spreads to other animals, often without the owner’s being aware of it. Eventually, perhaps after several years, the owner recognizes signs of the disease in a number of animals. Individual animals get infected by close contact with other infected animals, that shed the bacterium in their manure. Most often, the infection is acquired by eating materials contaminated with \textit{M. paratuberculosis} when animals are very young. Young animals are far more susceptible to infection than are adults. Ingestion of the bacterium occurs when the newborn’s environment is contaminated with manure from an infected adult animal, or by drinking milk from an infected animal. The milk may become contaminated from the environment (manure-stained teats) or, in the advanced stages of the infection, the bacterium is shed directly into the milk. This has been shown to occur in dairy cattle and is presumed to occur in other species as well. After infection, many months or years go by until the infected animals show signs of Johne’s disease.

How can you prevent your animals from getting Johne’s Disease?
The best way to avoid this chronic infectious disease is to be as certain as possible that animals brought into the herd are not infected with \textit{M. paratuberculosis}. This is not always easy. Laboratory tests for cattle are more widely available than for sheep, goats or zoo animals. Still, some type of test is available for every animal. When using laboratory tests for pre-purchase screening of animals, it is important to understand that tests done on individual animals are not 100% sensitive, meaning they cannot detect 100% of the infected animals. A way to get around this problem is to rely on tests done on the source herd of animals from which you want to purchase. If a whole herd test is 100% negative, then the probability the herd is free of \textit{M. paratuberculosis} infection is very high. Johne’s disease test-negative herds are the best sources of animals for purchase.

How do you control Johne’s Disease?
Methods for Johne’s disease control depend on the type of animal and the patterns of husbandry. In principle, two strategies must be employed at the same time:
a) Newborn animals must be protected from infection by being born and raised in a clean environment and fed milk-free of \textit{M. paratuberculosis}.
b) Adult animals carrying the \textit{M. paratuberculosis} infection must be identified by laboratory tests and removed from the herd, flock or enclosure.
Can humans get Johne’s Disease?
This is a very controversial subject. There is a human disease called Crohn’s Disease that resembles Johne’s Disease. Crohn’s Disease most commonly affects people 15-35 years old. It is a chronic diarrheal disease that has no known cause and no known cure. Recent reports in the medical literature indicate that 30-75% of patients with Crohn’s Disease test positive for *M. paratuberculosis*. A few laboratories have grown *M. paratuberculosis* from a few Crohn’s patients specimens. However, no connection has been shown between contact with animals with Johne’s disease or milk consumption and Crohn’s disease.

In 2006, the first focus of my program will involve in applying existing knowledge related to veterinary population medicine in educational programs and problem-solving efforts directed toward the dairy and beef industries, veterinarians, and public health issues associated with those areas. The objectives to reach these goals are 1) Plan, develop and conduct educational programs for veterinarians and producers relating to the development of the dairy and beef cattle industries in Nebraska and the United States, on topics such as animal health, herd health management, animal well-being and pre-harvest food safety; 2) Maintain a close relationship with regulatory officials of the state and federal governments on animal health and public health programs especially as the latter relate to zoonotic and food-borne diseases; 3) Provide public service information for Nebraska citizens, including urbanites and suburbanites on zoonotic and food-borne disease topics related to the dairy and beef cattle industries; 4) Cooperate with the department and Nebraska Veterinary Medical Association in planning continuing education programs for Nebraska veterinarians.

My second focus in my program will be to contribute new knowledge in the field of population medicine (epidemiology) as they relate to the dairy and beef industries, veterinary medicine, and associated public health issues. Objectives to accomplish this will be to participate in on-farm cattle production research related to pathogen transmission; 2) Author or co-author scholarly publications on topics related to dairy or beef cattle population medicine and/or pre-harvest food safety.

My third focus in my program will be to contribute other scholarly efforts to my department and the university as the need arises. Objectives will be to mentor students in graduate studies and/or professional growth; 2) Provide lectures or laboratories for undergraduate, or graduates as needed and 3) contribute to committees, professional organization and/or other services.
Department Of Veterinary and Biomedical Sciences
Nebraska Veterinary Diagnostic Center

David J. Steffen, Professor and Director
BS, DVM, PhD, ABVP

OVERVIEW
The NVDC consists of the diagnostic laboratory in Lincoln. The VDC is an AAVID provisionally accredited full service diagnostic laboratory, whose emphasis is on food animal diagnostic services and disease surveillance with as a second area of emphasis in surgical pathology. The lab maintains basic services to the poultry industry, wildlife, zoo, pet and public health interests. The laboratory also strives to meet research needs of campus and private concerns in the state with laboratory support primarily in pathology, histology and microbiology research services. The Nebraska Veterinary Diagnostic Laboratory provides a full complement of necropsy, bacteriologic, histologic, immunohistochemical, molecular diagnostic, serologic, toxicologic, electronmicroscopic and traditional virologic services.

VISION
The vision of the Nebraska Veterinary Diagnostic Center is to enhance the economic vitality and life quality for all Nebraskans by promoting healthy livestock and companion animals, enhancing the safety of animal-derived consumer products and protecting wildlife resources through disease control and enhancing and understanding of diseases.

MISSION
The Diagnostic Laboratory’s mission is to assist veterinarians, their clients, and others responsible for animal and public health in the detection, prevention and understanding of animal diseases. Faculty and staff approach these tasks by providing accessible, accountable, timely and accurate diagnostic services and by sharing information generated through scholarly publications, meeting presentations, including direct communications.

OBJECTIVES
Provide accessible, accountable, timely and accurate diagnostic, research and information services to veterinarians, animal owners, food producers and animal health industries.

Provide proactive investigational support to enhance population approaches to, and efficiency of diagnostic testing.

Implement modern current and updated biotechnology methods, where appropriate, into diagnostic services.

Monitor and report the incidence and threat of animal diseases, as well as diseases that are transmissible from animals to humans.
Share new information with colleagues through publication in a manner that respects the confidentiality of all clientele.

Prioritize research activities, in applied areas, (epidemiology, diagnostic techniques and emerging diseases) and areas of current concern to Nebraska citizens.

Improve communications and cooperation with extension, teaching and research programs throughout IANR.

Maintain an affordable diagnostic testing program to assure sufficient case numbers in the support of disease surveillance functions with the support of international trade and have full access (tissues, field isolates, etc.) to current research information and materials for accurate diagnostic testing and disease prevalence and trends.

Improve communications with target clientele toward fulfilling their needs and providing services based on those needs.

Communicate with clientele toward educating them on population approaches to diagnostics and current updated testing technologies.

Assist in anyway with the National Surveillance Programs.

Support advances in current and updated biomedical research through diagnostic services to reach a wider range of clientele in the community.
Director's Message --

In 2006, we have had to adapted to the loss of faculty positions, although the cuts leave us lacking in some areas. We were fortunate that fee revenues have allowed us to address the faculty shortage by hiring, a six-month appointment, an experienced pathologist the last three springs. Dr. John Schmitz also assisted with pathology cases prior to his departure in August. The new Cooperative Veterinary Education Program created opportunities to increase pathology faculty. The teaching position currently advertised carries a 0.25 FTE diagnostic pathology appointment. Current diagnostic faculty will contribute to teaching in the program so the net effect on available time for service and scholarship will need to be evaluated during implementation of the additional teaching loads.

We no longer have expertise in clinical toxicology, poultry medicine or a swine specialist. The new teaching program includes a parasitology position to be hired into the Entomology Department, which may restore access to parasitology expertise locally. Dr. Brodersen has assumed leadership of swine extension programming for our department. The toxicology program is being led by Dr. Michael Carlson, an Analytical Chemist. Dr. Carlson is heavily involved in undergraduate recruiting and teaching activities and he will be teaching pharmacology to veterinary students, which diminishes his time commitment he has invested in diagnostics. It is felt that for the toxicology unit to be viable, we must have a research component to justify the infrastructure investment. Program of excellence funds have been requested to hire a Veterinary Toxicologist to restore that area of expertise and a research role into the laboratory and to enhance the professional school teaching programs. In the interim, the diagnostic laboratory has developed collaborations with the Water Center for access to better analytical chemistry equipment (newer ICP and GC/MASS Spectroscopy capability) and to access additional analytical expertise. We currently support 0.5 staff FTE in that unit to facilitate the cooperative analytical chemistry efforts. We are exploring jointly addressing clinical and referral toxicology needs with ISU as an alternative, if the program of excellence funding is not received. The loss of avian expertise has not effectively been addressed. The possibility exists that the pathology hire could be an individual with some interest or expertise in that area. The lab is also heavily dependent on fee revenues to support faculty and staffing needs and fees are heavily dependent on BVDV testing and State and Federal contract testing programs. The narrow funding base carries some risk, but has been a tradition for the laboratory (former base PRV testing); we are constantly aware of the risk and always seek new opportunities. At this time, it appears that we have adequate staffing levels as revenues remains stable.

In June 2004, a pathology resident position was implemented and this position now provides significant assistance with diagnostic cases. Expansion of the program to add additional residents in pathology or in clinical microbiology is in the stages of final development. This will complement our multifaceted mission in service and education and help address the national shortages of trained clinical diagnostic specialists, and hopefully, enhance scholarly opportunities for faculty. The program is again dependent on lab fee revenues. Opportunities to offset this may exist with teaching assistantships in the new educational program.

Biosafety approval for diagnostic operations has been requested from the campus Environmental Health and Safety Office and is in review. Increased signage is present in the
laboratory to distinguish the clean (mail, break and reception areas) from lab areas and from the hallway “transition” areas. Coat hooks have been installed for hanging lab coats at the transition area and lockers have been added to keep personal items for staff out of lab work areas. The use of consultation coats in offices has been discontinued as the clean white coats could not be distinguished from lab coats. Safe operating policies have been approved in several areas and specific safety precautions are part of each Safety Operating Procedure (SOP). Training of staff on safety has been standardized and prioritized to complement the facilities enhancements. General safety training and biosafety training occur in the first two days of employment and are coordinated locally using web courses available through Environmental Health and Safety (EHS). Employees at risk of rabies (those in necropsy and those handling fresh tissues) are apprised of the risks and offered vaccination. Vaccination is required of necropsy workers. A necropsy work area operating SOP was developed to address the concerns created as the necropsy suite must also serve as the mail room for opening diagnostic packages. While we agree it is desirable to have separate mail and necropsy facilities, the lab space is inadequate to allow for that. While not ideal, we feel that strict adherence to the SOP does effectively minimize risk and addressed immediate biocontainment and safety concerns.

Our quality manual has undergone a complete revision and is in an active voice with specificity in areas where specificity was lacking. SOPs are in place and approved for all priority assays and in functional draft form for the remaining assays. A few will require moderate reformatting before final approval. A few policy guidelines and systemwide procedures that do not affect test results remain in the developmental stages.

A second server was added to increase security of the LIMS system from outside attack and installation of a new LIMS system (VADDS) is in progress. Additional information on the LIMS system and what we hope to achieve is listed below.

Conversion to a new LIMS system is in BETA testing and will impact the way in which we communicate with clients. Much will stay the same, but individual test results once verified by the case coordinator will become immediately available over the web rather than waiting until the final report is approved by the coordinator. Once cases are accessioned, submitters will be able to view test requests. Due to limited internet use in some rural areas, written or faxed reports will still be a primary mechanism for issuing final reports for the immediate future. It is anticipated that the internal paper reports to flag results as available will be eliminated as the new IT system should handle that, and all archiving will then become digital with the exception of lab worksheets and pathologist notes that will remain archived for a minimum of five years.

To increase communications, the laboratory has published several issues of a newsletter. Specific mailings are used for new assays and programs and some changes needing urgent communication are amended to or sent with reports. The website still exists, but is in need of attention. A University-wide template has been created and the webs sorely needs to be reformatted to the standard. Staffing limitations delay addressing the website upgrades and proactive community outreach as a priority. This is unfortunate as marketing is mission critical. Faculty and lab managers regularly attend state NVMA Conventions and there is a University Liaison Committee that provides for feedback on the laboratory and other university issues to the director and department head. A few faculty serve on the NVMA Committees and faculty provide scientific presentations.
when invited. We always have a recognizable presence at the state meetings. Getting representation to regional meetings has not been possible.

With the opportunities created by the Cooperative Veterinary Education Program, and the appointment of the new department head, the laboratory recently initiated revision of the strategic plan to address the universities changing needs and opportunities.

In 2006, the purchase of capital equipment for the diagnostic laboratories includes two major Microscopes with accessories from North Central Instruments; for the Virology laboratory, a Smartcycler II with add-on block from Fisher Scientific Co., LLC; Kingfisher 96 and Kingfisher Mag Processor, both with various accessories from VWR International and a 7500 PCR Computer System with various accessories for the Histology laboratory a Shandon Finess Microtome with accessories from Histotronix, Inc. and a Biomic V3 Microbiology System from Giles Scientific, Inc. for the Microbiology laboratory. The purchase of this critical equipment for the Veterinary Diagnostic Center is considered an asset for faculty, staff and technicians to conduct diagnostic services more efficiently.

Areas of Weakness: We have inadequate state funding for staff and faculty to allow coverage of the broad range of demands. The heavy reliance on revolving funds for 1.5 FTE of essential faculty raises concerns regarding sustainability, and it must be reconciled with diversion of faculty FTE into undergraduate advising and professional school teaching contributions due to past cuts and where inadequate teaching budgets do not support these positions. The labs remain weak in poultry pathology, where absence of clinical veterinary expertise in the state leaves the industry unsupported. The facilities limitations affect the ability to capitalize on new opportunities and address fully safety concerns that often raises.

Areas of Strength: The Diagnostic Center is extremely greatful and thankful to have the committed faculty and staff that accepts challenges and cares about customer service is considered our biggest strength. The staff seeks to contribute to the multiple goals our mission embraces as an academic service laboratory. We have staff members that are interested and willing to implement new testing protocols. We have many staff personnel that steps up with extra efforts to fulfill contracts and effectively complete case load surges. This dedication is essential in guaranteed continued soft-money resources. We have excellent modern equipment in most laboratory sections, excepting toxicology, which allows us to capitalize on many opportunities and remain at the forefront of implementing technology. The lab is particularly well-equipped in immunohistochemistry and molecular diagnostics. The pathology section is also strongly supported for digital imaging to allow the capture of data for publications, teaching and outreach education in a most efficient manner. We have good slide archives for training residents and excellent on-campus library holdings.

The Diagnostic Center would like to recognize Judi Galeota who received the Outstanding Employee Award for Managerial/Professional Staff in the Institute of Agriculture and Natural Resources for the period of May/June 2006. Congratulations Judi! I also want to thank all the diagnostic personnel for their dedication and support for a job well done.

Specific activities of the NVDLS are summarized in the following tables.
Table 5. Accessions by Species by Month (January 2006- December 2006)

Nebraska Veterinary Diagnostic Laboratory - Lincoln, Nebraska

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Avian - Chicken</td>
<td>6</td>
<td>18</td>
<td>21</td>
<td>16</td>
<td>17</td>
<td>16</td>
<td>23</td>
<td>25</td>
<td>19</td>
<td>31</td>
<td>22</td>
<td>42</td>
<td>256</td>
<td>1.63</td>
</tr>
<tr>
<td>Avian - Misc.</td>
<td>6</td>
<td>12</td>
<td>24</td>
<td>19</td>
<td>20</td>
<td>71</td>
<td>109</td>
<td>176</td>
<td>95</td>
<td>57</td>
<td>72</td>
<td>52</td>
<td>713</td>
<td>4.54</td>
</tr>
<tr>
<td>Avian - Turkey</td>
<td>1</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>11</td>
<td>2</td>
<td>12</td>
<td>3</td>
<td>6</td>
<td>38</td>
<td>0.24</td>
</tr>
<tr>
<td>Bovine</td>
<td>706</td>
<td>767</td>
<td>984</td>
<td>864</td>
<td>809</td>
<td>575</td>
<td>438</td>
<td>524</td>
<td>656</td>
<td>758</td>
<td>683</td>
<td>578</td>
<td>8,342</td>
<td>53.16</td>
</tr>
<tr>
<td>Canine</td>
<td>225</td>
<td>219</td>
<td>236</td>
<td>199</td>
<td>225</td>
<td>264</td>
<td>211</td>
<td>258</td>
<td>234</td>
<td>239</td>
<td>222</td>
<td>241</td>
<td>2,773</td>
<td>17.67</td>
</tr>
<tr>
<td>Caprine</td>
<td>5</td>
<td>8</td>
<td>14</td>
<td>9</td>
<td>10</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>3</td>
<td>6</td>
<td>14</td>
<td>7</td>
<td>95</td>
<td>0.61</td>
</tr>
<tr>
<td>Equine</td>
<td>32</td>
<td>44</td>
<td>86</td>
<td>115</td>
<td>109</td>
<td>74</td>
<td>76</td>
<td>117</td>
<td>81</td>
<td>69</td>
<td>43</td>
<td>35</td>
<td>881</td>
<td>5.61</td>
</tr>
<tr>
<td>Feed & Water</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>5</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>24</td>
<td>0.15</td>
</tr>
<tr>
<td>Feline</td>
<td>58</td>
<td>32</td>
<td>64</td>
<td>56</td>
<td>58</td>
<td>63</td>
<td>57</td>
<td>61</td>
<td>53</td>
<td>55</td>
<td>51</td>
<td>50</td>
<td>658</td>
<td>4.20</td>
</tr>
<tr>
<td>Ovine</td>
<td>10</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>2</td>
<td>6</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td>45</td>
<td>0.29</td>
</tr>
<tr>
<td>Porcine</td>
<td>74</td>
<td>57</td>
<td>82</td>
<td>115</td>
<td>106</td>
<td>115</td>
<td>102</td>
<td>104</td>
<td>88</td>
<td>95</td>
<td>91</td>
<td>75</td>
<td>1,104</td>
<td>7.03</td>
</tr>
<tr>
<td>Porcine - PRV</td>
<td>20</td>
<td>15</td>
<td>19</td>
<td>15</td>
<td>19</td>
<td>18</td>
<td>12</td>
<td>15</td>
<td>10</td>
<td>10</td>
<td>17</td>
<td>7</td>
<td>187</td>
<td>1.19</td>
</tr>
<tr>
<td>Misc. Mammal</td>
<td>48</td>
<td>37</td>
<td>38</td>
<td>35</td>
<td>38</td>
<td>44</td>
<td>33</td>
<td>48</td>
<td>34</td>
<td>58</td>
<td>32</td>
<td>30</td>
<td>475</td>
<td>3.03</td>
</tr>
<tr>
<td>Misc.</td>
<td>7</td>
<td>13</td>
<td>13</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td>12</td>
<td>8</td>
<td>7</td>
<td>4</td>
<td>4</td>
<td>6</td>
<td>102</td>
<td>0.65</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1,199</td>
<td>1,230</td>
<td>1,589</td>
<td>1,459</td>
<td>1,429</td>
<td>1,259</td>
<td>1,086</td>
<td>1,359</td>
<td>1,289</td>
<td>1,407</td>
<td>1,259</td>
<td>1,131</td>
<td>15,693</td>
<td>100.00</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>------</td>
<td>-------</td>
<td>-------</td>
<td>-------</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td></td>
</tr>
<tr>
<td>Necropsies</td>
<td>28</td>
<td>53</td>
<td>29</td>
<td>54</td>
<td>48</td>
<td>27</td>
<td>25</td>
<td>34</td>
<td>31</td>
<td>54</td>
<td>51</td>
<td>60</td>
<td>494</td>
<td></td>
</tr>
<tr>
<td>Histology</td>
<td>3,313</td>
<td>3,702</td>
<td>4,499</td>
<td>3,352</td>
<td>3,805</td>
<td>3,300</td>
<td>2,990</td>
<td>3,037</td>
<td>3,083</td>
<td>4,434</td>
<td>3,095</td>
<td>3,490</td>
<td>42,100</td>
<td></td>
</tr>
<tr>
<td>Bacteriology</td>
<td>975</td>
<td>846</td>
<td>1,330</td>
<td>1,175</td>
<td>1,644</td>
<td>789</td>
<td>329</td>
<td>1,830</td>
<td>1,472</td>
<td>1,523</td>
<td>1,399</td>
<td>648</td>
<td>13,960</td>
<td></td>
</tr>
<tr>
<td>PCR/RFLP/Sequencing</td>
<td>264</td>
<td>246</td>
<td>274</td>
<td>214</td>
<td>174</td>
<td>243</td>
<td>836</td>
<td>2,299</td>
<td>649</td>
<td>734</td>
<td>611</td>
<td>685</td>
<td>7,302</td>
<td></td>
</tr>
<tr>
<td>Mycology</td>
<td>4</td>
<td>2</td>
<td>4</td>
<td>9</td>
<td>11</td>
<td>7</td>
<td>5</td>
<td>14</td>
<td>11</td>
<td>8</td>
<td>5</td>
<td>8</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td>Sensitivity Tests</td>
<td>153</td>
<td>163</td>
<td>256</td>
<td>243</td>
<td>187</td>
<td>138</td>
<td>120</td>
<td>122</td>
<td>146</td>
<td>155</td>
<td>145</td>
<td>148</td>
<td>1,976</td>
<td></td>
</tr>
<tr>
<td>FA Tests (Bact.)</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>2</td>
<td>7</td>
<td>2</td>
<td>4</td>
<td>0</td>
<td>2</td>
<td>3</td>
<td>5</td>
<td>1</td>
<td>29</td>
<td></td>
</tr>
<tr>
<td>FA Tests (Viral)</td>
<td>1</td>
<td>11</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>EM Exams</td>
<td>6</td>
<td>7</td>
<td>5</td>
<td>16</td>
<td>7</td>
<td>4</td>
<td>3</td>
<td>8</td>
<td>1</td>
<td>4</td>
<td>6</td>
<td>3</td>
<td>70</td>
<td></td>
</tr>
<tr>
<td>Toxicology</td>
<td>166</td>
<td>213</td>
<td>186</td>
<td>89</td>
<td>104</td>
<td>32</td>
<td>84</td>
<td>59</td>
<td>94</td>
<td>49</td>
<td>39</td>
<td>80</td>
<td>1,195</td>
<td></td>
</tr>
<tr>
<td>Parasitology</td>
<td>294</td>
<td>221</td>
<td>484</td>
<td>396</td>
<td>556</td>
<td>293</td>
<td>36</td>
<td>172</td>
<td>647</td>
<td>755</td>
<td>547</td>
<td>155</td>
<td>4,556</td>
<td></td>
</tr>
<tr>
<td>Clinical Pathology</td>
<td>14</td>
<td>10</td>
<td>11</td>
<td>10</td>
<td>14</td>
<td>20</td>
<td>18</td>
<td>25</td>
<td>27</td>
<td>19</td>
<td>15</td>
<td>9</td>
<td>192</td>
<td></td>
</tr>
<tr>
<td>Bacterial Serology</td>
<td>83</td>
<td>43</td>
<td>120</td>
<td>124</td>
<td>71</td>
<td>57</td>
<td>18</td>
<td>20</td>
<td>23</td>
<td>23</td>
<td>21</td>
<td>44</td>
<td>57</td>
<td></td>
</tr>
<tr>
<td>Viral Serology</td>
<td>6,105</td>
<td>3,106</td>
<td>2,269</td>
<td>3,324</td>
<td>2,950</td>
<td>1,476</td>
<td>6,373</td>
<td>1,953</td>
<td>2,619</td>
<td>3,371</td>
<td>2,849</td>
<td>1,001</td>
<td>42,556</td>
<td></td>
</tr>
<tr>
<td>Avian Serology</td>
<td>1,490</td>
<td>1,686</td>
<td>1,695</td>
<td>879</td>
<td>864</td>
<td>2,802</td>
<td>1,575</td>
<td>2,384</td>
<td>667</td>
<td>1,528</td>
<td>1,106</td>
<td>1,919</td>
<td>18,595</td>
<td></td>
</tr>
<tr>
<td>Immunohistochemistry</td>
<td>68</td>
<td>72</td>
<td>132</td>
<td>129</td>
<td>93</td>
<td>54</td>
<td>41</td>
<td>75</td>
<td>80</td>
<td>78</td>
<td>59</td>
<td>104</td>
<td>985</td>
<td></td>
</tr>
<tr>
<td>BVD Skin Biopsy</td>
<td>27,847</td>
<td>21,233</td>
<td>23,912</td>
<td>23,172</td>
<td>26,022</td>
<td>19,136</td>
<td>14,123</td>
<td>20,505</td>
<td>30,115</td>
<td>35,459</td>
<td>23,124</td>
<td>19,017</td>
<td>283,665</td>
<td></td>
</tr>
<tr>
<td>CWD</td>
<td>48</td>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>6</td>
<td>4</td>
<td>4</td>
<td>1</td>
<td>3</td>
<td>5,823</td>
<td>12</td>
<td>5,907</td>
<td></td>
</tr>
<tr>
<td>Scrapie</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Virus Isolation</td>
<td>34</td>
<td>29</td>
<td>36</td>
<td>20</td>
<td>13</td>
<td>7</td>
<td>16</td>
<td>10</td>
<td>21</td>
<td>28</td>
<td>38</td>
<td>38</td>
<td>290</td>
<td></td>
</tr>
<tr>
<td>Rabies</td>
<td>9</td>
<td>6</td>
<td>18</td>
<td>7</td>
<td>7</td>
<td>8</td>
<td>10</td>
<td>11</td>
<td>7</td>
<td>5</td>
<td>7</td>
<td>8</td>
<td>103</td>
<td></td>
</tr>
<tr>
<td>BCV, BVD & Rota Elisa</td>
<td>301</td>
<td>342</td>
<td>190</td>
<td>205</td>
<td>230</td>
<td>50</td>
<td>20</td>
<td>23</td>
<td>25</td>
<td>60</td>
<td>46</td>
<td>31</td>
<td>1,523</td>
<td></td>
</tr>
<tr>
<td>Pseudorabies</td>
<td>516</td>
<td>287</td>
<td>404</td>
<td>339</td>
<td>188</td>
<td>346</td>
<td>260</td>
<td>198</td>
<td>219</td>
<td>347</td>
<td>353</td>
<td>160</td>
<td>3,617</td>
<td></td>
</tr>
</tbody>
</table>

