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Abstract  Marine geophysical data from the deep sea adjacent to the Ross Sea, Antarctica suggest that 170 km of 
extension occurred between East and West Antarctica from 46 to 21 Ma. The Northern and Victoria Land Basins in the 
western Ross Sea adjacent to the Transantarctic Mountains accommodated 95 km of this extension. Several kilometers 
of Oligocene sediments are found in the Central Trough and Eastern Basin in the eastern Ross Sea. Subsidence 
modeling accounts for these accumulations with about 40 km of extension in each basin centered on 35 Ma; therefore 
Ross Sea-wide Tertiary extension was comparable to extension in the deep-sea system. The early Tertiary geometry was 
of one oceanic rift that branched into at least three rifts in the continental lithosphere. This pattern is likely due to the 
contrast of physical properties and thermal state between the two different lithospheres at the continent-ocean boundary.

Citation: Decesari, R.C., D.S. Wilson, B.P. Luyendyk, and M. Faulkner (2007), Cretaceous and Tertiary extension throughout the Ross Sea, Antarctica, 
in  Antarctica: A Keystone in a Changing World – Online Proceedings of the 1ISAES, edited by A.K. Cooper and C.R. Raymond et al., USGS
Open-File Report 2007-1047, Short Research Paper 098, 6 p.; doi:�0.3�33/of2007-1047.srp098

Introduction
The Ross Sea overlies the extended lithosphere of 

the West Antarctic Rift System between East and West 
Antarctica. Extension in the rift is believed to have 
occurred in two main episodes; in the Cretaceous and in the 
Cenozoic(Davey and Brancolini, 1995). Cenozoic extension 
can be related to sea floor spreading on the Adare spreading 
system located northwest of the Ross Sea. Here 170-175 km 
of extension are thought to have occurred between 46 and 
21 Ma (Davey et al., 2006; Mueller et al., 2005). Extension 
was transferred across the continent-ocean boundary into 
the western Ross Sea to form or deepen basins in the 
margin. Cenozoic extension in the westernmost basin, the 
Victoria Land Basin, can be reconstructed to be about 95 
km, leaving a deficit of 75 km that must have occurred 
elsewhere (Davey et al., 2006). Others have suggested that 
extension was transferred eastward in the Ross Sea by right 
lateral shear (Salvini et al., 1997). The details of where the 
missing extension occurred and how this happened bear 
on rifting process at the continent-ocean transition. One 
possibility that we explore here is that other basins to the 
east of the Victoria Land basin also were extended during 
the Cenozoic. 

The Ross Sea margin has four major basins, Northern 
Basin (NB), Victoria Land Basin (VLB), Central Trough 
(CT), and Eastern Basin (EB) (Fig. 1). Filling the basins 
are the Ross Sea seismic stratigraphic sequences RSS-
1 (putative Cretaceous) through RSS-8 (Pleistocene) 
separated by unconformities RSU6 (~30 Ma) through RSU1 
(Pleistocene) (ANTOSTRAT, 1995). We observe great 
thicknesses of Oligocene and younger strata in all basins 
and hypothesize that Cenozoic (Early Tertiary) extension 
and subsidence associated with Adare Basin spreading 
affected the VLB, and also the CT and EB, creating the 
necessary accommodation space needed for deposition. 
An alternative hypothesis limits Tertiary extension to only 
the VLB, suggesting the CT and EB were only affected by 

Cretaceous extension (Karner et al., 2005). To test these 
hypotheses we use the backstripping method to determine 
the observed tectonic subsidence in the CT and EB and 
compare that to predicted tectonic subsidence curves using 
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Figure 1.  Location map for the Ross Sea area.  Shading 
highlights sedimentary basins in Ross Sea, based on depth 
to basement deeper than 2.5 km [ANTOSTRAT, 1995]; 
NB, Northern Basin; VLB, Victoria Land Basin; CT, 
Central Trough; EB, Eastern Basin.  Bold line shows 
coincident seismic profiles BGR-02 [ANTOSTRAT, 1995] 
and ACRUP2 [Trey et al., 1999]. Double circles show 
DSDP Sites 270 and 272 [Hayes et al., 1975].  Squares 
show locations analyzed for backstripping and 1-D subsid-
ence.
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different combinations of lithosphere stretching factors. We 
find that for reasonable stretching, 80 km of total extension 
can be proposed for the CT and EB.

