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Least-squares finite-element lattice Boltzmann method

Yusong Li, Eugene J. LeBoeuf,* and P. K. Basu
Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37325, USA

(Received 10 November 2003; published 2 June 2004)

A new numerical model of the lattice Boltzmann method utilizing least-squares finite element in space and
Crank-Nicolson method in time is presented. The new method is able to solve problem domains that contain
complex or irregular geometric boundaries by using finite-element method’s geometric flexibility and numeri-
cal stability, while employing efficient and accurate least-squares optimization. For the pure advection equation
on a uniform mesh, the proposed method provides for fourth-order accuracy in space and second-order accu-
racy in time, with unconditional stability in the time domain. Accurate numerical results are presented through
two-dimensional incompressible Poiseuille flow and Couette flow.

DOI: 10.1103/PhysRevE.69.065701 PACS number(s): 47.11.1j

Application of the lattice Boltzmann method(LBM ) to
fluid flow suggests that it can be a powerful tool for solving
complex fluid dynamics problems[1]. Traditional LBM,
originating from lattice gas automata(LGA) where particles
propagate from one site to another on a regular lattice, how-
ever, is restricted to a uniform grid. This limitation seriously
affects the potential use of traditional LBM in many practical
problems, e.g., flow in porous media, where complex pore
geometries cannot be well represented by a uniform lattice
[2]. While the coupling between discretization of velocity
spaces and physical space is an essential part of LGA dynam-
ics, it is not critical for LBM[3]. For example, interpolation-
supplemented LBM can be implemented on an irregular rect-
angle [4,5]. Furthermore, LBM can be coupled with
traditional numerical methods such as finite difference(FD),
finite volume(FV), and finite element(FE) methods to ex-
tend the applicability of the LBM to irregular unstructured
grids.

Based on Runge-Kutta time discretization and various
spatial discretization schemes, Chen and co-workers[1,6]
combined FD and LBM in a number of ways. The first cen-
tral difference scheme was proposed by Caoet al. [6] in
Cartesian coordinates, and was later extended to curvilinear
coordinates with nonuniform grids[7]. A finite difference
LBM (FD-LBM) scheme has been successfully applied in
several aspects of fluid simulation[1], for example, for
single-phase flow through three-dimensional digitized rock
fractures under varied simulated confining pressures[8].
Amati et al. [9] were the first to propose a finite volume
formulation of the LBM where a piecewise linear interpola-
tion scheme was used to estimate the volume-averaged par-
ticle distribution in a nonuniform coarse lattice. Another
volumetric formulation of LBM was developed by Chen
[10], which can be applied to arbitrary meshes while achiev-
ing exact adherence to conservation laws and equilibrium
conditions[10]. Penget al. [11–13] proposed additional ver-
sions of the finite volume LBM(FV-LBM ) for both triangu-
lar and rectangular elements, which appears to be flexible for
both internal and external boundaries. The inherent geomet-

ric flexibility and numerical stability of the finite-element
method suggests that a finite-element LBM(FE-LBM) may
be an appealing alternative to FV-LBM and FD-LBM.

While several works describe applications of FD and FV
methods to LBM, few works have addressed FE-LBM. The
popularity of FD-LBM and FV-LBM relative to FE-LBM
derives from the nature of the classic Galerkin finite-element
method. For equations with self-adjoint and positive-definite
operators, the classic Galerkin finite-element method can
lead to symmetric and positive-definite systems of linear al-
gebraic equations. However, for non-self-adjoint equations,
such as the lattice Boltzmann equation, classic Galerkin
methods are often corrupted by spurious oscillations or
wiggles[14]. Recently, Lee and Lin(2001) presented a char-
acteristic Galerkin discrete Boltzmann equation(CGDBE) to
overcome this problem by implementing a Taylor-Galerkin
procedure for the discrete Boltzmann equation, which is, to
the best of our knowledge, the only literature describing FE-
LBM. This method, however, is limited by its conditional
stability associated with the explicit expression of the con-
vection term[15].