TOTAL for MONTH

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>41,719</td>
<td>37,442</td>
<td>35,858</td>
<td>33,759</td>
<td>36,999</td>
<td>28,798</td>
<td>26,890</td>
<td>32,784</td>
<td>39,942</td>
<td>48,638</td>
<td>39,367</td>
<td>27,634</td>
<td>429,003</td>
</tr>
</tbody>
</table>
Table 7. Number of Accessions, Previous Five Years**

<table>
<thead>
<tr>
<th></th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lincoln</td>
<td>16,298</td>
<td>15,330</td>
<td>14,485</td>
<td>14,904</td>
<td>15,693</td>
</tr>
<tr>
<td>North Platte</td>
<td>795</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scottsbluff</td>
<td>644</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>17,737</td>
<td>15,330</td>
<td>14,485</td>
<td>14,904</td>
<td>15,693</td>
</tr>
</tbody>
</table>

Totals from 2000 through 2002 included totals from the North Platte and Scottsbluff Labs. (The Scottsbluff lab was closed as of June 30, 2002 and the North Platte lab was closed as of December 30, 2002, due to budget reductions)

Table 8. Number of Laboratory Procedures Conducted Previous Five Years

<table>
<thead>
<tr>
<th></th>
<th>2002</th>
<th>2003</th>
<th>2004</th>
<th>2005</th>
<th>2006</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lincoln</td>
<td>342,634</td>
<td>356,129</td>
<td>359,907</td>
<td>368,398</td>
<td>429,903</td>
</tr>
<tr>
<td>North Platte*</td>
<td>8,477</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scottsbluff*</td>
<td>6,276</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>357,387</td>
<td>356,129</td>
<td>359,907</td>
<td>368,398</td>
<td>429,903</td>
</tr>
</tbody>
</table>

*North Platte and Scottsbluff totals include referral testing that was sent to the Lincoln laboratory. (Also see note above in regard to closing of Scottsbluff and North Platte labs)
Table 9. ANNUAL REPORT - LAG TIME REPORT
Veterinary Diagnostic Center (January 1, 2006 - December 31, 2006)

<table>
<thead>
<tr>
<th>Number of Days to Report</th>
<th>All Accessions</th>
<th>Normal Accessions</th>
<th>Pseudorabies Accessions</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>% Reported</td>
<td>% Reported</td>
<td>% Reported</td>
</tr>
<tr>
<td></td>
<td>(Cumulative %)</td>
<td>(Cumulative %)</td>
<td>(Cumulative %)</td>
</tr>
<tr>
<td></td>
<td>Given</td>
<td>%</td>
<td>Sent</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0</td>
<td>2.3</td>
<td>2.3</td>
<td>2.3</td>
</tr>
<tr>
<td>1</td>
<td>13.7</td>
<td>16.0</td>
<td>13.7</td>
</tr>
<tr>
<td>2</td>
<td>13.0</td>
<td>29.0</td>
<td>13.0</td>
</tr>
<tr>
<td>3</td>
<td>15.0</td>
<td>44.0</td>
<td>15.0</td>
</tr>
<tr>
<td>4</td>
<td>10.5</td>
<td>54.5</td>
<td>10.5</td>
</tr>
<tr>
<td>5</td>
<td>15.5</td>
<td>70.0</td>
<td>15.5</td>
</tr>
<tr>
<td>6</td>
<td>9.4</td>
<td>79.4</td>
<td>9.4</td>
</tr>
<tr>
<td>7</td>
<td>8.4</td>
<td>87.8</td>
<td>8.4</td>
</tr>
<tr>
<td>8</td>
<td>3.6</td>
<td>91.4</td>
<td>3.6</td>
</tr>
<tr>
<td>9</td>
<td>1.2</td>
<td>92.6</td>
<td>1.2</td>
</tr>
<tr>
<td>10</td>
<td>1.1</td>
<td>93.7</td>
<td>1.1</td>
</tr>
<tr>
<td>11-15</td>
<td>3.4</td>
<td>97.1</td>
<td>3.4</td>
</tr>
<tr>
<td>16-20</td>
<td>0.6</td>
<td>97.7</td>
<td>0.6</td>
</tr>
<tr>
<td>21-30</td>
<td>0.7</td>
<td>98.4</td>
<td>0.7</td>
</tr>
<tr>
<td>31-50</td>
<td>0.6</td>
<td>99.0</td>
<td>0.6</td>
</tr>
<tr>
<td>Over 50</td>
<td>1.0</td>
<td>100.0</td>
<td>1.0</td>
</tr>
</tbody>
</table>

NOTE: Weekends and holidays are included in this report. If a case is not called or faxed out, it will have no record of a first report date. Research cases may or may not have a first and final report date.
Distribution of Accessions by County

January 2006 - December 2006
GRANTS AND CONTRACTS FUNDED IN 2006

Agrisecurity: A Master's Degree Program

AI Lab Testing State of Kansas
DJ Steffen and CL Kelling. 2006. United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), $21,700

AI Lab Testing for the State of Nebraska
DJ Steffen and CL Kelling. 2006. United States Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), $25,200

Avian Influenza Surveillance
DJ Steffen and CL Kelling. 2006. Nebraska Department of Agriculture, $171,485

Beef Feedlot Cowboy Training Modules
DG Levis, KP Anderson, M Stauffer, AR Wohlers, DD Griffin, DA Lienemann, GE Erickson, TL Mader, IG Rush and DR Smith. 2006. University of Nebraska-Extension, 11-01-05/06-30-06, $6,000

Bovine Viral Diarrhea Virus in North American Alpaca Herds; Prevalence and Implementation of Control Strategies
CL Kelling, DR Smith, DJ Steffen and BW Brodersen. 2006. Alpaca Research Foundation, $23,400

Development of Broad-Spectrum Antibiotics Against Bacterial Pathogens
RG Barletta, R Powers and J Takacs. 2006. ARD Interdisciplinary Research Grant, University of Nebraska-Lincoln, 07-01-06/06-30-07, $20,000

Efficacy of Two and Three Doses of an Experimental Escherichia coli Bacterial Extract Serotype O157:H7 Vaccine in Feedlot Cattle Against a Natural-Exposure Challenge with E. coli O157
DR Smith, RA Moxley, TJ Klopfenstein and GE Erickson. 2006. Bioniche Animal Health USA, Inc., 06-12-06/06-07, $345,714

Enhancement of Efficacy of PRRSV Vaccines by Altering the Glycosylation Pattern of Viral Glycoproteins

Identification of a Putative Viral Co-Factor Different from PCV2, in Animals with PMWS
IH Ansari, AK Pattnaik, FA Osorio and BW Broderson. 2006. University of Nebraska-
Lincoln, National Pork Board, $57,600

Entry Mechanisms of *Mycobacterium marinum* and in Search of Environmental Reservoirs for *Mycobacterium paratuberculosis*
RG Barletta and J Cirillo. 2006. National Institute of Health (NIH), University of Nebraska-Lincoln, Subcontract to Texas A&M University, 06-01-06/09-30-06, $16,549

Environmental Regulation of *Staphylococcus epidermidis* PIA Synthesis
GA Somerville. 2006. National Institutes of Health, $274,000

Functional Analysis of Proteins Encoded by the BHV-1 Latency Related Gene
CJ Jones. 2006. United States Department of Agriculture (USDA), National Research Initiative Competitive Grants Program, 09-15-06/09-14-09, $374,585

Genetic Basis of Resistance to Food-Borne Bacterial Pathogens
GE Duhamel and JS Weber. 2006. NEB 14-137; IANR Interdisciplinary Research Program, United States Department of Agriculture (USDA), Cooperative State Research, Education, and Extension Service (CSREES), $40,000

Genome-Wide Screening of Host Genes Involved in Virus-Induced Neurotoxic Signaling Using Lentiviral siRNA Library
CJ Jones and Tsuneya Ikezu. 2006. Nebraska Center for Virology Seed Grant; 04-01-06/03-31-07, $40,000

Helicobacter-Associated Colitis of *Callitrichidae* Kept in Zoo Exhibits
GE Duhamel. 2006. Morris Animal Foundation, $30,212

Japanese Agricultural Training Program, Phase III, Institutional Training

JDIP: Johne's Integrated Program in Research, Education and Extension
V Kapur and RG Barletta. 2006. United States Department of Agriculture (USDA), National Research Initiative Integrated Program (NRIIP), University of Nebraska-Lincoln Subcontract, 04-15-2006/04-14-2007, $57,363

NDA Johne's Diagnostics
Smith DR. 2006. Nebraska Department of Agriculture, 06-04-05/06-03-06, $25,000

NDA Bovine Spongiform Encephalopathy Education
Smith DR. 2006. Nebraska Department of Agriculture, 09-25-06/05-01-07, $11,000

Polymicrobial Associations in Inflammatory Bowel Disease
GE Duhamel. 2006. National Institute of Health (NIH), National Institute of Allergy and Infectious Diseases (NIAID), $141,768
Proline Metabolism and Redox Homeostasis in Gastrointestinal Bacterial Diseases
GE Duhamel and DF Becker. 2006. University of Nebraska-Lincoln, Layman Award, International Reference Laboratory for Spirochetal Colitis Research, $10,000

Rational Design of a New Generation of PRRSV Differential (Marker) Vaccines
FA Osorio and AK Pattnaik. 2006. National Pork Board, 10-01-05/09-30-06, $150,000

Replication and Assembly of Vesicular Stomatitis Virus
AK Pattnaik. 2006. National Institute of Health (NIH), National Institute of Allergy and Infectious Diseases (NIAID), 04-01-07/03-31-12, $1,945,346

REU Site: Training in Redox Biology
GA Somerville, Don Becker and Steve Ragsdale. 2006. National Science Foundation, $180,000

Undergraduate Project Program - Graduate Recruitment Fellowship Grant
GE Duhamel. 2006. $2,500

Undergraduate Honors Program
GE Duhamel. 2006. University, Industry and Practitioners, $12,165

University of Nebraska-Lincoln, Office of Graduate Studies Fellowship
GE Duhamel. 2006. $1,000

West Nile Surveillance
DJ Steffen and CL Kelling. 2006. Nebraska Department of Health, $28,000
ACTIVE GRANTS AND CONTRACTS CONTINUED FROM PREVIOUS YEARS

Analyses of Virulence and Attenuation Determinants of Porcine Reproductive and Respiratory Syndrome Virus Using Reverse Genetics Approach
AK Pattnaik. United States Department of Agriculture (USDA), National Research Initiative Competitive Grants Program (NRICGP), 09-01-04/08-31-07, $320,000

Analyses of Virulence and Attenuation Determinants of PRRSV Using Reverse Genetic Approach
AK Pattnaik and FA Osorio. United States Department of Agriculture (USDA), National Research Initiative Competitive Grants Program (NRICGP), 09-01-2004/08-31-2007, $320,000

Analysis of BHV-1 Present in Aborted Fetuses
CJ Jones. Pfizer, Inc. Recent outbreaks of BHV-1 have occurred in certain breeding stock following vaccination. We will compare the clinical isolates to the input vaccine strains, 09-01-04/08-31-06, $60,000

Assessment of Health and Reproductive Status of River Otter in Nebraska
Steffen DJ, MP Carlson and DG Rogers. Nebraska Game and Park’s Commission, 2003-2005, $12,400

Beef Feedlot Cowboy Training Modules
Levis DG, KP Anderson, M Stauffer, AR Wohlers, DD Griffin, DA Lienemann, GE Erickson, TL Mader, IG Rush and DR Smith. University of Nebraska-Lincoln, Extension Division, 11-01-05/6-30-06, $6,000

Bovine Genetics Quality Assurance
DJ Steffen. 2004-2005. National Association of Animal Breeders, $12,000

Bovine Viral Diarrhea Virus in North American Alpaca Herds
CL Kellling, DR Smith and DJ Steffen. Alpaca Research Foundation, IANR/CEHS Associated Faculty, 01-01-2006/01-01-2007, $23,400

Develop Pre-Harvest Version of the USDA-FSIS Fast Antibiotic Screening Test (FAST) and Antibiotic Residue Avoidance Education
DD Griffin, S Hinkley and HE Cerny. 2002. United States Department of Agriculture (USDA), Cooperative State Research, Education and Extension Service (CSREES), Validate the USDA FAST screening procedure and develop a pre-harvest version, including residue avoidance educational materials, $185,746
Integrating Biosecurity Practices into Livestock Production Management
GP Rupp, DD Griffin, AM O’Connor and PJ Chenoweth. 2002. United States Department of Agriculture (USDA), Cooperative State Research, Education and Extension Service (CSREES), The development of a biosecurity education system for beef, dairy and sheep producers and their veterinarians in Nebraska, Iowa and Kansas, $249,792

Develop an Animated Product to Teach Neurohumoral Transmission Across Synapses in the Autonomic Nerve System
MP Carlson and L Larson. 2005. IANR Innovation Grant, IANR Communication and Information Technology (CIT), 05-01-06/04-30-07, $5,000

Effect of Vaccinating Against Type III Secretory Proteins of *Escherichia coli O157:H7* on the Occurrence of *E. coli O157:H7* on Hides Pre- and Post-Harvest
Klopfenstein TJ, RE Peterson, DR Smith, GE Erickson, RA Moxley and S Hinkley. National Cattlemens Beef Association, 11-04/11-05, $42,525

Enhancement of Efficacy of PRRSV Vaccines by Altering the Glycosylation Pattern of Viral Glycoproteins
AK Pattnaik and FA Osorio. National Pork Board, 12-15-05/12-14-06, $83,000

Functional Analysis of bICP0, a BHV-1 Gene that is a Promiscuous Trans-Activator
CJ Jones. United States Department of Agriculture (USDA), National Research Initiative Competitive Grants Program (NRICGP), 09-01-2005/08-30-2008, $350,000

Functional Genomic Analysis of Bovine Viral Diarrhea Virus
RO Donis and CL Kelling. 2004. United States Department of Agriculture (USDA), National Research Initiative Grant (NRIG), $275,000

Herd Immunity -Vaccination against *E. coli O157:H7*
TJ Klopfenstein, DR Smith, GE Erickson and RA Moxley. Nebraska Beef Council, 03-05/12-05, $50,000

Identification and Characterization of *Mycobacterium paratuberculosis* Virulence Genes Expressed *in vivo* by Negative Selection
NY Shpigel (Hebrew University), I Rosenshine (Hebrew University) and RG Barletta. United States Department of Agriculture (USDA), Binational Agricultural Research and Development Fund, 10-01-05/09-30-08, $143,000

Identification and Characterization of PRRSV Immunogenic Subunits Using Viral Vectors
AK Pattnaik. United States Department of Agriculture (USDA), National Research Initiative Competitive Grants Program (NRICGP), NC-229, subcontract: University of Minnesota, 10-01-05/01-14-07, $60,304
Implement a Program to Ensure the Future Supply of Well-Trained Rural Veterinarians to Provide Public Health, Homeland Security, Food Safety, and Veterinary Services to Rural America

Influence of Enterotoxins on Virulence and Colonization of the Porcine Intestine by *Escherichia coli*
RA Moxley and DH Francis. United States Department of Agriculture (USDA) Cooperative State Research, Education, and Extension Service (CSREES), National Research Initiative Competitive Grants Program (NRCGP), Area 44.0, Animal Protection, 09-01-04/08-31-07, $270,000

Integrating Biosecurity Practices into Livestock Production Management on Farms and Ranches to Insure a Sustainable and Wholesome Food Supply
GP Rupp, DD Griffin, AM O'Connor and PJ Chenoweth. 2002. United States Department of Agriculture (USDA), Cooperative State Research, Education, and Extension Service (CSREES), the development of a biosecurity education system for beef, dairy and sheep producers in concert with their veterinarians and extension specialists, $249,792

Intervention Strategies to Reduce *Escherichia coli* O157:H7 in Beef Feedyards
DR Smith, GE Erickson, RA Moxley, TJ Klopfenstein and S Hinkley. United States Department of Agriculture (USDA), National Research Initiative Integrated Program (NRIIP) Cooperative State Research, Education, and Extension Service (CSREES), Food Safety Initiative, 10-30-03/10-29-06, $500,000

JDIP: Johne's Disease Integrated Program in Research, Education and Extension
V Kapur (University of Minnesota) et al., RG Barletta. United States Department of Agriculture (USDA), National Research Initiative Integrated Program, (NRIIP), University of Nebraska-Lincoln, subcontract, 04-15-2004/04-14-2006, $51,122

Johne's Disease Herd Testing
DJ Steffen. 2004-2005. Nebraska Department of Agriculture, $60,000

Bovine Genetics Quality Assurance
DJ Steffen. National Association of Animal Breeders, 01-01-2005/06-30-2006, $12,000

Mentorship of Veterinary Student with Veterinarians Serving Rural Communities

Molecular Analysis of a *Mycobacterium paratuberculosis* Colony-Morphology Attenuated Mutant
RG Barletta and CJ Czuprynski (University of Wisconsin). United States Department of Agriculture (USDA), National Research Initiative Competitive Grant Program (NRCGP), Sustaining Animal Health and Well Being, 02-01-2004/01-31-2007, $270,000
Nebraska Center for Viral Pathogenesis
Y (Joe) Zhou. National Center for Research Resources (NCRR) National Institute of Health (NIH), Microscopy Core Facility Support subcontract, 09-01-05/08-30-10

Protein-thiol Mixed Disulfides in Cataractogenesis
MF Lou. National Institute of Health (NIH), the study of the biochemical mechanism of cataract formation, 07-01-03/06-30-07, $1,794,300

Rational Design of a New Generation of PRRSV Differential (Marker) Vaccines
FA Osorio and AK Pattnaik. Second Year Renewal, National Pork Board, 07-01-2005/06-30-2006, extended 06-01-2007, $150,000

Redox Biology Center
GA Somerville. 2004. Redox Biology Center start-up funds, $450,000

Regulation of the Latency-Reactivation Cycle by the Bovine Herpesvirus 1 (BHV-1) Latency Related Gene
CJ Jones. United States Department of Agriculture (USDA), National Research Initiative Competitive Grants Program (NRI CGP), 11-01-2003/10-30-2006, $320,000

Research Plan for Mycobacterium tuberculosis
RG Barletta. National Institutes of Health (NIH) and The Institute for Genomic Research (TIGR), Obtained DNA Microarrays, 05-11-2005/present, costs of microarrays, $15,000

Research Plan for Mycobacterium smegmatis
RG Barletta. National Institutes of Health (NIH) and The Institute for Genomic Research (TIGR), Obtained DNA Microarrays, 05-11-2005/present, costs of microarrays, $15,000

Role of A/E Proteins in E. coli O157:H7 Intestinal Colonization of Adult Cattle
RA Moxley. United States Department of Agriculture (USDA), Cooperative State Research, Education, and Extension Service (CSREES) National Research Initiative Competitive Grants Program (NRI CGP), Area 32.0, Food Safety, #01-02966, 12-01-01/12-31-06, $370,000

Role of Hyaluronan Matrix in Prostate Cancer Progression
MA Simpson and Y (Joe) Zhou. Consultant, National Institute of Health (NIH), National Cancer Institute, 07-01-05/06-30-10

Role of Non-Structural Proteins in Pestivirus Assembly
RO Donis and CL Kelling. National Institute of Health (NIH), $289,116

Stability of the LR Mutant Virus in Calves
CJ Jones. Fort Dodge Animal Health, 10-01-05/9-30-06, $60,000

Sub-typing of PRRSV Isolates by Means of Measurement of Cross-Neutralization Reactions

125
Surveillance for Chronic Wasting Disease in Nebraska Deer
DJ Steffen. Nebraska Game and Parks Commission, IANR/CEHS Associated Faculty 02-24-2006/08-31-2006, $170,000

Training Junior Faculty Members and Establish a Research Center for Redox Biology
R Banerjee and MF Lou. Redox Biology Center Cobra Grant, National Institute of Health (NIH) grant, 2002-2007, $8,269,843

Tricarboxylic Acid Cycle-Dependent Environmental Regulation of Staphylococcus epidermidis Polysaccharide Intercellular Adhesin Production
GA Somerville. 2006. University of Nebraska-Lincoln Foundation, Layman Award, $7,839

Use of a Green-Fluorescent Protein-Expressing Strain of Porcine Reproductive and Respiratory Syndrome Virus for the Study of PRRSV Pathogenesis and in vivo Tropism
FA Osorio and AK Pattnaik. United States Department of Agriculture (USDA), National Research Initiative Competitive Grants Program (NRICGP), 09-01-05/08-31-06, extended 08-31-07, $129,600

Viral Vectors to Assess PRRSV Immunogenic Subunits
FA Osorio, M Murtaugh, AK Pattnaik, S Chowdhury and C Gaignon. Sub-contract: Integrated Control and Elimination of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) in the US, United States Department of Agriculture (USDA), National Research Initiative Competitive Grants Program (NRICGP), 07-01-2004/06-30-2005, extended to 12-2006, 4.4 M

Vitamin-Dependent Modifications of Histones
J Zempleni and MF Lou. National Institute of Health (NIH), Study the functions of vitamin in cell proliferation, 2003-2007, $1,087,586

VSV RNA Transcription and Replication
AK Pattnaik. National Institute of Allergy and Infectious Diseases (NIAID), National Institute of Health (NIH), 03-01-01/02-28-06, extended 02-28-07, $1,454,920

COMMODITY

Bovine Genetics-Quality Assurance Research Program

Chronic Wasting Disease Surveillance in Deer
DJ Steffen. 2002-2003. Nebraska Game and Parks Commission, contract $85,000

Control of Johne’s Disease
DJ Steffen. Laboratory enhancement, Nebraska Department of Agriculture, 2004, $25,000
CWD Validation of the ELISA Assay For Use in White-Tailed Deer
DJ Steffen. 2002-2003. Bio-Rad Reagents $60,600 CWD test kits; equipment plate reader and two ribolyzers $35,803, total value $100,803

Evaluation of Automated Meat Recovery Systems
DJ Steffen. Dr. Thipareddi, Department of Food Science and Technology subcontract. 2003, $7,430

Evaluation of Anthrax Rapid Detection Kits
DJ Steffen. Nebraska Department of Agriculture. 2003-2004, $475.00

Genetic Disease Diagnosis and Consulting

Induction of Protective Immunity Against Systemic BVDV1 and BVDV2 Infection
CL Kelling and DJ Steffen. Schering-Plough Animal Health. 2003-2004, $144,000

Johne's Disease Herd Testing
DJ Steffen. Nebraska Department of Agriculture. 2003, $1,009

Pseudorabies Eradication and Control
DJ Steffen. Nebraska Department of Agriculture Testing. 2003, $22,994

Scrapie Program
DJ Steffen. United States Department of Agriculture (USDA). 2002-2003, $61,000

West Nile Surveillance and Serologic Response in Horses
DJ Steffen. Nebraska Department of Agriculture. 2003-2004, $2,940

West Nile Surveillance

INDUSTRY

Porcine Reproductive and Respiratory Syndrome (PRRS): Methods of the Integrated Control, Prevention and Elimination of PRRS in United States Swine Herds
Osorio FA, R Johnson, J Weber, AR Doster and AK Pattnaik. 2006. NC-229. $25,000

STATE

Effects of CLA on Fat Metabolism in Mice
Fromm M, J Miner and AR Doster. 2006. Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE, $25,000
REVENUES GENERATED

International Reference Laboratory for Spirochetal Colitis Research
GE Duhamel. University, Industry and Practitioners, 1995-2006, $37,405