Methods
Backstripping analysis (Steckler and Watts, 1978) was 

done to convert observed basin stratigraphic thicknesses 
to basement subsidence history. A one dimensional (1-D) 
Airy isostatic subsidence history was produced for the CT 
and EB at two points along German seismic profile BGR-
02 (ANTOSTRAT, 1995). The VLB was not included in 
our analysis due to uncertainties in basement depth, unit 
thicknesses, and the unknown influence of Cenozoic 
volcanism. Corrections that were applied to the present 
stratigraphic thickness include decompaction (following 
Sclater and Christie (1980) using data from Hayes, Frakes 
et al. (1975); details in Decesari (2006)) of the sedimentary 
infill, isostatic compensation after decompaction, and 
paleobathymetric and eustatic sea level corrections. The 
result is the tectonic subsidence as a function of time. 
Global eustasy is accounted for using the curves of Miller et 
al. (2005). Due to limited available data, paleobathymetry 
was assumed as described later. 

We predicted thermal subsidence using a model 
generalized from the instantaneous, pure-shear extension 
model of McKenzie (1978).  Rather than his original 
Fourier-series solution for a single extension event, we used 
a finite-difference solution for temperature as a function of 
depth, which allows multiple extension events at different 
times. Following McKenzie, we used an initial lithosphere 
thickness of 125 km, thermal expansion coefficient of 3.28 
x 10-5 ˚C-1, mantle temperature of 1330 ˚C, and mantle 
density of 3.33 g cm-3. Subsidence for a single Cretaceous 
extension event and dual Cretaceous and Tertiary events 
were predicted for comparison against observations.

Stratigraphic analysis
Stratigraphic depths published for BGR-02 were based 

on stacking velocities (ANTOSTRAT, 1995). However, we 
consider depths computed from interval velocities to be 
more accurate. An interval velocity model for BGR-02 was 
computed from velocities for seismic profiles obtained on 
RVIB Nathaniel B. Palmer cruises NBP96-01 and NBP03-
01 that cross this line.

We reinterpreted unconformities RSU6-RSU3 in the 
CT and EB from the revised BGR-02 depth section. These 
unconformities separate the RSS-1 through RSS-6 seismic 
sequences (ANTOSTRAT, 1995) and are interpreted to 
have formed at or close to sea level (DeSantis et al., 1999). 
Thicknesses of RSS-2 (early Oligocene-early Miocene) 
through RSS-6, 7 & 8 (late Miocene-Pliocene grouped as 
one unit) were calculated at the deepest locations of the 
basins (BGR-02 shot points 10450 in the CT and 4200 in 
the EB), ensuring analysis for the most extended crust. 
Acoustic basement depths in the basins could not be 
resolved from reflection seismic data and were obtained 
from gravity and seismic refraction modeling (Trey et al., 
1999). Thickness of RSS-1 is then the difference between 
depths of the basement and RSU6.  We assign an original 

depth of 100 ± 50 m for RSU6 and 200 ± 200 m for the 
younger unconformities.

Results
Both the CT and EB have 3 kilometers of Oligocene and 

younger sediments (post RSU6) that need to be explained 
by a subsidence history. The subsidence history prior to 30 
Ma (putative age of RSU6) is poorly constrained due to the 
absence of dated unconformities older than early Oligocene. 
Since 95 Ma (mid-point age we assume for Cretaceous 
rifting), more than 5.5 km of sediment accumulation has 
occurred in the Central Trough (Fig. 2a) and more than 7.5 
km in the Eastern Basin (Fig. 2b). 

Predicted thermal subsidence curves were fitted to 
tectonic subsidence curves for the CT and EB to determine 
the amount of Ross Sea lithosphere stretching (β). A single 
Cretaceous extension event was considered first. Predicted 
tectonic subsidence curves for β=2, β=4, and β=5 were 
plotted against the observed tectonic subsidence (Fig. 2c). 
None of the observed subsidence curves fit the predicted 
Cretaceous-only extension model. This indicates that 
no amount of Cretaceous extension can account for the 
tectonic subsidence of the basement since 30 Ma, assuming 
that unconformity RSU6 formed at or near sea level.

Predicted two-stage Cretaceous (centered at 95 Ma) 
and Tertiary (centered at 35 Ma) extension can explain 
observed tectonic subsidence for the CT and EB. The 
observed tectonic subsidence of the CT and EB are 
bracketed by predicted subsidence curves using Cretaceous 
β=2, Tertiary β=1.5 and Cretaceous β=2, Tertiary β=3 (Fig. 
2d). Further refinement reveals that predicted subsidence 
resulting from Cretaceous β=2, Tertiary β=2 closely fits 
the EB observed total tectonic subsidence (Fig. 2d). The 
observed subsidence of the CT does not exactly fit a 
Cretaceous β=2, Tertiary β=2 curve, but does within the 
error limits. Both the CT and EB observed subsidence can 
also be explained by Cretaceous β=1.5, Tertiary β=2.25 
and Cretaceous β=1.5, Tertiary β=2.5 (Fig. 2d). It is 
possible the CT may have a lower Cretaceous β combined 
with a higher Tertiary β that would produce similar results 
as the EB with Cretaceous and Tertiary β=2. Regardless, 
these results indicate that a period of significant Tertiary 
extension is needed to account for the observed subsidence 
of the CT and EB and the large thickness of Oligocene and 
younger sediments in them, if the unconformities formed 
at shallow depths.

