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A student comes to class excited. She tells peuhas figured out a theory you
never told the class. She says she has discotlaeds the perimeter of a closed figure
increases, the area also increases. She showwgaqictures to prove what she is
doing. The first picture is of a 4 by 4 squard.cQurse, its perimeter is 16 and its area is
16. The second picture is of a 4 by 8 rectanglere the perimeter is 24 and the area is
32. What do you say to the student?

This is a problem that Jim Lewis and Ruth Heatastructors at the University of
Nebraska-Lincoln, gave on Day 1 of their geomelags for future elementary teachers
in the Fall of 2002. Twenty-four of the thirty-twoture elementary teachers believed the
child’s theory was correct and indicated they warddgratulate the child. Eight of the
thirty-two questioned the child’s theory and onily sut of those eight explained that the
theory was definitely not true.

Area and perimeter are concepts that seem to chifisalty for students. They
sometimes understand the concepts separatelyhdvdifficulty arises when the concepts
are put together. This is understandable sincisashua geometry class for future
elementary teachers struggle with the understanafilgw area and perimeter are
related.

In this paper, | will show how area and perimetegpolygons are related. | will
show examples using triangles, quadrilaterals,pamdagons. | will investigate how the
area of a polygon can change even if the perimefered. | will also show what class
of specific polygons maximizes the area given adiperimeter. This paper will also
look at the area and perimeter of polygons withxed diameter.

The problem of trying to find the polygon that e maximum area given a
fixed perimeter is called the Isoperimetric Problelsoperimetric means having the
same perimeter measurement. The isoperimetridgmobates back to thé"Zentury
B.C. in the story of Queen Dido. As legend tell$ido had to flee her homeland of
Phoenicia after her tyrant brother had killed healthy husband and was now after her
riches. She sailed away with several boats futlabfes, belongings and people. They
reached the coast of Africa, in what is now Tunisia

When they landed the local tribe was not very ealing. Dido promised the
tribal chief a fair amount of riches for as muchdaas she could mark out with a bull
skin. The chief thought this was a great bargaihis end, but he underestimated Dido’s
knowledge. Dido cut the bull hide into thin strgnsd sewed the strips together to make
one long string. She then used the seashore asdgeeof her piece of land and laid the
bull skin into a half circle. Dido acquired much radand using this method than what
the tribal chief had believed, much to his dism&ydo and her followers founded on this
piece of land what came to be the great and inflakecity of Carthage.

Dido must have been a clever woman to have thaofgtutting up the bull skin,
sewing it together into a string and using thisnark off the land she bought from the
tribal chief. As | will discuss the circle has theeatest area for any shape given a fixed
perimeter. This knowledge is what aided Queen dacquiring the largest amount of
land possible.

The Greek mathematician Zenodorus (200 B.C.-14D)Btudied the area of a
figure with fixed diameter. He found that the aocéahe circle is larger than any polygon
having the same perimeter. Jacob Steiner (1798)288&s a mathematician who
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extensively studied the isoperimetric problem. rile some of the most essential
contributions towards the rigorous proof of thepisometric problem. Although Steiner
extensively studied the isoperimetric problem, @isviKarl Weierstrass (1815-1897) who
supplied the first complete proof of the optimatitiythe circle.

The isoperimetric problem can be applied to anygam. The isoperimetric
problem for triangles asks, for a fixed perimetanat class of triangles has the greatest
area? The triangles below all have a perimet& wh.

Perimeter ABAC =8.00 cm Perimeter ADFE =8.00 cm Perimeter AIGH =8.0 cm
Area ABAC = 2.75 cm? Area ADFE =1.65 cm? Area AIGH = 3.09 ¢cm?
F
D E é »
J G H
B C
1 2 3

m AC =3.29 cm m FD = 3.81 cm mIG =2.67 cm

m AB =2.57 cm m FE =2.23 cm m HI =2.67 cm

m CB =2.14 cm m DE =1.96 cm m GH =2.67 cm

Although all the triangles have a perimeter ofi§ their areas are all different.
Triangle 1 has an area of 2%, triangle 2 has an area of 1.667, and triangle 3 has

an area of 3.0en’. Triangle 3 has the largest perimeter out ofdftbsee triangles. If
we look at the type of triangle that triangle 3w® see that it is an equilateral triangle.
Triangle 2 is the least equilateral of the threé bas the smallest area. Triangle 1 has
side lengths that are more similar to each othéimgat closer to equilateral than
triangle 2 and has a larger area than triangl€ts shows that among all triangles with
the same perimeter, the equilateral triangle valldthe largest area.