Stimulating the Development of Veterinarians to Serve Rural America
DD Griffin and GP Rupp. 2005. United States Department of Agriculture (USDA), Cooperative State Research, Education and Extension Service (CSREES), mentorship of veterinary students with veterinarians serving rural communities, $124,810
Department of Veterinary and Biomedical Sciences
2006 Grant Proposals Submitted

A Mutant Deleted for Most of the Herpes Simplex Virus Type 1 (HSV-1) UOL Gene Does Not Affect the Spontaneous Reactivation Phenotype in Rabbits

Agrisecurity: A Master's Degree Program

Characterization of Effects of BVDV Infection on Immune Responses in Alpacas
Bedenice D, CL Kelling, DJ Steffen, CL Topliff, DR Smith, BW Brodersen and W Davis. Alpaca Research Foundation, $39,916

Development of Broad-Spectrum Antibiotics Against Bacterial Pathogens
Barletta RG, RPowers and J Takacs. Agriculture Research Division (ARD) Interdisciplinary Research Grant, University of Nebraska-Lincoln, 07-01-06/06-30-07, $20,000

Does the HSV-1 Latency Associated Transcript (LAT) Encode a Protein?
Jones CJ. National Institute of Health (NIH), 07-07/06-30-09, $401,500

Efficacy of Two and Three Doses of an Experimental Escherichia coli Bacterial Extract, Serotype O157:H7 Vaccine in Feedlot Cattle Against a Natural-Exposure Challenge with E. coli O157
Smith DR, RA Moxley, TJ Klopfenstein and GE Erickson. Bioniche Life Sciences, 04-05-06, $345,715

Exploiting Staphylococcal Metabolism to Prevent Biofilm Associated Heart Infections
Somerville GA. 2006. American Heart Association, $143,000

Functional Analysis of Proteins Encoded by the BHV-1 Latency Related Gene
Jones CJ. United States Department of Agriculture (USDA), National Research Initiative Competitive Grants Program (NRCGP), 09-15-06/09-14-09, $374,585

Functional Analysis of Bovine Herpesvirus 1 (BHV-1) Genes Expressed During Latency

HSV-1 ICP0 Localizes in the Stromal Layer of Infected Rabbit Corneas and Predominantly Resides in the Cytoplasm and/or Perinuclear Region of Rabbit Keratocytes
JDIP: Johne's Integrated Program in Research, Education, and Extension

Localization of Sequences Within the Latency Related Gene of Bovine Herpesvirus 1 that Inhibit Mammalian Cell Growth

Manipulating Staphylococcus Aureus Aerobic Metabolism to Prevent Biofilms
Somerville GA. 2006. National Center for Research Resources, $300,000

Mycobacterium avium subsp. paratuberculosis Pathogenesis
Bermudez LE (Oregon State University) and RG Barletta. United States Department of Agriculture (USDA) National Research Initiative Competitive Grants Program (NCICGP), 44.0A Animal Protection: Animal Disease, 09-01-07/08-31-09, $500,000

National Animal Health Laboratory Network (NAHLN)
Griffin DD. United States Department of Agriculture (USDA) Cooperative State Research, Education, and Extension Service (CSREES), 2006, $50,000

Pharmaco-Manipulation of Simvastatin-Induced Bone

Regulation of Senescence and Apoptosis in Eukaryotes
Lou MF. National Science Foundation (NSF), EPSCoR RII cluster grant, 01-01-07/12-31-10, $2,502,000

Replication and Assembly of Vesicular Stomatitis Virus
Pattnaik AK, SC Das and Y Zhou. 2006. National Institute of Health (NIH), 05-31-06, $1,945,346

Residue Avoidance Education for Dairy and Beef Producers and Their Veterinarians
Griffin DD. National Cattlemen’s Beef Association. 2006, $20,000

The Role of Arachidonic Acid in Growth Factor Signaling
Lou MR and KY Xing. National Institute of Health (NIH), 11-01-06/10-30-10, $1,022,000

The Bovine Herpes Virus 1 (BHV-1) Immediate Early Protein (bICP0) Interacts With the Histone Acetyltransferase p300, and These Interactions Correlate with Stimulation of gC Promoter Activity

The Role of Protein-Thiol Mixed Disulfide in Cataractogenesis
Lou MF. National Institute of Health (NIH), 07-01-07/06-30-11, $2,024,298
GRANTS RELATED TO TEACHING

Howard Hughes Medical Institute Fellowship for Summer Undergraduate Research
Duhamel GE. Senior Undergraduate Project, Nebraska Wesleyan University; 2002, $2,500; 2003, $2,500; 2004, $2,500; 2005, $2,500

Undergraduate Creative Activities and Research Experiences Program (UCARE)
Duhamel GE. Undergraduate Project, 2002-03, $2,000; 2004, $2,000; 2005, $4,000

PRIVATE INDUSTRY

Evaluation of Compounds
Lou MF and P Kador (UNMC). Hoffman LaRoche Company, 03-01-05/02-28-06, $318,607

Evaluation of Disulfide Reducing Agent (in particular thioltransferase enzyme) for Correcting Lens Accommodation (presbyopia)
Lou MF. NewLens Company.
Department of Veterinary and Biomedical Sciences
Grants Submitted, Not Funded in 2006

Attenuated Recombinant Noncytopathic Bovine Viral Diarrhea Virus Genotype 1 and 2 Vaccines
 Kelling CL, CL Topliff and DJ Steffen. United States Department of Agriculture (USDA) National Research Initiative (NRI), $350,564

Developing a Regionalized, State-Based, Herd-Centered, Voluntary Bovine Viral Diarrhea Virus (BVDV) Control Program in the USA
 Rupp GP, JA Schmitz, DD Griffin, BW Brodersen, CL Kelling and DJ Steffen. 2006. United States Department of Agriculture (USDA), Cooperative State Research, Education, and Extension Service (CSREES), not funded, $370,000

Functional Tissue Engineering of Articular Cartilage
 Subramanian A, G Larsen, DJ Steffen and J Turner. 2006. National Institute of Health (NIH), not funded, $1,400,000

Influence of Respiratory Epithelial Cells on Immune Responses in Polymicrobial Bovine Respiratory Disease
 Woolums AR, T Krunkosky, R Tripp, D Hurley and CL Kelling. 2006. United States Department of Agriculture (USDA) National Research Initiative (NRI), not funded, $199,361

Nebraska Center for Bacterial Pathogenesis Research
 Somerville GA. 2006. Nebraska Research Initiative, not funded, $240,000

Reverse Genetics Approach to Functional Analysis of Bovine Respiratory Syncytial Virus Fusion Glycosylation
 Kelling CL, CL Topliff and DJ Steffen. 2006. United States Department of Agriculture (USDA), National Research Initiative (NRI), not funded, $345,570

Targeting [Fe-S] Cluster Assembly to Treat Biofilm Infectious Disease: Feasibility
 Somerville GA. 2006. National Institutes of Health (NIH), not funded, $368,843

132
Department of Veterinary and Biomedical Sciences
Five-Year Record of Grants and Contracts (2001-2006)

A New Approach to Control of Human Pathogenic Fungi: Investigation of Farnesol and Farnesol Analogs in a Mouse Model
Duhamel GE and KW Nickerson. 2001-2004. Tabacco Settlement Biomedical Research Enhancement Fund Research, Seed Grant Program, $45,000

A Novel Strategy to Test and Monitor Beef Feedlot Food-Safety Control Points
Smith DR, LL Hungerford, JT Gray, RA Moxley, TJ Klopfenstein and CT Milton. NEB-14-111, 10-00/10-04, $953,735

A Plan for Obtaining More Accurate and Specific Results on PRRSV Serological Tests When Using Commercial ELISAs
Osorio FA. National Pork Producers Council, 04-01/03-02, $15,000

An Accurate Determination of the Proportion of Beef Cattle with Johne's Disease and the Factors Explaining Herd Status
Smith DR United States Department of Agriculture (USDA) Animal and Plant Health Inspection Service (APHIS) VS Johne's Disease Cooperative Agreement, 10-03/10-04, $100,000

Analyses of Virulence and Attenuation Determinants of Porcine Reproductive and Respiratory Syndrome Virus Using Reverse Genetics Approach
Pattnaik AK. United States Department of Agriculture (USDA), National Research Initiative Competitive Grants Program (NRICGP), 09-01-04/08-31-07, $320,000

Analysis of Apoptosis and Pathogenesis by Bovine Herpesvirus 1 and bICP0
Jones CJ. United States Department of Agriculture (USDA), National Research Initiative Competitive Grants Program (NRICGP), 10-01-98/09-30-2001, $178,358

Animal Model of Transmissible Neurofibromas
Schmale M and AK Pattnaik. National Institutes of Health (NIH), 04-01-02/03-31-05, $574,000

Avian Influenza Surveillance #18-05-138
Steffen, DJ and Clayton Kelling. Nebraska Department of Agriculture, 05-08-06/05-07-07, $171,485

Bovine Genetics Quality Assurance
Steffen DJ. 2005-2006. National Association of Animal Breeders, $12,000

Bovine Viral Diarrhea Virus in North American Alpaca Herds
Steffen DJ. Alpaca Research Foundation, 01-01-06/01-01-07, $23,400
Characterization of Group A Bovine Rotavirus Strain B641
Duhamel GE. 2002. ImmuCell Corp, $5,000

Chronic Wasting Disease Surveillance in Deer
Brodersen BW. 2002-2004. Nebraska Game and Parks Commission, $198,000

Chronic Wasting Disease Surveillance in Deer
Steffen DJ. Nebraska Game and Parks Commission, 09-01-05/06-30-06, $45,000

Classical Swine Fever Surveillance
Steffen DJ. Nebraska Department of Agriculture, 05-01-06/12-31-06, $20,000

Classical Swine Fever Surveillance
Steffen DJ. United States Department of Agriculture (USDA) Animal and Plant Health Inspection Service (APHIS), 10-01-05/12-31-06, $86,175

Competitive Exclusion as an E. coli O157:H7 Intervention Strategy Phase II
Klopfenstein TJ, DR Smith, RA Moxley, GE Erickson and S Hinkley. Nutrition Physiology Corporation, 05-03/12-03, $50,000

Competitive Exclusion and Vaccination as E. coli O157:H7 Intervention Strategies
Smith DR, TJ Klopfenstein, RA Moxley, GE Erickson and S Hinkley. Nutrition Physiology Corporation, 05-01/12-31-02, $41,700

Competitive Exclusion as an E. coli O157:H7 Intervention Strategy — 2004 Phase II Study
Klopfenstein TJ, DR Smith, RA Moxley, GE Erickson and S Hinkley. Nutrition Physiology Corporation, 05-01-04/12-31-04, $100,000

Competitive Exclusion and Vaccination as E. coli O157:H7 Intervention Strategies
Smith DR, TJ Klopfenstein, RA Moxley, GE Erickson and S Hinkley. Nebraska Beef Council, 05-01-02/12-31-02, $50,000

Development and Validation of a System to Utilize Liquid Culture Media for Johne’s Disease Fecal Culturing in Nebraska
Steffen DJ. Nebraska Department of Agriculture, 10-01-05/06-30-06, $53,000

Distribution of Brachyspira pilosicoli Attachment Phenotypes Among Pigs of Three Breeds

Effect of Virus Infection on Cellular Glutathione Concentration

Effect of Vaccinating Against Type III Secretory Proteins of Escherichia coli O157:H7 on the Occurrence of E. coli O157:H7
Klopfenstein TJ, RE Peterson, DR Smith, GE Erickson, RA Moxley and S Hinkley. 11-04/11-05, $42,525
Effect of Virus Infection on Cellular Glutathione Concentration
Brink DR, L Matulka, CI Kelling and S Srikumaran. 2001. Agriculture Research Division (ARD) Interdisciplinary Research Grant Proposal, $20,000

Effect of Vaccinating Against Type III Secretory Proteins of Escherichia coli O157:H7 on the Occurrence of E. coli O157:H7 on Hides Pre- and Post-Harvest
Klopfenstein TJ, RE Peterson, DR Smith, RA Moxley GE Erickson and S Hinkley. National Cattlemen's Beef Association, 02-01-05/09-30-05, $42,525

Enhancement of Efficacy of PRRSV Vaccines by Altering the Glycosylation Pattern of Viral Glycoproteins
Pattnaik AK and FA Osorio. National Pork Board, 12-15-05/12-14-06, $83,000

Ensuring Meat Safety: E. coli O157:H7 — Progress and Challenges
Hutkins R, A Benson and RA Moxley. United States Department of Agriculture (USDA), Cooperative State Research, Education, and Extension Service (CSREES), National Research Initiative Competitive Grants Program (NRCGP), 10-01-02/09-30-03, $38,150

Evaluation of Commercially Available Serologic Marker Systems for Foot-and-Mouth Disease
Osorio FA. Specific Cooperative Agreement, United States Department of Agriculture (USDA) Agricultural Research Service (ARS), 06-02/03-05, $97,700

Evaluation of a Competetive Exclusion Product to Reduce the Prevalence of Fecal Shedding of E. coli O157:H7
Klopfenstein TJ, DR Smith, RA Moxley, LL Hungerford and S Hinkley. Nutrition Physiology Corporation, 03-26-01/9-30-02, $50,000

Evaluation of Intervention Strategies to Reduce the Prevalence of Fecal Shedding of E. coli O157:H7
Smith DR, TJ Klopfenstein, RA Moxley, LL Hungerford, S Hinkley, M Brashears and S Younts. Nebraska Beef Council, 03-26-01/09-30-02, $100,000

Evaluation of a Competitive Exclusion Product to Reduce the Prevalence of Fecal Shedding of E. coli O157:H7
Smith DR, TJ Klopfenstein, RA Moxley, LL Hungerford, S Hinkley, M Brashears and S Younts. Nutrition Physiology Corporation, 03-26-01/09-30-02, $50,000

Experimental Evaluation of Efficacy of Commercially Available PRRSV Vaccines
Osorio FA. SYVA labs, Spain, 04-15/07-31-05, $45,502

Field Research to Identify Risk Factors for the Occurrence of Escherichia coli in Cattle Feedlots
Smith DR, RA Moxley and Klopfenstein TJ. 07-1-01/06-30-02, $100,000
Functional Genomic Analysis of *Mycobacterium paratuberculosis*
JP Bannantine (National Animal Disease Center), V Kapur (University of Minnesota), SJ Wells (University of Minnesota), RG Barletta and JR Stabel (National Animal Disease Center). United States Department of Agriculture (USDA), National Research Initiative Competitive Grants Program (NRICGP), 01-02-03/01-01-05, $285,000

Genetic Disease Research
Steffen DJ. American Simmental Association, 07-02-05/06-30-06, $2,500

Group A Bovine Rotavirus: Characterization of Challenge Materials and Reference Strains

Helicobacter-Ass ociated Colitis of Callitrichidae Kept in Zoo Exhibits #D05Z00-007
Gerald Duhamel, DL Armstrong, L J Lowenstein and BA Rideout (CEHS). Morris Animal Foundation, 10-01-05/11-14-07, $29,948

Herd Immunity — Vaccination for *E. coli* O157:H7
Klopfenstein TJ, DR Smith, GE Erickson and RA Moxley. Nebraska Beef Council, 06-01-05/12-31-05, $50,000

Identification and Characterization of Cellular Apoptosis-Induced Proteins by Proteomics and Proteinchip Technologies
Jones CJ. Strategic Areas Research Grant for the UNL Tobacco Settlement Biomedical Research Enhancement, 10-01/4-03, $198,750

Identification and Characterization of *Mycobacterium paratuberculosis* Virulence Genes Expressed *in vivo* by Negative Selection
Shpigel NY, I Rosenshine, M Chaffer and RG Barletta. United States Department of Agriculture (USDA), Binational Agricultural Research and Development Fund, 12-31-03/12-30-04, $100,000

Identification and Characterization of PRRSV Immunogenic Subunits Using Viral Vectors
Pattnaik AK. United States Department of Agriculture (USDA), National Research Initiative Competitive Grants Program (NRICGP), NC-229, Subcontract, University of Minnesota, 10-01-04/09-30-05, $60,304

Identification of *Mycobacterium paratuberculosis* Virulence Determinants
Barletta RG and CJ Czuprynski (University of Wisconsin). United States Department of Agriculture (USDA), National Research Initiative Competitive Grants Program (NRICGP), Sustaining Animal Health and Well Being, 09-99/8-02, $210,000

Inhibition of Apoptosis by the Bovine Herpesvirus 1 Latency Related Gene
Jones CJ and AR Doster. 2006. United States Department of Agriculture (USDA), National Research Initiative Competitive Grants Program (NRICGP), $292,000
Immunochromatographic Strip Assays for Detection of Bovine Group A Rotaviruses and Coronavirus
Duhamel GE. 2002. QUELAB Lab, Inc, $4,750

Induction of Protective Immunity Against Systemic BVDV1 and BVDV2 Infection
Kelling CL and DJ Steffen. Schering-Plough Animal Health, $144,000

Inhibition of Apoptosis by the Bovine Herpesvirus 1 (BHV-1) Latency Related Gene Products
Jones CJ. United States Department of Agriculture (USDA), National Research Initiative Competitive Grants Program (NRICGP), 10/01/00-09/30/03, $292,000

Integrating Biosecurity Practices into Livestock Production Management on Farms and Ranches to Ensure a Sustainable and Wholesome Food Supply
Rupp GP, DD Griffin, LL Hungerford and DR Smith. United States Department of Agriculture (USDA) Cooperative State Research, Education, and Extension Service (CSREES) Higher Education Challenge Grant, $249,792

Interlab Validation of Multiplex PCR Utilizing the Bio-Plex Multi-Array Suspension System
Steffen DJ. United States Department of Agriculture (USDA) Animal and Plant Health Inspection Service (APHIS), 11-01-05/11-01-06, $72,500

Intervention Strategies to Reduce Escherichia coli O157:H7 in Beef Feedyards
Smith DR, GE Erickson, RA Moxley, TJ Klopfenstein and S Hinkley. United States Department of Agriculture (USDA) Cooperative State Research, Education, and Extension Service (CSREES), National Integrated Food Safety Initiative (NIFSI), 10-03/9-06, $500,000

Isolation and Characterization of Mycobacteriophages
Barletta RG. California Pacific Medical Center Research Institute, Subcontract to Phage Therapeutics, Inc, Bothell, WA, 02-15-01/02-14-02, $69,495

Johne's Disease Program #18-05-121
Steffen DJ. 2005-2006. Nebraska Department of Agriculture, develop and validate a system to utilize liquid culture media for Johne's Disease fecal culturing in Nebraska, $53,000

Johne's Disease Herd Testing #18-05-107
Steffen DJ, CL Kelling, DR Smith and BW Brodersen. Nebraska Department of Agriculture, 11-01-05/11-01-06, $559,071

Johne's Disease Testing #18-05-107
Steffen DJ. Nebraska Department of Agriculture, 06-04-06/12-30-06, $20,000

Johne's Disease Testing #18-05-107
Steffen DJ. Nebraska Department of Agriculture, 06-04-06/12-31-06, $48,000

Laboratory Diagnostic Investigations of Enteric Bacterial Diseases of Grower Pigs
Lifetime use of Feed Grade Antimicrobials

Limiting Starch in the Diet
Klopfenstein TJ, RA Moxley, CT Milton, DR Smith, LL Hungerfor and JT Gray. Nebraska Beef Council, 04-00/04-01, $16,700

Macrophage Cell-Lines for in vitro Propagation of Porcine Reproductive and Respiratory Syndrome Virus
Srikumaran S and AK Pattnaik. National Pork Board, 10-01-04/09-30-04, $100,000

Measure Incidence of E. coli O157:H7 in Beef Cattle Vaccinated at Ranch or at Feedlot
Klopfenstein TJ, GE Erickson, RA Moxley, DR Smith and S Hinkley. Montana State University, 07-15-04/07-14-05, $122,378

Minimum Inhibitory Concentration Susceptibility Testing of Swine Isolates of Brachyspira pilosicoli

Molecular Characterization and Pathogenesis of Francisella tularensis
Duhamel GE. 2002-2004. University of Nebraska-Lincoln and University of Nebraska Medical Center, Research Collaboration Grant Program, $218,000

Molecular Characterization and Pathogenesis of Francisella tularensis
Meagher M, S Hinrich, P Fey, T Jerrell, P Iwen, A Benson, RG Barletta, JD Cirillo, GE Duhamel and M Griep. UNMC-UNL Interdisciplinary Research, 09-01-02/06-30-03, $100,000

Mouse Model for Studying Candidiasis
Duhamel GE and KW Nickerson. 2004-2005. Interdisciplinary Research, UNL Research Council, $20,000

Mycobacterial Drug Resistance
Barletta RG. Research in Microbiology Immunology and Infectious Diseases Foundation, Medical Research Institute of San Francisco at California Pacific Medical Center, Kuzell Institute for Arthritis and Infectious Diseases, 10-95/6-04, $4,500

National Animal Health Laboratory Network-Nebraska (NAHLN-NE)
Steffen DJ, CL Kelling, DD Griffin and A Wohlers. United States Department of Agriculture (USDA), Cooperative State Research, Education, and Extension Service, 09-01-06/08-31-07, $50,000

Optimizing Collection and Transportation of E. coli
Smith DR, JT Gray, LL Hungerford, TJ Klopfenstein, RA Moxley and CT Milton. Nebraska Beef Council, 04-00/04-01, $22,940

138
Pathogenesis of Porcine Circovirus
Brodersen BW and RA Hesse. 2003. Collaborative study with Intervet, $1,500

Plant Endophytic Bacteria
Vidaver AK and RG Barletta. Kamterter, Inc, 12-01-01/11-30-02, $36,000

Production and Characterization of Group A Bovine Rotavirus Challenge Material in Gnotobiotic Calves
Duhamel GE. 2004. Novartis Animal Vaccines, Inc, $6,000

Production of Mouse x Porcine Neutralizing Antibodies Anti-Porcine Reproductive and Respiratory Syndrome Virus
Osorio FA. PIC USA, Sygen International, 02-02/01-03, $74,755

Production and Characterization of Bovine Group A Rotavirus and Coronavirus Challenge Material in Gnotobiotic Calves

Protective Immunity Against PRRSV Obtained by Passive Administration of Antibodies: Optimization of the Conditions
Osorio FA. National Pork Producers Council, 06-02/12-04, $25,000

Protein-thiol Mixed Disulfides in Cataractogenesis
Lou MF. National Institute of Health (NIH), biochemical mechanism of cataract formation study, 07-01-03/06-30-07, $1,794,300

Protein-thiol Mixed Disulfides in Cataractogenesis
Lou MF. National Institute of Health (NIH), biochemical mechanism of cataract formation study, 2-1-99/1-31-03, $1,286,072

Rational Design of a New Generation of PRRSV Differential (Marker) Vaccines
Osorio FA and AK Pattnaik. National Pork Board, 10-01-05/09-30-06, request for extension pending, $150,000

Removal of Starch from the Diet
Klopfenstein TJ, RA Moxley, CT Milton, DR Smith, LL Hungerford and JT Gray. Nebraska Beef Council, 04-00/04-01, $33,400

Replication of Genomic Analogs of RCV in Transfected Cells
Pattnaik AK. Eli Lilly and Company, 01-15-01/01-14-02, $74,500/year

Role of Macrophages in the Pathogenesis of Porcine Colonic Spirochetosis
Role of PRRSV-Specific Antibodies in Protective Immunity Against Porcine Reproductive and Respiratory Syndrome Virus Infections
Osorio FA. United States Department of Agriculture (USDA), National Research Initiative Competitive Grants Program (NRICGP), Sustaining Animal Health and Well-Being, project #2002-35204-12459, 10-02/09-04, $200,000

Role of *E. coli* Heat-labile Enterotoxin-I in Diarrhea and Septicemia in Swine
Moxley RA and RG Barletta. United States Department of Agriculture (USDA), National Research Initiative Competitive Grants Program (NRICGP), Sustaining Animal Health and Well Being, 11-01-98/10-31-03, $140,000

Scrapie Program
Brodersen BW. 2002. United States Department of Agriculture (USDA), National Research Initiative Competitive Grants Program (NRICGP), contract award for support at $15/testing commitment for 5,000 and agreement for up to 10,000 tests/year. Estimated gross revenues $75,000-150,000

Surveillance for Chronic Wasting Disease in Nebraska Deer
Steffen DJ and BW Brodersen. Nebraska Game and Parks Commission, 02-24-06/08-31-06, $170,000

Targeting *M. tuberculosis* Alanine Ligase for Drug Design
Barletta RG. National Institute of Health (NIH), 08-01-02/07-31-04, $145,000

The Effect of Porcine Reproductive and Respiratory Syndrome Virus on the Immune System During Acute and Persistent Infections
Osorio FA. United States Department of Agriculture (USDA), National Research Initiative Competitive Grants Program (NRICGP), Sustaining Animal Health and Well-Being, project #99-35204-8041, 09-99/10-02, $150,000

