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A variation-perturbation method for atomic and molecular

interactions. I. Theory
G. A. Gallup® and J. Gerratt

Department of Theoretical Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, England

(Received 11 February 1985; accepted 26 March 1985)

We have developed a variation-perturbation procedure for calculating intermolecular forces. It is
based on the valence bond method of constructing wave functions and involves a number of
interlocking techniques and approximations that are justified by the small size of the interaction
potential relative to the total energy. In this article we give an outline of the theory of our
technique. We have used this procedure to determine the potential between a Ne atom and a rigid
HF molecule. The results of this calculation are given in the next article.

I. INTRODUCTION AND SURVEY

The van der Waals energy between the two parts of a
system is a very small fraction of the total electronic energy.
Between two 1 or 2 atom systems from the first row of the
Periodic Table, this fraction is, at the most, 107%~10~".
Such a physical situation would appear to be ideally suited to
treatment by perturbation theory, and many studies have
taken this approach. Treating the terms of the Hamiltonian
connecting the two parts of the system as a perturbation
leads to “exchange perturbation theory,” which has been
investigated thoroughly by several workers." As it is usually
formulated, this approach has inherent difficulties associat-
ed with the different symmetries possessed by the unper-
turbed and total Hamiltonians with respect to electron ex-
change. The symmetry problem leads to non-unique
perturbation expansions for the wave function. Although
Peierls® has given a very general solution to perturbation
problems of this type, the considerations are quite delicate
and difficulties remain.

These have led others to the calculation of van der
Waals energies from total energies directly. In this case one
is faced with the necessity of subtracting two large numbers
with a great loss in significant figures. Nevertheless, this ap-
proach has been used for a number of systems.®> However, it
has definite limitations as to the size of systems that can be
treated, and recently ab initio calculations have been com-
bined with damped semiempirical long-range dispersion po-
tentials to treat larger systems.* In this hybrid procedure the
ab initio step is an SCF calculation of the supermolecule in
order to determine the repulsive part of the potential. The
drawback of this procedure is that large basis set superposi-
tion errors occur, and these must be removed by the counter-
poise method.® Recently, Fowler and Buckingham® have
shown that the counterpoise corrections themselves intro-
duce new unphysical effects.

Our approach is intermediate between these others. It is
based on the conviction that the small size of van der Waals
energies should make it possible to formulate the problem so
that they are, in some sense, easier to calculate than total
energies. We start with a variational calculation based upon
valence bond functions, which are eminently suited to dis-

*On leave during the 1983-84 academic year from the University of Ne-
braska under the auspices of the S.E.R.C., United Kingdom and Universi-
ty of Nebraska Research Council. Permanent address: Department of
Chemistry, University of Nebraska, Lincoln, Nebraska 68588.
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cussing intermolecular forces.” The Hamiltonian matrix is
determined with the exact Hamiltonian (excepting the ap-
proximations discussed below) and the full antisymmetry of
the system so there are no problems of the sort arising in
exchange perturbation theory. Using matrix partitioning
techniques and numerical perturbations, an implicit expres-
sion for the interaction potential itself may be written down.
This still contains differences between fairly large numbers,
but these now cause no difficulty since they are present in a
form where there is a systematic cancellation of certain er-
rors associated with inadequacies in the wave functions of
the subsystems.

Another part of our procedure is the optimization® of
excited orbitals for the efficient description of induction and
dispersion using an adaptation of the pseudo-state polariza-
bility technique devised by Burke and Robb.® For the basis
used, our adaptation produces the minimal number of orbi-
tals that are required in the calculation, and the resulting
economy in total numbers of configurations is an important
aspect of our technique.

As a further part of our general procedure we approxi-
mate some of the atomic integrals and some of the Hamilton-
ian matrix elements in ways expected to have general valid-
ity for problems of intermolecular forces. In addition, still
other matrix elements are subjected to a semiempirical ad-
Jjustment. In the following sections we give details of all parts
of this procedure.