Another relationship between area and perimetéiasfgles can be found in
Heron’s formula. Heron’s formula is also knownHeso’s formula. Heron was a
mathematician in the®ICentury. Although the formula is credited to arzaned for
Heron, it is now believed that Archimedes discodeseat least knew of the formula.
Heron’s formula relates the area of a trianglenorneasure of its three sides. Heron’s
formula states:

AA = \/s(s— a)(s—b)(s-c¢) where s = semiperimeter
a = length of side a

b = length of side b
¢ = length of side ¢
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The semiperimeter of a triangle is found by addimgthree sides of a triangle
and dividing the sum by two.

. (a+b+c)

> where a = length of side a

b = length of side b
¢ = length of side ¢

Once the semiperimeter is found and we know thgthes of the three sides of the
triangle, we can use Heron’s formula to find thesaof the triangle. We can see an
example of Heron’s formula for a simple triangle.

5cm

3cm

4 cm

First, we need to find the semiperimeter.

. (a+b+c)
2

= (3+4+5)
2

2

S = 6CIr

The semiperimeter is 6 cm. Now we can put theipenmeter and the side
lengths into Heron’s formula to find the area.

A=./s(s-a)(s—-b)(s-c) 1

A=.,/6(6-5)(6-4)(6-3)

NCAEIE) A= (4x3)

|/ 6(6) 1
A==(12

/G 5 12)

= 6em? A=6cn?

A
A
A
A
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Heron’s formula shows that for the given triantjle area is 6m”. Next to
Heron’s formula | put in the traditional formularfiinding area of a triangle. It also

gives the area of the given triangle to mer6. The cool thing about Heron’s formula is
that we don’t need to know the height of the triartg find the area as with the formula

A=%(b>< h). We can look at another example where the hésglttgiven and we can

find the area of the triangle using Heron’s formula this triangle the height isn’t easily
known.

4.5 cm

First, find the semiperimeter.

(5+5+45)

2
(145)

2
s=7.25cr

S

Now, put the semiperimeter and side lengths irecoH's formula.

A=,/725(725-5)(725-5)(725- 45)
A=,/725(225)(225)(275)
A=.72501392)

A=+10092

A=1005cn?

Heron’s formula is useful when attempting to fihé area of a triangle for which
the lengths of the sides are known, but the peilipaladt height or altitude is not known.
The following is a proof of Heron’s formula:
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Assume the Pythagorean Theorem and the area fofmmariangle%(bx h)

where b is the length of a base and h is the héagtitat base.
Let a, b, c be the lengths of the sides of oantgie and h be the height to the side
of length c.

C

We haves = so for further reference, 2s=a+b +c; 2(s-aa* b + c;

(a+b+c)
2

2(s-b)=a-b+c;2(s-c)=a+b-c

Let p + g = ¢ then by Pythagorean Theorefn+ p°> =a*and h® + g° =b?

Sinceq=c- p, theng® =(c- p)’ , factorg? = c¢? - 2cp+ p>

(Add h? to both sides) h®+qg® =h®+c? -2cp+ p®
(Substitute) b? =a®-2cp+c?
2 2 |2
(Solve for p) = a+c-b
2c

Sinceh® = a® - p?, substitute for p to get an expression in terma, d&f, and c.

h? =32 - pz
(Factor) = (a+ p)(a— p)
2 2 _R2 2 2 _R2
(Substitute) = [aJ%)}{a—ﬁ%)}

_(2ac+a? +¢? -b*)2ac-a -c? +b?)
4c?