Discussion
An alternative model for Ross Sea basin formation 

includes Cretaceous extension for NB, VLB, CT, and EB 
formation but limits Tertiary extension to the VLB and 
NB (Karner et al., 2005). The Cretaceous-only model 
for CT and EB necessitates that most thermal subsidence 
throughout the Ross Sea predates Oligocene sedimentation 
and requires that Cretaceous extension created deep paleo-
basins that persisted until Oligocene time (Karner et al., 
2005).

For a single Cretaceous extension event to explain 
the subsidence history, Tertiary Ross Sea unconformities 
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would have to have formed at depths of many hundreds of 
meters. The total tectonic subsidence of the EB was fitted to 
a Cretaceous β=4 predicted subsidence curve by increasing 
the paleo-water depth at each unconformity (Decesari, 
2006). The results show that unconformity RSU6 would 
have to have formed at 900-m depth to fit this model. 

How would the results for Cretaceous-only extension 
be different had flexural compensation been assumed as 
opposed to local Airy compensation? A local sediment load 
produces a broader area subsidence response in a flexural 
process than an Airy process. In a flexural response, the 
subsidence for a given sediment load is less than a local 
isostatic response. The backstripping analyses accounts 
for the observed sediment thickness by combining effects 
including tectonic subsidence, isostatic response and 
paleobathymetry. Therefore, less isostatic response at a 
basin center in a flexural compensation model requires 
deeper bathymetry to account for the observed thicknesses 
than a local compensation model. The paleobathymetry 
for RSU6 in flexural compensation with Cretaceous-
only extension would be significantly deeper than 900 m 
found for the 1-D model. Alternatively, forming RSU6 at 
shallow depth in a flexural-compensation model would 
require more Tertiary extension than we have modeled.  
Properly accounting for flexural compensation may well 

be important for the Central Trough, which is fairly narrow 
and has a large positive gravity anomaly (e.g. Trey et al., 
1999), but probably not for the wider Eastern Basin, where 
the low-amplitude gravity anomaly suggests that local 
compensation is a good approximation.

Unconformity RSU6 has been suggested to have formed 
as a 29-Ma deepwater unconformity resulting from strong 
currents related to the opening of the Drake Passage (Hinz 
and Block, 1984). Deep water Oligocene unconformities 
are interpreted in the Indian Ocean and the western Pacific 
Ocean and may have resulted from erosive Oligocene 
Antarctic Bottom Water currents (Carter et al., 2004; 
Davies et al., 1975). Anderson and Bartek (1992) suggest 
subglacial erosion may have formed RSU6. However, 
DeSantis, et al. (1999) argue against this based on the 
improbability that a large-sized ice sheet was grounded on 
the seafloor at significant depth without leaving any signs 
of both erosion or deposition. 

If unconformity RSU6 was cut at 900 m or more by 
grounded ice, significant erosion of RSS-1 would be 
expected. Rather, relatively parallel reflectors are seen 
above and below RSU6 (Decesari et al., 2004). This is 
characteristic of gentle sea floor slopes that are typical of 
shallow shelves. It seems unlikely that unconformity RSU6 
formed at depths from glacial erosion. We favor the Ross 
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Figure 2.  Decompacted sediment thickness histories and subsidence models.  Left panels show thickness history 
corrected for compaction for Central Trough (a) and Eastern Basin (b) sites, with observed thickness at zero age.  Right 
panels show observed tectonic subsidence for both sites (computed from thickness history, Airy load model, and 
estimated paleobathymetry), compared with subsidence predictions for models with extension at 95 Ma (K) only (c) 
and at both 95 Ma and 35 Ma (T) (d).  For Cretaceous-only extension, even high stretching factors of β = 4-5 do not 
predict the computed subsidence (c).  For the two-stage model, moderate stretching factors around 2 for both K and T 
events are consistent with the computed subsidence (d).
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Sea Tertiary unconformities originating at shallow water 
depths, formed from a combination of sea level changes 
and ice erosion. Therefore, we prefer a two-stage tectonic 
model starting with Cretaceous extension and followed by 
an early Tertiary event consistent forming unconformities 
in shallow water. The large degree of extension that we 
interpret requires a large initial crustal thickness. Prior 
to Cretaceous extension, the Ross Sea was probably an 
elevated region high above sea level (Fig. 3a) with thick 
continental crust (~50 km). Cretaceous extension, possibly 
totaling several hundred kilometers, occurred between 105 
and 80 Ma (Siddoway et al., 2004).  Modeled east-west 
extension centered on ~95 Ma at β=~2 thinned the crust to 
~20-25 km (Fig. 3b). Cretaceous sedimentary unit RSS-1 
was deposited and deformed within basement grabens. 

