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Least-squares finite-element lattice Boltzmann method

Yusong Li, Eugene J. LeBoetifand P. K. Basu
Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee 37325, USA
(Received 10 November 2003; published 2 June 2004

A new numerical model of the lattice Boltzmann method utilizing least-squares finite element in space and
Crank-Nicolson method in time is presented. The new method is able to solve problem domains that contain
complex or irregular geometric boundaries by using finite-element method’s geometric flexibility and numeri-
cal stability, while employing efficient and accurate least-squares optimization. For the pure advection equation
on a uniform mesh, the proposed method provides for fourth-order accuracy in space and second-order accu-
racy in time, with unconditional stability in the time domain. Accurate numerical results are presented through
two-dimensional incompressible Poiseuille flow and Couette flow.

DOI: 10.1103/PhysReVvE.69.065701 PACS nunmd)erd7.11+j

Application of the lattice Boltzmann methodBM) to  ric flexibility and numerical stability of the finite-element
fluid flow suggests that it can be a powerful tool for solving method suggests that a finite-element LBVE-LBM) may
complex fluid dynamics problem§l]. Traditional LBM,  pe an appealing alternative to FV-LBM and FD-LBM.
originating from lattice gas automataGA) where particles While several works describe applications of FD and FV
propagate from one site to another on a regular lattice, hOWmethods to LBM, few works have addressed FE-LBM. The
ever, is restricted to a uniform grid. This limitation seriously popularity of FD-LBM and FV-LBM relative to FE-LBM
affects the potential use of tradltlona! LBM in many practical geriyes from the nature of the classic Galerkin finite-element
problems, e.g., flow in porous media, where complex porgnaiqq For equations with self-adjoint and positive-definite
geometries cannot b_e well represe_nted .by a uniform Ia'Ft'c‘?)perators, the classic Galerkin finite-element method can
[2]. While the coupling between discretization of VeloCity 044 1o symmetric and positive-definite systems of linear al-
spaces and physical space is an essential part of LGA dynarge aic equations. However, for non-self-adjoint equations,

ics, itis not critical for LBM[.S]' For example, intgrpolation- such as the lattice Boltzmann equation, classic Galerkin
supplemented LBM can be implemented on an irregular récty,oq4s are often corrupted by spurious oscillations or
angle [4,5]. Furthermore, LBM can be coupled with

traditional numerical methods such as finite differe(E€b), \;V(I:?Srlii?ig:lgélzﬁgﬁndtgélrﬁz %g?é%%gg%g&i;g‘éeg;;?f "
finite vqume(_FV),. _and finite eIemen(lFE) methods to ex- overcome this problem by implementing a Taylor-Galerkin
tend the applicability of the LBM to irregular unstructured procedure for the discrete Boltzmann equation, which is, to
grlcés. d R Kutta fi di tizati q . the best of our knowledge, the only literature describing FE-
spatiaasle dis(;?etizl;rgigﬁ- sléhgm:an;e C%Secr:eeiﬁz 'gg_ﬁgrm\lg'ouﬁ_BM‘._This method, however, is limited by its conditional
combined FD and LBM in a nmeer of ways. The first Cer]_Stabmty associated with the explicit expression of the con-

i - tion t 15].
ral difference scheme was proposed by Gacal. [6] in  coron termiis]

. . - Least-squares finite-elemeitSFE) method, on the other
Cartesian coordinates, and was later extended to curwhneq{and was recently shown to be a robust and efficient way to
coordinates with nonuniform gridg7]. A finite difference '