Training Junior Faculty Members and Establish a Research Center for Redox Biology Center
Banerjee R and MF Lou. 2002-2007. National Institute of Health (NIH), Redox Biology Center Cobra Grant, 10M

Transmission of Bovine Viral Diarrhea Virus via Semen from Bulls with Persistent Testicular Infection
Givens MD, AM Heath, DA Stringfellow, KV Brock, TD Braden and BW Brodersen. 2003. United States Department of Agriculture (USDA), Cooperative State Research, Education, and Extension Service (CSREES), $212,534

Up-Regulation of K+Channels in the Remodeled Ventricle
Rozanski GJ and MF Lou. National Institute of Health (NIH), Subcontract/University of Nebraska Medical Center (UNMC) for the control mechanism of redox buffer glutathione on arrhythmias, 10-1-00/9-30-04, $1,081,579
Use of a Green-Fluorescent Protein-Expressing Strain of Porcine Reproductive and Respiratory Syndrome Virus for the Study of PRRSV Pathogenesis and In Vivo Tropism
Osorio FA and AK Pattnaik. United States Department of Agriculture (USDA), National Research Initiative Competitive Grants Program (NRICGP), 09-01-08/31-31-07, $129,600

Use of Beneficial Plant-microbe Interactions to Enhance Biomass Yield, and Economic Value and Sustainability of Agricultural Products
Vidaver AK, RG Barletta, PH Blum and TJ Klopfenstein. Strategic Research Cluster Grant, University of Nebraska-Lincoln, 08-01-02/06-30-03, $10,000

Vaccination as an E. coli O157:H7 Intervention Strategy - 2004 phase II Study
Moxley RA, TJ Klopfenstein, DR Smith, GE Erickson and S Hinkley. Bioniche Life Sciences, Inc, 05-19-04/12-31-04, $152,790

Vaccination as E. coli O157:H7 Intervention Strategy — phase II
Klopfenstein TJ, DR Smith, RA Moxley, GE Erickson and S Hinkley. Bioniche Animal Health, 05-01-03/12-31-03, $25,000

Vaccination as an E. coli O157:H7 Intervention Strategy - Phase II
Klopfenstein TJ, DR Smith, RA Moxley, GE Erickson and S Hinkley. Nebraska Beef Council, 01-2003/09-2003 $50,000

Validation of Test Methods Needed to Evaluate Intervention Strategies for Escherichia coli O157:H7 Intestinal Colonization and Fecal Shedding in Feedlot Cattle
Moxley RA, S Hinkley, DR Smith, GE Erickson and TJ Klopfenstein. Nebraska Beef Council, 04-01-04/05-01-05, $45,080

Viral Pathogens that Contribute to Respiratory Disease Complex in Cattle: Epidemiology of Persistent BVDV Infections
Brodersen BW. United States Department of Agriculture (USDA), Agriculture Research Service (ARS) Extramural Agreement, $25,000

Viral Pathogenesis
Jones, CJ. National Institute of Health (NIH), Centers of Biomedical Research Excellence (COBRE), $83,000/year in direct costs from grant this year, 10-00/10-05, $10,400,000

Vitamin-Dependent Modifications of Histones

VSV RNA Transcription and Replication
Pattnaik AK. National Institutes of Health (NIH), 03-01-01/02-28-07, $1,495,688

West Nile Virus Testing
Steffen, DJ. Nebraska Health and Human Services, WBS#26-6239-0132-001, 05-16-05/04-30-06, $18,000
West Nile Virus Testing
Steffen DJ. 2005-2006. Nebraska Health and Human Services, WBS#26-6239-0132-001, additional $15,000

West Nile Surveillance
Steffen DJ and Clayton Kelling. Nebraska Department of Health Regulation and Licence, 06-09-06/06-09-07, $28,000

Whole-Genome Sequencing and Analysis of Lawsonia intracellularis

INDUSTRY GRANTS

Efficacy of Carbadox® for the Control and Treatment of Porcine Proliferative Enteropathy (PPE) Associated with a Natural Infection of Lawsonia Intracellularis
Doster AR, S Hinkley and HE Cerny. 2006. Philbro Animal Health, $14,841

Genetic Resistance to Porcine Reproductive and Respiratory Syndrome Virus (PRRSV)
Johnson R, FA Osorio and AR Doster. 2006. Nebraska Pork Producers Association, $25,000

GENERATED REVENUES

Income from Sale of Monoclonal Antibodies

INTRAMURAL GRANTS

TRAVEL GRANTS

Annual Meeting of the American College of Veterinary Pathologists
Duhamel GE. 2005. IANR Research Travel Fund, Boston, MA, $500

Annual Conference of Association of Research for Vision and Ophthalmology
Lou MF and MR Fernando. 2006. University of Nebraska-Lincoln, Agriculture Research Division (ARD), $500

Biannual International Congress of Eye Research (ICER) Conference
Lou MF. University of Nebraska-Lincoln, Agriculture Research Division (ARD), Buenos Aires, Argentina, 10-29/11-03-06, $800

Biannual International Congress of Eye Research (ICER) Conference
Yin Wang. University of Nebraska-Lincoln, Agriculture Research Division (ARD), Buenos Aires, Argentina, International Society of Eye Research travel grant to young investigators to present paper, 10-29/11-03-06, $2,000
UCARE PROGRAM GRANTS

Marjorie F. Lou

The Age Effect on the Gene Expression of Thioredoxin and Thioredoxin Binding Proteins in the Lens

Elizabeth Turnage, Senior Biology Major, UCARE Research Grant, $2,500
A Method to Enhance the Immunogenicity of PRRSV GP5 Protein
Pattnaik AK. Full patent application filed by University of Nebraska-Lincoln, August 2006

D-alanine Racemase Mutants of Mycobacteria and Uses Therefore
Barletta RG and O Chacon. U.S. Patent #6,929,799 B2, Granted August 16, 2005

Identification of Virulence Determinants

Recombinant Mycobacteria Overexpressing D-alanine Ligase Gene and Uses Therefore
A Splicing Defect of MEGF16/LRP4 in Autosomal Recessive Mulefoot Disease

A Polymorphic Glucocorticoid Receptor in a Mouse Population May Explain Inherited Altered Stress Response and Increased Anxiety-Type Behaviors

Anti-Capsular Antibodies Activate Killing of Escherichia coli O8:K87 by the Alternate Complement Pathway in Porcine Serum

Clinical, Histopathological and Immunohistochemical Findings in a Case of Megakaryoblastic Leukemia in a Dog

Comparison of Inflammatory Infiltrates in Trigeminal Ganglia of Cattle Infected with Wild-Type Bovine Herpesvirus 1 Versus a Virus Strain Containing a Mutation in the LR (Latency-Related) Gene

Construction and Characterization of an Infectious cDNA Clone of a Vaccine Strain of Porcine Reproductive and Respiratory Syndrome Virus

Construction of a Full-Length cDNA Infectious Clone of a European-Like Type 1 PRRSV Isolated in the US.

Development of Luminescent M. avium subsp. paratuberculosis for Rapid Screening of Vaccine Candidates in Mice
Diagnostic Survey of Bovine Abortion with Special Reference to *Neospora caninum* infection: Importance, Repeated Abortion and Concurrent Infection in Aborted Fetuses in Southern Brazil

Effects of a Single Foot Rot Incident on Weight Performance of Feedlot Steers

Effects of *Moraxella (Branhamella) ovis* Culture Filtrates on Bovine Erythrocytes, Mononuclear Cells and Corneal Epithelial Cells

Effect of *Lactobacillus acidophilus* Strain NP51 on *Escherichia coli* O157:H7 Fecal Shedding and Finishing Performance in Beef Feedlot Cattle

Herd-Level Risk Factors for Neospora Caninum Seroprevalence in Dairy Farms in Southern Brazil

LG Corbellini, DR Smith, CA Pescador, M Schmitz, A Correa, DJ Steffen and D Driemeier. 2006. Preventive Veterinary Medicine, 74(2-3):130-41, ARD Journal Series #14509

Human Cystathionine β-Synthase is a Target for Sumoylation

Kabil O, Y Zhou and R Banerjee. 2006. (October 18, 2006 doi: 10.1021/bi0615644, online publication before print, Biochemistry, 45(45):13528-13536

Influence of Bovine Respiratory Syncytial Virus F Glycoprotein N-Linked Glycans on in vitro Expression and on Antibody Responses in BALB/C Mice

Influence of N-Linked Glycosylation of Porcine Reproductive and Respiratory Syndrome Virus GP5 on Virus Infectivity, Antigenicity, and Ability to Induce Neutralizing Antibodies

Insertion and Deletion Analyses Identify Regions of Nonstructural Protein 5A of Hepatitis C Virus that are Dispensable for Viral Genome Replication

146
Isolation and Characterization of PRRS Virus in Mexico

Laboratory Investigations for the Morphologic, Pharmacokinetic, and Antiretroviral Properties of Indinavir Nanoparticles in Human Monocyte-Derived Macrophages

Mitochondrial Thioltransferase or Glutaredoxin 2 has GSH Dependent and Thioredoxin Reductase Dependent Peroxidase Activities

Noncytopathic Bovine Viral Diarrhea Virus can Persist in Testicular Tissue After Vaccination of Peri-Pubertal Bulls But Prevents Subsequent Infection

Phagocytosis and Intracellular Survival of Mycobacterium avium subsp. paratuberculosis in Bovine Monocytes and a Macrophage Cell Line

Prevalence of Brachyspira Species in Pigs with Diarrhea in Spain

Redox Control of K+ Channel Remodeling in Rat Ventricle

Serologic Marker Candidates Identified Amongst B-Cell Linear Epitopes of Nsp2 and Structural Proteins of a North American Strain of Porcine Reproductive and Respiratory Syndrome Virus

Significance of Heat-Stable and Heat-Labile Enterotoxins in Porcine Colibacillosis in an Additive Model for Pathogenicity Studies
The Positive Feedback Role of Arachidonic Acid in Platelet Derived Growth Factor (PDGF) Induced Cell Signaling

The Distribution of Cystathionine β-Synthase (CBS) in the Eye: Implication of the Presence of a Transsulfuration Pathway for Oxidative Stress Defense

The Us9 Gene of Bovine Herpesvirus 1 (BHV-1) Effectively Complements a Us9-Null Strain of BHV-5 for Anterograde Transport, Neurovirulence, and Neuroinvasiveness in a Rabbit Model

Thioredoxin, Thioredoxin Reductase and α-Crystallin Revive the Inactivated Glyceraldehyde 3-Phosphate Dehydrogenase in Human Aged and Cataract Lens Extracts

Thioredoxin Induced Antioxidant Gene Expressions in Human Lens Epithelial Cells
Yegorova S, Yegorova O and Lou MF. 2006. Experimental Eye Research, 83(4):783-792

Trans-10, cis-12 Conjugated Linoleic Acid Causes Inflammation and Delipidation of White Adipose Tissue in Mice: A Microarray and Histological Analysis
LaRosa PC, J Miner, Y Xia, Y Zhou, S Kachman and ME Fromm. 2006. (doi:10.115, online publication before print), Physiological Genomics, 27:282-294

Use of a Modified live Vaccine to Prevent Persistent Testicular Infection with Bovine Viral Diarrhea Virus
Givens MD, KP Riddell, Y Zhang, PK Galika, DA Stringfellow, BW Brodersen, JA Jackson, MA Ellsworth, MD Ficken, RL Carson, JG Wenzel and MS Marle. 2006. Veterinary Therapeutics, 7(3):305-18

Very Low Ethanol Concentrations Mfect Viability and Growth Recovery in Post-Stationary Staphylococcus aureus Populations

Visualization of Intracellular Transport of Vesicular Stomatitis Virus Nucleocapsids in Living Cells
A Protein Encoded by the Bovine Herpes Virus 1 (BHV-1) Latency Related Gene Interacts with Specific Cellular Regulatory Proteins, Including the CCAAT Enhancer Binding Protein Alpha (C/EBP-)

Comparison of Inflammatory Infiltrates in Trigeminal Ganglia of Cattle Infected with Wild Type BHV-1 Versus a Virus Strain Containing a Mutation in the LR (latency-related) Gene

Effect of Lactobacillus acidophilus strain NP51 on Escherichia coli O157:H7 Fecal Shedding and Finishing Performance in Beef Feedlot Cattle

OTK18, a Zinc Finger Protein, Regulates HIV LTR Through Two Distinct Regulatory Regions

Viral Induced Encephalitis

Scholar EM and CJ Jones. 2006. In Neuropharmacology, in press
A Protein Encoded by the Bovine Herpes Virus 1 (BHV-1) Latency Related Gene Interacts with Specific Cellular Regulatory Proteins, Including the CCAAT Enhancer Binding Protein Alpha (C/EBP)

Analysis of Risk Factors for Colitis in Tamarins (Saguinus species) Housed Under Zoo Husbandry Practices

Assessment of the Efficacy of Commercial Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Vaccines Based on Measurement of Serologic Response, Frequency of Gamma-IFN Producing Cells and Virological Parameters of Protection Upon Challenge

Characterization of Protection Against Systemic Infection and Disease from Experimental BVDV Type 2 Infection in Calves by Use of a Modified-Live Noncytopathic Bovine Viral Diarrhea Virus Type 1 Vaccine

Comparison of Inflammatory Infiltrates in Trigeminal Ganglia of Cattle Infected With Wild Type BHV-1 Versus a Virus Strain Containing a Mutation in the LR (Latency-Related) Gene

Control of PDGF-Induced Reactive Oxygen Species (ROS) Generation and Signal Transduction in the Human Lens Epithelial Cells

Effect of Lactobacillus Acidophilus Strain NP51 on Escherichia coli O157:H7 Fecal Shedding and Finishing Performance in Beef Feedlot Cattle

Effect of a Type III Secreted Protein Vaccine on *Escherichia coli* O157:H7 Fecal Shedding and Rectal Colonization of Feedlot Cattle

Effect of *Lactobacillus acidophilus* Strain NP51 on *Escherichia coli* O157:H7 Fecal Shedding and Finishing Performance in Beef Feedlot Cattle

Effects of a Single Foot Rot Incident on Weight Performance of Feedlot Steers

Evaluation of Dose Response and Herd Immunity From a Vaccine Against *Escherichia coli* O157:H7 for Feedlot Cattle

H$_2$O$_2$ Stress Sensitivity of Cultured Primary Mouse Lens Epithelial Cells Derived From Wild Type and Thioltransferase Knockout Mice
Lofgren S, Fernando MR and Lou MF. 2006. *In review*

Impaired Intracellular Survival of *Mycobacterium smegmatis* D-alanine Racemase Mutants

Life and Death in Bovine Monocytes: The Fate of *Mycobacterium avium* subsp. *paratuberculosis*

Localization of Period 1 mRNA in the Ruminant Oocyte and Investigations of its Role in Ovarian Function

Low Molecular Weight Protein Tyrosine Phosphatase (LMWPTP) and its Possible Physiological Functions in the Eye Lens
Xing K, Raza A and Lou MF. 2006. *Biochimica et Biophysica Acta*, submitted

Mammalian Dicer Uses Host miRNAs to Produce Resistance to Vesicular Stomatitis Virus
Otsuka M, Jing Q, Georgel P, New L, Chen J, Mols J, Kang YJ, Jiang Z, Pattnaik AK, de la Torre JC, Beutler B and Han J. 2006. *Nature Immunology*, manuscript in revision
Mitochondrial Thioltransferase (Glutaredoxin 2) has GSH-Dependent and Thioredoxin Reductase-Dependent Peroxidase Activities in vitro and in Lens Epithelial Cells

OTK18, A Zinc Finger Protein, Regulates HIV LTR Through Two Distinct Regulatory Regions

Protection Against Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Infection Through Passive Transfer of PRRSV-Neutralizing Antibodies is Dose-Dependent

Pulmonary Lymphomatoid Granulomatosis in a Dog. Evidence of Immunophenotypic Diversity and Relation to Pulmonary Lymphomatoid Granulomatosis and Pulmonary Hodgkin’s Disease in Man

Purification and Characterization of Mycobacterium tuberculosis D-alanine Ligase from Overexpressing Escherichia coli

Regulation of Thioredoxin by a Specific Thioredoxin-Binding Protein in the Eye Lens

Serologic Marker Candidates Identified Amongst B-Cell Linear Epitopes of Nsp2 and Structural Proteins of a North American Strain of Porcine Reproductive and Respiratory Syndrome Virus

Seroprevalence of Chlamydia suis Antibodies in Swine in the Midwestern United States
Sharma M, Rogers DG and Andersen AA. 2006. Journal of Veterinary Diagnostic Investigation, ARD Journal Series #15007

Tsukmurella Pulmonis: Acid Fast Staining Bacteria as a Differential Diagnosis for Mycobacteriosis in Slender Tailed Meerkats (Suricata suricata)
Unexpected Effect of a *Candida albicans* Quorum Sensing Molecule in a Mouse Model of Disseminated Candidiasis

Vancomycin Intermediate *Staphylococcus aureus* have Impaired Acetate Catabolism: Implications for Polysaccharide Intercellular Adhesion Synthesis and Autolysis
JL Nelson, KC Rice, SR Slater, PM Fox, GL Archer, KW Bayles, PD Fey, BN Kreiswirth and GA Somerville. 2006. Submitted

Viral Induced Encephalitis
Scholar EM and CJ Jones. 2006. In Neuropharmacology, in press

Visualization of Intracellular Transport of Vesicular Stomatitis Virus Nucleocapsids in Living Cells
A Familial Multisystemic Disease in Gelbvieh Cattle

A Mutation in the Latency Related Gene of Bovine Herpesvirus 1 Leads to Impaired Ocular Shedding in Acutely Infected Calves

A Mutation in the Latency-Related Gene of Bovine Herpesvirus 1 Reduces Establishment and Reactivation of Latency in Calves

A Review of the Effectiveness of Vaccine Potency Control Testing

A Glycine-Rich Bovine Herpesvirus 5 (BHV-5) gE-Specific Epitope within the Ectodomain is Important for BHV-5 Neurovirulence

A Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Generated from an Infectious cDNA Clone Retains the In Vivo Markers of Virulence and Transmissibility Characteristics of the Parental Strain

A Diagnostic Strategy to Determine the Shiga Toxin-Producing Escherichia coli Status of Pens of Feedlot Cattle

A Diagnostic Implications of Antigen-Induced Interferon, Nitric Oxide, and Rumor Necrosis Factor Alpha Production by Peripheral Blood Mononuclear Cells From Mycobacterium bovis-Infected Cattle
Waters WR, MV Palmer, DL Whipple, MP Carlson and BJ Nonnecke. 2003. Clinical and Diagnostic Laboratory Immunology, 10(5):960-966
A Highly Pathogenic Porcine Reproductive and Respiratory Syndrome Virus Generated from an Infectious cDNA Clone Retains the \textit{in vivo} Virulence and Transmissibility Properties of the Parental Virus

A Diagnostic Strategy to Determine the Shigatoxin Producing \textit{Escherichia coli} O157 Status of Pens of Feedlot Cattle

Altered Gene Expression in Plants with Constitutive Expression of Mitochondrial Small Heat Shock Protein Suggests the Involvement of Retrograde Regulation in the Heat Stress Response

An Outbreak of Enterotoxaemia in Rabbit in an Organized Farm
Das SC, Mishra N, Mishra S and Bhagwan PSK. 2000. Indian Journal of Comparative Microbiology, Immunology and Infectious Diseases, 21(2):155-156

An Apoptosis Differentiation Program in Human Polymorphonuclear Leukocytes Regulates Resolution of Inflammation

An Evaluation of 3 Methods to Clean Feedlot Water Tanks

An Economic Risk Assessment of the Management of Pregnant Feedlot Heifers in the USA

Analysis of Bovine Trigeminal Ganglia Following Infection with Bovine Herpesvirus I

Antigenicity of \textit{Mycobacterium paratuberculosis} Superoxide Dismutase in Mice
Mullerad J, A Hovav, Y Fishman, RG Barletta and H Bercovier. 2002. Federation of European Microbiology Societies Letters and Immunology and Medical Microbiology, 34:81-88, ARD Journal Series #13610
Antineuroinflammatory Effect of NF-KappaB Essential Modifier-Binding Domain Peptides in the Adoptive Transfer Model of Experimental Allergic Encephalomyelitis

Application of the Genome Sequence to Address Concerns that Mycobacterium avium subspecies paratuberculosis is a Foodborne Pathogen

Association Between the 15 kDa Selenoprotein and UDP-Glucose:Glycoprotein Glucosyltransferase in the Endoplasmic Reticulum of Mammalian Cells

Association of Passive Transfer Levels with Health and Performance in Beef Calves

B-Cell Epitopes in the Immunodominant p-34 Antigen of Mycobacterium avium subsp. paratuberculosis

Behavior of Cattle Toward Devices to Detect Food Safety Pathogens

Biochemical Properties of Membrane-Associated Proteases of Brachyspira pilosicoli Isolated From Humans with Intestinal Disorders

Biological Response to Porcine Respiratory and Reproductive Syndrome Virus in Pigs of Two Genetic Populations

Biosecurity and Bioccontainment of BVDV

Bovine Herpesvirus 5 (BHV-5) Us9 Is Essential for BHV-5 Neuropathogenesis
Cecal Spirochetosis Caused by *Brachyspira pilosicoli* in Commercial Turkeys
#14545

Cell Sorting of Formalin-Treated *Mycobacterium avium* subsp. *paratuberculosis* Expressing GFP Fluorescence
Harris NB, DK Zinniel, M-K Hsieh, JD Cirillo and RG Barletta. 2002. Biotechniques,
32:522-527, ARD Journal Series #13339

Characterization of Protection From Systemic Infection or Disease by Use of a Modified-Live Noncytopathic Bovine Viral Diarrhea Virus Type 1 in Experimentally-Infected Calves
Kelling CL, BD Hunsaker and DJ Steffen. 2005. American Journal of Veterinary Research,
66:1785-1791, ARD Journal Series #14376

Characterization of Cytolethal Distending Toxin of *Campylobacter* Species Isolated From Captive Macaque Monkeys
Dassanayake RP, Zhou Y, Hinkley S, Stryker CJ, Plauche G, Borda JT, Sestak K and
#14670

Cloning, Expression and Characterization of Human Lens Thioredoxin
44:3263-3271, ARD Journal Series #14085

Colonic Spirochetosis of Colony-Raised Rhesus Macaques Associated with *Brachyspira* and *Helicobacter*
Journal Series #13859

Comparative Virulence of Isolates of Bovine Viral Diarrhea Virus Type II in Experimentally Inoculated Six- to Nine-Month-Old Calves
American Journal of Veterinary Research, 63(10):1379-1384, ARD Journal Series #13569

Comparative Pathology and Pathogenesis of Naturally Acquired and Experimentally Induced Colonic Spirochaetosis

Considerations for Bovine Viral Diarrhea (BVD) Testing
RL Larson, BW Brodersen, DM Groteleuschen, BD Hunsaker, W Burdett, KV Brock, RW
Bovine Practitioner, 39(2):96B-100
Construction and Immunogenicity of Recombinant *Mycobacterium bovis* BCG Expressing GP5 and M protein of Porcine Reproductive Respiratory Syndrome Virus

Construction and Characterization of an Infectious cDNA Clone of a Vaccine Strain of Porcine Reproductive and Respiratory Syndrome Virus

Construction and Immunogenicity of Recombinant *Mycoplasma bovis* BCG Expressing GP5 and M Protein of Porcine Reproductive and Respiratory Syndrome Virus

Correlation of Acetate Catabolism and Growth Yield in *Staphylococcus aureus*: Implications for Host-Pathogen Interactions

Cytokines and Synthetic Double-Stranded RNA Augment the T Helper 1 Immune Response of Swine to Porcine Reproductive and Respiratory Syndrome Virus

Decreased Shedding of *Escherichia coli* O157:H7 by Cattle Following Vaccination with Type III Secreted Proteins

Detection of Bovine Viral Diarrhea Virus in Semen after Infection of Seronegative, Post-Pubertal Bulls

Detection and Quantification of Bovine Respiratory Syncytial Virus Using Real-Time Quantitative RT-PCR and Quantitative Competitive RT-PCR Assays

Development of Luminescent *M. avium* subsp. paratuberculosis for Rapid Screening of Vaccine Candidates in Mice
Diabetes can Alter the Signal Transduction in the Lenses of Diabetic Rats and Humans

Diagnostic Survey of Bovine Abortion with Special Reference to *Neospora caninum*
Infection: Importance, Repeated Abortion and Concurrent Infection in Aborted Fetuses in Southern Brazil

Distribution and Biological Activity of Glycerophosphodiester Phosphodiesterase (GlpQ)
Among Spirochetes of the Genus *Borrelia*

