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Combined Kerr microscope and magnetic force microscope for variable
temperature ultrahigh vacuum investigations

D. Peterka, A. Enders,a) G. Haas, and K. Kern
Max-Planck-Institute for Solid State Physics, Heisenbergstrasse 1, 70569 Stuttgart, Germany

~Received 27 August 2002; accepted 21 January 2003!

A new system combining a Kerr microscope and a magnetic force microscope for the study of
magnetic domains in ultrathin films under ultrahigh vacuum conditions is presented. Due to the
overlapping imaging range of both techniques magnetic domains can be investigated over a lateral
range from millimeter down to fractions of a micrometer. Experiments can be done at variable
temperatures, from 80 K to 600 K. First results are presented showing the same magnetic domain
in a three monolayer Fe film on Cu~100! imaged with both techniques. ©2003 American Institute
of Physics. @DOI: 10.1063/1.1568556#

I. INTRODUCTION

The unique properties of ultrathin magnetic layers and
multilayers have attracted wide interest over the past decade.
The understanding of the correlation between magnetism and
the film structure is the key for tailoring the magnetism in
thin films or nanostructures. In particular,in situ domain im-
aging is of basic interest for the study of the unique magnetic
properties of ultrathin films.1

Among several imaging techniques for thin film magne-
tism, scanning electron microscopy with polarization analy-
sis ~SEMPA!,2,3 Kerr microscopy,4 and magnetic force mi-
croscopy~MFM!5,6 are of particular interest due to their high
performance. SEMPA offers the advantage of the wide im-
aging range of a scanning electron microscope for magnetic
domain imaging, from millimeters down to several nanom-
eters. This advantage is opposed by the enormous technical
effort required for SEMPA experiments. In contrast, Kerr
microscopy and MFM can routinely and cheaply be used for
magnetic studies. Though, the scan range of these techniques
is limited. Furthermore, the quantitative interpretation of the
MFM signal is a nontrivial matter and also the influence of
the tip stray field may lead to a perturbation of the sample or
to different contrast images.7 In order to expand the imaging
range for magnetic investigations and to obtain complemen-
tary information about the magnetic structure, the parallel
application of magneto-optical Kerr microscopy and MFM in
one single UHV chamber is desired.

Therefore, a new UHV system combining Kerr micros-
copy, MFM, and scanning tunneling microscopy~STM! for
in situ analysis of epitaxial films at variable temperatures
was set up and is described in this article. A Besocke-type
microscope head8 was equipped with a novelin situ tip ex-
change mechanism which allows one to attach STM or
atomic force microscopy~AFM! tips as well as MFM tips to
the scan piezo, for structural or magnetic analysis of the
films, respectively. This unique combination allows struc-
tural and magnetic imaging on the same filmin situ. More-

over, investigating the same area on the sample surface by
both magnetic imaging techniques is possible. Thus, further
investigation of some features in the magnetic structure seen
by the Kerr microscope can be done with the enhanced reso-
lution of the MFM. The scan range of the MFM of several
micrometer overlaps with the imaging range of the Kerr mi-
croscope, thus a direct comparison of both magnetic imaging
methods is possible to gain from the complementary infor-
mation they provide. Also, an extended imaging range from
millimeter down to 100 nm was achieved.