.~ . solve non-self-adjoint equations where convection operators
LBM (FD-LBM) scheme has been successfully applied inyo of first ordef14], always leading to symmetric, positive-
sgveral aspects of fluid S|mulat|q[1], fo_r exa’?"‘?'.e’ for definite linear systems of equations, eliminating the need to
single-phase flow through three-dimensional digitized roclgJse upwinding, staggered grids and operator splitting tech-
fractures under varied simulated confining pressuigs niques[16]. Cor,npared with Taylor-Galerkin-based FE meth-
Amati et al. [9] were the first to propose a finite volume ¢ | SFE method possesses improved stability. Further-
formulation of the LBM where a piecewise linear interpola- 1\, e “for more complex systems, Taylor-Galerkin-based FE
tion scheme was used to estimate the volume-averaged pPafiaihod may promote oscillations at discontinuifie4] or at

t'dle d'St.”blth'on Im a nofntlirlgl;arm cozrse Ilattlge.bAnCo;her solid-liquid interfaces. Those oscillations may be suppressed
volumetric formulation o was developed by Lhen by artificially adding dissipation terms like those in “up-

[10], which can be applied to arbitrary meshes while achievs;\» 2nq “artificial viscosity” schemes, which, however,

ing exact adherence to conservation laws an_d_ eqUiIibriurT?;1re dependent on the specific parameters of the problem.
conditions[10]. Penget al.[11-13 proposed additional ver- Employing a LSFE scheme to solve the lattice Boltzmann

sions of the finite volume LBMF\_/—LBM)for both triangu- equation thus represents a promising approach to extend
lar and rectangular elements, which appears to be flexible fq[BM to more practical and complex domains, while simul-

both internal and external boundaries. The inherent geome{(;meougy benefitting from the finite-element method's supe-
rior stability and flexibility. It is in this light that we propose
to implement a new FE-LBM, which utilizes LSFE in space
*Electronic address: eugene.j.leboeuf@vanderbilt.edu and Crank-Nicolson scheme in time.
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Our starting point for illustrating this new method is the . -G (G-éi)z—cﬁﬁz
discrete lattice Boltzmann equation f 9= paoy| 1+ 2 ot : 3
S S
af, . = i
E*‘Ci'Vfi:Qi (|=1,2,...N), (1)

in which w; is the weighting parameter for each velocity
' direction. The density per nogeand the macroscopic veloc-
ity U are defined by

wheref; represents the particle velocity distribution function
G; is the velocity along théth direction,N is the number of
different velocities in the model, arfd; denotes the collision
operator which is commonly approximated by the
Bhatnagar-Gross-Krook modgl7],

1 P=Efi Plj:EfiCi- (4)
Q=-—(fi- 179, 2 ' '
7 Nine possible directional velocities are used in this study,

wherer is the relaxation time anti*%is the local equilibrium ~ wherew; in Eq. (3) equals 4/9 foi=0, 1/9 fori=1,2,3,4,

given by and 1/36 fori=5,6,7,8. Thenine velocities are defined as
|
p
(0,0 (i=0)
. o o . . o v .
6 =4 CS\',E(CO{(I - 5)5 + Z}’sm{(l - 5)5 + Z]) Il<si<4 - 5)

. T | . T .
Lcs<cos{(| - 1)5},sm{(| - 1)E]> (5=<i<8)

Construction of the LSFE-LBM first considers application  For finite-element analysis, the problem domain can first
of the # method to treat time-space approximations. Settingoe subdivided into a set of finite elements, and then approxi-
the time stepAt=t"™1-t", and givenf [ for the previous time mated by the solutior ﬁ'”*l in a finite subspace as
step, the solutiorfi ! for the current time step is determined

from "
f ﬁ,r‘l+1 — E le J[1+l' (9)
f n+tl_¢n ~ R =1
——+C-VEM™M+(1-6cC- VI _
At where N; denotes the element shape functioniepresents
the number of nodes in an element, dnd the nodal values
= 60"+ (1-6)Q. (6) ;

at thejth node. Introducing Eq9) into Eg. (8) for an ele-

Here, #=1/2 corresponds to the Crank-Nicolson scheme,ment, we get
providing for second-order accuracy in time. Rearranging