Duration of Infection and Proportion of Pigs Persistently Infected with Porcine Productive and Respiratory Syndrome Virus

Ecological Relationships Between the Prevalence of Cattle Shedding *Escherichia coli* O157:H7 and Characteristic of the Cattle or Conditions of the Feedlot Pen

Effect of Infection With Bovine Viral Diarrhea Virus Alone, Rotavirus Alone, or Concurrent Infection with Both on Enteric Disease in Gnotobiotic Neonatal Calves

Effect of Culture Conditions on *Escherichia coli* O157:H7-Mediated Attaching-Effacing Lesions in a Bovine Large Intestinal Mucosal Explant Model

Effects of *Moraxella (Branhamella) ovis* Culture Filtrates on Bovine Erythrocytes, Mononuclear Cells and Corneal Epithelial Cells

Effects of Inorganic and Organic Copper Supplemented to First-Calf Cows on Cow Reproduction and Calf Health and Performance
Enhanced Pathogenicity of *Candida albicans* Pre-treated with Subinhibitory Concentrations of Fluconazole in a Mouse Model of Disseminated Candidiasis

Epidemiologic Tools for Biosecurity and Biocontainment

$Escherichia coli O157:H7 Induces Attaching-Effacing Lesions in Large Intestinal Mucosal Explants from Adult Cattle

$Escherichia coli O157:H7: An Update on Intestinal Colonization and Virulence Mechanisms

Establishment of a Microbiological Profile for an Air-Chilling Poultry Operation in the United States

Evidence of Localization of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) Antigen and RNA in Ovarian Follicles in Gilts

Evolution of Bovine Viral Diarrhea Virus Vaccines

Expression in Cell Culture of Plasmid DNA Encoding the Variants of G of Bovine Respiratory Syncytial Virus and Induction of Antibody Responses in BALB/c Mice

Extra Pancreatic Actions of *Hygrophyla longifolia*

Extra Pancreatic Effects Contributing to the Hypoglycemic Activity of *Artocarpus heterophyllus*

Factors Associated with the Presence of Coliforms in the Feed and Water of Feedlot Cattle

Feline Colonic Microbes and Fatty Acid Transport: Effects of Feeding Cellulose, Beet Pulp and Pectin/Gum Arabic Fibers

Fertility of Yearling Beef Bulls During Mating

First Description of Porcine Colonic Spirochetosis Caused by Brachyspira pilosicoli in Iberian Pigs From Spain

Formation of Retinal Pigment Epithelium in vitro by Transdifferentiation of Neural Retina Cells

Functional Genomics of Mycobacterium tuberculosis: Gene Inactivation and the Study of Pathogenesis, and Development of Vaccines and Antimicrobial Agents

Genome Diversity Among Regional Populations of Francisella tularensis Subspecies tularensis and Francisella tularensis Subspecies bollartica Isolated from the US

Global Differential Gene Expression in Response to Growth Temperature Alteration in Group A Streptococcus

Glutathione Reductase from Human Cataract Lenses can be Revived by Reducing Agents and by a Molecular Chaperone, x-Crystallin
Gradual Development of the Interferon-Gamma and Antibody Responses of Swine to Porcine Reproductive and Respiratory Syndrome Virus

Growth Characteristics of Bartonella henselae in a Novel Liquid Medium: Primary Isolation, Growth-Phase Dependent Phage Induction, and Metabolite Studies

H₂O₂ Stress Sensitivity of Cultured Primary Mouse Lens Epithelial Cells Derived From Wild Type and Thioltransferase Knockout Mice

Herd-Level Risk Factors for Neospora caninum Seroprevalence in Dairy Farms in Southern Brazil
Corbellini LG, Smith DR, Pescadora CA, Schmitz M, Correa A, Steffen DJ and Diemeier D. 2006. Preventive Veterinary Medicine, 74(2-3):130-141, ARD Journal Series #14509

Identification and Expression of a Soybean Nodule-Enhanced PEP-Carboxylase Kinase Gene (NE-PpcK) that Shows Striking Up-/Down-Regulation in vivo

Identification of a Novel Bovine Herpesvirus 1 Transcript Containing a Small Open Reading Frame that is Expressed in Trigeminal Ganglia of Latently Infected Cattle

Identification of Multiple Linear Epitopes of the Plasminogen Activator A (PauA) of Streptococcus uberis with Murine Monoclonal Antibodies

Identification of Common Subpopulations of Non-Sorbitol-Fermenting β-Glucuronidase-Negative Escherichia coli O157:H7 from Bovine Production Environments and Human Clinical Samples

Identification of Neutralizing and Non-Neutralizing Epitopes in the Porcine Reproductive and Respiratory Syndrome Virus GP5 Ectodomain
Identification of Functional Domains within the bICP0 Protein Encoded by Bovine Herpesvirus 1

Identification of Three Clusters of Canine Intestinal Spirochaetes by Biochemical and 16S rDNA Sequence Analysis

Identification of Common Subpopulations of Non-Sorbitol-Fermenting, β-Glucuronidase-Negative Escherichia coli O157:H7 from Bovine Production Environments and Human Clinical Samples

Ileocolitis Associated with Anaerobiospirillum in Cats

Immune Response of Pigs Immunized with Mycobacterium bovis BCG Expressing a Truncated Form of GP5 and M Protein of Porcine Reproductive and Respiratory Syndrome Virus

Immune Response of Pigs Inoculated with Mycobacterium bovis BCG Expressing a Truncated Form of GP5 and M. protein of Porcine Reproductive and Respiratory Syndrome Virus

Immunogenicity of c4127 phoP Salmonella enterica Serovar Typhimurium in Dogs

Immunohistochemistry Used as a Screening Method for Persistent Bovine Viral Diarrhea Virus Infection

163
Impact of Candidate Sire Number and Sire Relatedness on DNA Polymorphism-Based Measures of Exclusion Probability and Probability of Unambiguous Parentage

Improved Technique for Transient Expression and Negative Strand Virus Rescue Using Fowl Pox T7 Recombinant Virus in Mammalian Cells

In vitro Serial Passage of *Staphylococcus aureus*: Changes in Physiology, Virulence Factor Production, and *agr* Nucleotide Sequence

In situ Hybridization Detection of Bovine Respiratory Syncytial Virus in the Lung of Experimentally Infected Lambs

In vitro and in vivo Translational Efficiencies of the 5' Untranslated Region From Eight Genotype 2 Bovine Viral Diarrhea Virus Field Isolates

Incidence, Duration, and Prevalence of *Escherichia coli* O157:H7 Fecal Shedding by Feedlot Cattle During the Finishing Period

Incidence, Duration and Prevalence of *Escherichia coli* O157:H7 Fecal Shedding by Feedlot Cattle During the Feeding Period

Induction of Thioltransferase and Thioredoxin/ Thioredoxin Reductase Systems in Cultured Pig Lenses Under Oxidative Stress

Infection of Cattle with a Bovine Herpesvirus 1 Strain that Contains a Mutation in the Latency-Related Gene Leads to Increased Apoptosis in Trigeminal Ganglia During the Transition from Acute Infection to Latency
Influence of N-Linked Glycosylation of Porcine Reproductive and Respiratory Syndrome Virus GP5 on Virus Infectivity, Antigenicity, and Ability to Induce Neutralizing Antibodies

Insertion and Deletion Analyses Identify Regions of Non-Structural Protein 5A of Hepatitis C Virus that are Dispensable for Viral Genome Replication

Insulin Signaling is Necessary for Vitellogenesis in Drosophila melanogaster Independent of the Roles of Juvenile Hormone and Ecdysteroids: Female Sterility of the chico Insulin Signaling Mutation is Autonomous to the Ovary

Intracellular Localization of the p35 Subunit of Murine IL-12

Isolation and Characterization of Endophytic Colonizing Bacteria from Agronomic Crops and Prairie Plants

Johne's Disease, Inflammatory Bowel Disease and Mycobacterium paratuberculosis

Killing of Mycobacterium avium by a Mycobacteriophage Delivered by a Non-Virulent Mycobacterium: A Model for Phage Therapy of Intracellular Bacterial Pathogens

Legionella pneumophila Entry Gene rtxA is Involved in Virulence

Measurements of Fitness and Competition in Commensal Escherichia coli and E. coli O157:H7 Strains
Minimal Prophylactic Concentration of Dietary Zinc Compounds in a Mouse Model of Swine Dysentery

Mitochondrial Thioltransferase (Glutaredoxin 2) has GSH-Dependent and Thioredoxin Reductase-Dependent Peroxidase Activities in vitro and in Lens Epithelial Cells

Molecular Cloning, Sequencing, and Characterization of Bovine Transporter Associated with Antigen Processing

Mucin Biosynthesis: Bovine C2GnT-M Gene, Tissue-Specific Expression, and Herpes Virus-4 Homologue

Mycobacterium smegmatis D-alanine Racemase Mutants are not Dependent on D-alanine for Growth
Chacon 0, Z Feng, NB Harris, NE Cáceres, LG Adams and RG Barletta. 2002. Antimicrobial Agents and Chemotherapy, 46:47-54, ARD Journal Series #13366

Mycobacterium smegmatis L-alanine Dehydrogenase (Ald) is Required for Proficient Utilization of Alanine as a Sole Nitrogen Source and Sustained Anaerobic Growth

Non-Symbiotic Hemoglobins in Rice are Expressed During Germination and in Differentiating Cell Types

Noncytopathic Bovine Viral Diarrhea Virus can Persist in Testicular Tissue After Vaccination of Peri-Pubertal Bulls But Prevents Subsequent Infection
Opposing Effects of Bovine Papillomavirus Type 1 E6 and E7 Genes on Fas-Mediated Apoptosis

Outcome of Equids with Clinical Signs of West Nile Virus Infection and Factors Associated with Death

Parelaphostronglus tenuis in Captive Pronghorn Antelope

Parelaphostrongylus Tenius in Captive Pronghorn Antelope (Antilocapra americana) in Nebraska

Passive Transfer of Virus Specific Antibodies Confers Protection Against Reproductive Failure Induced by a Virulent Strain of Porcine Reproductive and Respiratory Syndrome Virus and Establishes Sterilizing Immunity

Penicillin-Binding Proteins in the Pathogenic Intestinal Spirochete Brachyspira pilosicoli

Persistent Bovine Viral Diarrhea Virus Infection in Beef Herds
Wittum TE, DM Grotelueschen, IZV Brock, W Kvasnicka, J Floyd, CL Kelling and KG Odde. Preventive Veterinary Medicine, 49:83-94

Perturbations in Homocysteine-Linked Redox Homeostasis in a Murine Model for Hyperhomocysteinemia

Phagocytosis and Intracellular Survival of Mycobacterium avium subsp. paratuberculosis in Bovine Monocytes and a Macrophage Cell Line
Phosphorylation of Residues Within the Amino- and Carboxy-Terminal Domains of the Phosphoprotein P of Vesicular Stomatitis Virus is Indispensable for Virus Growth

Platelet Derived Growth Factor (PDGF) -Induced Redox Oxygen Species In the Lens Epithelial Cells: The Redox Signaling

Possible Toxicity of a Medicinal Plant Asteracantha longifolia Ceylon

Primary Infection, Latency and Reactivation of Bovine Herpesvirus Type 5 (BHV-5) in the Bovine Nervous System

Progress Toward Characterization of the Group A Streptococcus Metagenome: Complete Genome Sequence of a Macrolide-Resistant Serotype M6 Strain

Protection of Translation Initiation Factor eIF2 Phosphorylation Correlates with eIF2-Associated Glycoprotein p67 Levels and Requires the Lysine-Rich Domain I of p67

Quorum Sensing Control of Biofilm Factors in Staphylococcus epidermidis

Recovery and Characterisation of a Chimeric Rinderpest Virus with the Glycoproteins of Peste Des Petits Ruminants Virus: Homologous F and H Proteins are Required for Virus Viability

Cloning and Sequencing of Thioredoxin Binding Protein-2 (TBP-2) from Human Lens Epithelial Cells
Relative Importance of Heat-Labile Enterotoxin in the Causation of Severe Diarrheal Disease in the Gnotobiotic Piglet Model by a Strain of *Escherichia coli* that Produces Multiple Enterotoxins

Revival of Inactive Glyceraldehydes 3-Phosphate Dehydrogenase in Human Cataract Lenses by Reduction

Rgg Coordinates Virulence Factor Synthesis and Metabolism in *Streptococcus pyogenes.*

Ribozyme Termination of RNA Transcripts Down-Regulate Seed Fatty Acid Genes in Transgenic Soybean

In Vivo and In Vitro Phosphorylation of Membrane and Soluble Forms of Soybean Nodule Sucrose Synthase (Nodulin-100)

Role of the Hypervariable Hinge Region of the Phosphoprotein P of Vesicular Stomatitis Virus in Viral RNA Synthesis and Assembly of Infectious Virus Particles

Role of Neutralizing Antibodies in PRRSV Protective Immunity

Roles of *Mycobacterium smegmatis* D-alanine-Dalanine Ligase and D-alanine Racemase in the Mechanisms of Action and Resistance to the Peptidoglycan Inhibitor D-Cycloserine

Serologic Survey of Select Infectious Diseases in Coyotes and Raccoons in Nebraska

Serologic Marker Candidates Identified Amongst B-Cell Linear Epitopes of Nsp2 and Structural Proteins of a North American Strain of Porcine Reproductive and Respiratory Syndrome Virus
Sodium Phenylacetate Inhibits the Adoptive Transfer of Experimental Allergic Encephalomyelitis in SJL/J Mice at Multiple Steps

Src Regulates the Activity of the Mammalian Formin Protein FHOD1

Staphylococcus aureus ClpC is Required Stress Resistance, Aconitase Activity, Growth Recovery and Death

Staphylococcus epidermidis Polysaccharide Intercellular Adhesin Production Significantly Increases During Tricarboxylic Acid Cycle Stress

Staphylococcus aureus Aconitase Inactivation Unexpectedly Inhibits Post-Exponential Growth and Enhances Stationary Phase Survival

Synthesis and Deformylation of *Staphylococcus aureus* D-Toxin are Linked to Tricarboxylic Acid Cycle Activity

Testing and Management Strategies for Effective Beef and Dairy Herd BVDV Biosecurity Programs

The Possible Physiological Function of Thioltransferase in Cells

The Genome of Swinepox Virus
The Presence of a Transsulfuration Pathway in the Lens: A New Oxidative Stress Defense System

The Latency-Related Gene Encoded by Bovine Herpesvirus 1 Promotes Virus Growth and Reactivation from Latency in Tonsils of Infected Calves

The Latent Membrane Protein 1 of Epstein-Barr Virus Establishes an Antiviral State via Induction of Interferon-Stimulated Genes

The Immunogenicity of Mycobacterium paratuberculosis 85B Antigen

The Cytolethal Distending Toxin B Subunit of Helicobacter hepaticus is a Ca^{2+}- and Mg^{2+}-Dependent Neutral Nuclease

The Mammalian Formin FHOD1 Interacts with the ERK MAP Kinase Pathway

The Herpes Simplex Virus Type 1 Locus that Encodes the Latency-Associated Transcript Enhances the Frequency of Encephalitis in Male BALB/c Mice

Thioltransferase as an Ascorbate Recycling Enzyme in Human Lens Epithelial Cells

Thioltransferase Mediated Ascorbate Recycling in Human Lens Epithelial Cells

Thioredoxin, Thioredoxin Reductase and Crystalline Revive the Inactivated Glyceraldehyde 3-Phosphate Dehydrogenase in Human Aged and Cataract Lenses

Tibial Hemimelia Meningocele, and Abdominal Hernia in Shorthorn Cattle

TNF-Related Apoptosis-Inducing Ligand Mediates Human Neuronal Apoptosis: Links to HIV-1-Associated Dementia

Transmission of Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) to Age-Matched Sentinel Pigs

Use of Rope-Devices to Describe and Explain the Feedlot Ecology of Escherichia coli O157:H7 by Time and Place

Use of Rope-Devices to Describe and Explain the Feedlot Ecology of Salmonella by Time and Place

Use of a Portable Real-time Reverse Transcriptase-Polymerase Chain Reaction Assay for Rapid Detection of Foot-and-Mouth Disease Virus

Use of a Modified Live Vaccine to Prevent Persistent Testicular Infection with Bovine Viral Diarrhea Virus

Very Low Ethanol Concentrations Affect Viability and Growth Recovery in Post-Stationary Staphylococcus aureus Populations
Vesicular Stomatitis Virus Infection and Neuropathogenesis in the Murine Model are Associated with Apoptosis

Visualization of Intracellular Transport of Vesicular Stomatitis Virus Nucleocapsids in Living Cells

West Nile Virus Infection in Reindeer (Rangifer tarandus)
Characterization of *Brachyspira* and *Helicobacter* Associated with the Colonic Epithelium of North American Opossums
Chia SY, Stryker CJ and Duhamel GE. 2006. Undergraduate Research Conference, University of Nebraska-Lincoln, April 6, #116 poster

Co-Segregation of Cytolethal Distending Toxin B (*cdtB*) Variant III Gene and Cytotoxic Necrotizing Factor I (*cnf-I*) Gene Among Feline and Canine *Escherichia coli* sero Group O6
Jinadasa RN, DebRoy C and Duhamel GE. 2006. 86th Annual Meeting Conference Research Workers in Animal Diseases, Chicago, Illinois, December 3-5, P15, poster presentation

Immunoinhibitory Activity of Helicobacter Hepaticus Cytolethal Distending Toxin Against Lymphocytes from Inbred Strains of Mice
Jinadasa RN, Schmaltz RJ, Liyanage NM, Dassanayake RP, Weber JS and Duhamel GE. 2006. 3rd Annual Meeting of the University of Nebraska-Lincoln Microbiology Initiative, Beadle Center, Lincoln, Nebraska, August 14, poster presentation

Lameness in Feedlot Cattle
Griffin, DD. 2006. The American Association of Bovine Practitioners (AABP) Proceedings, Minneapolis, MN

Large-Scale Clinical Trial to Evaluate an Experimental *Escherichia coli* Vaccine

Large-Scale Clinical Trial to Evaluate an Experimental *Escherichia coli* O157:H7 Vaccine
Peterson RE, DR Smith, RA Moxley, TJ Klopfenstein, S Hinkley and GE Erickson. 2006. Nebraska Beef Report, Agricultural Research Division, University of Nebraska Cooperative Extension, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln, MP88-A, pgs 70-71

Role of Chlamydospores in a Mouse Model of Disseminated Candidiasis
Navarathna DHMLP, Kebaara B, Duhamel GE and Nickerson KW. 2006. 3rd Annual Meeting of the University of Nebraska-Lincoln Microbiology Initiative, Beadle Center, Lincoln, Nebraska, August 14, oral presentation

Vaccination for *Escherichia coli* O157:H7 in Market Ready Feedlot Cattle
Antibiotic Selection and Use in Beef Feedlots
Griffin DD. 2006. Howard’s Current Veterinary Therapy of Food Animals

Construction of a Full-Length cDNA Infectious Clone of a European-Like Type 1 PRRSV Isolated in the US

Managing Quality Assurance in the Beef Cow Calf Herd
Griffin DD. 2006. Howard’s Current Veterinary Therapy of Food Animals

Mycobacterium bovis Infection in Animals and Humans

Neonatal Calf Enteric Disease Vaccines

Oxidation Damage on Ocular Tissues

Oxidative Stress and the Host-Pathogen Interaction

Porcine Colonic Spirochetosis/Intestinal Spirochetosis

Porcine Reproductive and Respiratory Syndrome Virus
Department of Veterinary and Biomedical Sciences
Other Publications—Public Press or Newsletters, 2006

• RG Barletta

Búsqueda de Nuevas Alternativas Terapéuticas para el Control de la Tuberculosis (Search for New Therapeutic Alternatives for the Control of Tuberculosis)
Realpe-Quintero T, Chacon O, Barletta RG and Robledo Restrepo JA. 2006. Universitas Cientifica, Universidad Pontificia Bolivariana, Medellín, Colombia

• A Wohlers

BVD The Profit Robber, Scottsbluff Star-Herald, 2006
Value in Pregnancy testing Cattle, Scottsbluff Star-Herald, 2006
Health Aspects of the Early weaned Calf, Scottsbluff Star-Herald, 2006
Our Children and Calf Scours, Scottsbluff Star-Herald, 2006
Biosecurity in Beef Production, Scottsbluff Star-Herald, 2006
Predicting Disease in Cattle, Scottsbluff Star-Herald, 2006
Scours is a Modern Disease, Scottsbluff Star-Herald, 2006
Control Flies Before They Control Your Cattle, 2006
Livestock Carcass Disposal, Scottsbluff star-Herald, 2006
The Art of Beef Production, Star-Herald, 2006
Department of Veterinary and Biomedical Sciences
Extension Publications, 2006

NebFact: Blue-Green Algae Poisoning of Animals for Pet and Animal Owners
Carlson, MP and DR Smith. 2006. In progress

NebGuide: Blue-Green Algae Poisoning of Animals
Carlson, MP and DR Smith. 2006. In progress

Your Role in Preventing BSE
Smith, DR. 2006. NDA Bovine Spongiform Encephalopathy Feed Regulations pamphlet
Department of Veterinary and Biomedical Sciences
Computer Software, Other Publications or Media Developed in 2006

• Bruce W. Brodersen
 • List owner for NEBVET-L
 • List owner for NEB-SWINEVETS

• Alan R. Doster
 • Assembled 135 kodachromes photos and digital images of various wildlife diseases with descriptions for the Nebraska Game and Parks Commission (NGPC)

• Zhou You (Joe)
 • High resolution digital imaging system for transmission electron microscope
Department of Veterinary and Biomedical Sciences
Presentations for 2006

A Polymorphic Glucocorticoid Receptor in a Mouse Population May Explain Inherited Altered Stress Response and Increased Anxiety-Type Behaviors

A Large-Scale Clinical Trial Evaluating an Escherichia coli O157:H7 Type III Secreted Protein Vaccine for Cattle in Commercial Feedlot Systems
Smith DR, RA Moxley, RE Peterson, TJ Klopfenstein, GE Erickson, S Hinkley, G Bretschneider and EM Berberov. 2006. 6th International Symposium on Shiga Toxin (Verocytotoxin) Producing E. coli Infections (VTEC 2006), Melbourne, Australia, poster #P12.1.04 with published abstract

A New Recessive X-linked Mutant, Belly Hair Loss (bhl) with Strain-Specific Differences in Phenotype
Weber JS and Steffen DJ. 2006. 19th International Mouse Genome Conference, Strasbourg, France

A Case of Suspected Anatoxin Toxicosis in a Dog
Carlson MP, BW Brodersen, DD Snow and ML Pauli. 2006. American Association of Veterinary Laboratory Diagnosticians (AAVLD), 49th Annual Conference, Minneapolis, MN

A Large-Scale Clinical Trial Evaluating an Escherichia coli O157:H7 Type III Secreted Protein Vaccine for Cattle in Commercial Feedlot Systems
Smith DR, Moxley RA, Peterson RE, Klopfenstein TJ, Erickson GE, Hinkley S, Bretschneider G and Berberov EM. 2006. 6th International Symposium on Shiga Toxin (Verocytotoxin) Producing E. coli Infections (VTEC 2006), Melbourne, Australia, poster presentation #P12.1.04 with published abstract

A Large Clinical Trial of a Cattle Vaccine Against Type III Secreted Proteins of E. coli O157:H7
Smith DR, Peterson RE, Moxley RA, Klopfenstein TJ, Erickson GE and Hinkley S. 2006. International Symposium on Veterinary Epidemiology and Economics (ISVEE XI), Cairns, Australia, oral presentation with published abstract

Adding Value to Feeder Cattle
Wohlers A. 2006. Nebraska Cattlemen, Alliance, NE, 55 producers

Annual Symposium of the Center for Infectious Disease Research and Vaccinology
Pattnaik AK. 2006. South Dakota State University, Brookings, SD
Asia Pacific Congress
Pattnaik AK. 2006. Medical Virology, New Delhi, India

Antibiotic Selection and Use
Griffin DD. 2006. Nebraska Veterinary Medical Association, Omaha, NE

Antibiotic Selection and Use Series
Griffin DD. 2006. Pfizer Animal Health, Roanoke, VA

Antibiotic Selection and Use

Antibiotic Selection and Use Series
Griffin DD. 2006. Pfizer Animal Health, Buffalo, NY

Applying Population Dynamics to Control and Prevention of Neonatal Diarrhea
Smith DR. 2006. Indiana Veterinary Medical Association Annual Convention, Indianapolis, IN, invited oral presentation and paper

Applying Biosecurity and Biocontainment to Control Disease in Cattle Populations: E. coli O157:H7, Johne’s Disease, and Calf Scours
Smith DR. 2006. Beef Industry Research Exchange, North Platte, NE

