Magnetic properties and magnetization reversal in Co/Au multilayers (abstract)

Z. S. Shan
University of Nebraska - Lincoln

J. X. Shen
University of Nebraska - Lincoln

Roger D. Kirby
University of Nebraska-Lincoln, rkirby1@unl.edu

David J. Sellmyer
University of Nebraska-Lincoln, dsellmyer@unl.edu

Follow this and additional works at: http://digitalcommons.unl.edu/physics_kirby

Part of the Physics Commons

http://digitalcommons.unl.edu/physics_kirby/11

This Article is brought to you for free and open access by the Research Papers in Physics and Astronomy at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Roger Kirby Publications by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln.
Magnetic properties and magnetization reversal in Co/Au multilayers (abstract)

Z. S. Shan, J. X. Shen, R. D. Kirby, and D. J. Sellmyer
Behlen Laboratory of Physics and Center for Materials Research and Analysis, University of Nebraska, Lincoln, Nebraska 68588-0113

We report studies of magnetic properties in Co\textit{X} Å/Au60 Å multilayers (\textit{X}=5,6,7,8,12,20 Å), which were prepared by sputtering on Si(111) substrates, with emphasis on the magnetization reversal. Magnetization reversal was investigated by measurements of initial magnetization curves, minor loops, coercivity as a function of the maximum field of minor loops, temperature dependence of magnetic properties using Kronmüller’s model,1 time decay of Kerr rotation angle Θ_K, and the field-sweep speed dependence of coercivity $H_c(dH/dt)$ at room and/or low temperature. It is found that (1) the thermal activation volumes determined by $H_c(dH/dt)$ increase from $\approx 2.0 \times 10^{-17}$ to $\approx 9.9 \times 10^{-17}$ cm3 as \textit{X} varies from 5 to 20 Å, which corresponds to a cylindrical activation volume with ≈ 800 Å diameter, (2) A Kronmüller analysis together with the initial magnetization curves, etc., for a Co5 Å/Au60 Å sample at room and low temperature indicates that wall pinning with small pinning sites is the major coercivity mechanism. The interaction between grains was studied with the so-called ΔM method: samples with thin Co layers (\textit{X}=5,6,7 Å), which show perpendicular anisotropy, exhibit negative ΔM or dipolar interactions, while samples with a thick Co layer (e.g., \textit{X}=20 Å), which show in-plane anisotropy, exhibit positive ΔM or ferromagnetic exchange interactions. © 1996 American Institute of Physics. [S0021-8979(96)60208-9]