Il. AN IMPLICIT EQUATION FOR THE POTENTIAL

Consider a system of two interacting closed-shell
ground state subsystems @ and b that may be either atoms or
molecules. We assume we have Hartree-Fock (HF) orbitals
for each of the subsystems, and these are used to construct an
n-electron VB basis for the composite system. The principal
(approximate ground state) function is

¢O =A [u‘;...u‘:n u’l’...uz ],
the antisymmetrized product of the occupied spin orbitals of
a and b. We carry out a configuration interaction (CI) treat-
ment using, as additional functions, those obtained from var-
ious excitations from the orbitals of ¢,. The correct choice of
these functions is important for accurate intermolecular po-
tential calculations and this is discussed below.

In the standard way, the basis functions we have con-
structed ¢,, i =0, 1,..., N, give Hamiltonian and overlap ma-
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trices, H ( p) and S ( p) that are functions of the geometry of
the system p. The lowest eigenvalue of this matrix system
gives the interaction energy. Specifically, the ground state
energy is given by

[H (p) — Eof p)S (p)1Col p) = 0. (1)
However, we seek the potential of the interaction:
V(p) = Eq p) — Ey). (2)

In Eq. (2) Ey( «0 ) is the lowest eigenvalue of Eq. (1) when a and
b are infinitely separated.

There is a matrix that diagonalizes H and § at each
geometry,

M(p)' H(p)M(p)=E(p),
M(p)fS(p)M(p)=1.

The matrix M (« ) may be introduced into Eq. (1) and with a
little manipulation one obtains

[H(p)—V(pIS(p)]Colp) =0, 3)
where

H(p)=M(x)' H(p) M () — Eof) S (p),

S(p)=M(x)" S(p)M(x),

Colp) =M (0)™" Cyf p).

Equation (3) may now be written in partitioned form.'°
To establish the pattern we display H as

H GG H GE ]

H EG H EE
with Hg; being 1X1, that is, a single number. S(p) and
C,l p) are partitioned to match.

Dropping the explicit writing of p and eliminating the
portion of C corresponding to the E subspace, we obtain an
implicit equation for V,

V= [HGG - (HGE - VSGE)( HEE - VSEE)_I

X(Hge — VSg6)]/Ses (4)

which, when the second term in the numerator of the right-
hand side is small enough, may be solved iteratively.

We emphasize that the matrix elements H (p);; and
S{p);; are complicated but finite sums over products of var-
ious integrals arising from the HF bases used for a and b.
There are two kinds of integrals. Those involving MOs on
only one subsystem may be termed “on board” integrals.
Those involving MOs from each of the subsystems will be
termed ‘““intersystem integrals,” and these are all zero at
p = co. Thus A and S may be written as

H(p)=H(x)+ W(p),
S(p)=S(w)+D(p)

where, in each case, only on board integrals are in the first
term on the right-hand side and all intersystem integrals are
in the second. Transforming to H and S, we see that

H(p)=E(w)—Ego)]
+ M ()" [W(p) — Ege0) D(p)1M (o),
S(p)=1I+M(x) D(p)M(w)
It is clear that in the single element H; there is an exact

cancellation of E o) and only interaction terms, D ( p) and
W { p) are left. We emphasize that this cancellation is not
dependent upon how accurately Ey( ) represents any true
values of the molecular energies.

Returning to Eq. (4), we see that, except for the diagonal
elements of Hyz — VSgz, in which the energy differences
E; — E,dominate, the numerator consists entirely of quanti-
ties dependent upon interactions and hence have the same
order of magnitude as V. The denominator is 1 plus terms of
the interaction type. Thus if the most approximate of the
quantities remaining in Eq. (4) is calculated with a percent
error ¢, and the CI functions chosen are adequate for calcu-
lating ¥V, we expect it, also, to have the error e, approximate-
ly. This is a consequence of having no serious differencing
problems remaining explicitly in Eq. (4). Internal to the ele-
ments of W p), there remain further cancellations of long-
range Coulomb forces between the two subsystems. How-
ever, these may be dealt with as discussed below.