(Simplify)
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(Factor) _((a +c)’ -b? )(bz ~(a- C)Z)
4c?
(Factor) {a+b+c)a+c-b)b+a-c)b-a+c)
4c?
(Rearrange) (a+b+c)-a+b+c)a-b+c)a+b-c)
4c?
(Substitute) 2s[2(s-a)[2(s-b)[2(s-c)
4c?

Therefore,

he = 4s(s—a)(s-b)(s-c)

C2
25 alls=B)s=o)
C

Since,

A= 1ch

2

then

A=l 2/sls—afs-b)s-c)

2 C

and

A=s(s-a)(s-b)s-c)

Now we will look at the isoperimetric problem fguadrilaterals and try to
answer the question, what class of quadrilaterthinmaximize the area given a fixed
diameter? To answer this question we can lookfaveexamples. The perimeter for the
following quadrilaterals is fixed at 12 cm.
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m EF =5.00 cm
m FG =1.00 cm
m GH =5.00 cm

— HE = m 1J = 3.00 cm
m AB =4.00 cm m HE =1.00 cm =
— Perimeter GHEF =12.00 cm m IK =3.00 cm
m BC =2.00 cm —
— Area GHEF =5.00 cm? m KL =3.00 cm
m CD =4.00 cm —
P E H m JL =3.00 cm
m AD =2.00 cm
. Perimeter IKLJ =12.00 cm
Perimeter BCDA =12.00 cm 5
Area BCDA =8.00 cm? Area IKLJ =9.00 cm
|
J
B A
C D F G K L
1 2 3

Quadrilateral 1 has an area of 8 nQuadrilateral 2 has an area of 5cnand

Quadrilateral 3 has an area of 9TtmQuadrilateral 3 has the largest area and it is a

square. We can put the information into a chaheip see that the square does give the
maximum area.

Dimensions Perimeter Area
lcmx5cm 12 cm 5 cm?
2cmx4cm 12 cm 8 cm?
3cmx3cm 12 cm 9 cm?
4cmx2cm 12 cm 8 cm?
5cmx1cm 12 cm 5 cm?

We can use a chart to look at another case.elpérimeter is fixed at one
hundred, the chart would show what quadrilateratimees the area.

Dimensions Perimeter Area
5x 45 100 225
10 x 40 100 400
15x 35 100 525
20 x 30 100 600
25x 25 100 625
30x 20 100 600
35x 15 100 525
40 x 10 100 400
45 x5 100 225
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This chart also shows that the area is maximizeithéd square. So among all
guadrilaterals with a fixed perimeter, the squavegthe largest area.

| found that when trying to maximize the area ¢fiangle or quadrilateral with a
fixed perimeter, that it was the equilateral trieengnd the square that gave the maximum
area. These two are both regular polygons, soanemake the conjecture that for any
n-gon with a fixed perimeter, the regular polygéonea has the maximum area.

Another problem mathematicians have worked witthéslsodiametric problem.
Isodiametric means having the same diameter maasate The isodiametric problem
looks at polygons with a fixed diameter. The ismaétric problems for polygons was
first studied by Karl Reinhardt in 1922. We norrgdhink of diameters in circles, but the
diameter of a polygon is the largest possible ditdbetween two vertices on the

polygon. In the figure belowAC s the diameter of ABCD.

B c
AC is the diameter of ABCD

We are going to answer two questions concerniggpas with fixed diameter:

1) What is the maximum area of a polygon with n sialed fixed diameter?
2) What is the maximum perimeter of a polygon withdes and fixed diameter?

We will look first at the question number 1. Waesthrt by looking at
guadrilaterals that have a fixed diameter. Thi¥ahg quadrilaterals all have a
diameter of 7.21 cm.

m CD =7.21 em

Area CEDF = 25.98 cm? -
m AB =7.21 cm

Area GBHA =24.00 cm?
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m1J=7.21 cm
Area IKJL =3.62 cm?