Applying Population Dynamics to Diagnosis and Control of Johne’s Disease
Smith DR. 2006. Indiana Veterinary Medical Association Annual Convention, Indianapolis, IN, invited oral presentation and paper

Beef Cattle Production Management and Applied Biosecurity Workshop
Griffin DD. 2006. Tennessee Veterinary Medical Association, Franklin, TN

Beef Cattle Production Management and Applied Biosecurity Workshop
Griffin DD. 2006. Madison, WI

Beef Cattle Applied Biosecurity Workshop
Griffin DD. 2006. Texas A&M University, College Station, TX

Biosecurity Workshop
Griffin DD. 2006. American Association of Bovine Practitioners (AABP), Minneapolis, MN

Bovine Spongiform Encephalopathy: Tests and Control
Smith DR. 2006. Nebraska Beef Feedlot Roundtable, Columbus, Lexington and Gering, NE
Bovine Spongiform Encephalopathy: Tests and Control
Moxley RA and Smith DR. 2006. Presentation to Japanese Agricultural Students, University of Nebraska-Lincoln, Department of Animal Science

BQA and Production Management
Griffin DD. 2006. Missouri Veterinary Medical Association, Branson, MO

Beef Cattle Production Management and Applied Biosecurity Workshop
Griffin DD. 2006. Hot Springs, AR

Breeding Soundness Examination of Bulls
GP Rupp. 2006. Nebraska Veterinary Medical Association, Hastings, Nebraska

BVDV Control Plans: Components, Setting and Achieving Goals
Smith DR. 2006. NCBA Pre-Conference BVDV Symposium, Denver, CO, invited oral presentation and paper

Calf Losses
Rupp GP. 2006. Four State Beef Conference

Characterization of the Influence of NPRO on the Virulence of Noncytopathic Bovine Viral Diarrhea Virus in Calves

Characterization of Brachyspira and Helicobacter Associated with the Colonic Epithelium of North American Opossums
Chia SY, Stryker CJ and Duhamel GE. 2006. Undergraduate Research Conference, University of Nebraska-Lincoln, #116 Poster Presentation

Characterization of Protection Against Replication of Bovine Viral Diarrhea Virus Type 2 in Calves with a Modified-Live Noncytopathic Bovine Viral Diarrhea Virus Type 1 Vaccine

Co-Segregation of Cytolethal Distending Toxin B (cdtB) Variant III Gene and Cytotoxic Necrotizing Factor I (cnf-I) Gene Among Feline and Canine Escherichia coli Serogroup O6
Jinadasa RN, DebRoy C and Duhamel GE. 2006. 86th Annual Meeting Conference Research Workers in Animal Diseases, Chicago, Illinois, poster presentation

Comparative Analyses Of Lesions and Viral Antigen Distribution in Alpacas and Calves Persistently Infected with Bovine Viral Diarrhea Virus Type Ib
JN Henningson, CL Topliff, DJ Steffen, BW Brodersen, D Bedenice, RJ Callan, WE Davis, GP Rupp, DR Smith and CL Kelling. 2006. American College of Veterinary Pathologist Annual Meeting, Phoenix AZ, presentation of refereed poster and abstract
Control of Platelet-Derived Growth Factor (PDGF) Induced Reactive Oxygen Species (ROS) in the Lens Epithelial Cells
Lou MF and Chen C-W. 2006. 6th ACRC Conference, Beijing, China

Controlling *Escherichia coli* O157:H7 in Feedlot Cattle: A Population Approach
Smith DR. 2006. Seminar: Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln

Current Status of BVDV in the United States: BVDV Infections, Diagnostic Technologies, and Disease Control Opportunities
Steffen, DJ. 2006. Schering Plough Animal Health Strategic Meeting, invited presentation

Current Improvements Leading to a New Generation of PRRSV Vaccines Beyond Year 2006
Osorio FA. 2006. Presented at the SYVA Swine Technical Days Tenerife, Spain

Development and Preliminary Characterization of a Candidate Mutant Vaccine for *Mycobacterium avium subsp. paratuberculosis* (Map)

Development of New Generation PRRSV Vaccines
Osorio FA. 2006. Presentation at the Zhejiang University-Iowa State University Ensminger International School on Swine Diseases, Hangzhou, China

Diagnosis of Emerging Congenital Diseases in Calves
Steffen, DJ. 2006. Nebraska Veterinary Medical Association Summer Meeting, invited presentation with abstract

Diagnostic Approaches to Congenital Defects: Congenital Defects Genetic and Environmental
Steffen DJ. 2006. The Iowa Veterinary Medical Association Annual Meeting, invited with funding to present in the Bovine Session

Diagnostic Approaches to Congenital Defects and Constructing a Control Program
Steffen DJ. 2006. American Society for Theriogenology Annual Meeting, Charleston, SC, invited with funding, presentation on currently important diseases and structuring control programs

Diseases of Swine
Doster AR. 2006. American Feed and Grain Association, University of Nebraska-Lincoln, Lincoln, NE, oral presentation

Diseases of Deer
Doster AR. 2006. Nebraska Cooperative Extension Program, Nebraska Wild Game Meat Safety Program, Adams County, Hastings, NE, oral presentation
Does Vaccinating Cattle Against Type III Secreted Proteins of *Escherichia coli* O157:H7 Prevent Colonization?
Smith DR, RE Peterson, RA Moxley, TJ Klopfenstein, GE Erickson and S Hinkley. 2006. International Symposium on Veterinary Epidemiology and Economics (ISVEE XI), Cairns, Australia, Poster presentation with published abstract

Ear Notch Extract PCR - A Cost Effective Approach for Screening Feedlot Cattle
Steffen, DJ. 2006. BVD Control: The Future is Now, Diagnostic and Surveillance, United States Department of Agriculture (USDA), National Animal Disease Center, Agriculture Research Service, Refereed presentation with abstracts published in proceedings

Ear Notch Extract PCR - A Cost Effective Approach for Diagnosing PI's in feedlots
Steffen, DJ. 2006. Conference of Research Workers on Animal Diseases Special Semiannual BVDV workshop

Effect of Regional Vaccination Within the Feedyard on *Escherichia coli* O157:H7 Rectal Colonization, Fecal Shedding, and Hide Contamination
Smith DR, RA Moxley, TJ Klopfenstein and GE Erickson. 2006. Conference of Research Workers in Animal Diseases, Chicago, Illinois, oral presentation with published abstract #110

Effect of *Lactobacillus acidophilus* Strain NP51 on *Escherichia coli* O157:H7 Fecal Shedding and Finishing Performance in Beef Feedlot Cattle
Moxley RA, DR Smith, TJ Klopfenstein, GE Erickson, JD Folmer, RE Peterson and S Hinkley. 2006. 6th International Symposium on Shiga Toxin (Verocytotoxin) Producing *E. coli* Infections (VTEC 2006), Melbourne, Australia, poster #P11.2.05 with published abstract

Effect of Vaccination Within the Feedyard on *Escherichia coli* O157:H7 Colonization, Fecal Shedding, and Hide Contamination

Effect of Vaccinating Against Type III Secreted Proteins of *E. coli* O157:H7 on its Pre- and Post-Harvest Occurrence on Cattle Hides

Effect of Regional Vaccination within the Feedyard on *Escherichia coli* O157:H7 Rectal Colonization, Fecal Shedding, and Hide Contamination
Smith DR, Moxley RA, Klopfenstein TJ and Erickson G. 2006. 6th International Symposium on Shiga Toxin (Verocytotoxin) Producing *E. coli* Infections (VTEC 2006), Melbourne, Australia, oral presentation with published abstract
Effect of Regional Vaccination within the Feedyard on *Escherichia coli* O157:H7 Rectal Colonization, Fecal Shedding, and Hide Contamination

Smith DR, Moxley RA, Klopfenstein TJ and Erickson GE. 2006. Conference of Research Workers in Animal Diseases, Chicago, Illinois, Oral presentation with published abstract #110

Effect of *Lactobacillus acidophilus* Srain NP51 on *Escherichia coli* O157:H7 Fecal Shedding and Finishing Performance in Beef Feedlot Cattle

Moxley RA, Smith DR, Klopfenstein TJ, Erickson GE, Folmer JD, Peterson RE and Hinkley S. 2006. 6th International Symposium on Shiga Toxin (Verocytotoxin) Producing *E. coli* Infections (VTEC 2006), Melbourne, Australia, poster presentation #P11.2.05 with published abstract

Effect of Dosage Number of an *Escherichia coli* O157:H7 Type III Secreted Protein Vaccine on Fecal Shedding and Herd Immunity in Feedlot Cattle

Smith DR, Moxley RA, Peterson RE, Klopfenstein TJ, Erickson GE, Hinkley S and Rogan D. 2006. 6th International Symposium on Shiga Toxin (Verocytotoxin) Producing *E. coli* Infections (VTEC 2006), Melbourne, Australia, poster presentation #P12.1.05 with published abstract

Effect of Vaccination Within the Feedyard on *Escherichia coli* O157:H7 Colonization, Fecal Shedding, and Hide Contamination

Moxley RA, Smith DR, Klopfenstein TJ and Erickson GE. 2006. NCBA Cattle Industry Summer Conference, Beef Safety Committee, Reno, Nevada, oral presentation

Effect of a Type III Secreted Protein Vaccine on *Escherichia coli* O157:H7 Fecal Shedding and Rectal Colonization of Feedlot Cattle

Moxley RA, Smith DR, Klopfenstein TJ, Erickson GE, Peterson RE, Hinkley S, Bretschneider G, Berberov EM and Rogan D. 2006. 6th International Symposium on Shiga Toxin (Verocytotoxin) Producing *E. coli* Infections (VTEC 2006), Melbourne, Australia, poster presentation #P11.2.06 with published abstract

Effect of Vaccinating Against Type III Secreted Proteins of *E. coli* O157:H7 on its Pre- and Post-Harvest Occurrence on Cattle Hides

Effect of a Type III Secreted Protein Vaccine on *Escherichia coli* O157:H7 Fecal Shedding and Rectal Colonization of Feedlot Cattle

Moxley RA, DR Smith, TJ Klopfenstein, GE Erickson, RE Peterson, S Hinkley, G Bretschneider, EM Berberov and D Rogan. 2006. 6th International Symposium on Shiga Toxin (Verocytotoxin) Producing *E. coli* Infections (VTEC 2006), Melbourne, Australia, poster #P11.2.06 with published abstract

184
Escherichia coli O157:H7
Moxley RA. 2006. Presentation to Japanese Agricultural Students, University of Nebraska-Lincoln, Department of Animal Science

Gram-Positive Pathogenesis Meeting
Somerville, GA. 2006. Omaha, NE, students presented posters

Handling Drugs Safely
Wohlers A. 2006. Riverside Zoo Workshop, Scottsbluff, NE, 10 zoo personnel

Hazards of Animal Disease
Wohler A. 2006. Farm and Ranch Conference, Scottsbluff, NE, 65 participants

Health Issues Related to Livestock Production
Smith DR. 2006. Annual Meeting of the Nebraska Holstein Association, York, NE

IL-1β Mediated Activation of Bovine Monocytes Promotes Phagosome-Lysosome Fusion and Inhibits Intracellular Survival of M. paratuberculosis

Immunoinhibitory Activity of Helicobacter hepaticus Cytolethal Distending Toxin Against Lymphocytes from Inbred Strains of Mice
Jinadasa RN, Schmalz RJ, Liyanage NM, Dassanayake RP, Weber JS and Duhamel GE. 2006. 3rd Annual Meeting of the University of Nebraska-Lincoln, Microbiology Initiative, Beadle Center, Lincoln, Nebraska, poster presentation

Influence of Bovine Respiratory Syncytial Virus F Protein N-Glycosylation on Host Cell Fusion
Mori Y, Klink HA, Topliff CL and Kelling CL. 2006. Midwest Biomedical Student Research Forum

Influence of Mutations in the 5' Untranslated Region Internal Ribosomal Entry Site and the NPRO Coding Region on in vivo Translational Efficiencies of Bovine Viral Diarrhea Virus Genotype 2 Isolates

Innate Immunity and Staphylococcal Pathogenesis
Somerville, GA. 2006. Morningside College in Iowa

Intervention Strategies to Reduce Escherichia coli O157:H7 in Beef Feedyards
Smith DR, Moxley RA, Klopfenstein TJ and Erickson GE. 2006. Project Director's Meeting, USDA National Integrated Food Safety Initiative, Washington DC, oral presentation with abstract

185
Is Vaccination Effective for the Control of *Escherichia coli* O157:H7 in Feedlot Cattle?
Smith DR. 2006. Smithfield Beef Group, Green Bay, WI

Making Decisions About Bovine Virus Diarrhea
Wohlers A. 2006. IRM Pen of 5 Winter Meeting, Harrisburg, NE, 80 producers

Mitochondrial Thioltransferase (glutaredoxin 2) has GSH-Dependent and Thioredoxin Reductase-Dependent Peroxidase Activities *in vitro* and in Lens Epithelial Cells
Fernando MR, Lechner JM, Löfgren S, Gladyshev VN and Lou MF. 2006. Presented at the Annual Retreat of the Nebraska Redox Biology Center, Nebraska City, NE

Necropsy and Laboratory Practices of US Diagnostic Laboratories

Negative-Strand RNA Viruses
AK Pattanik. 2006. International Conference, Salamanca, Spain

Network on Antimicrobial Resistance in *Staphylococcus aureus* (NARSA)
Somerville, GA. 2006. Meeting attendee, Richmond, VA

ORF5 and ORF2 are the Main Structural Genes Carrying Determinants of Virulence of PRRSV

Serological Marker Candidates Identified on Structural and Non-Structural Proteins of PRRSV

Persistent Testicular Infection with Bovine Viral Diarrhea Virus Due to Field Exposure to Persistently Infected Heifers
Givens MD, Riddell KP, Abrams MS, Walz PH, Zhang Y, Brodersen BW, Carson RL and Stringfellow DA. 2006. Annual Meeting of the American Association of Veterinary Laboratory Diagnosticians

Pointers on Shipping Specimens to the Veterinary Diagnostic Laboratory
Doster AR. 2006. Veterinary Technician Continuing Education Seminar, Lincoln, NE, oral presentation

Pooled PCR on Skin Extract as a Strategy for BVDV Screening
Steffen DJ, Brodersen BW, Galeota JA, Smith DR, Rupp GA and Kelling CL. 2006. AAVLD Annual Meeting, Minneapolis MN

186
Porcine Enterovirus Infection in Two Groups of Feeder Pigs
Henningson J, P Graham, K Schumacher and AR Doster. 2006. North Central Conference of Laboratory Diagnosticians, Lincoln, NE, presentation by Dr. Jamie Henningson

Predicting Disease in Cattle
Wohlers A. 2006. IRM Pen of 5 wrap up, Chadron, NE, 60 producers

Prevention of Neonatal Calf Diarrhea with the Sandhills Calving System
Smith DR. 2006. Texas A&M University Annual Food Animal Conference, College Station, TX, invited oral presentation with proceedings

Protecting Ourselves From Dangerous Dog Attacks
Wohlers A. 2006. Panhandle Mental Fall Regional Conference, Scottsbluff, NE, 62 home health providers

Protective Immunity and Vaccines Against PRRSV
Osorio FA. 2006. Presentation at the SYVA Swine Technical Days, Marbella, Spain

PRRSV Immunological Issues
Osorio FA. 2006. Presentation at Modern Veterinary Products, Omaha, Nebraska

PRRSV Protective Immunity and Vaccines
Osorio FA. 2006. Update 2006 and Beyond, presented at the First Annual Meeting of the Canadian Network on Swine Infectious Diseases (SIDNet) University of Montreal, School of Veterinary Medicine, Saint-Hyacinthe, Quebec, Canada

PRRSV Vaccines
Osorio FA. 2006. Presentation at the PRRSV and Circovirus Days, Universidad Autonoma de Barcelona, Bellaterra, Catalunyua, Spain

Quality Assurance Management
Griffin DD. 2006. Pennsylvania Beef Council, Harrisburg, PA

Reduced Intestinal Colonization of Adult Beef Cattle by Escherichia coli O157:H7 tir Deletion and Nalidixic Acid-Resistant Mutants Lacking Flagellar Expression
Bretschneider G, EM Berberov and RA Moxley. 2006. 6th International Symposium on Shiga Toxin (Verocytotoxin) Producing E. coli Infections (VTEC 2006), Melbourne, Australia, poster #P09.1.04 with published abstract

Reversible Regulation of Human Lens Low Molecular Weight Protein Tyrosine Phosphatase by Oxidation
Xing K-Y, Raza A and Lou MF. 2006. 6th ACRC Conference, Beijing, China
Role of *Chlamydospores* in a Mouse Model of Disseminated Candidiasis
Navarathna DHMLP, Kebaara B, Duhamel GE and Nickerson KW. 2006. 3rd Annual Meeting of the University of Nebraska-Lincoln, Microbiology Initiative, Beadle Center, Lincoln, Nebraska, oral presentation

Safe Use of Animal Medicines
Wohlers A. 2006. Farm and Ranch Health Conference, Scottsbluff, NE, 65 participants

Serological IgG Responses against *Escherichia coli* O157:H7 Type III Secreted Proteins, Intimin and O157 Lipopolysaccharide in Adult Beef Cattle Following Experimental Infection

Staphylococcal Metabolism in a Biofilm
Somerville, GA. 2006. Great Plains Infectious Disease Meeting, University of Kansas, platform speaker

Staphylococcal Metabolism and Life in a Biofilm
Somerville, GA. 2006. University of Nebraska Medical Center, Gram-positive pathogenesis meeting, student presented a presentation

Staphylococcal Metabolism and Life in a Biofilm
Somerville, GA. 2006. University of Nebraska-Lincoln, seminar

Strategies for Controlling Neonatal Diarrhea in Cow-Calf Herds: The Sandhills Calving System
Smith DR. 2006. Alliance for Bovine Health, Minneapolis, MN, oral and proceedings

Strategies for Controlling Neonatal Diarrhea in Cow-Calf Herds -the Sandhills Calving System

Structural Genes Important for Virulence of Porcine Reproductive and Respiratory Syndrome Virus

Mapping of B-Cell Linear Epitopes on nsp2 and Structural Proteins of a North American Strain of Porcine Reproductive and Respiratory Syndrome Virus
M de Lima, AK Pattnaik, EF Flores and FA Osorio. 2006. Presentation at the 25th Annual Meeting of the American Society for Virology, Madison, WI, abstract #W27-10
Taking the Principles of Population Dynamics and Disease Control from the Research Trial to the Farm
Smith DR. 2006. Indiana Veterinary Medical Association Annual Convention, Indianapolis, IN, invited oral presentation and paper

The Pig’s Response to Porcine Reproductive and Respiratory Syndrome Virus (PRRSV): Implications for Protective Immunity and Vaccine Improvement
Osorio FA. 2006. Presentation at the Virginia-Maryland Regional College of Veterinary Medicine, Maryland Campus, College Park, MD

The Extension Veterinarian’s Role in the Promotion of Public Health, and the Advancement of Medical Knowledge...Discovery
Smith DR. 2006. American Association of Extension Veterinarian’s visit with Centers for Disease Control and Prevention (CDC), Atlanta, GA

The Effect of Regional Vaccination Within the Feedyard on Escherichia coli O157:H7 Colonization, Fecal Shedding, and Hide Contamination

The Effect of Regional Vaccination within the Feedyard on Escherichia coli O157:H7 Colonization, Fecal Shedding, and Hide Contamination

The Nebraska Veterinary Diagnostic Laboratory System Presentation
Doster AR. 2006. Scientists from the Chinese Department of Agriculture, University of Nebraska-Lincoln, Lincoln, NE, Oral Presentation

The Effect of Regional Vaccination Within the Feedyard on Escherichia coli O157:H7 Colonization, Fecal Shedding, and Hide Contamination

The Biological Function of Reactive Oxygen Species (ROS) in Growth Factor Signaling in Lens and Cornea Epithelial Cells
Lou MF, Chen C-W, Hou Y, Qin P, Qui W-Y and Y-F Yao. 2006. XVII ICER, Argentina

The Metabolic Requirements of Staphylococcal Biofilm Growth: A Chink in the Armor?
Somerville, GA. 2006. Loyola University, Chicago, IL
The Physiological Function of Reactive Oxygen Species in the Eye Lens
Lou MF. 2006. Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center

The Mechanism of Reactive Oxygen Species (ROS)-Dependent PDGF Signaling in Human Lens Epithelial Cells
Wang Yin, Zhang W and Lou M. 2006. XVII ICER, Argentina

Thioltransferase Knockout Decreases Tolerance to Oxidative Stress in Cultured Lens Epithelial Cells
Löfgren S, Fernando R, Ho Y-S and Lou MF. 2006. XVII ICER, Argentina

Today’s Veterinarian
Wohlers A. 2006. Rural Schools Career Day, Scottsbluff, NE, 70 students

Update on Porcine Reproductive and Respiratory Syndrome Virus Research that Provides Support for the Chilean PRRSV Eradication Campaign
Osorio FA. 2006. Presentation at ASPROCER (Chilean Swine Producers Association), Santiago, Chile

Update on Diagnosis and Control of Swine Dysentery

Vaccination Against PRRS
Osorio FA. 2006. Program for Chinese Swine Vets and Farm Managers, sponsored by National Grains Council, at University of Nebraska-Lincoln

Vaccination to Control Escherichia coli O157:H7 in Feedlot Cattle
Moxley RA. 2006. Invited seminar speaker, Department of Veterinary Science and Department of Biology and Microbiology, Molecular and Cellular Biology Seminar Series, South Dakota State University, Brookings, South Dakota

Veterinarians in Zoos
Wohlers A. 2006. Zoofari Youth Program–Riverside Zoo, Scottsbluff, NE, 15 students

Viral Antigen Distribution in Alpacas Persistently Infected with Bovine Viral Diarrhea Virus
Henningson JN, Topliff CL, Steffen DJ, Brodersen BW, Smith DR and Kelling CL. 2006. North Central Veterinary Laboratory Diagnosticians

Viral Antigen Distribution in Alpaca’s Persistently Infected with BVDV
Steffen, DJ. 2006. American Association of Veterinary Laboratory Diagnosticians, North Central Veterinary Laboratory Diagnosticians, graduate student presentation, Proceedings of the North Central Conference of Veterinary Laboratory Diagnosticians
Visualization of Intracellular Transport of Vesicular Stomatitis Virus Nucleocapsids In Living Cells

Visualization of Intracellular Transport of Vesicular Stomatitis Virus Nucleocapsids In Living Cells
 Pattnaik AK, Das SC, Nayak D and Zhou Y. 2006. 13th International Conference on Negative Strand Viruses, Salamanca, Spain, oral presentation

What Veterinarians Should Know About Surveillance and Control of Escherichia coli O157:H7 in Feedlot Cattle
 Smith DR. 2006. Texas A&M University Annual Food Animal Conference, College Station, TX, invited oral presentation with proceedings

What Veterinarians Should Know About the Surveillance and Control of Escherichia coli O157:H7 in Feedlot Cattle
 Smith DR. 2006. Nebraska Veterinary Medical Association Winter Meeting, Omaha, NE, invited oral presentation and paper

Wildlife Diseases
 Doster AR. 2006. Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, oral presentation
Department of Veterinary and Biomedical Sciences

Selected Committee, Editorial and Other Appointments

Raul G. Barletta

2006 - Ad-hoc Reviewer for Applied and Environmental Microbiology, Infection and Immunity, Journal of Clinical Microbiology and Vaccine

June 2006 - Ad-hoc Panel Member, NIH, Center for Scientific Review, Bacterial Pathogenesis (BACP) Study Section

March 2006 - Ad-hoc Panel Member, NIH, Center for Scientific Review, AIDS-associated Opportunistic Infections and Cancer (AOIC) Study Section

2005-present - Peer Review Committee, Member

2005-2006 - Veterinary & Biomedical Sciences Department Head Search Committee

2004-present - Graduate Committee, Member

2003-present - Chair, Biomedical Sciences Group Life Sciences Interdisciplinary Graduate Recruitment Program (LSIGRP)

2002-present - Member, Center for Redox Biology

2000-present - Radiation Safety Committee

1999-present - Safety Committee Chair, Department of Veterinary & Biomedical Sciences

1997-present - Book Chair, Department of Veterinary and Biomedical Sciences

1997-present - Member, Comparative Microbiology and Pathobiology Graduate Research Emphasis Group

1991-present - Affiliate Member, Center for Biotechnology

Bruce W. Brodersen

2005-present - Departmental Curriculum Committee

2004-present - BVD Ad Hoc Committee for Academy of Veterinary Consultants

2004-2006 - Committee for Immunohistochemistry Quality Control, American Association of Veterinary Laboratory Diagnosticians

2003-2004 - Vice Chancellor's Task Force on the Nebraska Veterinary Student Contract