As far as algebra is concerned, obtaining the potential
from Eq. (4) is exactly equivalent to directly diagonalizing
Eq. (1) and using Eq. (2) to obtain the potential. These are not
necessarily the same things on a computer, of course, and
tests are necessary to establish that the numerical process is
not producing errors. This has in fact been done at a number
of geometries of our Ne-HF potential discussed in the fol-
lowing paper. In all cases tested, the potential obtained from
Eq. (4) was the same as that from Egs. {1) and (2) to 10~°
hartrees. Thus our numerical procedures are adequate for
calculating these small potentials. Equation (4) is a very use-
ful form for the potential that shows very clearly the expect-
ed accuracy as far as matrix elements are concerned. But,
these considerations also show that within this VB frame-
work for intermolecular potentials, the conventional proce-
dure of matrix diagonalization and subtraction of Ef oo ) will
easily give as many significant figures as are likely to be need-
ed in the potential.

IIl. THE HAMILTONIAN AND OVERLAP MATRIX
ELEMENTS

We may obtain another useful idea from an examina-
tion of Eq. (4). The submatrix (Hgz — VSgg) occupies a
unique place in the expression for V. In particular, one
would expect that the off-diagonal elements of Hyy and Sgg
are less important than the diagonal elements, and, indeed,
in standard perturbation theory they contribute to the ener-
gy only in order three and higher. This suggests that we need
not calculate these as accurately as we do the others of Eq.
(4). We have implemented this idea and in this section we
discuss the strategies we use for rapid evaluation of the ma-
trices of S and H in the nonorthogonal VB basis.

For those cases where we use the exact algorithm, the
matrix element of the overlap has the form

S(P)ij=<¢i|¢j) (5)

= (ult |, Ay(1 = S+D — T+ ~Jui-ul), (6)
where 4, and A, are antisymmetrizers for @ and b, respec-
tively, and S, D, T,... are a series of single, double, triple,...

interchanges between the two subsystems. The total number
of terms in the sum of permutations interchanging electrons
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between the subsystems is the binomial coefficient (7 )

= (:b ), where 7 is the total number of electrons and n, and
n, are the numbers of electrons on a and b separately. The
Gaussian elimination method for evaluating determinants
requires a length of time proportional to m> for a determi-
nant of m rows and columns. If this were used on each of the
terms of Eq. (6) the total labor would be proportional to

n
3,3
n,n
a '*b (na)’

a value much larger than that required to evaluate Eq. (5)
directly, considered as a single determinant. Even if, as has
been suggested'" because of the small size of the intersystem
overlaps, one includes only the single interchange terms
from Eq. (6), the labor of evaluating Eq. (5) directly would be
less if n, n, > ~3. The situation would be even more unfa-
vorable if double interchange terms are required.

Again, we have a situation where numerical truncation
on a computer may affect the results. The number of permu-
tations in the term of Eq. (6) for k interchanges is (*) (*)
and if the intersystem overlaps are of the order ¢, then the k
interchanges contribute (;°) (i°) €**to the sum. We expect
numerical difficulties if this quantity is of the order of unity
while €2* is ~ 107! {for a 16 decimal digit computation).
This situation cannot occur for a system of, for example, 20
electrons where the largest binomial coefficient product is
63504. In order to verify this conclusion we have actually
tested a number of determinants from Ne—HF calculations
to be reported and have found differences between Egs. (5)
and (6) to occur only in the last significant figure.

The situation for the matrix elements of the Hamilton-
ian is dominated by the fact that the number of two electron
integrals required is proportional approximately to the
fourth power of the number of electrons while the work pre-
paratory to obtaining the second order density matrix is still
an »n° problem. Thus there is again no benefit from evaluating
these with expansions of the antisymmetrizer in the manner
of Eq. (6).

Therefore, for the matrix elements that we intend to
calculate exactly, we use the standard method for evaluating
matrix elements between nonorthogonal configurations that
one of us has been using for a number of years. For a review
of this complete procedure see Gallup et al.'?

We emphasize that the orbitals we use are orthonormal
for each of the subsystems separately. The only nonzero
overlaps are from intersystem interactions. Qur strategy for
the off-diagonal elements of H; and S¢ is to evaluate these
as if even the intersystem overlaps were also zero. Thus in-
stead of using a matrix element algorithm for nonorthogonal
configurations, we merely use the standard one appropriate
for configurations constructed from orthogonal orbitals.
This is much faster, of course, and makes it possible to deal
effectively with the calculation of large matrices. As the
number of configurations increases, the number of matrix
elements calculated exactly increases only linearly with the
order of the matrices, while the number treated approxi-
mately increases with the square of the order. Thus the cal-
culation becomes more efficient as the size of the matrices
increases.

