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e Itinerant Limit of Metallic Anisotropy 

Ralph Skomski 

Max-Planck-Institut fur Mikrostrukturphysik, Weinberg 2, 06120 Halle, Germany 

A b s t r a c t  - The anisotropy contribution of  
itinerant electrons confined to a quantum-well 
potential is calculated and compared with the 
quasi-ionic contribution due to virtually bound 
electrons. The easy magnetization direction of 
the non-L-S quantum-well electrons lies in the 
plane, and the magnitude of the anisotropy,  
maximally of order 10 J/m3, is too weak to 
explain anisotropies encountered in practice. T h i s  
means that itinerant 3d anisotropy in bulk 
materials and thin films is associated with 
Hund's-r ules-type ionic Contributions. 

I .  I N T R O D U C T I O N  

Magnetic anisotropy caused by itinerant electrons in bulk 
materials and thin films has attracted considerable attention 
in recent years. Examples are the phenomenon of 
pcrpendicular thin-film anisotropy relevant to magneto- 
optical recording [ 11 and the 3d contribution to  the 
magnetocrystalline anisotropy of permanent magnets such as 
SmCoj  and Nd2Fel4B [2, 31. Apart from a magnetostatic 
contribution of order poMs2, magnetic anisotropy is of  
magneto-crystalline origin and involves relativistic spin-orbit 
coupl ing and electrostatic crystal-field interaction. 
Essentially, the orbital motion of the electrons is influenced 
by the electrostatic potential of the cr 
interaction couples the orbital motion of the electrons to 
spin and magnetization. However, the detailed anisotropy 
mechanism depends on  the strengths of spin-orbit coupling 
and crystal-field interaction as well as on the degree of 
localization of the magnetic electrons. 

PROLATE OBLATE 

Magnetocrystalline anisotropy in  modern rare-earth 
permanent magnets such as SmCoj 141, Nd2Fe13B 121, and 
Sm2Fc17N.i [ 51 largely originates from the rare-earth 
sublattice. In spite of  the coinparatively low volume fraction 
of the rare earths, typical rare-earth anisotropy contributions 
are of order 10  MJ/m3 in these intermetallics 14, 6, 71. 
Tripositive rare-earth ions are reasonably well described by 
Hund's rules, so that rare-earth anisotropy may be interpreted 
in terms of the electrostatic interaction of well-localized 4f 
electron shells with the crystal environment 16-81. Figure 1 
shows prolate and oblate 41 charge distributions in a crystal 
environment symbolized by positive charges above and 
below the ion. Since there, is a firm coupling between the 41 
charge cloud and the magnetic moment, the preferrcd 
magnetization direction is obtained by minimizing the 
electrostatic energy of the ion. 

Compared to rare-earth anisotropy contributions, the 
anisotropy caused by itinerant d electrons tends to be rather 
low. However, anisotropies of order 1 M J h 3  are observed in 
thin films [ l ]  as well as in layered intermetallics such as 
YCos and PtCo 191. A good example is the Llo compound 
PtCo, which can be regarded as a tetragonally distorted fcc 
derivate consisting of alternating layers of magnetic (34  and 
nonmagnetic elements. This makes it possible to  treat 
itinerant interface, surface, and bulk- anisotropies on a 
common basis. 

3d anisotropy in metals is characterized by two basic 
features. First, as in nonmetallic magnets the orbital 
moment of the 3d electrons is largely suppressed by the 
crystal field. This quenching does not only affect Ihe 
spontaneous magnet izat ion but a l so  reduces the 
magnetocrcrystalline anisotropy. Secondly, metallic 3 d  
electrons are itinerant, and the question arises to what extent 
the ionic anisotropy mechanism survives the delocalizatih 
of [he 3d electrons. From the point o f  view of band-structure 
theory, anisotropy produced by itinerant 3d electrons can be 
regarded as  a higher-order perturbation, and reasonable 
anisotropy predictions have been made in a number of cases 
[ 10- 131. Essentially, one includes spin-orbit interaction in 
addition to the energy terms appearing in the Stoner theory 
or in spin-polarized band-structure calculations. Since the 
charge density of the metallic 3d electrons remains, in some 
sense, reminiscent of that of  free ions, band-structure 
calculations mix ionic and itinerant features. For instance, in 
the limit o f  weakly overlapping tight-binding orbitals the 
problem retains its ionic charactcr, although the matrix 
elements between different orbitals are now wave-vector 
dependent [lo]. Here we discuss the nature of itinerant 
anisotropy in terms of analytical approaches. 