We can see that quadrilateral 1 has an area 8825 , quadrilateral 2 has an
area of 24 cm, and quadrilateral 3 has an area of 3.62 criihese examples show that
given a fixed diameter the quadrilateral that mazes the area is the square or regular
guadrilateral.

Another example using pentagons also demonstitzegiven a fixed diameter
the regular pentagon maximizes the area. Theviollp pentagons all have a diameter of
6.36 cm.

m DB =6.36 cm L

Area DEABC = 26.82 cm?
P
c (6]
N

M

m LM =6.36 cm

Area PLOMN =23.17 cm?2
m UV =6.36 cm
Area UWXY =12.05 cm?2
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The diagram shows that pentagon 1 has the greatssbf the three at
26.82 cnf. Pentagon 1 is also a regular pentagon. Agdaéntegular pentagon
maximizes the area when given a fixed diameter.

It seems that we could make the conjecture tleatgbular n-gon maximizes the
area given a fixed diameter. Although this sedkesd good conjecture, Reinhardt and
other mathematicians have shown that the reguggomgives maximum area only when
n (number of sides) is odd or n < 6. So among-gibns of odd n, the regular n-gon has
the maximum area. This is not the case for n-gdeven n. The two examples earlier
in this paper do meet the criteria of being lesmtbix so the regular square and regular
pentagon do in deed maximize the area.

When Reinhardt was studying the isodiametric pwblor polygons, he used
Reuleaux polygons in his proofs. A Reuleux polygodefined as a set of constant
width whose boundary consists of a finite numbetiafular arcs of the same radius. A
Reuleaux polygon is not a polygon in the traditicgense, since its edges are not line
segments. The following are examples of Reulealygons made around regular
polygons.

(a) (b)

(c] (d)

The Reuleaux polygons are named for th® @8ntury German mechanical
engineer Franz Reuleaux. Reuleaux was a bril&agtneer. He created over 300
models of simple machines and is remembered foRthdeaux triangle. The Reuleaux
triangle is a curve with constant width that hasrbased in Mazda Car Company’s
rotary engines. The Mazda RX-7 is equipped withtary engine. The rotary engine
reduces vibration and noise because there is nortyppty for metal surfaces to strike.



Engelker — MAT Expository Paper - 11

As can be seen by the pictures above, the Reulsalygons obtained when the
number of sides is even look dramatically differérain those made when the number of
sides is odd. Reinhardt found that this discrepamaltimately the source of the
difference in the even and odd cases for the isogkiac problem for area.

The second question asked, what is the maximump#ar of a polygon with n
sides and fixed diameter? One restriction needi® tadded to this question. The
restriction is that we are only looking at casesaivex polygons. A polygon is convex
if the line segment joining two points inside thaygon also lies inside the polygon.

N

Convex Concave

To answer this question, | could use the samergatatals and pentagons that
were used to show the maximum area for a polygdim fiked diameter, but the same
conditions apply to perimeter. Reinhardt found tha convex regular polygon only
achieves maximum perimeter when n is odd and n < 6.

The answer to both questions can be answeree istébement; Among all
convex polygons with n sides and fixed diameterr&ime> 5, the regular n-gon has
neither maximal area nor maximal perimeter.

The actual proofs for the isoperimetric and isotk&ric problems are very
complex and lengthy. Reinhardt and others haveengagit strides in proving maximal
area and maximal perimeter, but there are moretignesabout maximal area and
perimeter for cases where n is even and n > 5. yMathematicians still today are
looking for those answers.

Dr. Robert Bieri, a German mathematician, provetl961 that the hexagon
shown below has maximum area among all hexagomsfixéd diameter that possess
axes of symmetry.
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In 1975, R.L. Graham(1935- ) proved that thisdg®n is in fact optimal for all
hexagons with fixed diameter. This hexagon’s @éedout 3.92% larger than that of the
regular hexagon.

Xs Regular hexagon
area = (0,67498... area = 0.64952...