II. EXPERIMENTAL SETUP

The magnetic force microscope and the Kerr micro-
scope, together with standard techniques forin situ sample
preparation and characterization, are combined in an UHV
system shown schematically in Fig. 1. The system consists of
a main preparation and analysis chamber~1! and a magne-
tism chamber~2!. A linear manipulator with a travel range of
600 mm~3! moves the sample between the STM/MFM po-
sition in the main chamber and the Kerr position for mag-
netic investigation. Besides the standard tools for sample
preparation, deposition rate calibration, and residual gas
analysis, the main chamber is equipped with a Besocke-type
STM ~4!,8 for structural characterization of thein situ grown
films. The novel tip exchange mechanism allows replacing
the STM tip by cantilever tips for AFM of MFM operation.
For STM/MFM investigations, the sample holder~5! rests on
a viton-damped stack~6! and is mechanically decoupled
from the manipulator. After placing the scanning microscope
head on the approach ramp, it is also decoupled from its
suspension. The microscope, tip-, and sample holder are en-
tirely made of nonmagnetic materials to avoid the presence
of any stray field in the vicinity of the sample. The tempera-
ture of the sample can be varied either by cooling with liquid
nitrogen or by heating with electron bombardment, allowing
magnetic and structural investigations in a broad temperature
range between 80 K and 600 K. The temperature is measured
by two Cu-constantan thermocouples, which are attached to
the bottom of the substrate and the sample holder. The base
pressure of the system is 7310211 mbar.a!Electronic mail: a.enders@fkf.mpg.de
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The end of the magnetism chamber is only slightly big-
ger than the sample holder and fits in the gap between the
pole pieces of an external electromagnet. Magnetic fields of
up to 0.2 T in polar and in-plane directions of the sample can
be applied. The magnetism chamber is equipped with a win-
dow ~7! designed to accommodate the objective of the Kerr
microscope~8!, thus allowing a working distance of,2 mm.

Combined Kerr microscopy and MFM is made possible
by a second optical microscope~9! at the MFM position.
Specific features seen on the sample surface by the Kerr
microscope, e.g., scratches, can be recognized by this second
optical microscope. Using such features as markers, the
MFM tip can be guided to the desired position on the surface
with a precision of,100mm. This allows one to zoom in on
sample areas previously imaged with the Kerr microscope.

Next, the design of the beetle-type STM/MFM with its
novel in situ tip exchange mechanism and the setup forin
situ Kerr microscopy are described in detail.

A. In situ magnetic force microscope with
exchangeable tip

A schematic of the MFM microscope head and the ex-
changeable tip holder is shown in Figs. 2~a! and 2~b!, respec-
tively. The microscope head is based on a beetlelike STM.8

In this design the microscope is approached to the sample by
three outer piezos moving on a helical ramp by a slip–stick
motion.9 The instrument is picked up by a suspension tube
~I! which is attached to ax–y–z–w translator@~10! in Fig.
1#. In situ MFM requires cantilever deflection measurement
compatible with UHV and bakeable up to 150 °C. The
MFM/AFM used in this work operates with Si3N4 piezore-
sistive cantilevers with a typical force constant of 20 N/m.10

Cantilever deflections due to tip–sample interaction result in
the change of the electrical resistance of the cantilever and

can easily be measured with a Wheatstone bridge. Thus, no
optical or other alignment, which can conveniently be done
in ambient systems but is difficult to realize under UHV,11–13

is necessary. Therefore, tip replacement is also relatively
easy.

Here, we describe the new design of thein situ tip ex-
change mechanism. The mechanical and electrical connec-
tions between the scan piezo of the microscope head in Fig.
2~a! and the tip holder in Fig. 2~b! were inspired by a com-
mon audio stereo jack~cinch connector!. The tip holder is
equipped with a Ti pin~7! and an outer Ti contact with
thread~9!. Both contacts are electrically insulated from each
other by macor spacers~8, 10!. The female counterpart on
the bottom end inside the scan piezo of the microscope head
consists of a Ti contact with inner thread~6! and a spring
contact~3!. Both parts are wired to a socket to allow output
of the electrical signals. In order to attach the tip holder to
the microscope head, the tip holder is simply plugged into
the opening~6!, followed by a half turn of the microscope
head to tighten the screw mechanism. Thus, mechanical sta-
bility is enhanced substantially as is necessary for the exci-
tation of self-oscillation of the cantilever in noncontact mode
AFM and MFM. Pin ~7! and contact spring~3!, as well as
contacts~9! and ~6!, establish the electrical connection.