Least-squares finite-element(LSFE) method, on the other
hand, was recently shown to be a robust and efficient way to
solve non-self-adjoint equations where convection operators
are of first order[14], always leading to symmetric, positive-
definite linear systems of equations, eliminating the need to
use upwinding, staggered grids and operator splitting tech-
niques[16]. Compared with Taylor-Galerkin-based FE meth-
ods, LSFE method possesses improved stability. Further-
more, for more complex systems, Taylor-Galerkin-based FE
method may promote oscillations at discontinuities[14] or at
solid-liquid interfaces. Those oscillations may be suppressed
by artificially adding dissipation terms like those in “up-
wind” and “artificial viscosity” schemes, which, however,
are dependent on the specific parameters of the problem.
Employing a LSFE scheme to solve the lattice Boltzmann
equation thus represents a promising approach to extend
LBM to more practical and complex domains, while simul-
taneously benefitting from the finite-element method’s supe-
rior stability and flexibility. It is in this light that we propose
to implement a new FE-LBM, which utilizes LSFE in space
and Crank-Nicolson scheme in time.*Electronic address: eugene.j.leboeuf@vanderbilt.edu
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Our starting point for illustrating this new method is the
discrete lattice Boltzmann equation

] f i

] t
+ cY i ·¹Y f i = Vi si = 1,2, . . .Nd, s1d

wheref i represents the particle velocity distribution function,
cY i is the velocity along theith direction,N is the number of
different velocities in the model, andVi denotes the collision
operator which is commonly approximated by the
Bhatnagar-Gross-Krook model[17],

Vi = −
1

t
sf i − f i

eqd, s2d

wheret is the relaxation time andf i
eq is the local equilibrium

given by

f i
eq= rviS1 +

uY ·cY i

cs
2 +
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2uY2

2cs
4 D , s3d

in which vi is the weighting parameter for each velocity
direction. The density per noder and the macroscopic veloc-
ity uY are defined by

r = o
i

f i ruY = o
i

f ici . s4d

Nine possible directional velocities are used in this study,
wherevi in Eq. (3) equals 4/9 fori =0, 1/9 for i =1,2,3,4,
and 1/36 fori =5,6,7,8. Thenine velocities are defined as
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Construction of the LSFE-LBM first considers application
of the u method to treat time-space approximations. Setting
the time stepDt= tn+1− tn, and givenf i

n for the previous time
step, the solutionf i

n+1 for the current time step is determined
from

f i
n+1 − f i

n

Dt
+ ucY · ¹ f i

n+1 + s1 − udcY · ¹ f i
n

= uVi
n+1 + s1 − udVi

n. s6d

Here, u=1/2 corresponds to the Crank-Nicolson scheme,
providing for second-order accuracy in time. Rearranging
Eq. (6), a standard form for LSFE can be obtained:
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For brevity the operatorL is used, and Eq.(7) can be written
in the following form:

Lf n+1 = p. s8d

For finite-element analysis, the problem domain can first
be subdivided into a set of finite elements, and then approxi-
mated by the solutionf h

e,n+1 in a finite subspace as

f h
e,n+1 = o

j=1

n

Nj f j
n+1, s9d

whereNj denotes the element shape function,n represents
the number of nodes in an element, andf j is the nodal values
at the j th node. Introducing Eq.(9) into Eq. (8) for an ele-
ment, we get