Fig. 1. Ionic prolaticity and anisotropy. In this example, 
prolate and oblate ions yield easy anisotropies parallel and 
perpendicular to the L axis, respectively. 
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11. I O N I C  3 d  A N I S O T R O P Y  

Experimental evidence in favour of the ionic picture of  
itinerant 3d anisotropy comes from the fact that iron and 
cobalt tend to exibit opposite anisotropy contributions in 
isostructural intermetallics (6, 141. For instance, rwm- 
temperature bcc iron has K1 = 42 kJ/m3, whereas iron-cobalt 
alloys with 30 wt.% and 70 wt% cobalt exhibit K1 = I O  
kJ/m3 and K1 = - 43 kJ/m3, respectively 1151. Another 
example are the room-temperature YzFei qB and Y2Coi 4B 
anisotropies K]  = 1.1 MJ/m3 and K1 = - 1.2 MJ/m3, 
respectively. Both magnetization measurements and band- 
structure calculations indicate that the quasi-ionic states of 3d 
atoms in metals are close to TI+ configurations, i.e. one of 
the two 4s electrons is accommodated in the 3d band [ 14, 
161. Examining the 3d Stevens coefficients (171, which 
determine the shape of the ionic charge distribution, one 
finds that both a = 82 and p = 04 change sign between the 
3d7 (Fe+)and3d8 (Co+) configurations 1141. Thus, if there is 
a partial survival of the ionic multipole moments on band 
formation, then the shape difference between (oblate) iron and 
(prolate) cobalt ions gives rise to  opposite anisotropy 
contributions in a given crystal field. A pictorial explanation 
is that the 3d electrons travelling through the lattice are 
temporarily captured by the ,ionic cores of the 3d atoms, 
where they benefit from the ionic spin orbit coupling. 

To quantify this quasi-ionic behaviour we recall that the 
shape of  Hund’s-rule ground-state eleGtron clouds is given by 
the electrostatic quadrupole moment { 171 

In the case of 3d electrons, spin and orbital moment are 
largely decoupled, so that J has t o  be replaced by L. 
Introducing the number n‘ of electrons in the second half of 
the 3d shell we then obtain, after short calculation, 

e 
m 
4 

Y 

c 
0 

r“ 
# 

ti 7 8 9 
Number of d Electrons 

Fig 2 Ionic 3d quadrupole moments Q2 In  a given lattice 
en\ ironment, the first anisotropq constant K, is proportional 
t o  Q2 

Figure 2 shows this equai.ion as a function of the total 
number of d electrons, n = 5 + n‘. Note, however, that Eq. 
(1) cannot be used to  make quantitative predictions of K1, 
since only part of the free-ion multipole moment 4 2  remains 
unquenched. 

We see that the 3d anisotropy changes sign at n = 7.5 and 
reaches a maximum at n =I 8.943. Since the moment of 
strong ferromagnets is given by the d-band filling, equation 
(2) predicts the 3d anisotrop:y t o  be most pronounced if there 
are 1.0S7 holes in the spin-down band. This value is indeed 
compatible with the behaviour of CoiNi multilayers, where 
experiment and detailed banid-structure calculations indicate 
perpendicular anisotropy between about 9 and I O  valence 
electrons per atom [ 1 1 1. 

111. I T I N E R A N T  3 d  A N I S O T R O P Y  

Consider the anisotropy o f  an electron gas confined to a set 
o f  x-y planes (Fig. 3 ) .  The atomic potential in real solids is 
more or less spherical around the atomic nuclei (Fig. 3a), 
although the overlap ot‘ the atomic wave functions gives rise 
to band-structure correstions. In the opposite limit of free 
electrons it is suitable to  start from a quantum-well potential 
where the ionic cores are neglected (Fig. 3b). Since the usual 
L-S-type spin-orbit interaction is based on spherical 
potcntials, one has to start from the more general Foldy- 
Wouthuysen-transformed Dirac equation [ 181 

where the indices refer 10 lhe two-component spin wave 
functions Vm(r) = (Pf 1, V2), Bmn is the unit matrix in spin 
space, and a m n  denotes the Pauli spin matrices. 