In 2002, Audet, Hansen, Messene and Xiong fourmddetagons with areas
larger than the regular octagon. Those two octagoa shown below. Octagon A’s area
is 0.52% larger than the regular octagon and Ocit&® area is about 2.79% larger than
the regular octagon.

T e
Pl e el | | TR
- '.| e : | L , o
\ ™, - %
“&\ Yoo .. | -4
/z o /_/’ -. | b Ry ! i T
; \ KL
= - '\ = +i v
et ' ., I:'y--"'... { lI _,--"'- E?\ /i' .-\-"'-- A
,".".H"*){/ N .'I [ II| o -Ij
\ / et P R Y N ; | 3
\ Sl - o L | | h, | d | 7
,.I |,-'. S . P 4 \\ \ / S IIl A Y I'. /z
| e i, “ (A
*‘______-_- -__-____\:v’ \"ﬁ___ ____\'._.-f
Octagon A Octagon B

A fun and curious relationship between area aminater is the Koch Snowflake
Curve. The Koch Snowflake Curve is named afterdstemathematician Niels Fabian
Helge von Koch (1870-1924). The Koch Snowflakdasived by a process that starts
with an equilateral triangle with side lengths ofNext, equilateral triangles with side

lengths of% are built onto the middle third of each side of ¢nigjinal. The next step

takes equilateral triangles with side Iengthsé@fnd adds these onto the middle third of

the existing twelve sides. This process in comtthan infinite number of times using
smaller and smaller equilateral triangles.
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Interestingly, as this process is carried outatea of the snowflake encloses a
finite amount of area, but the perimeter goes finity. So an infinite perimeter encloses
a finite area.

The Koch Snowflake adds an interesting twist ftist case discussed in this
paper. We looked at how an equilateral trianglé maximize the area for a given
perimeter. But in the Koch Snowflake, although bwith equilateral triangles, the
perimeter is more or less being maximized as it@gghes infinity and the area reaches a
finite amount.

SUMMARY

This topic was very interesting to me becausevehaught area and perimeter to
my fifth grade students. Students do struggle witlerstanding how area and perimeter
are interrelated. | was not familiar with the isdmetric and isodiametric problem
before receiving this topic. | had known that taximize the area of a quadrilateral with
a fixed perimeter that you wanted the most squlieegolygon. | never realized that all
regular polygons maximize the area for a fixedrpeter.

| also learned about Queen Dido and how she aetliaequiring the largest piece
of land possible. | read different accounts of@sdife and it was interesting to see how
certain aspects were common, but others wereAlatost every account | read
mentioned in some form the story of using the bkilh to acquire land.

Reuleaux polygons were another concept that wasmene. | had never heard
about Reuleaux polygons or the Reuleaux triangfeund some interesting websites that
| think | can use with my students. It also ingteel me in the fact that Mazda uses
Reuleaux triangles in their rotary engines.

The most important mathematical learning | recgifrem researching this topic
and writing this paper was Heron’s formula for fimgithe area of triangles. This
formula intrigued me. When | teach finding theaaoé triangles, students struggle with
trying to find the altitude. When using Heron’srfaula if you know the lengths of the
three sides, you can find the area. | find it amgthat Heron’s formula is not more
widely known and more widely used. I think uppkemeentary students would benefit
from learning both methods for finding the areaadfiangle. Once those students were
familiar with the square root they could find threaof any triangle.

Teaching Heron’s formula is a way to get studémtfink mathematically, to
teach concepts more deeply, and to show multipleesentations on how to solve a
problem. Exposing students to multiple ways tovs@roblems will help strengthen their
mathematical knowledge and foundation for futuseréng.
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The biggest challenge | faced while researchimgttpic was finding information
that | could read and understand about the isodr&rroblem. The proofs are very
complex and hard to understand. Most of the in&drom | found was to technical for me
to sift through. | did enjoy reading Michael Masghoff's paper, A $1 Problem. It was
at times confusing, but for the most part, if | gatl carefully read through it and thought
about it | could understand it. It is also intéireg that he suggests a new coin shouldn’t
be round.
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