The cartridge containing the piezoresistive cantilever
and contact pads for electrical connection is clamped on the
bottom of the tip holder~12!, as shown more detailed at the
bottom of Fig. 2~b!. The piezoresistive cantilever is mounted
at the front end of a thin ceramics chip~white!. The cantile-
ver is electrically connected to the contact pads on both sides
of the ceramic chip. Clamping the cartridge establishes the
electrical connection of the contact pads to the Ti body and
the spring clamp, and thus to the cinch connector. The car-
tridge can be replaced by a tunneling tip, which is then
mounted to the Ti body~11! directly. The scan piezo itself
has to be large enough to accommodate the connector for
the tip holder. With the scan piezo used a scan range of
10 mm310 mm can be achieved.

The tip exchange is schematically shown in Fig. 2~c!.
Spare tips are storedin situ in a probe stock~III !, which can

FIG. 1. The UHV system.~1! main chamber,~2! magnetism chamber,~3!
long travel range manipulator,~4! STM/AFM/MFM microscope head,~5!
sample holder,~6! viton stack,~7! MOKE window, ~8! Kerr microscope,~9!
optical microscope,~10! manipulator for the scanning microscope, and~11!
microscope mount.

FIG. 2. ~a! Beetle-type microscope head with socket for the tip,~b! ex-
changeable tip holder; the attachment of the AFM tip to the tip holder is
shown enlarged, and~c! the tip holder is attached to the scan piezo by
plugging in the chinch connector and rotating the microscope head to tighten
the thread.~1! Electrical contact,~2! Ti body, ~3! spring contact,~4! Ti nut,
~5, 8, 10! Macor spacer,~6! female contact with inner thread,~7! Ti pin, ~9!
Ti contact with thread,~11! Ti body, and~12! piezoresistive cantilever with
contact pads.
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be moved by a rack and pinion linear manipulator. After
positioning the tip below the microscope head~II !, the mi-
croscope is lowered to pick up the tip holder and to establish
the mechanical and electrical connections. With a half turn of
the microscope head by the microscope suspension~I!, the
screw joint is tightened to improve the stiffness of the me-
chanical connection.

For magnetic imaging, the piezolever tips were coated
with 30 nm Co and passivated with 5 nm Au in a different
chamber. Prior to loading into the UHV system the tips are
magnetized along the tip normal and outgassed in the load
lock. For noncontact AFM/MFM operation the frequency
modulation technique introduced by Albrechtset al.14 is
used. The cantilever is driven at its eigenfrequency at con-
stant amplitude. Changes in its vibration frequency due to
changes in the force gradient acting on the tip are detected.
These force gradients are mainly due to van der Waals inter-
actions for tip–sample distances in the nm range or magnetic
forces ~or electrostatic forces! for distances in the order of
100 nm.

Magnetic images can be recorded in two different ways:
~i! The slope between sample and imaging plane is deter-
mined first by taking a line scan inx andy directions outside
the area of interest with the tip approached to the surface.
Then, during imaging, the feedback loop is switched off and
the tip is somewhat retracted. Scanning in constant height
mode is now realized by following this estimated slope. The
measured shift in the resonance frequency is translated by a
band-pass filter and a phase comparator into a phase shift
signal and represents the force gradient of the long ranging
magnetic force.~ii ! The oscillating tip scans across the
sample surface with the frequency shift kept constant by the
feedback loop. In this mode, the obtained height~z! signal
represents the surface of constant force gradient. An addi-
tional voltage~0–10 V! has to be applied to the electrically
insulated sample to stabilize the servoloop and to avoid snap-
ping in of the tip.

B. In situ Kerr microscopy

Only a few approaches have been done in the past to
adapt Kerr microscopy to UHV systems. For instance, anin
situ Kerr microscope with a high-pressure mercury lamp as
an illumination source and a long distance microscope for
sample imaging has been built by Kirschneret al.15 A some-
what different approach was used by Vaterlauset al.16 where
a scanning Kerr Microscope was realized using a highly fo-
cused laser diode.