Exchange fields in 3d ferromagnets arc generally much 
larger than anisotropy fields, so that there is a well-defined 
quantization axis along the magnetization direction. The spin 
operator a m n  can then be replaccd by its eigenvalue 
- M/Mo 8mn 

Note that paramagnetic metals, which do not exhibit 
magnetocrystalline anisotropy, and actinide or 5f metals, 
where the spin-orbit coupling is extremely strong, are not 
considered here. Without loss of generality wc can put M = 
M, (sin 8 e, + cos 8 e,) in E%. (4), so that 

where b = h2/4m2c2. A further simplification is achieved by 
the ansatz 11’ = eup(1kxx + ik~,y) cP(z). Putting 

then yields 

fi’ (pa d V  
2m a/’ a/; E,@ = - -- + (V - k> b-  sin H) (7) 
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a b 

Fig 3 Layered array of magnetic atoms (schematic) a true 
potential and b quantum-well potential 

In the case of a periodic potential V(L) this equation leads 
to a one-dimensional tight-binding band-structure problem in 
z direction and a two-dimensional free-electron-type band- 
structure problem in the x and y directions If electron 
hopping in z direction is negligible we can restnct ourselves 
to a single plane centered at 7 = 0, so that series expansion 
yields the approximate potential V(z) = Voz2/2 Thus, 

z2 h2 d2@ 
21n dz2 2 + V (- - ky b z sin 0) @ (8) E, 41, = -  -- 

which can be rewritten as 

h2 @a, v, 
2m a~~ 2 E,@ = - -- + -((z - ky b sin iD 

- 2 v 0 ky2b2sin2B @ (9) 

This is the wave equation tor a one-dimensional harmonic 
oscillator whose center of gravity is given by zo = ky b sin 
8. Since the energy of a harmonic oscillator does not depend 
on the center of gravity, the anisotropy energy equals the last 
term in Eq. (9). Introducing the average squared oscillation 
amplitude a2 = <(L  - z ~ ) ~ >  and the ground-state energy &) = 
h2/(4ma2) wc obtain the anisotropy energy 

@k) - 

Here the in-plane wave-vector component kp equals k = Ikl, 
since we have neglected interplane hopping. 

Examination of (10) shows that the preferred 
magnetization direction lies in the Y-y plane, so that the 
electron confinement Fig. 3b leads to easy-plane anisotropy, 
Note that this easy-plane anisotropy is no1 restricted to 
quadratic potentials but also occurs for other in-plane energy 
ininiina. 

The total anisotropy energy is obtained by averaging over 
all electronic k-space vectors. Up to a factor of order one, the 
averaging amounts to the replacement of kp2 in (10) bq kF2 
Estimating the anisotropy by takmg k1: = l/a and ~ZQ = 10 
eV yields the quite small anisotropy energy AE = - 0.022 
mK, which has to be compared to expenmental anisotropy 
energies of order 1 K. 

I V .  D I S C U S S I O N  A N D  C O N C L U S I O N S  

contributions in real materials. This is in agreement with the 
experimental and theoretica1 arguments presented in Sections 
1 and 11, which indicate that quasi-ionic contributions are 
sufficient to explain observed anisotropy trends. On the other 
hand, the existence of quantum-well anisotropy shows that 
L-S coupling and Coulomb attraction associated with atomic 
nuclei of charge Ze are not necessary to produce 
magnetocrystalline anisotropy. 

In conclusion, the non-L-S anisotropy associated with lhe 
free motion of itinerant electrons is non-zero but too weak to 
explain experimental anisotropy constants. Itinerant 
anisotropy in 3d metals is largely due to temporarily 
localized (virtually bound) states having much in common 
with truely localized orbitals. 
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