IV. THE APPROXIMATION OF THE INTERSYSTEM
INTEGRALS

The cancellation of the errors demonstrated in Sec. II
has important consequences for the evaluation of integrals.
When using atomic orbital (AO) bases, the principal errors in
ab initio calculations arise from inaccuracies in evaluation of
the necessary integrals between the AOs and from deficien-
cies in various aspects of either the one- or n#-electron bases
used. The Gaussian group function representation of AOs
deals with the first of these very effectively. The simple ana-
lytical properties of Gaussians allow the economical evalua-
tion of integrals to machine accuracy. However, as is well
known, Gaussians behave incorrectly at long distances, and
particularly for intermolecular forces, this is a basis set defi-
ciency of one type.

Slater functions, on the other hand, have the correct
exponential behavior at long distances, but methods of eva-
luation of some integrals have been unable to attain accura-
cies better than 6-7 decimal places without using excessive
time.!® Our analysis suggests that even this accuracy is un-
necessarily high for many of the integrals, and that we may
use quite approximate methods if proper attention is paid to
certain cancellations that must occur in the Coulomb ener-
gy. In the next sections we survey the various integrals in-
volved in our procedure and the method we use for evalua-
tion of each of the types that occur.

V. INTEGRALS FROM roLYCAL

The Gaussian transform integral package is efficient for
all of the overlap and kinetic energy integrals and for the on
board nuclear attraction and electronic repulsion integrals.
These latter on board integrals are calculated only once for
all geometries so even a slower program than POLYCAL'?
would not be a problem. Indeed, POLYCAL may have its pre-
cision parameters set quite high for these integrals.

VL. INTEGRALS BY MULTIPOLE EXPANSIONS

In our procedure we obtain intersystem nuclear attrac-
tion (two orbitals on one subsystem with a nucleus from the
other) integrals and intersystem electron repulsion (two orbi-
tals on one subsystem interacting with two orbitals from the
other) integrals by a multipole expansion approximation.
This is most easily analyzed using the bipolar expansion of
73 ', given by Buehler and Hirschfelder.!* As is typical for
expansions of r;; !, a Green’s function, different analytic
forms are required for different ranges of the variables. Fig-
ure 1 shows the four regions labeled A, B, C, and D.

In considering the electron repulsion integrals of the
present type, if there were no overlap between the orbitals on
the two subsystems, the integral could be obtained exactly by
an integration only over region A. The same holds for the
nuclear attraction integrals, as can be seen by considering a
nucleus as a Dirac delta function charge distribution. As the
charge distributions approach one another more closely,
they will have some overlap, and the other regions of the
bipolar expansion, B, C, and D, will contribute to the result
for an exact treatment. We approximate these integrals then,
by using only the analytic form appropriate to region A of
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FIG. 1. The regions of r,-r,
space for which different ana-
lytic expressions are required
in the bipolar expansion of
(ra) ™"

the bipolar expansion while integrating over all space. Physi-
cally, this neglects the exact effects of charge penetration
between the two subsystems.

Actually, the nuclear attraction integrals of this type are
obtained to fairly high accuracy by a number of techniques.
However, Coulomb interactions are quite large and fall off
very slowly with distance. For electrically neutral subsys-
tems of ten electrons each, the total repulsion energy at 20
bohr is approximately 10 a. u. while the total attraction ener-
gy is approximately — 10 a. u. In typical calculations these
must very nearly cancel to reach an energy of the order of
1073 a.u. It is clear that this will be reliable only if the same
technique is used on all integrals of this section.