The Kerr Microscope developed in this work is based on
a commercially available Zeiss polarization microscope,17

which is known to give excellent magnetic contrast but was
applied so far only to ambient systems. The microscope is
equipped with a Nikon microscope mount18 and attached to a
solid tripod directly on the chamber to improve the image
stability @~11! in Fig. 1#. This flexible joint allows easy opti-
cal alignment, removal of the microscope for chamber bake
outs, and replacement by an optical bench for conventional
magneto-optical Kerr effect~MOKE! measurements. To im-
age domains, the microscope is lowered by its mount until

the objective lens is just above the flat bottom of the window
of the magnetism chamber, as shown in Fig. 3. The particular
design of the window allows one to operate at a minimum
sample–lens distance and to use microscope objectives with
a working distance as short as 2 mm!

For magnetic imaging with the Kerr microscope, the
sample has to be transferredin situ into the magnetism
chamber — a nonmagnetic stainless-steel cuboid welded to a
DN100CF flange and mounted at the end of the chamber.
This chamber is only 50 mm wide and fits between the iron
yoke of an external electromagnet. Magneto optics is done
on the sample through a specially designed viewport19 allow-
ing a short working distance between the objective of the
microscope and the sample surface~Fig. 3!. A distortion-free
and strain-free quartz glass tube with a molybdenum quartz
seal is welded to a stainless-steel adapter~3! on the magne-
tism chamber. On the flat bottom of the window, an antire-
flective coating20 was deposited to avoid image quality loss
due to backscattered light from the window itself.

To reach high optical resolution, a setup suggested by
Hubert was adopted.4 The illumination source, the polarizer,
and analyzer mounts as well as the support was adapted to fit
the needs of Kerr microscopy and the UHV apparatus. The
beam splitter has been replaced by a Berek prism. Glan-
Thompson polarizers were used to achieve an extinction ra-
tio of less than 231025. A 1 W Ar-ion laser is used as a light
source to supply monochromatic, stabilized, high intensity
illumination. By using a laser instead of commonly used
high-pressure mercury lamps15 problems with limited stabil-
ity and lifetime were eliminated. The laser light is coupled
into a 200mm quartz–quartz multimode optical fiber~MMF!
with a numerical aperture of NA50.20. Because of the small
diameter of the light beam, no aperture stop is needed.
Speckle patterns in the image due to interference effects of
the coherent light are removed by mechanically agitating
several meters of the MMF at its eigenfrequency of the order
of ;100 Hz.

FIG. 3. The design of the UHV window for Kerr microscopy allows for
objective-sample distances of 2 mm.~1! Laser beam,~2! objective of the
microscope,~3! window-chamber-joint,~4! strain-free quartz glass window,
~5! sample,~6! magnet yoke, and~7! UHV chamber.
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To attain uniformly illuminated high-quality Kerr images
of the specimen with homogeneous extinction across the en-
tire field of view, well-adjusted reflection Ko¨hler illumina-
tion is necessary. This is easily achieved by optimizing the
MMF tip position along the optical axis of the microscope.
On the other hand, the position of the image of the light
guide within the objective back focal plane, and thus the
angle and direction of incidence of the light onto the surface,
is adjusted by moving the MMF tipperpendicularto the
optical axis. All lateral and angular alignments of the fibre
exit with respect to the microscope are carried out by mi-
crometer screws. Adjustment of internal lenses, as needed
with Kerr microscopes using a slit aperture diaphragm4 is not
needed.

The angle of incidence can be varied between 0° and
15°, making possible longitudinal, polar, and transversal
Kerr geometries. A long-distance objective lens with a mag-
nification of mag5163 and NA50.2 is mostly used. With
this setup an optical resolution of approximately 1mm is
reached. Images of 4003300 mm2 were captured with a
charge coupled device~CCD! camera.21 Data acquisition
with a maximum repetition rate of 5 s/image was done by a
real-time digital image processor.22

III. RESULTS

To demonstrate the capability of the combined Kerr
microscope/Magnetic force microscope, as-grown magnetic
domains of 3 ML Fe on Cu~001! were investigated. The film
was grown at 130 K by molecular beam epitaxy and imaged
at the same temperature. MFM images were obtained in the
constant height mode following the slope of the sample sur-
face determined prior to the image acquisition. The MFM
images in Figs. 4~b!–4~e! correspond to the shift of the can-
tilever oscillation frequency during scanning.

