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Comments and Corrections

On the Distribution

Saralees Nadarajah and Samuel Kotz

Index Terms—Fast fading distribution, distribution.

The recent paper by Yacoub et al. [1] introduces what is referred to as
the ��� distribution to describe the statistical variation of the envelope
in a fast fading environment. The paper discusses several properties of
the distribution. Two of the properties discussed are the nth moment,
E(Pn), and the cumulative probability function (cpf), FP (�), where
P is a random variable representing the normalized envelope. The ex-
pression given for E(Pn) (see equation (10) in Yacoub et al. [1]) is
a doubly infinite sum of the Gauss hypergeometric function (which,
itself, is an infinite sum). That given for FP (�) (see equation (11) in
Yacoub et al. [1]) is a triple sum of the incomplete gamma function.

We feel that the expressions in equations (10) and (11) of Yacoub et
al. [1] are too complicated for practical purposes. In the following, we
show how one can derive much simpler forms for E(Pn) and FP (�).
Using equations (5)–(8) in Yacoub et al. [1], the probability density
function (pdf) of P can be expressed as
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By equation (2.3.15.3) in Prudnikov et al. [2], I(�) can be calculated
as

I(�) = �(n+ 2)(2B)�(n=2+1) exp
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where Dp(�) denotes the parabolic cylinder function defined by

Dp(x) =
exp(�x2=4)
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Combining (2) and (3) yields the formula
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This formula applies for any real number n > �2. If n is a positive
integer then, using equation (2.3.15.7) in Prudnikov et al. [2], I(�) can
be calculated as
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where erfc(�) denotes the complementary error function defined by

erfc(x) = � 2p
�
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0

exp(�t2)dt:

Combining (2) and (5) yields the simpler formula
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Various simple expressions can be obtained from (6) by setting specific
values for n. For instance, if n = 1, n = 3 and n = 5 then (6) can be
reduced to the simple forms
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and
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respectively, where erf(�) denotes the error function defined by
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2p
�
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exp(�t2)dt:

Ifn is an even number then one does not need to use (6) sinceE(Pn) =

E((X2 + Y 2)
n=2

)=fE(X2 + Y 2)gn=2, whereX andY are indepen-
dent Gaussian random variables (see equation (15) in Yacoub et al. [1]).

The cpf of P , FP (�), can be expressed as
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By equation (2.3.15.1) in Prudnikov et al. [2], I1(�) and I2(�) can be
calculated as
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Combining (10), (11) and (12) yields a formula for the cpf FP (�).
Note that all of the formulas in (4), (6), (7), (8), (9) and (10) involve

just one integral (with respect to �) and are much simpler than those in
equations (10) and (11) of Yacoub et al. [1]. We feel that the formulas
given can help the readers and authors of this journal with respect to
modeling the statistical variation of the envelope in a fast fading envi-
ronment.
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Corrections to “A General SFN Structure With Transmit
Diversity for TDS-OFDM System”

Jin-Tao Wang, Jian Song, Jun Wang, Chang-Yong Pan,
Zhi-Xing Yang, and Lin Yang

In the above paper [1], the first author’s name was misspelled in the
byline: "Jian-Tao Wang" should have read: "Jin-Tao Wang".

The corrected byline should read:

Jin-Tao Wang, Jian Song, Jun Wang, Chang-Yopng Pan,
Zhi-Xing Yang, and Lin Yang
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