VIl. THE FOURIER TRANSFORM CONVOLUTION
THEOREM

The remainder of the integrals have at least one orbital
from each of the subsystems. These may be symbolized as
{a| — Z /r,|b ) for nuclear attraction types and [ea|ab] or
[ab |ab Jfor electron repulsion types. These integrals are all of
the exchange type and have no counterpart in the nuclear
repulsion part of the energy. In line with the goal of having
the correct exponential behavior for these, we chose the
method of Fourier transforms. The appropriateness of this
choice is seen from an examination of the formulas for the
Fourier transform of a two-center distribution that is the
product of two Slater orbitals. These have an explicit factor
involving the exponential function of the distance between
the two orbital centers. An alternative approach might be
the application of the bipolar expansion, used for the inte-
grals discussed in Sec. VI. However, this is unsuitable, since
all four regions of the bipolar expansion have significant con-
tributions to most of the integrals, and the expansions are
expected to converge slowly.

The Fourier transform method has been used extensive-
ly in both analytical’®> and numerical'® treatments of two
electron integrals. The principal result relates the Coulomb
interaction between two charge distributionsp, and p,,, toan
integral over the product of the Fourier transforms F, and
F,, respectively,

[ [p.vpsiaws? arar, = m [ £, B, ak/i

This theorem replaces a sixfold nonseparable integral with
three separated threefold integrations.

As a first step one is required to obtain the FT of the
product of two orbitals. If these are Slater orbitals at the
same center the FT can be evaluated explicitly as a rational
polynomial function of £ multiplied by spherical harmonics
in the angles. The determination of the FT of a Slater orbital
product for two different centers has been the subject of a
number of studies.'” It can easily be reduced to having no
more than one numerical integration.

For our procedure we have used a threefold numerical
integration over & to approximate these exchange type inte-
grals. This is done in polar coordinates. For the ¢, integra-
tion we use a constant coefficient uniformly spaced quadra-
ture formula and for the 8, integration we use the standard
Gauss-Legendre formulas. For the k integration we use a
novel quadrature formula designed to improve the conver-
gence by taking advantage of the known asymptotic behav-
ior of the FT for large |k |.

For products of Slater orbitals, whether at one center or
at two, the dependence of the FT on k is O (k ~ "), asymptoti-
cally, where n>4. We make a change of variable

k=y/(1 -y
and with a little manipulation obtain
© 1
[ rwae = [ gt p1 -y —sray, )
0 0

where g(k)=f(k}X(1 + k)5 The function g is bounded in
the whole range of k¥ (or y) and at y = 1 is either finite or 0
depending upon the power of k in the asymptotic behavior of
the FTs. We now obtain the integral on the right-hand side of
Eq. (7) by determining the optimal Gaussian type quadrature
formula'® for the interval O to 1 and the weight function
(1 — y)®. This has abscissas that are roots of Jacobi polynomi-
als.! These transformations have the effect of directly put-
ting into the weight function the property of the original
integrand that made it converge. Therefore, the quadrature
abscissas tend to collect toward the small values of y (and & )
close to 0 where the transforms are larger and the contribu-
tion to the integral more important. A report giving more
details of this whole procedure will be published elsewhere.?

Viil. OPTIMIZATION OF EXCITED PSEUDO-STATE
ORBITALS FOR CI

The principal mechanisms for attraction between two
closed shell systems are dispersion, induction, and charge
transfer. Of these charge transfer presents the greatest prob-
lems, and we defer discussion of this phenomenon until later.

If either of the subsystems of our interacting pair pos-
sesses an electric multipole moment, both dispersion and
induction involve the transition moments of various excita-
tions. Because of the close connection between the polariza-
bility of a system and the C, coefficient of its interaction with
other systems we expect that orbitals optimized to obtain the
best possible polarizibility will also be optimal for Cy. In this
section we discuss a method for obtaining the most efficient
set of excited orbitals for describing the polarizability.

Burke and Robb® have pointed out that the zz compo-
nent, for example, of the polarizability tensor is the extreme
value of the functional

J, = —2(u|H® — EQ|u) + 4(u|z|dy) (8)
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with respect to variations in #, and that determining the opti-
mum u gives what they call a “pseudo state” to use for intro-
ducing the polarizibility into other calculations. For an elec-
tric field in the z direction, u is, in other language, the first
order correction to the wave function due to the field. The
condition that J, be a maximum is easily seen to be

0= —4[(H — EQu — z,]. 9
We now show that a finite field method for polarizibilities is
equivalent to the Burke procedure.