— N+l
Eq. (6), a standard form for LSFE can be obtained: E=LEE™ -, (10
gfml el where E is the residual due to nodal approximation. The
Cr— +Cy—' +Afi“+1:pi, LSFE is based on the minimization of the squares of the
X aJy residual for the subspace
PRI olf ™ = J E* d0, = f (LfE™ = pdQe, (11)
At T Qe Qe
n+1
(2 1V, 1 eqgnia, cegn af af det™) =f LN, T(Lf 8™ - p?)dQ.=0
pi_<E—;)fi+;(fi +177) - | ¢ o +Cy ay ) df';*l Qe( o (Lfy PrdQ2e=0,
(7
a=1,2,...n, (12
For brevity the operatdr is used, and Eq.7) can be written
in the following form: where() is the domain of theth element, and the exponent
T denotes the transpose. For each element the following lin-
Lf™l=p. (8)  ear algebraic equations can be derived from @8):

065701-2
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KoF g’rl =P, (13) TABLE I. A comparison of accuracy and stability characteristics
of FD-LBM, CGDBE, and LSFE-LBM for the pure advection equa-
whereF I*! is the vector of nodal values at the current timetion on a uniform meshAx= element sizeAt= time step.e= dis-
step.K, is the elemental matrix given by crete velocity in the characteristic directiphb).

Ke:J; Q'Q dq,, (14) FD-LBM CGDBE  LSFE-LBM
e

A _ o Accurac Space Second order Fourth order  Fourth order
whereQ={Q%,Q?,...Q",...Q" is a(1xn) vector, withQ' Y Time Second order Second order Second order

of the following form: Stability? Conditional/  At<Ax/3|e] Unconditional
IN IN Unconditional
([ | -1 i
Q=c JX TG ay +AN. (15 Stability of FD-LBM is based upon the specific time discretization

) ) scheme used.
The element at vectd?, in Eq. (13) is

the lattice Boltzmann equation, however, suggests that the
Pe=| Q'phdQe. (16)  stability of the LSFE-LBM is dependent on a number of
Qe parameters, including time step, element size, wave number,
As presented in Eq7) pf is related to the previous time and relaxation time. This complex dependence of the stabil-
stepf ! and f #%" values, and the current time stéﬁqnﬂ ity has also been reported by other studies for LBM on ir-
value. An extrapolation is applied to exprels¥™?, as pro-  regular grids[3,18), and thus is not unique to LSFE-LBM.

posed by Mei and Shyj7], Two simple examples, Poiseuille flow and Couette flow,
cansi can . eani are presented to demonstrate the validation of the proposed
f PO = 2f PAN— f AT (17)  method. More complex examples will be presented in subse-

quent publications. An analytical solution to plan Poiseuille

n feqn egn-1 i i -
wheref /|, f 7", andf; can be approximated in the sub flow in a channel is provided by EqL9) [19]:

space similar td **, as

n n n 2
y
EI fﬁ""”:ENjffq”, fﬁqn‘lngjffqn‘l. Ux(y):umax|:l_<ﬁ):|a -H<ys<H, (19

(18)  wherex is the spatial longitudinal dimension,is the spatial

Boundary conditions are implemented as proposed by Leffansverse dimensiony,,, is the maximum velocity at the
and Lin [15]: fﬂ+l at the boundary are treated as part of theparabohc velocity profile, andd is the half-width of the

solution, and macroscopic boundary conditions are imposeﬁhannel'. In our LSFE'L.BM !mplementation, the initial f.IOW
throughf &% velocity is zero, relaxation times, is 0.05, particle density,

Through this LSFE derivation process it is clear that the”” is.l'.o, Umax is.l'oi andH ?S 5/.6' A periodic boundary
condition is applied in the direction, and a body forc&

Ke matrix in Eq. (13) is symmetric and positive definite. ~ 5> A S e
Preconditioned conjugate gradient methods can be used a MingfH* is applied in thex direction 10 initiate the flow,

efficient tools for solution. Furthermore, an element-by-ere v is the viscosity following the relationship=/3.