2004-2005 - Veterinary School Student Selection Committee, Chairman Public Relations Committee, Nebraska Veterinary Medical Association

2001-present - Chair, George A. Young Swine Health and Management Conference, Responsible for annual submission of cases to the Armed Forces Institute of Pathology for participation in the Wednesday Slide Conference

Michael P. Carlson

1997-present - IANR Pesticide Advisory Committee, member

2003-present - CASNR Recruitment, Retention and Placement Committee, departmental representative

2006-present - CASNR Web Framework/CMS Standards Group, departmental representative

2005-present - VBMS Curriculum Committee, member

2006-present - VBMS Husker Harvest Days Committee
Alan R. Doster

National

- Review Committee, Journal of Swine Health and Production
- Reviewer, National Pork Producer Council PRRS Research Initiative Grants, Summer 2006
- Reviewer National Pork Board Research Proposals, Fall 2006
- Conference Chairman, North Central Conference of Laboratory Diagnosticians, June 2006

State

- University Liaison Committee, Nebraska Veterinary Medical Association
- Nebraska Veterinary Medical Association Student Scholarship Committee
- Pseudorabies Advisory Committee: ex-official member
- Student Mentor, Nebraska Pork Producers Association
- Additional $13,043.15 in research funds generated for VDC revolving account

University

- ISU-UNL Veterinary School Liaison Committee
- New Student Enrollment

Departmental

- Veterinary Gross Anatomist Search Committee, Chairman
- Veterinary Pathologist Search Committee
- Veterinary Anesthesiologist and Surgeon Search Committee
- Reviewer for Dr. Gray Rupp's ARD Project

Other Accomplishments in 2006

In 2005, permission was given to use a number of my photographs and photomicrographs to Dr. James Zachary, College of Veterinary Medicine, University of Illinois, co-editor of Pathological Basis of Veterinary Disease (McGavin MD and Zachary JF). I gave a blanket authorization to Dr. Zachary to publish any of my photographs he needed for illustration purposes in his book. I have several photographs in the new edition which was published in August 2006

Gerald E. Duhamel

- Panel Member, NIH, United States Department of Health and Human Services, Center for Scientific Review
 Special Emphasis Panel, ZRG1 IDM-A 90S, Bacterial Pathogenesis
 - March 9-10, 2006
 - October 12-13, 2006
- Panel Member, Natural Sciences and Engineering Research Council of Canada, Integrative Animal Biology Grant Selection Committee 2004-2007

193
- External Scientific Examiner, Porcine Infectious Disease Research Center, University of Montreal, Faculty of Veterinary Medicine, Saint-Hyacinthe, Quebec, Canada
- Advisor/Observer, National Committee for Clinical Laboratory Standards, Veterinary Antimicrobial Susceptibility Testing Sub-committee 2001-present
- Member, Bacteriology/Mycology Committee, Anaerobic Techniques Sub-committee, American Association of Veterinary Laboratory Diagnosticians 1996-present
- Co-representative, NC-1007 Technical Committee on Enteric Diseases of Swine and Cattle: Prevention, Control and Food Safety, Nebraska Agriculture Experiment Station 1988-present
- Ad Hoc External Reviewer
 Quebec Government, Nature and Technologies Research Fund, Strategic Group Grant Program 2006
- Scientific Committee
 International Pig Veterinary Society Congress, Copenhagen, Denmark 2006
- Associate Editor
 Microbiology, Society for General Microbiology, United Kingdom, 2004-2009
- Ad Hoc Reviewer for Peer-reviewed Scientific Journals
 - Veterinary Pathology
 - Journal of the American Veterinary Medical Association
 - Journal of Veterinary Diagnostic Investigation
 - Journal of Clinical Microbiology
- UNL Institutional Biosafety Committee, Member 1995-present
- UNL Institutional Animal Care and Use Committee Member, 2000-present, Chair, 2003-2004
- UNL Search Committee
 Head of Department of Veterinary & Biomedical Sciences, Member 2006
- UNL Animal Research Facility Renovations Advisory Committee, Member 2006
- UNL Microbiology Initiative Steering Committee, Member 2001-present
- UNL Center for Biotechnology, Microscopy Core Facility Advisory Committee, Member 2002- present
- UNL Molecular Bioscience & Biotechnology Integrated Graduate (MoBBIG) Training Program
 Executive Committee, Member 2006
- Departmental Peer Review Committee, Chair 2005; Member 2002-2008
- Department of Veterinary and Biomedical Sciences Search Committees
 - Veterinary Immunologist, Chair 2006
 - Veterinary Pathologist, Member 2006
- Integrative Biomedical Sciences Graduate Committee
 Chair, 2005-2008; Member, 2003-2008
- Departmental Undergraduate Research Coordinator 2004-2006
- Veterinary Basic Science Glassware Cleaning and Sterilization Facility Supervisor 2001-2006

Dicky D. Griffin

- National Cattlemen’s Beef Association, Beef Quality and Safety Taskforce
- Academy of Veterinary Consultants, Chairman Standards of Practice Committee
- Reviewer for the American Journal of Veterinary Research
- Reviewer for the Journal of the American Veterinary Medical Association
- Reviewer for the American Association of Bovine Practitioner
>Clinton J. Jones

- Reviewed manuscripts for Journal of Virology (3); Journal of Neurovirology (4); Journal of Clinical Microbiology (1); Journal of General Virology (1); Journal of Chemico-Biol. Interactions (1); Journal of Interferon Research (1) and Virus Research (2)
- Grant reviewer for American Association for the Advancement of Science (AAAS)
- Served on the Scientific Advisory Council for the International Herpesvirus Workshop
- Assistant Director, Nebraska Center for Virology; November 2002-present
- Organized the annual Intercampus Virology Meeting

>Clayton L. Kelling

- Chair (2000, 2001, 2004), Member (1996-02, 2003-06), VBMS Peer Review Committee
- Chair (2000, 2001, 2004), Member (1996-02, 2003-06), VBMS Promotion and Tenure Committee
- Member (2004-07), IBMS Graduate Committee
- Member (1993-present), VBMS Curriculum Committee
- Treasurer(2005-2006), Nebraska Chapter of Gamma Sigma Delta

>Marjorie F. Lou

2005 - Organizer and session chairman of meetings/conferences
2006 - Organizer of the 6th Asian Cataract Research Conference in Beijing, China
2006 - Co-chair of “Oxidation and Cataract” at the 6th Asian Cataract Research Conference in Beijing, China
2006 - Chair and organizer of the symposium on the Yin and Yan of Reactive oxygen species in the cellular function of ocular tissues, XVII International Congress of Eye Research, Buenos Aires, Argentina

Manuscript Reviewer, 2006

- Investigative of Ophthalmology and Visual Science (5); Molecular Vision (2); Experimental Eye Research (3) and Free Radical in Biology and Medicine (1)

Committees, 2006

Departmental

1998-present - Chairperson, Space Utilization Committee
2001-present - Graduate Student Committee Member for the Center for Biological Chemistry Program
2006 - Search Committee, Immunologist of Veterinary and Biomedical Sciences Department
IJANR

2006 - Search Committee member for the Department head of Biochemistry

University

2004-2006 - Appointed member of the Women’s Council, University of Nebraska System
2005-present - Committee member, renovation of Animal Research Facility (ARF)

Scientific Community

2006 - Conference Organizer, 6th Asian Cataract Research Conference (ACRC) in Beijing, China
1998-present - Elected member, Board of Trustees for the National Foundation for Eye Research

➤D. Scott McVey

2006 - Immunologist Search Committee, VBMS

Continued National and International Service

a. - American College of Veterinary Microbiologists - Chair, Continuing Education Fund Raising Committee, CE Program Committee, AAVLD Liaison Committee, Immunology Certification Test Committee
b. - Consultant to The Ruckelshaus Institute and Haub School of Environmental and Natural Resources (with U.S. Departments of Agriculture and Interior) – Brucellosis Working Symposium (for elk and bison populations in national parks and forests)
c. - Member of the Biosecurity Task Force, American College of Veterinary Microbiologists, Food Security Institute, Iowa State University

➤Rodney A. Moxley

2006 - Ad hoc reviewer, Applied and Environmental Microbiology, American Society for Microbiology Press
2006 - Ad hoc reviewer, Journal of Virology, American Society for Microbiology Press
2002-2007 - Nebraska Station Representative, USDA-CSREES Multi-State Research Technical Committee, NC-1007 Enteric Diseases of Swine and Cattle: Prevention, Control and Food Safety
2006-2008 - Chair, UNL Institutional Biosafety Committee
2003-indefinite - Chair, Curriculum Committee, UNL Department of Veterinary & Biomedical
2004-indefinite - Coordinator, VBMS Outcome Assessment Program
2005-2008 - Member, VBMS and IBMS Graduate Committee
2004-2007 - Senator, District I16A, VBMS, Member, UNL Academic Senate
2003-2006 - Member, St. Elizabeth Regional Medical Center Research Council

Fernando A. Osorio

- Ad hoc Reviewer, Journal of Virology; Journal of General Virology; Viral Immunology; Veterinary Microbiology; Vaccine and Antiviral Research
- External Reviewer, faculty promotion files being considered, University of Guelph and University of Illinois
- Court expert witness, in case vaccine patent litigation, advising Kenyon & Kenyon, LLP, Washington, DC
- Nebraska Representative to the NC-229 (PRRSV Research) ARD Multi-State Project

University Committees

2006-2009 - VBMS Peer Review Committee, Member
2006-present - IACUC/VBMS Alternate Representative
2006 - Search Committee, BSL-3 Director, Chair
2006 - Search Committee, Immunologist
2006 - Search Committee, Veterinary Epidemiologist GPVEC
2006 - Search Committee, Beef Specialist GPVEC
2006 - Search Committee, Neurobiologist

Asit K. Pattnaik

2002 - Ad hoc reviewer, Experimental Virology Study Section, NIH
2003 - Member, Special Study Section, Bio-terrorism and Emerging Viruses, NIH
2005 - Ad hoc reviewer, AIDS and Opportunistic Infections and Cancer Study Section, NIH
2006 - Manuscript reviewer for publication in Journal of Virology; Proceedings of National Academy Science, USA; Virology, Antimicrobial Agents and Chemotherapy and Journal of Clinical Microbiology

Gary P. Rupp

- Nebraska College of Technical Agriculture Advisory Committee
- South Central Cattleman, Board of Directors
- Journal of Theriogenology, Ad Hoc Reviewer
- Nebraska Veterinary Student Selection Committee
- Departmental Promotion and Tenure Committee
David R. Smith

2005-present - Food Safety Advisory Committee, American Veterinary Medical Association, Vice-Chairman, 2006; Chairman 2006-2007
2005-2007 - President, Epidemiology Specialty, American College of Veterinary Preventive Medicine
2005-2006 - Panelist: USDA/CSREES, NRI Competitive Grants Program, 44.0 Animal Protection, Panel C
2005-present - Steering Committee, Alliance for Bovine Health
2006 - Advisory Board, Washington State Antibiotic Stewardship Advisory Board
1999-present - Food Quality, Safety, and Security Committee, American Association of Bovine Practitioners
1999-present - Co-manager, AABP-L listserv, American Association of Bovine Practitioners, 1750+ subscribers from 60+ countries
2005-present - Scientific Program Planning Committee, American Association of Extension Veterinarians
2005-present - Continuing Education Committee, Nebraska Veterinary Medical Association
2000-present - Board of Directors, Nebraska State Dairymen’s Association
1998-present - Nebraska Bureau of Animal Industry, Johne’s Disease Advisory Committee
2006 - Chair, Search Committee, Veterinary Surgery/Anesthesiology, Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln
2006 - Search Committee, Veterinary Epidemiologist, Department of Veterinary and Biomedical Sciences, University of Nebraska-Lincoln
2006 - Search Committee, Beef Cattle Veterinarian, Department of Veterinary Diagnostic and Production Animal Medicine, Iowa State University, College of Veterinary Medicine

Greg A. Somerville

Ad hoc Reviewer

- Antimicrobial Agents and Chemotherapy
- Archives of Microbiology
- BMC Microbiology
- Infection and Immunity
- Journal of Bacteriology
- Journal of Clinical Microbiology
 - Journal of Microbiological Methods
 - Molecular Microbiology

Committees

- Faculty Coordinator, weekly Department of Veterinary and Biomedical Sciences seminar series
- Graduate Fellowship Committee
- Life Sciences Interdisciplinary Graduate Recruitment Program, Admissions Committee
- VBMS Graduate Education Committee
- Member, Search Committee, Parasitologist/Entomologist, 2006
- Member Search Committee, Gross Anatolmist, 2006

Appointments and Affiliations

- Department of Biochemistry, University of Nebraska-Lincoln
- Redox Biology Center, University of Nebraska-Lincoln
- Department of Pathology and Microbiology, University of Nebraska Medical Center
- Center for Bacterial Pathogenesis Research, University of Nebraska Medical Center
- Adjunct appointment, University of South Dakota, Graduate School

David J. Steffen

1996-2006 - Departmental Peer Review Committee
1997-2000 - Social Committee
2002-2006 - Various Search Committees; Chair, Poultry Veterinarian Search Committee,
 Microbiologist Search Committee; Curriculum Committee member;
 Curriculum Committee Chair; Department Chair Search Committee;
 Bacteriologist Search Committee, Chair; Chair, Pathologist Search Committee;
 Member, Peer Review Committee; Quality Control Committee; Information
 System Selection Committee
1995-present - Ad Hoc Reviewer for Veterinary Pathology
1996-present - Associate Editor, Journal of Veterinary Diagnostic Investigations
1997-2009 - AAVLD By-Laws Committee Member
1998-2006 - Publications Committee, Chair, 2001-2006
2000-present - Program Committee
2000-present - Director’s Committee
2005-2008 - Executive Board

Arden Whorles

- IRM Pen of 5 Group
- Feedlot Extension Group
- Panhandle REC Center and Community Relations Committee
- Panhandle REC Extension Committee
- Field Day Revitalization Committee
- NVMA Public Relations Committee
- Scottsbluff/Gering Chamber of Commerce Agriculture Committee
- North Platte Natural Resource District Board (Elected)
Department of Veterinary and Biomedical Sciences
Articles Regarding the Department in 2006

“The eyes have it,” Bovine Veterinarian, March/April 2006, pgs 6-10

“Joint Veterinary Program Progressing,” The Leading Object, March 2006, pgs 1-2

“Profile of a PI,” Bovine Veterinarian, (Dairy Herd Management and Drovers Supplement), February 2006, pgs 6-9

“BVD Eradication: The Future is Now,” Beef, April 2006, pg 45

“Bridging the Cost,” Beef, April 2006, pgs 46-47

“New Head of Vet Sciences, Associate Dean of UNL-ISU Program,” IANR News, May 5, 2006

“New Nebraska-Iowa Program Addresses Shortage of Veterinarians,” IANR News, July 24, 2006

“Johne’s can Siphon Profits from a Herd,” Nebraska Farmer, pg 42, August 2006

“Going Forward with BQA,” Beef, pgs 26-27, September 2006

“Research Essential in Disease Prevention,” Extended Visions, pgs 1-3, September/October 2006

“About the People,” Extended Visions, pgs 2-3, September/October 2006

“Iowa, Nebraska Address Vet Shortage,” Beef, pg 6, September 1, 2006

“Feedlot Lameness Poster,” pg 32, Bovine Veterinarian, November 2006
Table 10. Budget, Veterinary and Biomedical Sciences Department, Fiscal Year 2006

<table>
<thead>
<tr>
<th>FY Budget</th>
<th>FTE*</th>
<th>Personnel</th>
<th>Benefits</th>
<th>Operating</th>
<th>Totals</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teaching</td>
<td>8.52</td>
<td>491,754</td>
<td>112,982</td>
<td>94,021</td>
<td>698,757</td>
</tr>
<tr>
<td>Research</td>
<td>48.5</td>
<td>2,519,207</td>
<td>613,232</td>
<td>140,147</td>
<td>3,272,586</td>
</tr>
<tr>
<td>Extension</td>
<td>2.78</td>
<td>175,756</td>
<td>51,583</td>
<td>27,937</td>
<td>255,276</td>
</tr>
<tr>
<td>TOTAL</td>
<td>59.8</td>
<td>3,186,717</td>
<td>777,797</td>
<td>262,105</td>
<td>4,226,619</td>
</tr>
</tbody>
</table>

*Includes faculty and staff

Table 11. Summary of Other Income*

<table>
<thead>
<tr>
<th>Source of Income</th>
<th>Amounts</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal Health Funds</td>
<td>111,574</td>
</tr>
<tr>
<td>Multi-State Research Funds</td>
<td>52,500</td>
</tr>
<tr>
<td>Tobacco Research Funds</td>
<td>5,000</td>
</tr>
<tr>
<td>Interdisciplinary Research Funds</td>
<td>20,000</td>
</tr>
<tr>
<td>Grants Received</td>
<td>2,523,719</td>
</tr>
<tr>
<td>Research Revolving Income</td>
<td>52,611</td>
</tr>
<tr>
<td>Teaching Revolving Income</td>
<td>19,822</td>
</tr>
<tr>
<td>Extension Revolving Income</td>
<td>9,845</td>
</tr>
<tr>
<td>Diagnostic Revolving Income</td>
<td>1,719,215</td>
</tr>
<tr>
<td>TOTAL</td>
<td>4,514,286</td>
</tr>
</tbody>
</table>

*Includes AOC funds
Table 12. Nebraska Veterinary Diagnostic Laboratory System Revolving Account Summary for FY 2006

<table>
<thead>
<tr>
<th>LINCOLN DIAGNOSTIC LAB (VDC)</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Income</td>
<td>Personnel Expense</td>
<td>Operating Expense</td>
<td>Balance</td>
<td></td>
</tr>
<tr>
<td>1,719,215</td>
<td>504,917</td>
<td>1,097,064</td>
<td>117,234</td>
<td></td>
</tr>
</tbody>
</table>
Table 13. Nebraska Cash Receipts* from Farm Marketings by Commodity, 2005**
Total All Commodities = $11,470,159

<table>
<thead>
<tr>
<th>LIVESTOCK PRODUCTS</th>
<th>$ Value in Thousands</th>
<th>% of Total</th>
<th>CROPS</th>
<th>% Value in Thousands</th>
<th>% of Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Livestock & Products</td>
<td>7,545,285</td>
<td>65.8</td>
<td>Food Grains</td>
<td>520,681</td>
<td>***</td>
</tr>
<tr>
<td>Meat Animals</td>
<td>658,164</td>
<td>***</td>
<td>Rye</td>
<td></td>
<td>***</td>
</tr>
<tr>
<td>Cattle & Calves</td>
<td>6,458,277</td>
<td>56.3</td>
<td>Wheat</td>
<td>205,815</td>
<td>1.8</td>
</tr>
<tr>
<td>Hogs</td>
<td>768,322</td>
<td>6.7</td>
<td>Millet, Proso</td>
<td>12,159</td>
<td>0.1</td>
</tr>
<tr>
<td>Sheep & Lambs</td>
<td>12,092</td>
<td>0.1</td>
<td>Feed Crops</td>
<td>332,784</td>
<td>***</td>
</tr>
<tr>
<td>Dairy Products</td>
<td>164,164</td>
<td>1.4</td>
<td>Oats</td>
<td>2,234</td>
<td>0.0</td>
</tr>
<tr>
<td>Milk, Wholesale</td>
<td>686,196</td>
<td>***</td>
<td>Barley</td>
<td>136</td>
<td>0.0</td>
</tr>
<tr>
<td>Poultry & Eggs</td>
<td>144,624</td>
<td>***</td>
<td>Corn</td>
<td>2,085,894</td>
<td>18.2</td>
</tr>
<tr>
<td>Broilers</td>
<td>12,232</td>
<td>0.1</td>
<td>Hay</td>
<td>115,576</td>
<td>1.0</td>
</tr>
<tr>
<td>Farm Chickens</td>
<td>15</td>
<td>0.0</td>
<td>Sorghum Grain</td>
<td>42,640</td>
<td>0.4</td>
</tr>
<tr>
<td>Chicken Eggs</td>
<td>82,989</td>
<td>0.7</td>
<td>Oil Crops</td>
<td>1,831</td>
<td>***</td>
</tr>
<tr>
<td>Other Poultry</td>
<td>9,185</td>
<td>***</td>
<td>Misc Oil Crops</td>
<td>1,831</td>
<td>***</td>
</tr>
<tr>
<td>Misc. Livestock</td>
<td>125,556</td>
<td>***</td>
<td>Soybeans</td>
<td>1,213,207</td>
<td>10.6</td>
</tr>
<tr>
<td>Honey</td>
<td>2,421</td>
<td>0.0</td>
<td>Sunflower</td>
<td></td>
<td>***</td>
</tr>
<tr>
<td>Wool</td>
<td>240</td>
<td>0.0</td>
<td>Vegetables</td>
<td>960,989</td>
<td>***</td>
</tr>
<tr>
<td>Other Livestock</td>
<td>38,388</td>
<td>***</td>
<td>Dry Beans</td>
<td>63,489</td>
<td>0.6</td>
</tr>
<tr>
<td>Crops</td>
<td>3,924,874</td>
<td>34.7</td>
<td>Potatoes</td>
<td>42,484</td>
<td>0.4</td>
</tr>
<tr>
<td>Other Berries</td>
<td>4,495</td>
<td>***</td>
<td>Misc. Vegetables</td>
<td>128,000</td>
<td>***</td>
</tr>
<tr>
<td>Other Seeds</td>
<td>6,980</td>
<td>***</td>
<td>Greenhouse/nursery</td>
<td>33,700</td>
<td>0.3</td>
</tr>
<tr>
<td>Fruits & Nuts</td>
<td>2,043,378</td>
<td>***</td>
<td>All Other Crops</td>
<td>664,770</td>
<td>***</td>
</tr>
<tr>
<td>Misc Fruits & Nuts</td>
<td>860</td>
<td>***</td>
<td>Net Farm Income</td>
<td>2,699,540</td>
<td>***</td>
</tr>
<tr>
<td>Sugar Beets</td>
<td>41,895</td>
<td>0.4</td>
<td>All Other Livestock</td>
<td>32,450</td>
<td>***</td>
</tr>
<tr>
<td>Other Field Crops</td>
<td>70,000</td>
<td>***</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Data from Nebraska Agricultural Statistics
** Most current data available
*** Data not available
Table 14. Nebraska Agriculture - Rank in Agribusiness Facts (May 2006)*,**