Consider the representation of the wave function of a
system as a configuration interaction of the Hartree-Fock
reference function and single, double, triple,..., excitations
that are appropriate for the correlated states of the system.
We obtain approximations to the wave functions and ener-
gies of these states by diagonalization of the A matrix in this
basis:

HO=U'HOU=E©Y, (10)
If now we consider the matrix of the Hamiltonian
H=HY _¢gz

in the basis in which H'” is diagonal, and we write it in
partitioned form, we obtain

H — 200 — Egfe) —¢ 3 25, C, =0. (11)

— €Zg; + z {[E£0)(€) _EO(E)]aij - szij} C, =0. (12)

Equation (12) are the conditions that the functional
K,(u)=(u|H® — ez — EQu)

— 2{ulelz — Zgo) B0} (13)
be an extremum when u is expanded in the excited states of
Eq. (10). Equation (13) is a slight generalization of Eq. (8) for
noncentrosymmetric systems, and the extreme value for X,
is

(1/2)ae* + O (&%)
Thus determining  from

a= li_lg — (8% Ey(e)/3¢?),

where E(¢) is obtained by solving the system (11) and (12), is
equivalent to the procedure of Burke and Robb minimizing
K, within the basis we are using.

We may use a somewhat more approximate treatment
to obtain a set of optimal excited orbitals. If, instead of the
solutions of Eq. (10), we solve Egs. (11) and (12) using only
the Hartree-Fock function and functions formed by single
excitations from it into the virtual orbitals, the resulting first
order wave function can be written in terms of single excita-
tions into a new set of orbitals. The lowest eigenfunction of
Egs. (11) and (12) can be written

d’=¢o+z¢j’: Cijs

where ¢, is the Hartree-Fock function and ¢ is the singlet
function resulting from an excitation of the occupied orbital
u; into the virtual orbital v;. The orbitals obtained as the
linear combinations

v,f=2C,-j v
7

may be subjected to a Schmidt (or other) orthogonalization,
and the orthonormal functions w; that result constitute the
optimal set we have been seeking. In general, for ¢, with n
doubly occupied orbitals, we obtain n optimal excited orbi-
tals, and ¥ may be written as the HF function plus n” single
excitations. Systems with high symmetry allow a more econ-
omical representation than this.

We repeat the process for the x and y directions and in
this way obtain a collection of optimal excited orbitals that,
with the HF function, give the most economical representa-
tion of the wave function for a field component in any direc-
tion.

IX. A LEVEL SHIFTING CORRECTION FOR
POLARIZABILITIES

Unless the treatment reproduces the polarizability cor-
rectly, a calculation of the intermolecular potential between
two systems cannot be expected to be accurate. The well
known formula for the polarizability, derived by means of
perturbation theory, is

. =23 |2 |/ [EP —EP] (14)

for the a,, component of the tensor. The procedure we use to
obtain the optimal pseudo-orbitals still generally underesti-
mates the polarizability for closed shell systems. Since for
the ground state all the terms of Eq. (14) are positive, this
implies that the HF function gives transition moments that
are too small, excitation energies that are too large, or both.
In a finite basis calculation the sum is also truncated. We
expect that a change in the excitation energies will increase
the calculated polarizability to the correct value. This is
done within the finite field method by modifying Eq. (12)
with a correction in the diagonal elements

—ezo + > {H) —ez;; + [4 — Eyfe)16,,} C; =0
J

(12)

and then adjusting 4 to give the correct polarizibility.

The dispersion in an intermolecular potential calcula-
tion must also be treated accurately for good results. We
have shown?! that the level shift corrections for the polariza-
bility for several systems can be used additively to correct the
value of the C coefficient obtained using the same basis. For
more details we refer the reader to the other article.

This level shifting correction is easily carried out in the
context of a CI calculation of intermolecular forces. We are
thus able to introduce some independent semiempirical in-
formation into our calculation, without having to deal with
damping factors, which introduce so much uncertainty into
some treatments.

X. CHOICE OF CONFIGURATIONS FOR THE ClI

In the previous sections of this article we have concen-
trated upon methods of approximating various integrals and
matrix elements. In this section we will examine some points
about the physics of the interactions and the way the various
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terms in the wave function describe them.