element scheme may be developed, without the need to stofd!'S SYStem possesses a Reynolds nUrtigF Uyz,2H/v) of

the global matrix|14], effectively reducing memory storage 10: @nd @ Mach numb&Ma=up,/c,) of 0.173. Results pre-

requirements. sented in F|g. 1 |Ilustrate_ that LSFE-LBM achieves close
Implementing the same accuracy analysis procedure @greement with the analytical solution. _

presented by Lee and Lifi5] for the pure advection equa- The second application of unsteady Couette flow is used

tion on uniform meshes, LSFE-LBM enjoys similar accuracy!0 evaluate the temporal accuracy of LSFE-LBM. Here, the

as the CGDBE method, i.e., fourth-order accuracy in spactPP Plate is moving along thedirection at a constant veloc-

and second-order accuracy in time. Compared to the seconlly: Umax While the bottom plate remains stationary. The ana-

order accuracy in space for FD-based LBM, it is clear thatYtical solution for Couette flow i$19]

FE-based LBM greatly increases numerical accuracy. Appli-

cation of von Neumann stability analysis to LSFE-LBM re- ” U~ 1)’ e

veals unconditional stability with any Courant-Friedrichs- U(Y:t) :Umax5+2 “\p °

Lewy (CFL) number for the pure advection equation on a =1 !

uniform mesh if¢ in Eq. (6) is in the range of1/2,1). This (21

unconditional stability, derived from the implicit nature of

LSFE, provides a significant advantage over CGDBE, whictwhere\;=iw/D, m=1,2,3...

is only conditionally stable due to its explicit treatment of the A periodic boundary condition is applied in thedirec-

advection term. A comparison of accuracy and stabilitytion, and the Reynolds numbgR.=un,D/v) is again set

among LSFE-LBM, CGDBE, and FD-LBM is given in Table equal to 10, wherd® represents the width of the channel.

|. Stability analysis related to nonlinear equilibrium terms inThe time step is 0.03, relaxation time, is 0.05, particle

sin\yy, 0<y=<D,

065701-3
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FIG. 1. Comparison of LSFE-LBM solutiopointy and ana-
lytical solution (line) for normalized velocity profile for Poiseuille
flow. In the LSFE-LBM, the relaxation time, is 0.05, and particle
density,p, is 1.0, the maximum velocitynay is 0.1, and the half-
width of the channelH, is 5/6.

FIG. 2. Comparison of LSFE-LBM solution and analytical so-
lution for Couette flow. The points represent the LSFE-LBM solu-
tion, while the lines denote the analytical solution. The time step is
0.03, and relaxation time, is 0.05, the maximum velocityay, iS
0.1, and the width of the channd, is 5/3.

though the inherent computational requirements of FE-based
. . S . LBM leads to reduced computational efficiency relative to
the numerical results and the analytical solution is shown i he classic LBM, it is worthy to note that the use of unstruc-

FIgAIfH hth | ted h fairly simplisti tured mesh in LSFE-LBM is expected to require fewer grid
. ough the examples presented here are tairly SImplistiGygintg than methods using structured mesh, potentially off-
in nature, they serve to demonstrate the successful coupli

) L tting the increased computational requirements of FE. A
of LSFE and LBM, and its application to steady and un-getajled discussion and comparison of computational effi-
steady incompressible flow. The geometric flexibility and nu-gjencies for LSFE-LBM. classical LBM. and other tradi-

merical stability of finite-element methods inherent in LSFE-(iona) CFD methods will be presented in a subsequent paper.
LBM suggest that this method is very flexible and can be

applied to domains possessing complex boundary geometries This material is based upon work supported by the Na-

using unstructured meshes with increased numerical acctional Science Foundation under Grant No. 0088912. Any

racy and stability. LBM provides for increased computationalopinions, findings, and conclusions or recommendations ex-
efficiency relative to traditional computational fluid dynam- pressed in this material are those of the authors and do not
ics (CFD) methods employing the Navier-Stokes equation,necessarily reflect the views of the National Science Foun-

especially in cases with increased geometric complexity. Al-dation.

density is 1.0,Unax iS 0.1, andD is 5/3. A comparison of
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