<table>
<thead>
<tr>
<th>Rank, Commodity and Date</th>
<th>Number</th>
<th>Units</th>
<th>% of US Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1st Commercial livestock slaughter, live weight, 2005</td>
<td>11,012,211,000</td>
<td>Pounds</td>
<td>15.9</td>
</tr>
<tr>
<td>1st Commercial red meat production, 2005</td>
<td>7,047,500,000</td>
<td>Pounds</td>
<td>15.4</td>
</tr>
<tr>
<td>1st Great Northern bean production, 2005</td>
<td>1,382,000</td>
<td>Cwt.</td>
<td>87.2</td>
</tr>
<tr>
<td>1st Light red kidney bean production, 2005</td>
<td>304,000</td>
<td>Cwt.</td>
<td>27.4</td>
</tr>
<tr>
<td>2nd Commercial cattle slaughter, live weight, 2005</td>
<td>9,078,200,000</td>
<td>Pounds</td>
<td>22.3</td>
</tr>
<tr>
<td>2nd Commercial cattle slaughter, number, 2005</td>
<td>7,028,900</td>
<td>Head</td>
<td>21.7</td>
</tr>
<tr>
<td>2nd Cash receipts from all meat animals, 2004</td>
<td>6,970,380,000</td>
<td>Dollars</td>
<td>11.2</td>
</tr>
<tr>
<td>2nd Cash receipts from cattle and calves, 2004</td>
<td>6,196,896,000</td>
<td>Dollars</td>
<td>13.1</td>
</tr>
<tr>
<td>2nd Proso millet production, 2005</td>
<td>4,250,000</td>
<td>Bushels</td>
<td>31.4</td>
</tr>
<tr>
<td>2nd Pinto beans production, 2005</td>
<td>1,982,000</td>
<td>Cwt.</td>
<td>15.1</td>
</tr>
<tr>
<td>2nd All cattle on feed, January 1, 2006</td>
<td>2,600,000</td>
<td>Head</td>
<td>18.4</td>
</tr>
<tr>
<td>3rd Total value of all cattle and calves, January 1, 2006</td>
<td>6,419,000,000</td>
<td>Dollars</td>
<td>6.6</td>
</tr>
<tr>
<td>3rd All dry edible beans production, 2005</td>
<td>3,870,000</td>
<td>Cwt.</td>
<td>14.2</td>
</tr>
<tr>
<td>3rd Cash receipts from all feed grains, 2004</td>
<td>2,719,244,000</td>
<td>Dollars</td>
<td>9.6</td>
</tr>
<tr>
<td>3rd Cash receipts from corn, 2004</td>
<td>2,543,705,000</td>
<td>Dollars</td>
<td>11.5</td>
</tr>
<tr>
<td>3rd Cash receipts from sorghum grain, 2004</td>
<td>60,519,000</td>
<td>Dollars</td>
<td>7.2</td>
</tr>
<tr>
<td>3rd Cash receipts from livestock and livestock products, 2004</td>
<td>7,338,183,000</td>
<td>Dollars</td>
<td>5.9</td>
</tr>
<tr>
<td>3rd All cattle and calves, January 1, 2006</td>
<td>6,550,000</td>
<td>Head</td>
<td>6.7</td>
</tr>
<tr>
<td>3rd Fed cattle marketed (1,000+ capacity lots), 2005</td>
<td>4,420,000</td>
<td>Head</td>
<td>19.9</td>
</tr>
<tr>
<td>3rd Corn for grain production, 2005</td>
<td>1,270,500,000</td>
<td>Bushels</td>
<td>11.4</td>
</tr>
<tr>
<td>3rd Sorghum for grain production, 2005</td>
<td>21,750,000</td>
<td>Bushels</td>
<td>5.5</td>
</tr>
<tr>
<td>4th Cash receipts from all commodities, 2004</td>
<td>11,779,728,000</td>
<td>Dollars</td>
<td>4.9</td>
</tr>
<tr>
<td>4th Beef cows and heifers that have calved, January 1, 2006</td>
<td>1,930,000</td>
<td>Heads</td>
<td>5.8</td>
</tr>
<tr>
<td>4th Land in farms and ranches, 2005</td>
<td>45,700,000</td>
<td>Acres</td>
<td>4.9</td>
</tr>
<tr>
<td>4th All hay production, 2005</td>
<td>6,945,000</td>
<td>Tons</td>
<td>4.6</td>
</tr>
<tr>
<td>4th On-farm grain storage capacity, December 1, 2005</td>
<td>1,050,000,000</td>
<td>Bushels</td>
<td>9.2</td>
</tr>
<tr>
<td>4th Off-farm grain storage capacity, December 1, 2005</td>
<td>691,186,000</td>
<td>Bushels</td>
<td>8.1</td>
</tr>
<tr>
<td>5th Net farm income, 2004</td>
<td>3,459,064,000</td>
<td>Dollars</td>
<td>4.2</td>
</tr>
<tr>
<td>5th Cash receipts from soybeans, 2004</td>
<td>1,280,621,000</td>
<td>Dollars</td>
<td>7.0</td>
</tr>
<tr>
<td>5th Cash receipts from all oil crops, 2004</td>
<td>1,287,932,000</td>
<td>Dollars</td>
<td>6.5</td>
</tr>
<tr>
<td>5th Cash receipts from hogs and pigs, 2004</td>
<td>761,953,000</td>
<td>Dollars</td>
<td>5.3</td>
</tr>
<tr>
<td>5th Soybean production, 2005</td>
<td>235,330,000</td>
<td>Bushels</td>
<td>7.6</td>
</tr>
<tr>
<td>5th Calf crop, 2005</td>
<td>1,800,000</td>
<td>Head</td>
<td>4.8</td>
</tr>
<tr>
<td>Rank, Commodity and Date</td>
<td>Number</td>
<td>Units</td>
<td>% of US Total</td>
</tr>
<tr>
<td>--</td>
<td>-------------</td>
<td>---------</td>
<td>---------------</td>
</tr>
<tr>
<td>5th Commercial hog slaughter, live weight, 2005</td>
<td>1,933,729,000</td>
<td>Pounds</td>
<td>6.9</td>
</tr>
<tr>
<td>5th Commercial hog slaughter, number 2005</td>
<td>7,185,800</td>
<td>Head</td>
<td>6.9</td>
</tr>
<tr>
<td>6th Alfalfa hay production, 2005</td>
<td>4,625,000</td>
<td>Tons</td>
<td>6.1</td>
</tr>
<tr>
<td>6th Value of principal crops produced, 2005</td>
<td>4,423,595,000</td>
<td>Dollars</td>
<td>4.3</td>
</tr>
<tr>
<td>6th Pig crop, 2005</td>
<td>6,327,000</td>
<td>Head</td>
<td>6.1</td>
</tr>
<tr>
<td>6th Value of all hogs and pigs on farms, December 1, 2005</td>
<td>279,300,000</td>
<td>Dollars</td>
<td>4.9</td>
</tr>
<tr>
<td>6th Winter wheat production, 2005</td>
<td>68,640,000</td>
<td>Bushels</td>
<td>4.6</td>
</tr>
<tr>
<td>6th All hogs and pigs, December 1, 2005</td>
<td>2,850,000</td>
<td>Head</td>
<td>4.6</td>
</tr>
<tr>
<td>7th Sunflower production, 2005</td>
<td>142,000,000</td>
<td>Pounds</td>
<td>3.5</td>
</tr>
<tr>
<td>7th Harvested acreage, principle crops, 2005</td>
<td>18,508,000</td>
<td>Acres</td>
<td>6.1</td>
</tr>
<tr>
<td>7th Sugarbeet production, 2005</td>
<td>924,000</td>
<td>Tons</td>
<td>3.3</td>
</tr>
<tr>
<td>7th Sorghum silage production, 2005</td>
<td>210,000</td>
<td>Tons</td>
<td>5.0</td>
</tr>
<tr>
<td>7th Cash receipts from crops, 2004</td>
<td>4,441,545,000</td>
<td>Dollars</td>
<td>3.8</td>
</tr>
<tr>
<td>7th Cash receipts from sugarbeets, 2004</td>
<td>36,420,000</td>
<td>Dollars</td>
<td>2.9</td>
</tr>
<tr>
<td>7th Table eggs produced, 2005</td>
<td>3,217,000,000</td>
<td>Eggs</td>
<td>4.2</td>
</tr>
<tr>
<td>9th Oat production, 2005</td>
<td>4,380,000</td>
<td>Bushels</td>
<td>3.8</td>
</tr>
<tr>
<td>10th Corn silage production, 2005</td>
<td>3,100,000</td>
<td>Tons</td>
<td>2.9</td>
</tr>
<tr>
<td>10th All wheat production, 2005</td>
<td>68,640,000</td>
<td>Bushels</td>
<td>3.3</td>
</tr>
<tr>
<td>10th Cash receipts from wheat, 2004</td>
<td>217,810,000</td>
<td>Dollars</td>
<td>3.0</td>
</tr>
<tr>
<td>10th Other hay (excludes alfalfa) production, 2005</td>
<td>2,320,000</td>
<td>Tons</td>
<td>3.1</td>
</tr>
<tr>
<td>11th All potato production, 2005</td>
<td>8,245,000</td>
<td>Cwt.</td>
<td>2.0</td>
</tr>
<tr>
<td>12th All chickens, December 1, 2005</td>
<td>13,813,000</td>
<td>Head</td>
<td>3.1</td>
</tr>
<tr>
<td>13th Value of all chickens on hand, December 1, 2005</td>
<td>29,007,000</td>
<td>Dollars</td>
<td>2.6</td>
</tr>
<tr>
<td>14th Cash receipts from all food grains, 2004</td>
<td>218,753,000</td>
<td>Dollars</td>
<td>2.4</td>
</tr>
<tr>
<td>14th Cash receipts from potatoes, 2004</td>
<td>42,977,000</td>
<td>Dollars</td>
<td>1.8</td>
</tr>
<tr>
<td>14th Cash receipts from chicken eggs, 2004</td>
<td>138,863,000</td>
<td>Dollars</td>
<td>2.6</td>
</tr>
<tr>
<td>15th Honey production, 2005</td>
<td>2,720,000</td>
<td>Pounds</td>
<td>1.6</td>
</tr>
<tr>
<td>15th Wool production, 2005</td>
<td>600,000</td>
<td>Pounds</td>
<td>1.6</td>
</tr>
<tr>
<td>15th All sheep and lambs, January 1, 2006</td>
<td>106,000</td>
<td>Head</td>
<td>1.7</td>
</tr>
<tr>
<td>15th Value of wool production, 2005</td>
<td>240,000</td>
<td>Dollars</td>
<td>0.9</td>
</tr>
<tr>
<td>17th Cash receipts from hay, 2004</td>
<td>102,187,000</td>
<td>Dollars</td>
<td>2.3</td>
</tr>
<tr>
<td>18th Number of farms, 2005</td>
<td>48,000</td>
<td>Farms</td>
<td>2.3</td>
</tr>
</tbody>
</table>

*/Data from USDA/NASS, Lincoln, NE; **/Most current data available
Appendix

The 47th Annual George A. Young Swine Health and Management Conference

August 17, 2006

Conference Location
Marina Inn
Fourth & B’ Street
South Sioux City, NE

45th Annual Meeting of the North Central Conference of Veterinary Laboratory Diagnosticians

June 8-9, 2006

Conference Location
Holiday Inn Downtown
141 North 9th Street
Lincoln, NE

Sponsors
University of Nebraska-Lincoln
Institute of Agriculture and Natural Resources
Nebraska Cooperative Extension and College of Agriculture and Natural Resources
Department of Veterinary and Biomedical Sciences
THE 47TH ANNUAL
GEORGE A. YOUNG
SWINE HEALTH AND
MANAGEMENT CONFERENCE

August 17, 2006

"Achieving the Best of
Production Through Knowledge"

MARINA INN
Fourth & B Streets
South Sioux City, Nebraska 68776

- Swine Industry Economics
- Swine Diseases
- Production and Management Strategies

Sponsors

University of Nebraska–Lincoln
Institute of Agriculture and Natural Resources
University of Nebraska–Lincoln Extension
Department of Veterinary and
Biomedical Sciences
PROGRAM

8:00 am Registration (with coffee and rolls)

8:25 Welcome - Dr. Bruce Brodersen, Conference Chair

8:30 - 9:30 “Recent advances in research related to porcine circovirus type 2”
 - Dr. Tanja Opriessnig

9:30 - 10:15 “Epidemiology and Control of Porcine Circovirus type 2 Infections”
 - Dr. Robert Desrosiers

10:15-10:30 BREAK

10:30 - 11:15 “Diagnosis of PCV2-Associated Disease (PCV2-AD)”
 - Dr. Kent J. Schwartz

11:15 - 12:00 “Managing PCVAD in Nursery Settings”
 - Dr. Cameron Schmitt

12:00 pm LUNCH

1:00 - 1:45 “Canadian Experiences with Porcine Circovirus Associated Disease”
 - Dr. George Charbonneau

1:45 - 2:30 “A Practitioner’s Perspective on Porcine Circovirus Disease in Finishers; Diagnostic Approaches and Control”
 - Dr. Keith Schumacher

2:30 - 3:15 “Teshoviruses, Enteroviruses, and other potential triggering agents isolated from finisher mortality syndromes diagnosed as Porcine Circovirus Associated Disease (PCAD)”
 - Dr. Butch Baker

The Conference has been approved for 5 ½ hours of Nebraska Veterinary Continuing Education credits.

INTRODUCTION

Pork producers, large animal and swine practitioners, faculty in the animal and veterinary sciences, and industry representatives will benefit from this update of research and industry developments as they relate to modern swine production and technology. The George A. Young Swine Conference has a long-standing tradition of providing up-to-date information on developments in research and production techniques as they relate to today’s swine industry. Industry experts have come to respect this conference as their annual opportunity to communicate with colleagues, and to interact with others throughout the spectrum of swine research and production.

GUEST PARTICIPANTS

Dr. Tanja Opriessnig — Assistant Professor, Department of Veterinary Diagnostic and Production Animal Medicine; Iowa State University
Dr. Robert Desrosiers — Technical Services Swine Veterinarian, Boehringer Ingelheim Vetmedica, Saint-Hyacinthe, Quebec, Canada
Dr. Kent J. Schwartz — Veterinary Diagnostician, Department of Veterinary Diagnostic and Production Animal Medicine; Iowa State University
Dr. Cameron Schmitt — Veterinary Practitioner, Pipestone Veterinary Clinic, Pipestone, Minnesota
Dr. George Charbonneau — Veterinary Practitioner, Swine Services Group, Stratford, Ontario, Canada
Dr. Keith Schumacher — Veterinary Practitioner, Howells Veterinary Service, Howells, Nebraska
Dr. Rodney (Butch) Baker — Clinical Associate Professor, Swine Health and Production Medicine, College of Veterinary Medicine, North Carolina State University

INSTITUTE OF AGRICULTURE AND NATURAL RESOURCES (IANR) AND UNIVERSITY OF NEBRASKA

PROGRAM PARTICIPANTS

Dr. Bruce Brodersen — Associate Professor, Dept. of Veterinary and Biomedical Sciences, Veterinary Diagnostic Center, University of Nebraska; Lincoln, Nebraska

PROGRAM COMMITTEE

Bruce Brodersen, Chair
Sharon Clowser, Conference Coordinator
Ron Brodersen, Whole Hog Health Center
Mike Brumm, Univ. of NE Haskell Agricultural Laboratory
Tom Buelt, Pfizer Animal Health
Larry Germer, Gage County Extension Educator
David Hansen, Producer
Phil Hardenburger, Crete Veterinary Clinic
Jeff Husa, Boehringer Ingelheim Vetmedica, Inc.
Jim Unwin, Red Barn Veterinary Clinic
Recent Diagnosis Porcine to understand that vaccination with commonly used bacterins that vaccine efficacy can be reduced when pigs are in the acute from most classical swine pathogens. Research has helped us in healthy as well as in diseased herds distinguishes the most important viral pathogen in the type ubiquitous distribution in the pig population and its presence be reduced by optimal timing of vaccination. We also found by oral consumption of pork products. stages of a MLV certain line of Landrace pigs are more susceptible to develop PCV2-associated lesions but that this effect can be reduced by optimal timing of vaccination. We also found that vaccine efficacy can be reduced when pigs are in the acute stages of PCV2 infection at the time they were vaccinated with a MLV PRRSV vaccine. Coinfection with common swine pathogens such as PPV or M. hyopneumoniae results in clinical PMWS in a conventional pig model. We found evidence that a certain line of Landrace pigs are more susceptible to develop PCV2-associated disease compared to Duroc and Large White pigs. We have first evidence for differences in virulence between PCV2 isolates. PCV2 appears to be easily transmittable by oral consumption of pork products.

"Epidemiology and Control of Porcine Circovirus type 2 Infections" – Dr. Robert Desrosiers

While porcine circovirus type 2 has been found in all tested herds so far in the US and Canada, problems associated with it are only present in some of them. Furthermore, recently some areas like Eastern Canada and North Carolina suddenly began to experience severe losses thought to be related to this organism. This presentation will look at potential explanations, as well as to what can be done to control these losses.

"Diagnosis of PCV2-Associated Disease (PCV2-AD)" – Dr. Kent J. Schwartz

As a ubiquitous viral infection of swine, assigning significance to presence of PCV2 (or antibodies to PCV2) requires some interpretation. History, clinical signs, lesions (gross and microscopic) are coupled with the results of a variety of diagnostic assays, before rendering a diagnosis of PCV2-AD. Diagnostic strategies should always include detection of other agents and risk factors for complete diagnosis. Agent, antigen, and antibody detection methods and diagnostic strategies will be discussed.

"Managing PCVAD in Nursery Settings" – Dr. Cameron Schmitt

This presentation is a case based description of diagnostic testing, treatment protocols, management factors, and opinions on minimizing the impacts of this disease. Specific details relating to husbandry, feeding, medication, vaccination and sow herd changes that can be made to reduce PCV2 challenge will be discussed.

"Canadian Experiences with Porcine Circovirus Associated Disease" – Dr. George Charbonneau

Porcine Circovirus Associated Disease (PCVAD) has occurred sporadically in Ontario since the mid 1990’s after it was first described by Dr. John Harding and Dr. Ted Clark in Western Canada. Starting in the fall of 2004 there has been a significant increase in the both the incidence and severity of PCVAD with most of the increased problems occurring in finishing barns. This presentation will describe the clinical presentation and diagnosis of PCVAD in Ontario. Interventions that have been used in the treatment, control and prevention of the disease will be discussed. Some PCV type 2 vaccines are now available in Canada under conditional licensing and initial experiences with these vaccines will be discussed.

"A Practitioner’s Perspective on Porcine Circovirus Disease in Finishers; Diagnostic Approaches and Control" – Dr. Keith Schumacher

There has been a significant increase in incidence and severity of porcine circovirus associated disease in Nebraska. Many of the cases involve finishing swine. This presentation will describe the clinical manifestations and diagnosis of the more severe circovirus associated disease in Nebraska. Attempts at management and treatment will also be discussed.

"Teshoviruses, Enteroviruses, and other potential triggering agents isolated from finisher mortality syndromes diagnosed as Porcine Circovirus Associated Disease (PCAD)" – Dr. Rodney B. Baker

Although PCV-2 virus has long been ubiquitous in the US swine industry it has only recently become an important apparent pathogen in large production systems and certain other industry segments. New genetic PCV2 isolates most closely related to European viruses have emerged in most of these high mortality outbreaks. Importation of this new virus subtype could logically have been accompanied by other more difficult to characterize agents. It appears that Porcine Enteroviruses and Teshoviruses are frequently isolated from these outbreaks and from typical lesioned tissues. The question is are these "Red Herrings" or are they ubiquitous triggering agents in the PCAD syndrome.
SPONSORS

We would like to thank the following sponsors for their support and contributions in making this Conference possible:
Alpharma Animal Health
Boehringer Ingelheim Vetmedica
Elanco Animal Health
Hermitage NGT
Nebraska Pork Producers Association
Pfizer Animal Health
Waldo Farms, Inc.

CANCELLATIONS

If you must cancel your registration, please notify us prior to August 1, 2006 in order to receive a full refund. Cancellation after August 1, 2006 will be subject to an administrative charge of $10.00.

HOTEL RESERVATIONS

For those people needing hotel accommodations, a block of rooms has been reserved for the Conference at the Marina Inn, 4th and B Streets, South Sioux City, Nebraska, 68776. The rate for a single/double occupancy room is $79.00. To make your reservations, call 1-800-798-7980 or (402) 494-4000 and ask for rooms reserved for the George Young Swine Conference.

For further information, contact Sharon Clowser, Conference Coordinator, Department of Veterinary and Biomedical Sciences, 126 VBS, P.O. Box 830905, University of Nebraska-Lincoln, Lincoln, NE 68583-0905, phone 402/472-8550; FAX 402/472-9690; E-mail address: sclowser2@unl.edu

The University of Nebraska-Lincoln does not discriminate based on gender, age, disability, race, color, religion, marital status, veteran's status, national or ethnic origin or sexual orientation.

GEORGE A. YOUNG
SWINE HEALTH & MANAGEMENT
CONFERENCE

Registration Form

Name _______________________________________
Address _______________________________________
City ___________________________ Zip ____________
State _____________ Zip ________________ __
Phone ____________ Fax _________________________
Email _______________________________________

Conference Fees:
_____ Pre-registration: $ 65.00 per person
_____ At the door: $ 55.00 per person
_____ (Group of 3 or more) $ 85.00

One Proceedings will be provided with each paid registration. Please check the one you prefer.
_____ Book
_____ CD

Additional Proceedings may be ordered.
_____ Extra Proceedings—Book: $ 20.00 at the door
_____ Extra Proceedings—CD $ 10.00 at the door
_____ Extra Proceedings—CD $ 15.00 by mail

Total Enclosed $ __________________

_____ Number of people attending luncheon.

Registrations received after August 1, 2006 will be charged an additional $10.00.

Make checks payable to: University of Nebraska

Return this form to: George Young Conference Registration
Attn: Sharon Clowser
P.O. Box 830905
University of Nebraska–Lincoln
Lincoln, NE 68583-0905

IANR
March 7, 2006

Dear Colleague:

The Department of Veterinary Science at the University of Nebraska, Lincoln invites you to attend the 45th Annual Meeting of the North Central Conference of Veterinary Laboratory Diagnosticians to be held on June 8th and 9th, 2006 at the Holiday Inn Downtown, 141 North 9th Street, Lincoln, Nebraska. The Conference will be of interest to all veterinary laboratory diagnosticians and includes topics on bacteriology, immunology, pathology, parasitology, toxicology and virology. A $100 cash award will be presented to the graduate student with the best presentation. Information dealing with the meeting and hotel reservations follows.

I look forward to seeing you in Lincoln.

Sincerely,

Alan R. Doster, DVM, PhD
Chair, North Central Conference of Veterinary Laboratory Diagnosticians

HOW TO REGISTER:
Pre-registration is recommended. Complete and return the enclosed registration form with your check or money order (we are not able to accept credit cards). The deadline for pre-registration is May 5, 2006. On-site registration will be held in the hall outside the Meeting Room in the Holiday Inn-Downtown. Your registration packet will be available at the registration desk on the day of the meeting.

REGISTRATION FEES:
The pre-registration fee is $75.00 and is payable to the Department of Veterinary and Biomedical Sciences, University of Nebraska. Registrations received after that date will be $80.00. Registration fee includes a copy of the Proceedings, coffee breaks, noon lunch on Thursday and the Banquet on Thursday evening.

HOTEL ACCOMMODATIONS:
A block of room will be held at the Holiday Inn Downtown until May 18, 2006. After that date, reservations will be taken on a space-available basis only and at the regular price. The NCCVLD rate is $71.00 per day for either the single or double rate. To make reservations, call the reservation center at: 402-475-4011. When making reservations by telephone, please refer to the North Central Conference of Veterinary Laboratory Diagnosticians Meeting to receive conference rates. Check-out time is 12 noon on Friday, June 9.

ARD/ms
ANNOUNCEMENT AND CALL FOR PAPERS

45th North Central Veterinary Laboratory Diagnosticians Conference

The 45th North Central Conference of Veterinary Laboratory Diagnosticians will be held on June 8th and 9th, 2006 at the Holiday Inn Downtown, 141 North 9th Street, Lincoln, Nebraska.

Titles of papers should be submitted to the Conference Chairperson by April 1, 2006.

Please submit titles of papers to:

Dr. Alan Doster, Chairperson
University of Nebraska
Veterinary Diagnostic Center
Fair Street and East Campus Loop
Lincoln, NE 68583-0907

Abstracts of papers selected for presentation will be due by April 15, 2006.

Please forward abstracts to:

Mavis Seelmeyer, Conference Coordinator
University of Nebraska
Veterinary Diagnostic Center
Fair Street and East Campus Loop
Lincoln, NE 68583-0907

A wide variety of topics for presentation are welcome and include reports on diseases of poultry, interesting diagnostic cases, novel diagnostic methods, and recently recognized or emerging disease syndromes. Fifteen minutes will be allotted for the presentation of each paper. Abstracts will be published in a proceedings which will be distributed at the meeting. Abstract guidelines are described in detail on a separate page. Graduate students are especially encouraged to attend and submit an abstract.

GRADUATE STUDENT AWARD

An award of $100 will be awarded to the graduate student judged to have given the best oral presentation and highest quality paper. Papers and presentations will be judged by the Graduate Student Award Committee headed by Dr. Bruce Brodersen. The Committee will consist of five members, one from each of the following disciplines: bacteriology, pathology, toxicology, virology and a member-at-large.

Please share this information with interested persons in your area. We hope to see you in Lincoln on June 8th and 9th, 2006!
NCCVLD

Abstract Guidelines

Margins: 1" margins on top and bottom of pages; 1 1/4" margins on left and right sides

Line Spacing: 1.5

Font: Times New Roman 12

Abstract Title: Center the Title on the first line of Abstract, bold, size 14

Abstract Author(s): Name, Title, Institution placed directly under the Abstract title, centered, size 12.

Please do not include page numbers, headers or footers in the Abstract.

Please place your references at the end of the Abstract.

Please identify abstracts to be considered for the Graduate Student Award by an asterisk after the presenter’s name.

If you have any questions, please call Mavis Seelmeyer at (402) 472-8453.

Please also submit an electronic copy of your presentation in either Word or WordPerfect via E-mail to: mseelmeyer1@unl.edu

Send a hard copy to:
Mavis Seelmeyer
University of Nebraska
Veterinary Diagnostic Center
Fair Street and East Campus Loop
Lincoln, NE 68583-0907
Pre-registration is $75.00 and is due by May 5, 2006. Late registration is $80.00. Checks or money orders are payable to: Univ. of Nebr. Department of Veterinary and Biomedical Sciences. (We are unable to accept credit cards.)

Name: __

University/Affiliation: __

Mailing Address: __

City, State, Zip: ___

Name for Name Badge: ___

Amount Enclosed: __________________________

Please remit to: Mavis Seelmeyer
Univ. of Nebr.
151 Veterinary Diagnostic Center
Fair Street and East Campus Loop
Lincoln, NE 68583-0907

If you have any questions, please contact Mavis Seelmeyer at (402) 472-8453. Thank you.