If the subsystems both possess electric moments, the
multipole interactions between these will be described by the
product of the two HF functions. This will still be true even if
a more general function were to be used for the “ground
state.” In many cases the multipole interaction will be the
dominant one. If either of the subsystems is monotomic
there are no multipolar interactions between them repre-
sented in the ground state function, and the interaction is
purely repulsive.

Whether or not multipole interactions are present, the
remainder of the potential arises from terms involving excit-
ed configurations. Consequently it is important to include
the appropriate excited states in the CI matrix. In general it
is necessary to include three distinct classes of excitation®?;
and these are examined in turn below.

A. Polarization

Also called induction, this phenomenon is relatively
unimportant for atomic systems, but it can be sizable when
one or both of the subsystems possesses an electric moment.
When one of the moments is a dipole, polarization leads to
terms in the potential that vary asymptotically with the in-
ternuclear distance as R ~°. This effect then combines with
the dispersion, (see below) which has the same form. Single
excitations out of the ground state function represent polar-
ization. It appears to be a relatively uncomplicated pheno-
menon that, nevertheless, requires good values for the sub-
system polarizabilities for its correct reproduction, as was
emphasized earlier.

B. Dispersion

It has long been known that this phenomenon is essen-
tially an intermolecular electron correlation effect. Some
workers have described it in terms of emission and absorp-
tion of virtual photons.?> The necessary configurations to
represent it consist of double excitations, one on each of the
subsystems. The asymptotic form of the dispersion interac-
tion is a sum of powers of R ~", n>6. If both of the subsys-
tems are centrosymmetric only even inverse powers of R are
present.

C. Charge transfer

The role of charge transfer in intermolecular forces has
been difficult to assess. In VB wave functions it can give rise
to basis set superposition errors as well as contributing to
any real physical effects present. These errors can lead to

considerable overestimates of the interaction energy.?* The .

size of the superposition error is quite sensitive to the quality
of the ground state functions and to the optimization of the
orbitals used in the excited configurations.*” For relatively
small systems with large ionization potentials one might ar-
gue that we may neglect this type of interaction. For large
systems it can be important.?

XI. SUMMARY AND CONCLUSION

In this article we present a method for the direct calcu-
lation of intermolecular potential energy surfaces. The ap-

proach uses wave functions determined from the individual
subsystems in the construction of the wave function for the
composite system, which in turn is determined by a vari-
ation-perturbation approach based upon VB theory. We im-
plement the procedure with a systematic series of approxi-
mations that are justified by the physical situation, i.e., that
the energy of interaction is small (of the order of 10~ a. u.),
that the overlap between the subsystems is small—but not
negligible, and that the separation between the systems is
relatively large.

Our procedure may be summarized as follows: In order
to construct the matrix

H—SE,

(1) Calculate the diagonal elements H; and the elements
of the first row and column H,,, H,;, S;, and S, exactly.
Other elements H;; and S, are approximated by neglecting
overlap between the subsystems (Sec. III).

(2) Determine the optimized excited orbitals by pseudo-
state technique (Sec. VIII).

(3) Introduce level shifts to correct subsystem polariza-
bilities (Sec. IX).

(4) Approximate intersystem integrals:

(i) Integrals [aa’|r; '], [6b'|r; '], and [aa’|bb '] de-

termined from multipole expansions (Sec. VI).

(i) Integrals [ab |r, '], [ab|r; '], [ad’|ab ],
[bb'|ab 1,and[ab |a'b 'Japproximated using Fourier
transform method (Sec. VII).

(iii) Calculate the remaining integrals using POLYCAL,
Gaussian-transform method for Slater orbitals
(Sec. V).

In the article following this one, we apply our procedure
to the case of Ne-HF. For such a system our method in-
volves approximations of many kinds, including those made
in tens of thousands of integrals. We feel that the only real
test of results using it can be a comparison with an experi-
mental potential of high quality. In this way we can test the
adequacy of the concerted use of all these approximations.

Nevertheless, many of the approximate techniques for
evaluation of integrals and matrix elements can undoubtedly
be improved to make the procedure even more accurate and
efficient. Work continues on these questions.
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