E = Lf h
e,n+1 − ph

e, s10d

where E is the residual due to nodal approximation. The
LSFE is based on the minimization of the squares of the
residual for the subspace

wsf n+1d =E
Ve

E2 dVe =E
Ve

sLf h
e,n+1 − ph

ed2dVe, s11d

dwsf n+1d
df a

n+1 =E
Ve

sLNadTsLf h
e,n+1 − ph

eddVe = 0,

a = 1,2, . . .n, s12d

whereVe is the domain of theeth element, and the exponent
T denotes the transpose. For each element the following lin-
ear algebraic equations can be derived from Eq.(12):
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KeF e
n+1 = Pe, s13d

whereF e
n+1 is the vector of nodal values at the current time

step.Ke is the elemental matrix given by

Ke =E
Ve

QTQ dVe, s14d

whereQ=hQ1,Q2, . . .Qi , . . .Qnj is a s13nd vector, withQi

of the following form:

Qi = cx
] Ni

] x
+ cy

] Ni

] y
+ ANi . s15d

The element at vectorPe in Eq. (13) is

Pe =E
Ve

QTph
e dVe. s16d

As presented in Eq.(7) ph
e is related to the previous time

step f i
n and f i

eq,n values, and the current time stepf i
eq,n+1

value. An extrapolation is applied to expressf i
eq,n+1, as pro-

posed by Mei and Shyy[7],

f i
eq,n+1 = 2f i

eq,n − f i
eq,n−1, s17d

where f i
n, f i

eq,n, and f i
eq,n−1 can be approximated in the sub-

space similar tof i
n+1, as

f h
n = o
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n

Nj f j
n, f h

eq,n = o
j=1

n

Nj f j
eq,n, f h
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n

Nj f j
eq,n−1.
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Boundary conditions are implemented as proposed by Lee
and Lin [15]: f h

n+1 at the boundary are treated as part of the
solution, and macroscopic boundary conditions are imposed
through f h

eq.
Through this LSFE derivation process it is clear that the

Ke matrix in Eq. (13) is symmetric and positive definite.
Preconditioned conjugate gradient methods can be used as
efficient tools for solution. Furthermore, an element-by-
element scheme may be developed, without the need to store
the global matrix[14], effectively reducing memory storage
requirements.

Implementing the same accuracy analysis procedure as
presented by Lee and Lin[15] for the pure advection equa-
tion on uniform meshes, LSFE-LBM enjoys similar accuracy
as the CGDBE method, i.e., fourth-order accuracy in space
and second-order accuracy in time. Compared to the second-
order accuracy in space for FD-based LBM, it is clear that
FE-based LBM greatly increases numerical accuracy. Appli-
cation of von Neumann stability analysis to LSFE-LBM re-
veals unconditional stability with any Courant-Friedrichs-
Lewy (CFL) number for the pure advection equation on a
uniform mesh ifu in Eq. (6) is in the range ofs1/2,1d. This
unconditional stability, derived from the implicit nature of
LSFE, provides a significant advantage over CGDBE, which
is only conditionally stable due to its explicit treatment of the
advection term. A comparison of accuracy and stability
among LSFE-LBM, CGDBE, and FD-LBM is given in Table
I. Stability analysis related to nonlinear equilibrium terms in

the lattice Boltzmann equation, however, suggests that the
stability of the LSFE-LBM is dependent on a number of
parameters, including time step, element size, wave number,
and relaxation time. This complex dependence of the stabil-
ity has also been reported by other studies for LBM on ir-
regular grids[3,18], and thus is not unique to LSFE-LBM.

Two simple examples, Poiseuille flow and Couette flow,
are presented to demonstrate the validation of the proposed
method. More complex examples will be presented in subse-
quent publications. An analytical solution to plan Poiseuille
flow in a channel is provided by Eq.(19) [19]:

vxsyd = umaxF1 −S y

H
D2G, − H ø y ø H, s19d

wherex is the spatial longitudinal dimension,y is the spatial
transverse dimension,umax is the maximum velocity at the
parabolic velocity profile, andH is the half-width of the
channel. In our LSFE-LBM implementation, the initial flow
velocity is zero, relaxation time,t, is 0.05, particle density,
r, is 1.0, umax is 1.0, andH is 5/6. A periodic boundary
condition is applied in thex direction, and a body forceG
=2numax/H

2 is applied in thex direction to initiate the flow,
where n is the viscosity following the relationshipn=t/3.
This system possesses a Reynolds numbersRe=umax2H/nd of
10, and a Mach numbersMa=umax/csd of 0.173. Results pre-
sented in Fig. 1 illustrate that LSFE-LBM achieves close
agreement with the analytical solution.