Modeled Tertiary extension centered around ~35 Ma 
correlates to the Adare Trough seafloor spreading event. 
Magnetic anomaly interpretation indicates about 180 km 
of E-W seafloor spreading occurred (Cande et al., 2000). 
However, the VLB is only 130 to 150 km wide, and Davey 
and De Santis (Davey and De Santis, 2006) interpreted only 
about 95 km of lithosphere extension in the VLB for Tertiary 
time. An excess of up to 85 km of Adare Trough extension 
must have been accommodated elsewhere. Cande and Stock 
(2006) propose either partitioning extension between the 
VLB and the Central Trough or the VLB accommodating 
all of the extension. Tertiary extension of ~2:1 extended 
the Ross Sea further in localized areas corresponding to the 
proto-VLB (and NB), CT, and EB (Fig. 3c). We suggest the 
extension was partitioned over all of the Ross Sea basins, 
perhaps 100 km in VLB and 40 km each in CT and EB. 
Tertiary extension resulted in subsidence of RSS-1 and 
RSU7 below sea level. No later than 30 Ma, unconformity 
RSU6 was cut near sea level. 

Gravity data from the Ross Sea indicate the basins are 
characterized by positive anomalies, which can be used as a 
proxy for thinned continental crust (Hayes and Davey, 1975; 
Luyendyk et al., 2002), confirmed by seismic refraction 
experiments (Trey et al., 1999). We have complied a new 
gravity map of the Ross Sea and Ice Shelf from marine, ice 
surface, and satellite data ((modified after Luyendyk et al., 
2002); Fig. 4), which shows a relationship between gravity 
highs and sedimentary basins. This map can therefore 
show the extent and location of Tertiary extension. Using 
the gravity proxy, Adare Trough extension splits into three 
branches in the Ross Sea continuing south under the ice 
shelf. The amplitude of the CT anomalies decreases to the 
south (Fig. 4), possibly indicating extension decreases to 
the south. 

Davey et al. (2006) proposed that 95 km of Tertiary 
extension was accommodated in the VLB; our interpretation 
stipulates that an additional ~80 km is distributed between 
the CT and EB. Therefore, within uncertainties, this amount 
matches the 170 km proposed for the Adare spreading 
system. For these amounts of extension to agree, the relative 
motion pole must have been a moderate distance away 
from the Ross Sea. Davey et al. (2006) show a rotation pole 
for anomaly 18 in Marie Byrd Land; Cande et al. (2000) 

show a pole for anomaly 13 located in the South Atlantic 
with a large uncertainty extending from the Weddell Sea to 
the northeast Atlantic. Because our analysis suggests that 
the Cenozoic extension amount is not discernibly different 
between the Adare system and the Ross Sea, the relative 
motion poles must have been farther away rather than 
closer.

Cande and Stock (2006) argue that because there are 
alignments of gravity and magnetic anomaly trends to the 
east of NB, all of the Adare extension must be restricted 
to the NB and the VLB to the south and none occurred 
to the east. We propose instead that extension in the NB 
decreases southward accommodated by clockwise rotation 
or distributed shear of the east flank of the NB (Figure 
4b).

Conclusions
The Ross Sea may cover foundered continental 

crust from the collapse of thick, elevated lithosphere 
since the Cretaceous (Fig. 3 Luyendyk et al., 2001). The 
Transantarctic Mountains (TAM) may be the preserved 
inland edge of the elevated region. Studinger et al. (2004) 
also interpret that West Antarctic structure and geologic 
history may be consistent with high plateau collapse. 
Bialas et al. (2005) propose a model of a thick lithosphere 
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retaining significant elevation as adjacent lithosphere is 
extended and subsides. 

Our analyses support extension and subsidence of Ross 
Sea lithosphere in two phases, the last of which occurred 
in three basins during early Tertiary time synchronous with 
Adare Trough spreading. A test for our hypotheses would 
include drilling and sampling Oligocene and older units in 
the Ross Sea. 

We have presented a case where a rift in oceanic 
lithosphere crosses obliquely into continental lithosphere 
at the content-ocean boundary and shows a distributed 
region of strain. One or two oceanic rifts have branched 
into at least three rifts in the continental lithosphere. This 
pattern is likely due to the contrast of physical properties 
and thermal state between the two different lithospheres.
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interpreted from depth to basement and gravity anomalies.  Shading shows Bouguer gravity anomaly greater than +10 
mgal. Dotted lines in Ross Sea show 2.5-km basement contour (Fig. 1). Positive gravity anomalies are located over the 
basins, indicating thinned crust. Arrow adjacent to Adare trough shows across-strike width of oceanic crust formed by 
the latest spreading episode; a similar amount of total extension must also be present to the south.
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