Before film preparation the Cu~001! single crystal sub-
strate was cleaned by different cycles of 500 eV Ar1 -ion
sputtering followed by annealing up to 830 K, as described
in Ref. 23. The final annealing was done at 650 K, followed
by controlled cooling-down to RT with a rate of 2 K/s. This
procedure was found to maximize the terrace width.24 The
surface quality was checked afterward by STM. Fe was
evaporated from a high-purity Fe rod by electron beam heat-
ing. The deposition rate of 0.4 ML/min was calibrated by
STM and kept constant during evaporation by manually ad-
justing the acceleration voltage.

Three monolayers~MLs! of Fe on Cu~001! show an easy
axis of magnetization perpendicular to the sample surface.25

At this low growth temperature of 130 K, a multidomain
pattern, as shown in the Kerr image in Fig. 4~a!, is developed
in the film.26 The dark/bright contrast is due to magnetic
domains of opposite magnetization perpendicular to the
plane. The Kerr images in Figs. 4~a! and 4~f! are taken with-
out background subtraction. Thus, defects on the sample sur-
face are visible and marked by white arrows in the images.
These defects are used to guide the MFM tip to the desired
region on the sample surface under the control of the second
optical microscope. The same magnetic domain, as high-
lighted in the Kerr image in Fig. 4~a!, can be found by MFM

and is further investigated with the enhanced resolution of
the MFM @Fig. 4~b!#. The domain wall separating two re-
gions of perpendicular magnetization is clearly visible in the
center of the image in Fig. 4~b!.

After acquisition of the MFM image in Fig. 4~b! the
distance between the sample and MFM tip was gradually
reduced by 20 nm steps@Figs. 4~b!–4~e!#. With decreasing
distance, the dipolar field of the magnetic tip became strong
enough to drag the domain wall during scanning. The MFM
image in Fig. 4~c! already shows the domain wall slightly
displaced toward the left-hand side border of the image. Fi-
nally, in Fig. 4~e! the domain is driven out of the imaged
region. The Kerr image in Fig. 4~f! subsequently taken after
the MFM studies on the same spot, clearly shows these al-
terations. Again, this area was found by characteristic fea-
tures on the sample surface. Also visible in Fig. 4~f! are other
changes in the domain pattern due to previous MFM scans
on different positions.

The magnetic signal in Figs. 4~b!–4~e! corresponds to a
cantilever frequency shift of 50 mHz due to the magnetic
interaction with the 3 MLs thin Fe film. The signal is mainly
limited by the spring constant of the cantilever. Improve-
ments will be achieved by using tips of smaller spring con-
stant. The lateral resolution of the MFM is determined on the
180° domain wall of a iron whisker and found to be better
than 150 nm.

In conclusion, a combined Kerr microscope and MFM
for in situ domain imaging was described. The shown ex-

FIG. 4. The same magnetic domain imaged under UHV by@~a! and ~f!#
Kerr microscopy and@~b!–~e!# MFM. Changes in the domain configuration
caused by the dipolar field of the MFM tip can be traced by the Kerr
microscope afterward~f!. From ~b! to ~e!, the MFM tip was approached in
20 nm steps.
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ample proves that combined Kerr/MFM studies on the same
magnetic feature are possible. The combination of both tech-
niques covers a lateral range extending from>hundred na-
nometer up to millimeter. It delivers complementary infor-
mation and allows one to image local modifications of the
domain structure. Furthermore, a novel tip exchange mecha-
nism was presented which enables the microscope to be op-
erated as an STM, AFM, and MFM. To achieve this, the tips
can conveniently be replacedin situ with no need for break-
ing the vacuum.
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