The second application of unsteady Couette flow is used
to evaluate the temporal accuracy of LSFE-LBM. Here, the
top plate is moving along thex direction at a constant veloc-
ity, umax, while the bottom plate remains stationary. The ana-
lytical solution for Couette flow is[19]

usy,td = umax
u

D
+ o

i=1

`
2umaxs− 1di

liD
e−1/li

2t sin liy, 0 ø y ø D,

s21d

whereli = ip/D , m=1,2,3. . .
A periodic boundary condition is applied in thex direc-

tion, and the Reynolds numbersRe=umaxD/nd is again set
equal to 10, whereD represents the width of the channel.
The time step is 0.03, relaxation time,t, is 0.05, particle

TABLE I. A comparison of accuracy and stability characteristics
of FD-LBM, CGDBE, and LSFE-LBM for the pure advection equa-
tion on a uniform mesh.Dx= element size.Dt= time step.e= dis-
crete velocity in the characteristic direction[15].

FD-LBM CGDBE LSFE-LBM

Accuracy
Space Second order Fourth order Fourth order

Time Second order Second order Second order

Stabilitya Conditional/
Unconditional

Dtø Dx/3ueu Unconditional

aStability of FD-LBM is based upon the specific time discretization
scheme used.

LEAST-SQUARES FINITE-ELEMENT LATTICE… PHYSICAL REVIEW E 69, 065701(R) (2004)

RAPID COMMUNICATIONS

065701-3



density is 1.0,umax is 0.1, andD is 5/3. A comparison of
the numerical results and the analytical solution is shown in
Fig. 2.

Although the examples presented here are fairly simplistic
in nature, they serve to demonstrate the successful coupling
of LSFE and LBM, and its application to steady and un-
steady incompressible flow. The geometric flexibility and nu-
merical stability of finite-element methods inherent in LSFE-
LBM suggest that this method is very flexible and can be
applied to domains possessing complex boundary geometries
using unstructured meshes with increased numerical accu-
racy and stability. LBM provides for increased computational
efficiency relative to traditional computational fluid dynam-
ics (CFD) methods employing the Navier-Stokes equation,
especially in cases with increased geometric complexity. Al-

though the inherent computational requirements of FE-based
LBM leads to reduced computational efficiency relative to
the classic LBM, it is worthy to note that the use of unstruc-
tured mesh in LSFE-LBM is expected to require fewer grid
points than methods using structured mesh, potentially off-
setting the increased computational requirements of FE. A
detailed discussion and comparison of computational effi-
ciencies for LSFE-LBM, classical LBM, and other tradi-
tional CFD methods will be presented in a subsequent paper.

This material is based upon work supported by the Na-
tional Science Foundation under Grant No. 0088912. Any
opinions, findings, and conclusions or recommendations ex-
pressed in this material are those of the authors and do not
necessarily reflect the views of the National Science Foun-
dation.
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FIG. 1. Comparison of LSFE-LBM solution(points) and ana-
lytical solution (line) for normalized velocity profile for Poiseuille
flow. In the LSFE-LBM, the relaxation time,t, is 0.05, and particle
density,r, is 1.0, the maximum velocity,umax, is 0.1, and the half-
width of the channel,H, is 5/6.

FIG. 2. Comparison of LSFE-LBM solution and analytical so-
lution for Couette flow. The points represent the LSFE-LBM solu-
tion, while the lines denote the analytical solution. The time step is
0.03, and relaxation time,t, is 0.05, the maximum velocity,umax, is
0.1, and the width of the channel,D, is 5/3.
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